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Abstract
Flavor symmetric model is one of the attractive Beyond Standard Models (BSMs) to reveal the

flavor structure of the Standard Model (SM). A lot of efforts have been put into the model building

and we find many kinds of flavor symmetries and setups are able to explain the observed fermion

mass matrices. In this paper, we look for common predictions of physical observables among the

ones in flavor symmetric models, and try to understand how to test flavor symmetry in experiments.

Especially, we focus on the BSMs for leptons with extra Higgs SU(2)L doublets charged under flavor

symmetry. In many flavor models for leptons, remnant symmetry is partially respected after the

flavor symmetry breaking, and it controls well the Flavor Changing Neutral Currents (FCNCs)

and suggests some crucial predictions against the flavor changing process, although the remnant

symmetry is not respected in the full lagrangian. In fact, we see that τ− → e+µ−µ− (µ+e−e−)

and e+e− → τ+τ− (µ−µ+) processes are the most important in the flavor models that the extra

Higgs doublets belong to triplet representation of flavor symmetry. For instance, the stringent

constraint from the µ → eγ process could be evaded according to the partial remnant symmetry.

We also investigate the breaking effect of the remnant symmetry mediated by the Higgs scalars, and

investigate the constraints from the flavor physics: the flavor violating τ and µ decays, the electric

dipole moments, and the muon anomalous magnetic moment. We also discuss the correlation

between FCNCs and nonzero θ13, and point out the physical observables in the charged lepton

sector to test the BSMs for the neutrino mixing.

1

http://arxiv.org/abs/1505.07636v1


I. INTRODUCTION

We know that there are three generations of fermions in nature. Each generation car-
ries the same quantum number, and only their masses are different from each other. In
the Standard Model (SM), the transition among the generations occurs only through the
weak boson exchanging, but the flavor-changing processes via the Flavor Changing Neutral
Currents (FCNCs) are strongly suppressed because of the Glashow-Iliopoulos-Maiani (GIM)
mechanism [1]. This SM picture successfully describes the experimental results, but we may
wonder why such a flavor structure exists in our nature. We expect that Beyond Standard
Model (BSM) exists out of our current experimental reach, and reveals the origin of the
three generations. One of the promising BSMs is a flavor symmetric model.

In the SM, flavor symmetry is explicitly broken by Yukawa couplings to generate fermion
mass matrices. Without the couplings, we could find SU(3) symmetry in each sector of left-
handed (right-handed) up-type, down-type quarks and leptons. In flavor symmetric models,
the SU(3) symmetry or the subgroup of SU(3) is respected in the Lagrangian, introducing
extra scalar bosons charged under the flavor symmetry. For instance, additional SU(2)L-
doublet Higgs fields are introduced, and the scalars and fermions are charged under the flavor
symmetry to write down Yukawa couplings. The flavor-charged Higgs fields develop nonzero
vacuum expectation values (VEVs), and break not only the electro-weak (EW) symmetry
but also the flavor symmetry. Then the flavor structure of the SM is effectively generated
at the low-energy scale. This BSM would be very attractive and reasonable, and so many
types of flavor symmetric models have been proposed so far [2–4]. Especially, we could find
so many models motivated by the large mixing in neutrino sector, because the experimental
result may imply so-called Tri-Bi maximal mixing [5], which can be easily accommodated
by the BSMs with non-Abelian discrete flavor symmetry such as A4 [6–8], S4 [9], and ∆(27)
[10] etc.. Recent result on the nonzero θ13 [11–15] may require some small modifications
in those models, but we could expect that so many kinds of flavor symmetric models can
be still consistent with the experimental results [4, 16–22]. Then, the next question in this
approach to the flavor structure would be how to test the flavor symmetry in experiments.

One hint to clarify which kinds of symmetry exist behind the flavor structure would be
obtained, if we consider the origin of the remnant symmetry in the fermion mass matrices in
the SM. As we discuss in Sec. II, we see that there is symmetry in mass matrices of leptons
in the SM, which is explicitly broken by the weak interaction involving W boson. If flavor
symmetry exists behind the SM, the remnant symmetry might be the fragment of the flavor
symmetry broken at high energy. In fact, one can find a lot of works on flavor models, based
on the assumption that the symmetry in the fermion mass matrices is the subgroup of flavor
symmetry [2–4, 19, 23].

In this paper, we investigate especially FCNCs involving charged leptons in flavor sym-
metric models, where the symmetry in the charged lepton mass matrix is the subgroup of
the flavor symmetry and extra SU(2)L-doublet Higgs fields charged under the additional
symmetry are introduced. Once we assume that the symmetry is originated from the flavor
symmetry spontaneously broken at high energy, we find that the FCNCs involving the extra
Higgs fields are predicted by the remnant symmetry. The remnant symmetry would not be
respected in the full Lagrangian, but it could well control the FCNCs as long as the breaking
terms are enough small in the Higgs potential. In Sec. II, we discuss the remnant symmetry
and our setup in this paper. Then we investigate the FCNCs involving neutral scalars and
charged leptons, and discuss Higgs potential in Sec. III. We see that the partially remnant
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symmetry in the lepton mass matrix well controls FCNCs, and study our signals and cur-
rent experimental constraints in flavor physics in Sec. IV. On the other hand, it is also one
of crucial issues to understand how to derive nonzero θ13 in flavor symmetric models. As
we mentioned above, nonzero θ13 may require some modifications in conventional setups,
because simple scenarios tend to predict vanishing θ13. We study the correlation between
θ13, especially given by the mixing angles in charged lepton sector, and FCNCs, in Sec. V.
Section VI is devoted to summary. In the Appendix A, we introduce the A4 model as a
concrete example.

II. GENERIC ARGUMENT ABOUT FCNCS IN FLAVOR MODELS

In the SM, the fermions obtain masses according to the nonzero VEV of a Higgs field
and Yukawa couplings. The Yukawa couplings should be defined to realize the large mass
hierarchies and mixing in quarks and lepton sectors, so that the flavor symmetry that rotates
the flavors is explicitly broken by the couplings in the SM. Furthermore, the charged currents
involving W boson change the flavors, so that it would be difficult to find out even very
simple flavor symmetry such as Z2 and Z3 in the full Lagrangian of the SM.

Now, let us focus on mass matrices of leptons and look for symmetry that is respected
in only each mass matrix. For instance, if we see only the mass matrices for the charged
lepton (Ml) and the neutrinos (MN ), we could find flavor symmetry as,

MlM
†
l = TLMlM

†
l T

†
L, M †

l Ml = TRM
†
l MlT

†
R, MN = STMNS, (1)

assuming neutrinos are Majorana particles (See Ref. [4], for instance). When Ml and MN

are diagonal, TL, TR, and S could be described as

TL =



1 0 0
0 ηL 0
0 0 η∗L


 , TR =



1 0 0
0 ηR 0
0 0 η∗R


 , S =



(−1)p 0 0
0 (−1)q 0
0 0 (−1)p+q


 , (2)

where ηL and ηR are the complex numbers which satisfy ηLη
∗
L = ηRη

∗
R = 1, and p, q are

integer. TL, TR, and S are not conserved in the full Lagrangian. In fact, they are broken
by the gauge interaction with W boson explicitly. However, they may give a hint for the
mystery of the flavor structure in the SM. As discussed in Refs. [2–4, 19, 23], we can find
the remnant symmetry, TL, TR, and S in the flavor models which explain the realistic mass
matrices naturally, and the remnant ones could be interpreted as the subgroup of the original
flavor symmetry. Below, let us discuss such a kind of flavor models and SU(2)L-doublet extra
Higgs fields charged under the flavor symmetry, and consider the scenario that the simple
remnant symmetry appears after the symmetry breaking.

A. Remnant symmetry in flavor symmetric models

Let us consider flavor symmetric models with extra Higgs doublets. The extra symmetry
may be non-Abelian discrete symmetry, and the extra scalars may belong to non-trivial
singlet, doublet or triplet. Let us focus on Yukawa couplings of charged lepton sector in
flavor symmetric models. In general, the couplings for the fermion masses could be described
as

L = −LiMl(φ)
ijER j + h.c.. (3)
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φ is a scalar charged under the EW symmetry and the flavor symmetry, and we simply
assume that Ml only depends on φ. Then Ml satisfies the following relation according to
the flavor symmetry (G) with generators (g);

Ml(φ) = gLMl(g
†
φφ)gR. (4)

gL,R, φ are defined corresponding to the representations of Li, ER i, and φ under G. When φ
develops the nonzero VEV, the EW and flavor symmetry are broken and mass matrix for
charged leptons is generated. Let us simply assume that the remnant symmetry of the flavor
symmetry (T ), whose generator is T ⊂ g, is still hold in the mass matrix as follows:

Ml(〈φ〉) = TLMl(T
†
φ〈φ〉)T

†
R = TLMl(〈φ〉)T †

R, (5)

T †
φ〈φ〉 = Tφ〈φ〉 = 〈φ〉. (6)

Let us consider the case that Li is triplet-representation in the diagonal base of TL. Then
TL for Li would be,

TL =



1 0 0
0 ηL 0
0 0 η∗L


 . (7)

If ηL is not ±1, we find that Li in the diagonal base of TL is identical to the field (li) in the
mass base according to the relation of Eq. (1). In this paper, we only focus on the case with
ηL 6= ±1. Moreover, we especially discuss flavor models with flavor triplet-representation
Higgs doublet (φ ≡ Hi), so that the VEV alignment is given by Eqs. (6) and (7) with
TL = Tφ:

(〈φ1〉, 〈φ2〉, 〈φ3〉) ∝ (1, 0, 0). (8)

The orthogonal directions would be in the mass base of scalars around the VEV, and they
may also respect the remnant symmetry, T . Furthermore, the mass base of ER i is also
fixed by TR as we discuss below, so that we can expect that it is possible that the FCNCs
involving Higgs fields are qualitatively discussed in this kind of scenario, not mentioning
original symmetry G.

B. Setup

Below, we focus on flavor models with triplet-representation Higgs doublet Hi. The
Yukawa coupling for charged lepton is given by

L = −LiŶ
k
ijHjE

k
R + h.c.. (9)

The texture of the matrices, Ŷ k
ij , is fixed by G, and we can find this type of setups in Refs.

[4, 6, 20, 24, 25]. ∗ Our assumptions of our setup are as follows:

• Li and Hi are triplet representations of G,

• 〈Hi〉 breaks G to T ,

∗ SU(2)L singlets charged under flavor symmetry are introduced allowing higher-dimensional operators in

Refs. [7, 21]. Such kind of models are not be considered in this paper, but could be also related to our

studies.
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• ER i is non-trivial singlet of T .

T would not be conserved in the full Lagrangian but partially respected, i.e. in the charged
lepton Yukawa couplings. As discussed in subsection IIA, charged lepton mass matrices only
hold the symmetry as in Eq. (5). It is well-known that this situation successfully realizes
realistic mass matrices according to the Tri-Bi maximal mixing structure in flavor models
with non-Abelian discrete symmetry: for instance A4 [6, 7], S4 [4, 9, 17, 19, 26], A5 [27], T7

[24], ∆(27) [20], and ∆(6n2) [28]. Note that ER i may belong to the triplet-representation
or non-trivial singlet of G before the symmetry breaking, but we do not specify it.

C. Mass base of charged leptons

Li and Hi are triplet-representation of G, so that they are also the triplet of T . Let us
denote Li by the fields (li) in the diagonal base of TL. Then li are in the mass base as we
discussed above. Let us denote ER i as eR i in this base. Then, eR i are also the ones in the
mass base, which transform as (eR 1, eR 2, eR 3) → (eR 1, ηLeR 2, η

∗
LeR 3), because of Eq. (5).

Eventually, the texture of Ŷ k
ij is almost fixed because of TL in Eq. (7):

(Ŷ 1
ij) =

√
2

v cos β




m1 0 0
0 b1 0
0 0 c1



 , (Ŷ 2
ij) =

√
2

v cos β




0 0 c2
m2 0 0
0 b2 0



 , (Ŷ 3
ij) =

√
2

v cos β




0 b3 0
0 0 c3
m3 0 0



 ,

(10)

where, 〈H1〉 = v cos β/
√
2. See Eq. (13). Nonzero b2 and c3 imply T = Z3.

† If Ŷ k
ij is given

by Ŷ k
ij = ykSk

ij , where S
k
ij is defined by the multiplication rule of G and yk are dimensionless

couplings, the elements of Ŷ k
ij could be estimated, substituting

|bi| = |ci| = mi, (11)

where mi are the charged lepton masses. In this case, the mass matrix for charged lepton
((Ml)

k
i ) is given by

(Ml)
k
i =

v cos β√
2

Ŷ k
i1. (12)

Below, we discuss flavor physics assuming the relation in Eq. (11).

D. Mass base of scalars

After the EW and flavor symmetry breaking, we find several scalars: CP-even, CP-odd,
and charged scalars. In addition to flavor-triplet Hi, we introduce one flavor-singlet Higgs
field, Hq, in order to realize the realistic mass matrices for quarks. We may need another
flavor-charged scalars, Φ, to generate Majorana mass matrices for neutrino mixing and
masses. Φ may break the subgroup T , and the mixing between Hi and Φ may be allowed in
the lagrangian. The mixing term may break the vacuum alignment as discussed in Eq. (6),
because the VEV of Φ corresponds to the T breaking term. Below, we give some discussion
about the mixing, and let us study Hi and Hq, first.

† In our analysis, we assume the relation of Eq. (11), so T is set to Z3.
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Let us decompose the scalars as follows:

Hq =

(
H+

q
1√
2
(v sin β +H0

q + iχq)

)
, H1 =

(
H+

1
1√
2
(v cos β +H0

1 + iχ1)

)
, (13)

and

H2 =

(
H+

e

φe

)
, H3 =

(
H+

µ

φµ

)
. (14)

Hq and H1 generally mix each other because they develop nonzero VEVs:

(
H+

q

H+
1

)
=

(
cos β
sin β

)
G+ +

(
− sin β
cos β

)
H+

S , (15)

(
χq

χ1

)
=

(
cos β
sin β

)
G0 +

(
− sin β
cos β

)
AS, (16)

(
H0

q

H0
1

)
=

(
cosα
sinα

)
H0

S 1 +

(
− sinα
cosα

)
H0

S 2. (17)

G0 and G+ are the Goldstone boson eaten by Z and W+ bosons. If T is conserved in the
mass matrices of scalars, H+

S , A
+
S , H

0
S 1, and H0

S 2 are in the mass bases, and they do not
mix with H2 and H3 for the T charge conservation. We will give some discussions about
the mixing in Sec. III.

α is the mixing angle between two CP-even scalars, and fixed by Higgs potential. If we
build Higgs potential to lead SM-like Higgs mass and signal strength, α should be identical
to β, and H0

S 1 is interrupted as the SM Higgs.
On the other hand, H+

e , H
+
µ , φe and φµ are the complex scalars to carry the T charges:

H2 → ηH2 and H3 → η∗H3. In general, H2 and H3 would mix each other according to the
nonzero VEV 〈Φ〉, because 〈Φ〉 breaks T spontaneously. We discuss the effect against the
observables in flavor physics later.

E. Yukawa couplings

Now we define T -conserving Yukawa couplings involving scalars. Based on the above
argument, we find the following Yukawa couplings which induce flavor violations:

LT = −Y ij
e φelieR j − Y ij

µ φµlieRj − (V †)ikY
kj
e H+

e νLieRj − (V †)ikY
kj
µ H+

µ νLieRj + h.c., (18)

where V is the PMNS matrix. Y ij
e and Y ij

µ are defined as

(Y ij
e ) = Ŷ j

i2 =

√
2

v cos β




0 0 b3
b1 0 0
0 b2 0



 , (Y ij
µ ) = Ŷ j

i3 =

√
2

v cos β




0 c2 0
0 0 c3
c1 0 0



 . (19)

As we mentioned above, the complex scalars may not be in the mass bases, because of T -
breaking effects in the Higgs potential. In Sec. IV, we investigate the FCNC contributions
to flavor physics in the T -conserving limit, and then discuss the corrections from the T -
breaking terms in the Higgs potential to the observables in flavor physics. In fact, the
breaking effect is strongly constrained by the µ → eγ process.
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On the other hand, the neutral and charged scalars from Hq and H1 consist of Yukawa
couplings that are the same as the model called type-X 2HDM in [29], or lepton-specific
2HDM in [30]:

L2HDM = −mi sinα

v cos β
H0

S 1lieR j −
mi cosα

v cos β
H0

S 2lieR j + h.c.

− i
mi

v tan β
ASlieR i − Vij

mi

v tanβ
H+

S νLieRj + h.c.. (20)

The phenomenology of lepton-specific 2HDMs has been studied well in Refs. [29, 30].

III. STUDY OF THE HIGGS POTENTIAL

Before studying the phenomenological aspects, let us discuss Higgs potential in flavor
symmetric models. In our setup, flavor-triplet Hi develops nonzero VEV in the direction of
(〈H1〉, 〈H2〉, 〈H3〉) ∝ (1, 0, 0), and T is not broken. Φi is SU(2)L-singlet and breaks G to
the subgroup S of G. In general, S and T are not commutative, so that 〈Φi〉 breaks T and
how to realize the vacuum alignment may be one of the issues in our models. For instance,
the mechanism to achieve rigid vacuum alignment has been proposed so far [31].

In order to realize the vacuum alignment that respects T , especially mixing term between
Hi and Φi should be controlled. In general, the Higgs potential is written as

V = VH(Hq, Hi) + VΦ(Φi, Hq) + ∆V (Φi, Hi, Hq), (21)

where ∆V only has the mixing terms between Φi and Hi such as |H i|2|Φi|2 and H†
iHqΦi. If

∆V is absent, the vacuum alignment of 〈Hi〉 and 〈Φi〉 are independently fixed by VH and
VΦ. In this case, the mass matrices for the scalars originated from Hi and Hq would respect
T -symmetry, while the mass matrices from Hq and Φi would respect S-symmetry. This
means that scalar mass eigenstates are decided according to only the remnant symmetries
in each sector, and the flavor violating Yukawa couplings in the mass base of scalars are
given by Eq. (19).

We consider an example to illustrate our argument. In the absence of ∆V , we can
write down the mass matrix for the CP-even scalar mass eigenstates after the spontaneous
symmetry breaking. On the basis of (H0

q , H
0
1 , H

0
e , H

0
µ,Φ

0
1,Φ

0
2,Φ

0
3)

T , where φe =
1√
2
(H0

e+iAe),

φµ = 1√
2
(H0

µ+ iAµ) and Φj =
1√
2
(vΦ+Φ0

j + iAΦ
j ) are defined, the mass matrix of the CP-even

mass scalars is given in the following form:




M2

q m2T
H m2T

Φ

m2
H M2

H 0

m2
Φ 0 M2

Φ



 . (22)

Here, m2
H andm2

Φ are 3-vectors, M2
H and M2

Φ are 3×3 matrices. M2
q is the mass term for H0

q .

The form of submatrices M2
H , M

2
Φ and sub-vectors m2

H , m
2
Φ are fixed by the T -conserving

and S-conserving conditions,

TH
ikM

2
HklT

H†
lj = M2

Hij , SΦ
ikM

2
ΦklS

Φ†
lj = M2

Φij, (23)

TH
ikm

2
Hk = m2

Hi, SΦ
ikm

2
Φk = m2

Φi,

7



where TH and SΦ are generators of subgroups T and S in the triplet representation. Sim-
ilarly, mass matrices for CP-odd and charged scalar mass eigenstates are also determined
only by the remnant flavor symmetry in each sector. We show the most simple example
with G = A4, T = Z3, and S = Z2 in Appendix A.

Especially, on the base in which T -generator is diagonal, subgroup T restricts the mass
terms for scalar bosons (H0

q , H
0
1 , H

0
e , H

0
φ) which interact with the SM particles as follows:




M2
q m2

H 1 0 0

m2
H 1 M2

H 11 0 0

0 0 M2
H 22 0

0 0 0 M2
H 33


 . (24)

T completely determines mass matrix for Hq, Hi because G-singlet boson Hq also respects
residual symmetry T . AlthoughH0

q , H
0
1 and Φ0

i may mix each other because of non-zerom2
H 1

and m2
Φ i, the mass matrix of the scalar bosons can be described in the model independent

way as far as ∆V = 0.

Scalar mass eigenstates in the case of ∆V 6= 0

Let us consider the case with nonzero ∆V . We simply assume that the nonzero VEV of
Φi is higher than the EW scale, and we could write down the T -conserving and T -breaking
effective potential for H i and Hq at the renormalizable level:

Veff = VT + V/T , (25)

VT = m2
q |Hq|2 + (m2

q1H
†
qH1 + h.c.) +m2

1|H1|2 +m2
2|H2|2 +m2

3|H3|2 + V
(4)
T ,

V/T = m2
q2H

†
qH2 +m2

q3H
†
qH3 +m2

12H
†
1H2 +m2

13H
†
1H3 +m2

23H
†
2H3 + h.c., (26)

where V
(4)
T is the function which only include T -conserving quartic couplings of Hq and Hi.

VT and V/T are the T -conserving and T -breaking potentials. The scalars from Φ are omitted
assuming that they decouple below the EW scale because of the hierarchy between the VEV
of Φ and the VEVs of Higgs doublets. V/T is generated by ∆V in Eq. (21). We could write
quartic couplings in V/T , but the dimensionless couplings are expected to be small, because
they are generated by the high-dimensional operators in V or integrating out the heavy
scalars in Φ ‡.

Now, let us consider the stationary conditions for H2 and H3. In our setup, they should
not develop nonzero VEVs to respect T . The defivatives ∂HI

V (I = 2, 3) under the T -
conserving conditions depend on the T -breaking terms as,

∂HI
Veff = m2

qIH
†
q +m2

1IH
†
1. (27)

This leads the equation to realize the vacuum alignment where 〈HI〉 = 0 is satisfied:

m2
qI sin β +m2

1I cos β = 0. (28)

In general, the stationary conditions forH1 and Hq are independent of this condition, so that
the fine-tuning would be required, if m2

qI = m2
1I = 0 is not satisfied. The quartic couplings

‡ Our argument in this section would be also reasonable, as far as T -breaking quartic couplings are tiny.
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in Veff respect the remnant symmetry T , so that m2
qI and m2

1I only contribute to the mass
mixing between T -charged scalars and T -trivial scalars. We could conclude that T -charged
scalars do not mix with T -trivial scalars, unless we admit the tuning in Eq. (28).

On the other hand, the mass mixing between H2 and H3 generated by m2
23 would not be

controlled by the vacuum alignment, because the both VEVs of H2 and H3 vanish. We dis-
cuss the T -breaking effects in Sec. IVB. We also study the T -breaking terms corresponding
to mixing between the T -trivial and the T -charged scalars, in Sec. V.

Note that the scalars in Φi may have the low mass compatible with the EW scale, and
they may mix with H2 and H3, although the mixing given by ∆V should be controlled to
realize the vacuum alignment. Moreover, Φi dominantly couple with neutrinos, even if the
mixing exists. Eventually we discuss phenomenology in the limit that the mixing with the
scalars in Φi is negligible.

IV. FLAVOR PHYSICS

We have seen that the FCNCs involving scalars are well controlled, if we assume that the
partially remnant symmetry T is respected in the Yukawa couplings. Even if T is broken
in the Higgs potential, we could expect that it is possible to discuss the contributions of
the FCNCs to flavor physics as far as the breaking effect is smaller than the T -conserving
one. As discussed in subsection II E, the T -conserving FCNCs are distinguishing, so that we
could qualitatively analyze their signals in flavor physics. In the Sec. IVA, we consider the
T -conserving case and then we will see the T -breaking effect including the loop corrections
in subsection IVB.

A. T -conserving contributions

First of all, let us discuss the flavor physics in the case that T is conserved in charged
leptons and scalar mass matrices. The Yukawa couplings between scalars and charged leptons
are given by Eqs. (19) and (20). φe, µ and H+

e, µ are the mass eigenstates in this case. The
T -charged scalar masses are also expected to be around the EW scale, because the masses
are given by VH , so we are especially interested in the EW-scale masses of the scalars.

1. T -charged scalar interactions

Through the exchanging of φe, µ, (flavor-changing) 4-fermi interactions are effectively
generated as

L(4)
T =

1

v2 cos2 β

{ |b3|2
m2

φe

(τReL)(eLτR) +
|b2|2
m2

φe

(µRτL)(τLµR) +
|b1|2
m2

φe

(eRµL)(µLeR)

+
|c3|2
m2

φµ

(τRµL)(µLτR) +
|c2|2
m2

φµ

(µReL)(eLµR) +
|c1|2
m2

φµ

(eRτL)(τLeR)

+
b∗2b3
m2

φe

(µRτL)(eLτR) +
b∗1b2
m2

φe

(eRµL)(τLµR) +
b∗3b1
m2

φe

(τReL)(µLeR) + h.c.

+
c∗2c3
m2

φµ

(µReL)(µLτR) +
c∗1c

2
2

m2
φµ

(eRτL)(eLµR) +
c∗3c

2
1

m2
φµ

(τRµL)(τLeR) + h.c.
}
. (29)
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The charged Higgs scalars H+
e, µ also induce flavor violation, and it is derived by replacing

liL with νk
LVki. The mass difference between H+

e, µ and φe, µ is strongly constrained by the ρ

parameter, so that we set m2
φe

= m2
H+

e
and m2

φµ
= m2

H+
µ
in our study. The lower bound on

the charged Higgs mass is given by the direct search at the LEP experiment: mH± & 80
GeV [32]. Below, we survey the parameter space above the lower mass.

One of the stringent constraints on the flavor violating couplings is from e+e− → l+l−

(l = e, µ, τ) at the LEP [33]. Assuming the relation in Eq. (11) with (m1, m2, m3) =
(me, mµ, mτ ), the processes e+e− → µ+µ−, τ+τ− are enhanced through φe µ exchanging in
t-channel:

mφe & 0.62× mτ

v cos β
TeV, mφµ & 2.23× mµ

v cos β
TeV. (30)

The allowed region is summarized in Fig.1 . If we consider the model which does not hold
the relation in Eq. (11), mφe may face the stronger bound from e+e− → µ+µ−, but the
bound from the flavor violating τ decay is stronger than the LEP bound, as we discuss
below.

Flavor violating decays of τ and µ have been well investigated in the experiments, and the
constraints are summarized in Refs. [34, 35]. In our models, T -charge should be conserved,
so that the final states from τ and µ decays should be T -charged states. That is, the possible
decay patterns of τ are only

τ− → µ+e−e−, e+µ−µ−. (31)

µ → 3e, which is strongly constrained by the experiments [35], can be forbidden. Assuming
the relation in Eq. (11), the strong bound on the flavor violating decays is obtained from
mainly τ− → e+µ−µ− as Br(τ− → e+µ−µ−) < 1.7× 10−8 [34] with

Br(τ− → e+µ−µ−) =
m5

τ

3(8π)3Γτ

∣∣∣∣∣
mτmµ

m2
φµ
(v cos β)2

∣∣∣∣∣

2

. (32)

The allowed region is summarized in Fig.1 §.
In addition, the charged Higgs exchanging processes may also contribute to the τ and µ

decay. The chirality of the charged lepton in the decays is different from the one in the SM,
so that the correction my be quite small. Assuming the charged lepton in the final state is
massless, the deviation of the leptonic decay is evaluated as,

∆Br(li → ljνkνn) ≃
1

32G2
F

∑

a=e,µ

|Y ni
a Y ∗ kj

a |2
m4

H+
a

. (33)

Assuming the relation in the Eq. (11) and mH+
a
= mφa for the EWPOs, we find that the

modified branching ratio of muonic τ decay is at most,

Br(τ → µνν) ≃ (1− 1.07× 10−3)× Br(τ → µνν)SM, (34)

including the contribution of µ mass. Br(τ → µνν)SM is the SM prediction and this modified
value is within the error of the current experimental measurement of the τ decay [37]. The
contribution of charged Higgs carrying also T -charges to the other decay such as µ → eνν
is strongly suppressed by the Yukawa couplings.

§ The lepton flavor violating (LFV) τ decays induced by tree-level FCNCs involving extra scalars have been

investigated in a generic two-Higgs-doublet model [36].

10



Including one-loop corrections involving the extra scalars, the Z and W couplings would
be slightly deviated from the SM ones:

LEW = gZZ
ρ{(qL +∆qiL)l

i
Lγρl

i
L + (qR +∆qiR)l

i
Rγρl

i
R + (qνL +∆qν ij

L )νi
Lγρν

j
L}, (35)

where (qL, qR, q
ν
L) = (−1/2 + sin2 θW , sin2 θW , 1/2) are defined. sin θW is the Weinberg

angle, and gZ is the gauge coupling for Z-boson interaction. According to the one-loop
diagrams involving φe µ, they are estimated as follows:

∆qiL =
∑

a=e,µ

3∑

k=1

|Y ik
a |2

16π2

M2
Z

m2
φa

(
− 1

36
− 1

3
sin2 θW

)
, (36)

∆qiR =
∑

a=e,µ

3∑

k=1

|Y ki
a |2

16π2

M2
Z

m2
φa

(
7

36
− 1

3
sin2 θW

)
, (37)

∆qν ij
L =

∑

a=e,µ

3∑

k,l,n=1

V ∗ kiV nj Y
kl
a Y nl

a

16π2

M2
Z

m2
φa

(
1

36
− 7

18
sin2 θW

)
, (38)

where mi ≪ M2
Z ≪ mφa is assumed. In the model which satisfies the relation in Eq.

(11), ∆qe,µL , ∆qτR, and ∆qν ij
L might be sizable. The constraints from e+e− → τ+τ− and

τ− → e+µ−µ− give the maximal sizes of the deviations:

∆qeL ≈ 2.87× 10−5, ∆qµL ≈ −1.89× 10−6, ∆qτR ≈ 3.21× 10−5, (39)

∆qν ij
L ≈ −1.7× 10−5 × V i3V ∗ j3. (40)

They are too tiny to compare with the current experimental results. In fact, the maximal
values are within the error of the measurements of Z boson [38].

2. T -trivial scalar interactions

Hq and H1 are not charged under T , and they develop nonzero VEVs. Their Yukawa
couplings with SM fermions are flavor-diagonal in the mass base, under the T -conserving
assumption. Then, we could conclude that Hq and H1 induce so-call minimal flavor viola-
tion, and evade the stringent constraints from flavor physics. This type of scalars with the
interactions in Eq. (20) have been well investigated so far, motivated by, for instance, the
deviation of muon anomalous magnetic moment [39].

The lower bound on the charged Higgs mass comes from the direct search for charged
Higgs at the LHC and it is given by top mass to evade the exotic top decay: mH± & 172
GeV [40]. The pseudo scalar mass should be close to the charged Higgs mass to avoid too
large deviation of the ρ parameter. Flavor changing processes in B physics may constrain
our T -trivial scalars. For instance, B → Xsγ process gives the lower bound on tan β:
tan β & 1 [41]. Br(B− → τ−ν) is also slightly deviated from the SM prediction according
to the charged Higgs exchanging, but it is less than 1% in the region with mH± ≥ 172 GeV.
As pointed out in Ref. [39], the discrepancy of muon anomalous magnetic moment may be
explained if tan β is quite large and pseudo scalar is rather small. Let us also survey the
parameter region in the next section.
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FIG. 1. mφe,µ and tan β. The gray region is excluded by e+e− → τ+τ− at the LEP experiment

and the LFV τ decay, τ− → e+µ−µ−.

B. T -breaking contributions

Next, we investigate the contributions of T -breaking terms to flavor physics. If we can
assume that the remnant symmetry T is respected in Higgs potential after the symmetry
breaking, we could expect that only T -symmetric terms are relevant to flavor violating
processes. However, as we have seen in Sec. III, ∆V may be allowed even if we assume
that the vacuum alignment respects T and S. After the symmetry breaking, ∆V induces
T -breaking terms, such as m2

23 in Eq. (26), in scalar mass matrices because of nonzero 〈Φ〉,
so that we may have to control ∆V to evade the stringent constraints from flavor physics.

T -breaking terms would appear in scalar mass matrices, according to ∆V in Eq. (21),

LT = −1

2
(δm2

H)abH
0
aH

0
b −

1

2
(δm2

A)abAaAb − (δm2
H+)abH

+
a H

−
b . (41)

Aa and H+
a denote the two kinds of scalars: {Aa} = {Ae, Aµ} and {H±

a } = {H±
e , H

±
µ }.

There are two CP-even scalars and they mix each other in general according to (δm2
H)ab,

where {H0
a} = {H0

e , H
0
µ} is defined.

Besides, there may be mixings between T -trivial and T -charged scalars, such as (δm2
H)a1H

0
aH

0
S 1,

although they require the fine-tuning against the parameters in Higgs potential, as discussed
in Eq. (28). The mixings relate to the vacuum alignment, so we analyze the T -breaking
terms including the study about the deviation of the vacuum alignment, in Sec. V.

In general, Φ also predicts extra scalars, and should be involved in the scalar mass
matrices. However, Φ mainly couples with neutrinos, so the constraint on Φi is rather weak.
Simply we assume that the scalars from Φi gain heavy masses according to nonzero VEVs
of Φi in VΦ, and decouple around the EW scale.

We could expect that this assumption leads the approximate T -conserving situation with

(δm2
H)ab, (δm

2
A)ab, (δm

2
H+)ab ≪ m2

φe,µ
, (42)

and discuss the bound on the breaking effects from the experiments. The relevant constraints
are from l → l′γ processes [42, 43]. Especially, main contribution of the T -breaking terms
would appear in µ → eγ.
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1. constraint from the µ → eγ process

The µ → eγ process has been well investigated in 2HDMs [42, 43]. The MEG experiment
released the upper bound on the branching ratio of the flavor changing process: Br(µ →
eγ) < 5.7× 10−13 [44]. It would be updated up to 6× 10−14 in the future [45].

Our dominant contribution to the µ → eγ process is from the one-loop correction involv-
ing the scalars of φe, because φe has large (e, τ) and (τ, µ) elements of the flavor-violating
Yukawa couplings. If the CP-even scalar and CP-odd scalar masses of φe are different, the
µ → eγ process is easily enhanced. The operator to induce the LFV process is estimated as
follows at the one-loop level:

Lµ→eγ = eC7eLσµνµRF
µν , (43)

C7 =
mτY

eτ
e Y τµ

e

64π2

{
Uh
eαU

h
eα

m2
hα

F
(
m2

hα
/m2

τ

)
− UA

eαU
A
eα

m2
Aα

F
(
m2

Aα
/m2

τ

)}
, (44)

where e is the electric charge and F (x) is defined as

F (x) = ln(x)− 3

2
. (45)

Uh,A
ij are the diagonalizing matrices for the mass matrices of CP-even and -odd scalars;

((Uh)aαm
2
hα
(Uh)bα) =

(
m2

φe
+ (δm2

H)ee (δm2
H)µe

(δm2
H)µe m2

φµ
+ (δm2

H)µµ

)
, (46)

((UA)aαm
2
Aα

(UA)bα) =

(
m2

φe
+ (δm2

A)ee (δm2
A)µe

(δm2
A)µe m2

φµ
+ (δm2

A)µµ

)
. (47)

Fig. 2 shows the excluded region by the current upper bound on µ → eγ process, in the
case that only (δm2

H)ee is nonzero. As we see, the mass difference between the CP-even and
CP-odd scalars is severely constrained by the flavor-changing process. If φe is below 300
GeV, tanβ should be smaller than about 2. This is quite strong, compared to the bound
from e+e− → τ+τ− in Fig. 1. We may require large tan β, for instance, to enhance the
muon anomalous magnetic moment [39], but the ratio of the squared mass difference to
m2

φe
, (δm2

H)ee/m
2
φe
, should be much smaller than O(10−2).

2. constraint from the τ → eγ process

The scalar of φµ contribute to the τ → eγ process, according to the mass difference
between the CP-even and CP-odd scalar. The operator for the LFV process is given by

Lτ→eγ = eCτ
7 eLσµντRF

µν , (48)

Cτ
7 =

mµY
eµ
µ Y µτ

µ

64π2

{
Uh
µαU

h
µα

m2
hα

(
F
(
m2

hα
/m2

µ

)
+

mτ

6mµ

)
−

UA
µαU

A
µα

m2
Aα

(
F
(
m2

Aα
/m2

µ

)
+

mτ

6mµ

)}
.

(49)
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FIG. 2. (δm2
H )ee (GeV) and tan β. The gray (light-blue) is excluded by µ → eγ at mφe = 1000

(600) GeV. The dashed line is the upper bound with mφe = 300 GeV.
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FIG. 3. (δm2
H)µµ (GeV) and tan β. The gray (light-blue) is excluded by τ → eγ at mφµ = 200

GeV. The region above the dashed line is the upper bound from τ− → e−µ+µ− and the blue region

is the excluded one by τ− → e+µ−µ−.

The current upper bound on the τ → eγ process is 1.1 × 10−7 [46], and it is rather weak
compared with the one from the µ → eγ process. In Fig. 3, the regions excluded by
τ → eγ, τ− → e−µ+µ−, and τ− → e+µ−µ− are summarized. We can conclude that the
τ− → e+µ−µ− constraint is the most important to φµ in our model, even if we include the
T -breaking terms.

3. muon anomalous magnetic moment (g − 2)µ

In our model, the T breaking term which allows the mass mixing between φe and φµ

enhances the muon anomalous magnetic moment and electron, muon EDMs.
It is well-known that there is a 3.1 σ deviation from the SM prediction in the muon

anomalous magnetic moment (g − 2)µ experimental result [37]. In Ref. [39], very light
pseudo-scalar is introduced to achieve the anomaly in the leptophilic 2HDM. In our model,
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we could find new contributions to (g − 2)µ according to the tree-level FCNCs [42],

∆aµ =
mµmτY

τµ
e Y µτ

µ

(4π)2

{
Uh
eαU

h
µα

m2
hα

F
(
m2

hα
/m2

τ

)
−

UA
eαU

A
µα

m2
Aα

F
(
m2

Aα
/m2

τ

)
}
. (50)

Unfortunately, the enhancement of ∆aµ is tiny as long as the T -breaking terms are small,
because of the stringent constraint from the µ → eγ and the τ− → e+µ−µ− processes.
Setting (δm2

H,A)ee = (δm2
H,A)µ = (δm2

A)eµ = 0, ∆aµ is at most O(10−2) × 10−9, which is
much below the experimental result. One possible way to enhance ∆aµ would be large tan β
and light T -trivial scalar scenario, as pointed out in Ref. [39].

In addition, the loop corrections involving extra scalars with T -breaking terms deviate
the mass base of the charged leptons. As long as tanβ is rather small, the deviation would
be tiny but the large tanβ scenario may be also fascinating because of the discrepancy of
(g−2)µ. Furthermore, nonzero θ13 is confirmed at the experiments [11–15], so it is important
to discuss the contribution of the T -breaking terms to the PMNS matrix. In the next section,
we investigate the mass mixing from the one-loop correction, and discuss the contribution
to θ13 and the flavor changing processes.

When Yukawa couplings in Eq. (50) are complex, contributions to electric dipole moment
occur from their imaginary parts. The electron and muon EDMs are given as follows:

de =
e

32π2
Im(Y eτ

e Y τe
µ )

{
Uh
µαU

h
eα

mτ

m2
hα

F
(
m2

hα/m
2
τ

)
− UA

µαU
A
eα

mτ

m2
Aα

F
(
m2

Aα/m
2
τ

)}
,

(51)

dµ =
e

32π2
Im(Y µτ

µ Y τµ
e )

{
Uh
µαU

h
eα

mτ

m2
hα

F
(
m2

hα/m
2
τ

)
− UA

µαU
A
eα

mτ

m2
Aα

F
(
m2

Aα/m
2
τ

)}
.

(52)

The current upper bounds on the electron and muon EDMs are |de| < 8.7× 10−29[ecm] [47]
and |dµ| < 1.8 × 10−19[ecm] [48], respectively. Fig. 4 shows the allowed region in the case
with mφe = mφµ = 200 GeV. The imaginary parts of Im(Y ij

e Y kl
µ ) are assumed to be given

by Eqs. (11) and (19). The red region in Fig. 4 shows the excluded region by the current
experimental bound on the electron EDM. Depending on the phase of the Yukawa couplings,
it is the most stringent one among the relevant constraints in our model.

C. short summary

Let us summarize the results in this section. We investigate the experimental bounds from
flavor physics. In the T -conserving case, the lepton flavor violating decay, τ− → e+µ−µ−,
gives the stringent constraint. If we include the T -breaking terms in the scalar mass matrices,
µ → eγ and the electron EDM are relevant to our model. We summarize the allowed points
in Fig. 5. mAe and mAµ are set to be equal to mφ and they are within 126 GeV and 1 TeV
range. The left figure of Fig. 5 shows the allowed regions for the T -breaking terms: the
blue points correspond to |(δm2

H)µe/m
2
φ| and |(δm2

H)ee/m
2
φ| respectively, and the red points

figure out |(δm2
H)µµ/m

2
φ|. As discussed in this section, (δm2

H)ee and (δm2
H)µe are strongly

constrained by µ → eγ and the electron EDM, while the bound on (δm2
H)µµ is relatively

weak. If we take tanβ to be larger than 10, the T breaking terms should be less than O(0.1)
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H)eµ (GeV) and tan β with mφe = mφµ = 200 GeV.
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FIG. 5. |(δm2
H)ab/m

2
φ| and tan β (left), and mφ (GeV) and tan β (right). mAe and mAµ are

fixed at mφ, and mφ is within 126 GeV and 1 TeV range. In the left figure, blue points fig-

ure out |(δm2
H )µe/m

2
φ| and |(δm2

H )ee/m
2
φ|, and red points are (δm2

H)µµ/m
2
φ. In the right figures,

|(δm2
H )ab/m

2
φ| is larger than 0.01. The blue (red) points are the allowed ones for the experimental

bounds with (without) the upper limit of the electron EDM. The black line is the upper bound in

the case with |(δm2
H )ab| = 0.

compared with the T -conserving parts. In other words, the upper bound on tan β is less
than 10, if |(δm2

H)µe/m
2
φ| is larger than O(0.1).

In the right figure of Fig. 5, we see the allowed region for mφ and tan β. |(δm2
H)ab/m

2
φ| is

larger than 0.01. The black line corresponds to the upper limit with the vanishing (δm2
H)ab.

The red (blue) points are the allowed ones without (with) the constraint from the electron
EDM. Y eτ

e Y τe
µ is assumed to be pure imaginary on the blue points. As we see, the light mφ

is disfavored by the µ → eγ process, while the bound from τ− → e+µ−µ− is more important
in the heavy mφ region. If Y eτ

e Y τe
µ includes imaginary parts, the electron EDM may become

more relevant to our model, and give the severe constraint as in Fig. 5.
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V. MASS MIXING INDUCED BY T -BREAKING TERMS

Off-diagonal elements of Dirac mass matrix for charged leptons are generated by loop
diagrams including interactions coming from ∆V , where the mixing between scalar bosons
carrying different T -charges occurs as shown in Eq. (41). Including corrections for Dirac
mass matrix of charged leptons (Ml), let us redefine the mass matrix

Ml =




me ǫeµ ǫeτ
ǫµe mµ ǫµτ
ǫτe ǫτµ mτ


 . (53)

In order to derive explicit representation for ǫij , we consider 1-loop processes as shown in

l

i

e

Rj

l

k

Y

ik

a

U

h;A

a�

Y

kj

a

U

h;A

a�

H

0

�

; A

�

e

Rk

FIG. 6. 1-loop diagram which gives ǫij. H0
a , Aa in this figure is scalar mass eigenstates in T -

breaking case.

Fig. 6. The off-diagonal elements of Ml are estimated as,

ǫij =
∑

a,α,β

Y ik
a mkY

kj
b

32π2

{
Uh
aαU

h
bα ln

m2
hα

Λ2
− UA

aαU
A
bα ln

m2
Aα

Λ2

}
, (54)

where i, j, k indices represent charged leptons, and a, b = e, µ are defined. Λ is some scale,
but ǫij do not explicitly depend on Λ. We assume mk ≪ mhα , mAα .

These loop corrections change the mass base slightly, and would contribute to the physical
observables such as neutrino mixing angles. Here, we investigate how large θ13 can be
according to the radiative correction and discuss the correlation between the neutrino mixing
and the predicted flavor changing process.

On the other hand, we may find extra FCNCs generated by the radiative corrections. For
instance, the Yukawa couplings of the T -trivial scalars are flavor-diagonal at the tree level,
but nonzero off-diagonal elements appear at the one-loop level, according to the radiative
correction to the Yukawa couplings involving the T -trivial scalars. The one-loop FCNCs
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can be described as,

L(1)
FCNC = −y1ijH

0
S 1lieRj − y2ijH

0
S 2lieRj , (55)

y1ij =
∑

a,α,β

Y ik
α mkY

kj
β

16π2
√
2

(
cosα

∂

∂〈Hq〉
+ sinα

∂

∂〈H1〉

){
Uh
αaU

h
βa ln

m2
ha

Λ2
− UA

αaU
A
βa ln

m2
Aa

Λ2

}
,

(56)

y2ij =
∑

a,α,β

Y ik
α mkY

kj
β

16π2
√
2

(
cosα

∂

∂〈H1〉
− sinα

∂

∂〈Hq〉

){
Uh
αaU

h
βa ln

m2
ha

Λ2
− UA

αaU
A
βa ln

m2
Aa

Λ2

}
.

(57)
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FIG. 7. 1-loop processes which result in change of Yukawa couplings. When T -trivial scalar bosons

H0
S1,2 get VEVs, these processes give mass mixing terms drawn in Fig.4.

These Yukawa couplings are vanishing in the T -conserving limit, so that they are sup-
pressed by the T -breaking terms. We can expect that (e, µ) and (e, τ) elements may be
enhanced because of the sizable Yukawa couplings, as we have seen in the µ → eγ and
τ → eγ processes. Assuming (δm2

H)ee is only nonzero among the T -breaking terms, we find
that y1eµ is approximately estimated as,

y1eµ ≈ − 2
√
2C7

1− F (m2
φe
/m2

τ )
×
(
cosα

∂m2
φe

∂〈Hq〉
+ sinα

∂m2
φe

∂〈H1〉

)
, (58)

where the dependence of 〈H1〉 and 〈Hq〉 in (δm2
H)ee is ignored. Eventually y1eµ is very tiny,

because of the stringent µ → eγ constraint. When the last term is around the EW-scale, y1eµ
is at most O(10−12). y1eτ is also small due to the analogy. The bound is weaker, so it could
be slightly larger than the (e, µ) element, but it is at most O(10−9). The other elements are
much smaller, because of the suppression of Yukawa couplings and T -breaking terms.

contributions to neutrino mixing angles

Based on the above estimation, we investigate the contribution to the LFV, and the
observed neutrino mixing.

In many flavor models, the full flavor symmetry is broken to its subgroups, which are
different from each other between the charged lepton sector and the neutrino sector. In a
certain type of models θ13 = 0 is predicted at tree level, while other models lead to non-zero
θ13. Here, we restrict ourselves to the former case, that is, θ13 = 0 at the first stage. However,
as we disscussed above, T-breaking effects from ∆V 6= 0 may modify the prediction, and
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neutrino mixing matrix is altered to have non-zero θ13. Now, we study the contributions of
the T -breaking terms to the neutrino mixing and discuss the possibility that the observed
neutrino mixing is achieved by the diagonalizing matrix of charged leptons.

S-breaking entering into the neutrino sector also gives non-zero θ13, but this effect highly
depends on the setup of neutrino sector; whether the right-handed neutrinos is present or
not, how many if there is, whether the seesaw mechanism arises or not, which type of them if
it arises, etc.. Thus, we concentrate on the charged lepton sector to give model independent
considerations.

The size of correction for the off-diagonal elements of Dirac mass matrix is given in Eq.
(54). In addition, ǫij may be induced by extra heavy particles decoupling at some scale
(Λ) or small deviations of the vacuum alignment, i.e., 〈H0

e,µ〉 6= 0. Then the diagonalizing
matrices UL, UR for charged leptons are corrected to be,

U †
L ≃




1 − ǫeµ
mµ

− ǫeτ
mτ

ǫeµ
mµ

1 − ǫµτ
mτ

ǫeτ
mτ

ǫµτ
mτ

1


 , UR ≃




1 ǫµe
mµ

ǫτe
mτ

− ǫµe
mµ

1 ǫτµ
mτ

− ǫτe
mτ

− ǫτµ
mτ

1


 .

(59)

These small deviations modify the neutrino mixing matrix from the Tri-Bi maximal matrix;

UPMNS =




1 − ǫeµ
mµ

− ǫeτ
mτ

ǫeµ
mµ

1 − ǫµτ
mτ

ǫeτ
mτ

ǫµτ
mτ

1







√
2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2


 . (60)

Then sin θ13 ∼ ǫeµ/
√
2mµ is generated. If the contribution of the neutrino sector to sin θ13

is negligible, we find the required value for the observed sin θ13: ǫeµ ≈ 0.2×mµ.
First, let us discuss the one-loop corrections to the neutrino mixings. We can write θ13

in terms of T -breaking effects, according to Eq. (59):

sin θlepton13 =
ǫeµ√
2mµ

− ǫeτ√
2mτ

≃ Y eτ
e Y τµ

e√
2(4π)2

mτ

mµ

(
Uh
eaU

h
ea ln

m2
ha

m2
τ

− UA
eaU

A
ea ln

m2
Aa

m2
τ

)
. (61)

Here, we neglect a term of ǫeτ/mτ , because this term is suppressed by a factor m2
µ/m

2
τ as

compared with the first term.
ǫij are generated by the T -breaking terms which are strongly constrained by especially

µ → eγ. We see the predicted points on θlepton13 allowed by the µ → eγ constraint, in Fig. 8.

Note that sin θlepton13 is proportional to cos−2 β, so that it is easily enhanced by tanβ. In Fig.
8, tanβ is less than 100, and then sin θ13 could be O(0.01). Similary, other shifts of mixing
angles from Tri-Bi maximal values are written as

sin θlepton12 − 1√
3
≃ Y eτ

e Y τµ
e√

3(4π)2
mτ

mµ

(
Uh
eaU

h
ea ln

m2
ha

m2
τ

− UA
eaU

A
ea ln

m2
Aa

m2
τ

)
,

sin θlepton23 −
(
− 1√

2

)
≃ Y µe

e Y eτ
e√

2(4π)2
me

mτ

(
Uh
eaU

h
ea ln

m2
ha

m2
e

− UA
eaU

A
ea ln

m2
Aa

m2
e

)
.

(62)
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FIG. 8. Some of possible values of (sin θlepton13 , Br(µ → eγ)) for tan β < 100. The larger sin θlepton13

is, the smaller value of Br(µ → eγ) is tend to favored and vice versa. This is because Br(µ → eγ)

is suppressed by factors 1
m2

h

, 1
m2

A

compared with sin θlepton13 . The horizontal line shows experimental

upper bound of Br(µ → eγ) [44].

ǫeτ in sin θ12 is neglected as in the case of θ13. A contribution to sin θlepton23 from T -breaking

in the charged lepton sector is extremely small because of the factor me/mτ . sin θlepton12

correlates with Br(µ → eγ) as same as the case of θlepton13 . On the other hand, the correction

to sin θlepton23 seems to be much smaller than the others.

In the above argument, it is attempted to give sin θ13 without considering details of
neutrino sector which is highly model dependent. However, a contribution to sin θ13 coming
from only loop-induced T -breaking effect on charged lepton mixing may be small compared
to the observed value, and then we would like to refer to a possibility of other contributions
to θ13 from charged lepton sector.

We can introduce new higher dimensional operators which predict new lepton mixing to
supply additional contribution to θ13. Such operators occur when heavy particles coupling
with G-charged scalars decouple at some scale. It would be enough to consider additional
terms as follows:

ζijk
Φi

Λ
Hql

j
Ll

k
R + h.c., (63)

where Λ is the decoupling scale and ζijk is defined by G. Then, mass mixing terms, ǫij , are
enhanced, according to the nonzero VEVs of Φ and Hq. Especially, the term in Eq. (63)

corresponding to ǫeµ adds a new contribution in the form of ζ〈Φ〉〈Hq〉/
√
2mµΛ to sin θlepton13 .

Then the size of the coefficient of this effective interaction has to be ζ/Λ = O(10−5)×〈Φ〉−1

to realize sin θ13 = O(0.1).

Secondly, we could consider the possibility that the Higgs VEV alignment is deviated.
When the VEV alignment of Hi is altered, the remnant symmetry T is broken and becomes
just approximate symmetry even in the charged lepton sector. When H0

e and H0
µ gain
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nonzero VEVs as 〈H0
e, µ〉 = δve,µ/

√
2, mass mixing terms in the form of

(ǫδve )eτ ≡ Y eτ
e

δve√
2
=

mτδve
v cos β

, (ǫδvµ )eµ ≡ Y eµ
µ

δvµ√
2
=

mµδvµ
v cos β

(64)

are added to ǫeτ and ǫeµ respectively. The size of δve,µ has to be O(0.1)× v cos β to realize
sin θ13 = O(0.1). These deviations change the Yukawa couplings for φe and φµ in the
base that charged leptons are mass eigenstates. Besides, the mass mixing terms between
T -trivial and T -charged scalars can be induced by, for instance, |Hi|2|Hq|2 term in the
Higgs potential. Let us approximately describe the deviated Yukawa couplings for φe or φµ

assuming δve,µ ≪ v cos β:

L′
T = −Y ′ij

e φ′
el

i
Ll

j
R − Y ′ij

µ φ′
µl

i
Ll

j
R, (65)

Y ′ij
e = (U †

L)
ikY kl

e (UR)
lj − δve

v cos β

√
2mi

v cos β
δij, (66)

Y ′ij
µ = (U †

L)
ikY kl

µ (UR)
lj − δvµ

v cos β

√
2mi

v cos β
δij. (67)

In these descriptions, we take the SM limit that the SM Higgs around 125 GeV does not
have tree-level FCNCs and its Yukawa couplings are the same as the SM ones. Then, the
mass bases of φe and φµ are slightly deviated by δve and δvµ. The mass bases of CP-even
and CP-odd scalars in φ′

e and φ′
µ may be the same in this limit.

As we have already discussed, the LFV given by φµ exchanging is dominated by the LFV
τ decay, τ− → e+µ−µ−, which is the T -conserving process. The extra T -breaking terms in
addition to the mass mixing in Eq. (41) enhance the other LFV τ decays as follows:

Br(τ− → e−µ+µ−) ≃
(

δve
v cos β

m2
φµ

m2
φe

)2

× Br(τ− → e+µ−µ−), (68)

Br(τ− → e−e+µ−) ≃
{(

ǫeτ
mτ

+
ǫτµ
mµ

)
m2

φµ

m2
φe

+
ǫeµ
mµ

}2

× Br(τ− → e+µ−µ−), (69)

Br(τ− → µ−µ+µ−) ≃
(
ǫeµ − ǫτµ

mµ
− δvµ

v cos β

)2

× Br(τ− → e+µ−µ−). (70)

Note that ǫij in these equations include the contributions of the loop corrections, the higher-
dimensional operators in Eq. (63), and (ǫδve,µ)ij in Eq. (64). The suppression factors in these

processes could be estimated as sin2 θlepton13 , so that they are predicted around the region
with O(10−2)× Br(τ− → e+µ−µ−), which is safe for the current experimental bound as far
as the τ− → e+µ−µ− bound is evaded.

If the CP-even and CP-odd scalars in especially φ′
e have different masses, the branching

ratio of µ → eγ would be as discussed in Sec. IVB. Moreover, the ones of τ → eγ and
τ → µγ would be also enhanced, according to the nonzero sin θlepton13 :

Br(τ− → e−γ) ≃
(
ǫeτ
mτ

− δve
v cos β

)2

× m2
τ

m2
µ

× Br(µ− → e−γ), (71)

Br(τ− → µ−γ) ≃
(
ǫeτ
mτ

− δve
v cos β

)2

× Br(µ− → e−γ). (72)

Eventually, Br(τ− → e−γ) is predicted around the region compatible with Br(µ− → e−γ),
and then the constraints from the exotic τ decay are less serious than the one from µ− → e−γ.
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VI. SUMMARY

The origin of the flavor structure of the fermions in the SM is one of the mysteries which
have been discussed for a long time. The SM gauge groups are orthogonal to the generation,
and we can find flavor symmetry rotating the generations, if we ignore the Yukawa couplings
to generate the mass matrices for the fermions according to the spontaneous EW symmetry
breaking. This fact may suggest the possibility that the flavor symmetry exists at the high
energy and then the observed mass matrices are generated dynamically. Besides, we may be
able to find some fragments of the flavor symmetry in the SM. The lepton sector especially
may still hold some remnant symmetry of the flavor symmetry respected at the high-energy
scale. The remnant ones may give some hints for not only model building but also how to
prove flavor symmetric models in flavor physics.

In this paper, we investigated flavor physics in models with flavor symmetry, G, in a quite
general manner. In our setup, only leptons are charged under G and extra Higgs doublets are
introduced to respect the flavor symmetry in the Yukawa couplings. The Higgs doublets are
assumed to belong to non-trivial irreducible representations of G. Then G is spontaneously
broken by VEVs of G-triplet Higgs bosons, Hi and Φ. Some remnant symmetry is left after
the symmetry breaking: T is conserved in the charged lepton sector and S in the neutrino
sector respectively. This framework has been used to realize a specific neutrino mixing
pattern such as the Bi maximal or the Tri-Bi maximal mixing. The leptophilic G-triplet Hi

breaks G to T , and the EW singlet Φi, which couples only neutrinos, breaks G to S.
The symmetry T plays a crucial role in the control of the FCNCs, although it is not

respected in the full lagrangian. T -breaking terms would appear in the Higgs potential and
neutrino mass matrix, but they could be also under control once we assume the vacuum
alignment of Hi and Φi.

In our study, T is considered as especially T = Z3, and the constraints from the LFV
processes are investigated. In the basis in which T -generator is diagonal, charged leptons are
mass eigenstates, while details of Higgs potential need to be analyzed to decide mass eigen-
states of Higgs bosons. Charged leptons and mass eigenstates of leptophilic Higgs bosons can
be classified into trivial and non-trivial T singlets after the G symmetry breaking, where the
trivial T -singlet Higgs fields only develop the VEVs. Then T charge conservation constrains
the form of interactions involving charged leptons: the Yukawa couplings of charged leptons
and scalars are decided by the remnant symmetry. Especially, T -charged Higgs bosons can
have FCNCs and cause multi-leptonic decays and flavor non-universal gauge couplings.

We considered the scenario that τ and µ leptons carry non-trivial T charges, and then
the LFV τ decay, τ− → e+µ−µ−, is predicted through the T -charged scalar exchanging.
The flavor violating scattering, e+e− → τ+τ−, could be also sizable, so we investigated the
constraints. The masses of T -charged scalars are expected to be around the EW scale, so
we conclude that tan β should be less than O(10).

On the other hand, the neutrinophilic scalar, Φi, breaks T in the neutrino sector, and this
T breaking would propagate into the charged lepton sector through the interactions between
Hi and Φi in the Higgs potential. In fact, flavor changing processes that do not conserve
T charges occur at the one-loop level such as µ → eγ and τ → eγ, which are important
when the model prediction is compared with the experimental bounds. In addition, the
muon anomalous magnetic moment could be enhanced, although the large enhancement is
excluded by the bound from the exotic τ decay. Figs. 3 and 4 show that µ → eγ and the
electron EDM strongly constrain our models if T breaking terms in the Higgs potential are
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allowed: tanβ . 10. In other words, the observations, as well as τ− → e+µ−µ−, are the
most relevant to our flavor models.

In this type of models argued in this paper, neutrino mixing with θ13 = 0 tends to be
predicted because Bi maximal or Tri-Bi maximal mixing is realized. Then the remnant sym-
metry breaking effects may be required to alter this mixing pattern. In Sec. V, we discussed
the case that the remnant symmetry T is slightly broken in the charged lepton sector. As
mentioned above, the T breaking effect caused by VEVs of Φi enters into the charged lepton
sector through the loop processes involving scalars. However, this contribution is too small
to achieve the observed value of θ13. We also considered additional T -breaking effects to
realize the large θ13. Such newly added T -breaking terms also contributes to FCNCs, then
we pointed out the correlation between θ13 and FCNCs caused by additional T breaking
effect. For instance, the branching ratios of τ− → e−µ+µ−, e−e+µ− and µ−µ+µ− becomes
the almost same order as Br(τ− → e+µ−µ−) suppressed by O(10−2), and Br(τ− → e−γ) may
be the same order as Br(µ− → e−γ). The process, τ− → e+µ−µ−, is the most important in
our model, but these predictions would be also useful to test our flavor models.

In this study, we take the SM limit, so the SM-like Higgs around 125 GeV does not have
FCNCs. As discussed recently in Refs. [49, 50], it may be interesting to allow the tree-level
FCNCs involving the SM-like Higgs, motivated by the CMS excess in the h → µτ channel
[51] as well as the muon anomalous magnetic moment [49]. However, our model would not
enhance the (g− 2)µ because of the chirality structure of the FCNCs, and then the possible
way is to consider very light pseudoscalar and large tanβ to achieve the discrepancy of
(g − 2)µ [39]. Such a parameter set would require the tuning of the T -breaking terms and
large mass differences among the scalars to evade the strong bounds from µ → eγ, the
electron EDM and τ− → e+µ−µ−.

Note that we studied flavor physics assuming the relation in Eq. (11) and T = Zn

(n 6= 2). These conditions may be relevant to our prediction, so we will discuss the other
possibility such as T = Z2 in the future.
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Appendix A: Mass Matrices and vacuum alignment in A4 model

As an illustration of the argument in Sec. III, I show the most simple example with G =
A4, T = Z3, S = Z2. In this model, Hq is A4 singlet, H = (H1, H2, H3) and Φ = (Φ1,Φ2,Φ3)
are A4 triplets. Hq and Hi (i = 1, 2, 3) are SU(2)L doublets, and Φi are treated as gauge
singlet real scalar bosons for simplisity.

In the base that diagonalize Z3 generator TH , A4 is generated by,

TH =




1 0 0

0 ω 0

0 0 ω2



 , SΦ =
1

3




−1 2 2

2 −1 2

2 2 −1



 , (A1)
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for 3 representation. The generators for 1, 1’ and 1” representations of A4 are SΦ = 1 and
TH = 1, ω, ω2 respectively.

In the base in which S generator is diagonal, two generators of A4 are written as

S̃Φ =




1 0 0

0 −1 0

0 0 −1


 , T̃H =




0 1 0

0 0 1

1 0 0


 , (A2)

for 3 representation. For trivial and non-trivial singlets, these two generators are S̃Φ = 1,

T̃H = 1, ω, ω2. Φ is here assumed to be gauge singlet for simplicity. In this basis, the
general form of interaction terms between scalar bosons in our A4 model, which can give the
expected vacuum alignment, ¶ is,

VH(Hq, Hi) = µ2
qH

†
qHq + µ2{H†

1H1 +H†
2H2 +H†

3H3}
+λ1(H

†
qHq)

2 + λ2{(H†
1H1)

2 + (H†
2H2)

2 + (H†
3H3)

2}
+λ3{(H†

1H1)(H
†
2H2) + (H†

2H2)(H
†
3H3) + (H†

3H3)(H
†
1H1)}

+λ4{(H†
1H2)

2 + (H†
2H3)

2 + (H†
3H1)

2 + h.c.}+ λ5{|H†
1H2|2 + |H†

2H3|2 + |H†
3H1|2}

+λ6{(H†
1H1)(H

†
qHq) + (H†

2H2)(H
†
qHq) + (H†

3H3)(H
†
qHq)}

+λ7{(H†
1Hq)

2 + (H†
2Hq)

2 + (H†
3Hq)

2 + h.c.}+ λ8{|H†
1Hq|2 + |H†

2Hq|2 + |H†
3Hq|2}

+λ9{(H†
1H2)(H

†
3Hq) + (H†

2H3)(H
†
1Hq) + (H†

3H1)(H
†
2Hq) + h.c.}

+λ10{(H†
2H1)(H

†
3Hq) + (H†

3H2)(H
†
1Hq) + (H†

1H3)(H
†
2Hq) + h.c.}, (A3)

VΦ(Hq,Φi) =
µ2
Φ

2
(Φ2

1 + Φ2
2 + Φ2

3)

+λΦ
1 (Φ

4
1 + Φ4

2 + Φ4
3) + λΦ

2 (Φ
2
1Φ

2
2 + Φ2

2Φ
2
3 + Φ2

3Φ
2
1)

+λΦ
3H

†
qHq(Φ

2
1 + Φ2

2 + Φ2
3), (A4)

∆V (Hi,Φi) = λ∆
1 (Φ

2
1H

†
1H1 + Φ2

2H
†
2H2 + Φ2

3H
†
3H3)

+λ∆
2 (Φ

2
1H

†
2H2 + Φ2

2H
†
3H3 + Φ2

3H
†
1H1) + λ∆

3 (Φ
2
1H

†
3H3 + Φ2

2H
†
1H1 + Φ2

3H
†
2H2)

+λ∆
4 (Φ1Φ2H

†
1H2 + Φ2Φ3H

†
2H3 + Φ3Φ1H

†
3H1 + h.c.) (A5)

In order to leave Z3 in the charged lepton sector and Z2 in the neutrino sector, leptophilic
boson H and neutrinophilic boson Φ have to obtain VEVs as

(〈H1〉, 〈H2〉, 〈H3〉) = (vH/
√
2, vH/

√
2, vH/

√
2), (〈Φ1〉, 〈Φ2〉, 〈Φ3〉) = (vΦ/

√
2, 0, 0). (A6)

Hq also get VEV vq to give quark masses. Thus, we expand Eq. (A5) around the vacuum,

Hq =

(
H+

q
1√
2
(vq +H0

q + iAq)

)
, Hj =

(
H+

j
1√
2
(vH +H0

j + iAj)

)
(j = 1, 2, 3) (A7)

and Φ1 = vΦ/
√
2 + φ1,Φ2,3 = φ2,3 to derive mass matrix for scalar bosons. We here assume

that the effect of ∆V is negligibly small as noted in Sec. III, that is, λ∆
j ∼ 0. The mass

¶ We do not include three point interaction terms in the Higgs potential below because they cause tadpole

terms of T and S-charged fields which make our VEV alignment unstable.
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matrices for charged scalar bosons (H+
q , H

+
1 , H

+
2 , H

+
3 ) and for neutral CP-odd scalar bosons

(Aq, A1, A2, A3) in the SΦ-diagonal base are

M2 =




a b b b

b c d d

b d c d

b d d c


 , (A8)

where a, b, c and d are defined as

a = µ2
q + λ1v

2
q +

3

2
λ6v

2
H + λΦ

3 v
2
Φ,

b =
1

2
(2λ7 + λ8)vqvH +

1

2
(λ9 + λ10)v

2
H ,

c = µ2 + (λ2 + λ3)v
2
H +

1

2
λ6v

2
q ,

d =
1

2
(2λ4 + λ5)v

2
H +

1

2
(λ9 + λ10)vqvH , (A9)

for charged scalars, and

a =
µ2
q

2
+

1

2
λ1v

2
q +

3

4
(λ6 − 2λ7 + λ8)v

2
H +

λΦ
3

2
v2Φ,

b = λ7vqvH +
1

4
(λ9 + λ10)v

2
H ,

c =
µ2

2
+

1

2
(λ2 + λ3 − 2λ4 + λ5)v

2
H +

1

4
(λ6 − 2λ7 + λ8)v

2
q ,

d = λ4v
2
H +

1

4
(λ9 + λ10)vqvH , (A10)

for neutral CP-odd states.

The mass matrix for the neutral CP-even scalar bosons (H0
q , H

0
1 , H

0
2 , H

0
3 , φ1, φ2, φ3) in the

SΦ-diagonal base is

M2 =




A B B B G 0 0

B C D D

B D C D 0

B D D C

G E 0 0

0 0 0 F 0

0 0 0 F




, (A11)
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where each element is defined as follows:

A =
µ2
q

2
+

3

2
λ1v

2
q +

3

4
(λ6 + 2λ7 + λ8)v

2
H +

λΦ
3

2
v2Φ,

B =
1

2
(λ6 + 2λ7 + λ8)vqvH +

3

4
(λ9 + λ10)v

2
H ,

C =
µ2

2
+

1

2
(3λ2 + λ3 + 2λ4 + λ5)v

2
H +

1

4
(λ6 + 2λ7 + λ8)v

2
q ,

D =
1

2
(λ3 + 2λ4 + λ5)v

2
H +

3

4
(λ9 + λ10)vqvH ,

E =
µ2
Φ

2
+ 6λΦ

1 v
2
Φ +

1

2
λΦ
3 v

2
q ,

F =
µ2
Φ

2
+ λΦ

2 v
2
Φ +

1

2
λΦ
3 v

2
q ,

G = λΦ
3 vΦvq. (A12)

In order to move to the basis in which TH is diagonal we rotate A4 triplets with

Uω =
1√
3




1 1 1

1 ω2 ω

1 ω ω2


 , (A13)

for UωTHU
†
ω = diag(1, ω, ω2), which is the form of Eq. (7), and the VEV is defined as

√
3vH = v cos β, vq = v sin β. (A14)

All mass submatrices for A4-triplet scalar bosons are rotated and then we find mass matrices
of the scalars in the form of Eq. (22).

Nonzero ∆V causes T -breaking terms as follows:

δm2 =
1

2
λ∆
1 v

2
ΦH

02
1 +

1

2
λ∆
2 v

2
ΦH

02
2 +

1

2
λ∆
3 v

2
ΦH

02
3

+
1

2
λ∆
1 v

2
ΦA

2
1 +

1

2
λ∆
2 v

2
ΦA

2
2 +

1

2
λ∆
3 v

2
ΦA

2
3

+λ∆
1 v

2
ΦH

−
1 H

+
1 + λ∆

2 v
2
ΦH

−
2 H

+
2 + λ∆

3 v
2
ΦH

−
3 H

+
3

+
1

2
(λ∆

1 + λ∆
2 + λ∆

3 )v
2
H(φ

2
1 + φ2

2 + φ2
3) + λ∆

4 v
2
H(φ1φ2 + φ2φ3 + φ3φ1)

+2λ∆
1 vΦvHH

0
1φ1 + 2λ2vΦvHH

0
2φ1 + 2λ∆

3 vΦvHH
0
3φ1

+λ∆
4 vΦvH(H

0
1φ2 +H0

2φ2 +H0
1φ3 +H0

3φ3). (A15)

In addition, we can read out the T breaking terms in Eq. (41) for this model from Eq.
(A15):

(δm2
H)ab = (δm2

A)ab = (δm2
H+)ab = λ∆

a v
2
Φδab, (A16)

in the basis of Eq. (A2). After rotated by Uω, mixing terms between states with different
Z3 charges occur from these (δm2)ab. These terms contribute to T -breaking in the charged
lepton sector via loop corrections. Further T -breaking terms may be required to describe
observed size of non-zero θ13 as we discuss in Sec. V.
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