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Abstract 46 

To describe the histological characteristics of the oocyte chorion in wild adult and artificially 47 

matured Japanese eels, we investigated changes in chorion thickness during artificially induced 48 

oogenesis and compared the chorion thickness and ultrastructure between wild and artificially.  In 49 

artificially maturing eels, the chorion thickness and volume increased significantly with increasing 50 

follicle diameter, peaking at approximately 450 µm; beyond this point, the chorion thinned 51 

significantly, whereas there were no significant changes in volume.  A significant positive correlation 52 

was observed between the number of salmon-pituitary-extract (SPE) injections and chorion thickness.  53 

In wild post-spawning adult eels, chorion thickness varied among individuals, and two had chorions 54 

that were significantly thinner than those of artificially matured eels.  Ultrastructural examination 55 

revealed electron-dense layers were observed in the chorions of wild post-spawning adult eels as was 56 

seen in artificially matured eels.  This result is inconsistent with our hypothesis that the formation of 57 

an electron-dense layer is unique to artificially maturing eels due to repeated SPE injections.  These 58 

results suggest that the formation cycle of the chorion might be affected by SPE injections in artificially 59 

maturing eels, whereas that of wild eels might be synchronized with behavioral and/or environmental 60 

fluctuations that occur during the oceanic spawning migration. 61 

 62 

Keywords: oocyte chorion, ultrastructure, wild adult eel, artificially matured eel, Japanese eel, 63 

Anguilla japonica, spawning migration 64 

65 
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Introduction 66 

The Japanese eel Anguilla japonica is highly valued and is one of the most important aquaculture 67 

species in Japan.  Anguillid eels are catadromous fish that spawn offshore in the ocean, with the 68 

juvenile growth phase occurring in freshwater [1].  These eels begin their downstream migration 69 

toward the ocean for spawning at the onset of sexual maturation [2, 3].  Recently, stocks of wild glass 70 

eels, which are used for aquaculture, have drastically decreased [4, 5], and this endangered species 71 

appeared on the red list of the Ministry of the Environment of Japan in 2013. Therefore, the 72 

establishment of effective techniques for the artificial production of glass eels is necessary to sustain a 73 

seed supply and conserve this natural resource.  Since Yamamoto and Yamauchi [6] first succeeded in 74 

producing fertilized eggs and larvae by artificial hormone treatment, research on the artificial induction 75 

of maturation and seed production in the Japanese eel has greatly increased [7–11].  Subsequently, the 76 

production of second-generation larvae was achieved by artificial production in 2010 [12].  However, 77 

one of the main obstacles to the mass production of glass eels is low egg quality, which leads to low 78 

hatching and survival rates [13, 14].  To improve the artificial production of glass eels, the 79 

physiological differences in oogenesis between wild and artificially maturing eels must be understood. 80 

In the past, fully matured wild Japanese eels were not captured because the spawning sites of this 81 

species are far from their growth habitats and were unidentified for many years [15].  Thus, no study 82 

has yet described the natural oogenesis process that occurs during the spawning migration.  83 

Immediately after the onset of downstream migration, the ovarian developmental stages of silver-phase 84 

Japanese eels captured in rivers and coastal areas do not exceed the early vitellogenic stage [16, 17].  85 

In contrast, silver-phase New Zealand longfinned eel Anguilla dieffenbachii and Celebes eel Anguilla 86 

celebesensis have more developed ovaries at the mid-vitellogenic stage [18, 19].  Several studies have 87 

conducted endocrinological and histological comparisons of oogenesis between naturally maturing 88 

New Zealand longfinned eels and artificially maturing Japanese eels.  In their endocrinological 89 

research, Saito et al [20] indicated that the gonadotropin mRNA expression patterns of artificially 90 

maturing Japanese eels differed from those of naturally maturing New Zealand longfinned eels.  91 

Matsubara [21] showed that steroidogenic enzymes mRNA expression of artificially maturing Japanese 92 

eels was overexpressed relative to that of naturally maturing New Zealand longfinned eels.  In a 93 

histological study, Lokman et al [22] showed that the chorion of naturally maturing New Zealand 94 
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longfinned eels was much thinner than that of artificially maturing Japanese eels, with that of the 95 

mid-vitellogenic oocyte ranging between 350 and 450 µm.   96 

The chorion is the outermost membrane of the egg.  In teleosts, the chorion has two layers (zona 97 

radiata externa, ZRE; and zona radiata interna, ZRI) that comprise the non-cellular envelope [e.g., 23, 98 

24] and that function in the transport of needed materials during oocyte development [25].  In addition, 99 

the chorion acts not only to prevent polyspermy but also to provide mechanical protection of the 100 

embryo from external stimuli; thus, the chorion plays essential roles in fertilization and embryogenesis 101 

[26–29].  Several studies have suggested that characteristics of the chorion influence the hatching 102 

process in salmonids, including its hardness, structure and macromolecular composition [30–32].  103 

Considering these findings and the previous report that the chorion of naturally maturing eels is much 104 

thinner than that of artificially maturing eels [22], it is likely that chorion characteristics also influence 105 

egg quality in the Japanese eel. 106 

Ultrastructural investigations using transmission electron microscope (TEM) have demonstrated 107 

that the ZRI of the chorion consists of several layers of alternating light and dark, electron-dense 108 

structure at developing oocytes and ripe eggs of the artificially maturing Japanese eel [33, 34].  109 

Adachi et al [35] suggested that the number of ZRI layers seems to correspond to the number of SPE 110 

injections.  Generally, the chorion proteins of teleosts are synthesized in the liver and/or ovaries [27, 111 

28, 36].  In several species, such as salmonids and non-cyprinoid fish, chorion protein synthesis is 112 

induced in the maternal liver by estrogen in the form of estradiol-17β (E2) [37–41].  In the Japanese 113 

eel, the levels of serum E2 exhibit a cyclic pattern, with large fluctuations occurring within one week of 114 

SPE treatment [42].  Therefore, we hypothesized that chorion protein expression might also fluctuate 115 

weekly with the E2 cyclic pattern induced by SPE injections, causing a series of alternating limited and 116 

abundant protein accumulation during chorion formation.  Therefore, the formation of the 117 

electron-dense layer may be a phenomenon specific to artificially maturing eels in response to weekly, 118 

repetitive injections.  Furthermore, the thickness and ultrastructure of the chorion in artificially 119 

maturing eels are likely abnormal, possibly contributing to low egg quality, however, this relationship 120 

has yet to be established. 121 

Recently, wild adult Japanese eels were captured in their spawning area for the first time [43–45], 122 

allowing us to compare the reproductive physiology of Japanese eels matured in the wild and 123 
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artificially.  Previously, we reported on the chorion thickness in wild adult Japanese eels, and our 124 

results suggest that the chorion is slightly but significantly thinner than that of artificially matured eels 125 

[45].   126 

The aim of the present study was to clarify the detailed histological characteristics of the oocyte 127 

chorion in wild adult and artificially matured eels and the differences in chorion characteristics between 128 

them.  First, we investigated the change in chorion thickness and volume during artificially induced 129 

oogenesis.  Then, we examined the relationship between the number of SPE injections and chorion 130 

thickness.  Next, chorion thickness was compared between artificially matured and wild eels.  131 

Finally, chorion ultrastructure was observed using TEM. 132 

 133 

 134 

Materials and Methods 135 

Animals 136 

Glass eels of Japanese eel were purchased from a commercial eel supplier in Japan and feminized 137 

by perioral E2 administration (10 mg/kg diet) for 5 months.  The eels were reared in freshwater 138 

experimental tanks at the breeding facilities at the Faculty of Fisheries, Hokkaido University (Hakodate, 139 

Hokkaido, Japan).  The eels were fed commercial aquaculture feed ad libitum.  Two-year-old 140 

feminized eels were acclimated to seawater and received weekly injections of SPE (30 mg/kg body 141 

weight) over 17 weeks to obtain maturing ovaries, following Chai et al [46].  Following anesthesia of 142 

the eels in 2-phenoxyethanol, the developing ovaries were collected by abdominal surgery after 3–17 143 

SPE injections.  To obtain post-ovulatory ovaries and ovulated eggs, eels whose oocytes reached the 144 

migratory nucleus stage after 12 or 13 SPE injections received 17α, 20β-dihydroxy-4-pregnen-3-one 145 

(DHP; 2 mg/kg body weight) injection to induce final maturation and ovulation, following Ohta et al 146 

[7].  Forty nine artificially maturing eels (total length: 540–720 mm) and 4 artificially matured eels 147 

(685–715 mm) were used in the present study. 148 

Twelve wild adult Japanese eels were caught previously in the southern part of the West Mariana 149 

Ridge [45].  Of these, 4 post-spawning females (Nos. 12–15 of Table 1 in Tsukamoto et al. [45]) were 150 

used in the present study.  The total lengths of the eels were 749, 767, 739 and 574 mm respectively.  151 

All post-spawning females possessed ovaries, and most oocytes in the ovaries were at the 152 
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mid-vitellogenic stage.  One female (No. 12) possessed over-ripened ovulated eggs within the 153 

cavitas [45]. 154 

All experimental procedures complied with the National and Institutional Guidelines for the Care 155 

and Use of Laboratory Animals and were approved by the Animal Research Committee of Hokkaido 156 

University. 157 

 158 

Follicle diameter and chorion thickness  159 

Ovaries fixed in Bouin solution for 24 hours were transferred to 70% ethanol, dehydrated in an 160 

ascending series of graded ethanol concentrations and embedded in paraffin.  Sections 5 µm thick 161 

were prepared and stained with hematoxylin and eosin.  The sections were then observed under a 162 

TUW-31-1 80i optical microscope (Nikon, Japan) and digitally photographed using a DXM 1200F 163 

camera (Nikon, Japan).  The following measurements were taken using ImageJ 1.47 software [47].  164 

To ensure accurate measurement of the follicle diameter and chorion thickness, only undamaged 165 

oocytes were selected.  Oocytes ranging from the oil droplet stage to the migratory nuclear stage from 166 

46 artificially maturing eels (6 oocytes per eel) after 3–12 SPE injections were examined to determine 167 

changes in chorion thickness and volume during artificially induced oogenesis.  In addition, oocytes 168 

ranging between 380 and 420 µm obtained from 9 artificially maturing eels (3–6 oocytes per eel) at 6–169 

17 SPE injections were examined to determine a relationship between the number of SPE injections 170 

and chorion thickness.  For the wild post-spawning eels (Nos. 12–15), 350–600 µm oocytes were 171 

most abundant in their post-ovulatory ovaries [45].  Thus, to minimize the effect of differences in 172 

oocyte size, we used only oocytes of the post-ovulatory ovary, which had diameters of between 380 µm 173 

and 420 µm, to make comparisons between the wild and artificially matured eels.  Oocytes from the 4 174 

wild and 4 artificially matured eels (16 oocytes per eel) were examined.  Subsequently, the chorion 175 

volume (CV, µm3) was calculated from the follicle diameter (FD, µm) and chorion thickness (CT, µm) 176 

as follows: 177 

 CV = π [FD3 – (FD – 2CT)3] / 6 178 

 179 

Electron microscope observations 180 
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Sections of ovaries and eggs were fixed in 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 181 

M cacodylate buffer (pH 7.4) for 24 hours at 4°C.  After washing in cacodylate/sucrose buffer (pH 182 

7.4), the sections were post-fixed in 1% osmium tetroxide in the cacodylate buffer for 2.5 hours at 4°C.  183 

The sections were then dehydrated and embedded in EPON 812 (TAAB Laboratories Equipment, UK).  184 

Ultrathin sections (approximately 70 nm) were prepared and stained with 2.5% samarium acetate and 185 

2.66% lead citrate and observed using a JEM-1011 TEM (JEOL, Japan) equipped with an iTEM digital 186 

camera (Olympus, Germany). 187 

 188 

Statistical analyses 189 

Pearson’s coefficient tests using log-transformed values were carried out to test for relationships 190 

between follicle diameter and chorion thickness, follicle diameter and chorion volume and chorion 191 

thickness and the number of SPE injections.  To compare the chorion thickness between wild and 192 

artificially matured eels, Kruskal-Wallis tests, followed by Scheffe’s tests, were conducted.  Variables 193 

are expressed as the mean ± S.D., and significant differences were calculated at P < 0.05.  Statistical 194 

analyses were performed using Excel statistical Analysis 2012 (SSRI, Japan). 195 

 196 

 197 

Results 198 

Change in chorion thickness and volume during artificially induced oogenesis 199 

Chorion thickness increased linearly with ovarian follicle development until follicle diameter 200 

reached approximately 450 µm.  It then began to decrease with further increases in follicle diameter 201 

(450–900 µm) (Fig. 1).  A statistically significant positive correlation between chorion thickness and 202 

follicle diameter was found within the 200–450 µm range in follicle diameter (R2 = 0.83, P < 0.001), 203 

whereas within the 450–900 µm range, a significant negative correlation was observed (R2 = 0.70, P < 204 

0.001).   205 

The chorion volume increased with ovarian follicle development, peaking at approximately 450 206 

µm (Fig. 2), as did chorion thickness (Fig. 1).  A significant positive correlation between chorion 207 

volume and follicle diameter within the 200–450 µm range (R2 = 0.93, P < 0.001) was found.  208 
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However, no clear relationship between chorion volume and follicle diameter was observed in the 209 

450–900 µm range (R2 = 0.02, P ≥ 0.05). 210 

 211 

Relationship between the number of SPE injections and chorion thickness 212 

As chorion thickness varied with follicle diameter during oogenesis in artificially maturing eels 213 

(Fig. 1), the relationship between the number of SPE injections and chorion thickness was examined 214 

only in those oocytes within the same range of follicle diameter (380–420 µm).  A significant positive 215 

correlation between the number of SPE injections and chorion thickness of 380–420 µm follicles was 216 

detected in artificially maturing eels (R2 = 0.79, P < 0.01; Fig. 3). 217 

 218 

Chorion thickness in wild and artificially matured eels 219 

Residual follicles in post-ovulatory ovaries of artificially ovulated eels were used for comparison 220 

with wild eels because wild adult females were in post-spawning condition.  The chorion thicknesses 221 

of 380–420 µm oocytes in the post-ovulatory ovaries of wild post-spawning and artificially matured 222 

eels are shown in Figure 4.  In wild post-spawning eels, the chorion thickness of No. 12 (6.85 ± 0.62 223 

µm) was significantly greater than those of the remaining three wild eels (No. 13: 3.88 ± 0.50 µm; No. 224 

14: 4.56 ± 0.48 µm; No. 15: 3.85 ± 0.62 µm) (P < 0.01), which varied among individuals.  In contrast, 225 

there was no significant difference in chorion thickness among the four artificially matured eels (No. 1: 226 

6.12 ± 0.93 µm; No. 2: 5.69 ± 0.35 µm; No. 3: 5.38 ± 0.52 µm; No. 4: 5.34 ± 0.82 µm) (P ≥ 0.05).  227 

The chorion thicknesses of two wild eels (No.13 and No.15) were significantly thinner than those of 228 

three artificially matured eels (Nos. 1, 2 and 3) (P < 0.05). 229 

       230 

Chorion ultrastructure in wild and artificially matured eels 231 

The ultrastructure of the oocyte chorion of post-ovulatory ovaries and ovulated eggs in wild 232 

post-spawning eels and artificially matured eels are shown in Figure 5.  The chorion consisted of two 233 

layers: a thinner ZRE and a thicker ZRI.  The ZRI had several layers that alternated light and dark 234 

uniform electron-dense.  Among the wild post-spawning eels, the oocyte chorion of the post-ovulatory 235 

ovaries in No. 12 had eight dense layers (Fig. 5a) and the remaining three wild eels had six dense layers 236 

(Fig. 5 b, c, d).  Similarly, the oocyte chorion of post-ovulatory ovaries in artificially matured eel at 13 237 
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SPE injections had six dense layers (Fig. 5e).  The ovulated egg in No. 12 also had eight dense layers, 238 

as did the oocyte of post-ovulatory ovaries in same individual (Fig. 5a). 239 

 240 

 241 

Discussion 242 

Changes in chorion thickness and volume during oogenesis 243 

Our results showed that changes in chorion thickness occurred with ovarian follicle diameter 244 

development in artificially maturing eels.  A similar pattern of chorion change has also been observed 245 

in the whitespotted conger Conger myriaster and the large yellow croaker Pseudosciaena crocea [48, 246 

49].  Based on ultrastructure observations, Kayaba et al [34] reported that the chorion thickness of 247 

Japanese eels increased from the oil droplet stage to the vitellogenic stage.  Moreover, Oka [50] 248 

showed that the chorion thickness of Japanese eels increased from the oil droplet stage to the secondary 249 

yolk stage and decreased from the tertiary yolk stage to the migratory nucleus stage.  Additionally, we 250 

investigated the change in chorion volume during artificially induced oogenesis and found that the 251 

chorion volume also increased with increasing follicle diameter, peaking at 450 µm; however, no 252 

significant change was observed beyond that point.  Previously, northern blot analysis showed that the 253 

chorion protein genes zpb and zpc in the ovary of the Japanese eel decreased simultaneously with 254 

oogenesis [51, 52].  Furthermore, using quantitative real time RT-PCR, mRNA expression of zpb and 255 

zpc in the European eel Anguilla anguilla was found to decrease from the mid-vitellogenenic stage to 256 

the late-vitellogenenic stage [53].  Considering these findings together, we suggest that formation of 257 

the chorion may cease after the mid-vitellogenenic stage, with the chorion stretching and consequently 258 

becoming thinner with increasing follicle diameter. 259 

 260 

Relationship between the number of SPE injections and chorion thickness 261 

This study is the first report on the relationship between the number of SPE injections and chorion 262 

thickness, suggesting that chorion thickness likely varies with the number of SPE injections received in 263 

the artificially maturing eel.  A significant positive correlation between the number of SPE injections 264 

and chorion thickness was observed at follicle diameters of 380–420 µm.  Moreover, the chorion 265 

thickness of a 400 µm oocyte of artificially maturing eel (first batch of developing follicles), as 266 
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calculated from the regression formula (4.73 µm; Fig. 1), is thinner than that of oocytes in ovaries after 267 

ovulation in the four artificially matured eels (second batch of follicles, for which more SPE injections 268 

were received than the first batch).  Chorion proteins are synthesized by E2 stimulation in the liver in 269 

rainbow trout Oncorhynchus mykiss, Medaka Oryzias latipes, masu salmon Oncorhynchus masou, 270 

Sakhalin taimen Hucho perryi and gilthead sea bream Sparus aurata [37–41].  Observed annual 271 

changes in serum chorion protein levels are similar to those of serum E2 levels in Sakhalin taimen and 272 

masu salmon [39, 54, 55].  In addition, the serum E2 levels of Japanese eel have been observed to 273 

increase following SPE treatment [42].  Although E2-dependent chorion proteins have not yet been 274 

identified in Japanese eels, considering the above findings, we suppose that SPE injections facilitate 275 

chorion formation during artificial maturation. 276 

 277 

Chorion thickness in wild and artificial eels 278 

In a preliminary report, we noted that the chorion of wild eels appears to be significantly thinner 279 

than that of artificially matured eels; however, the number of examined oocytes was insufficient for 280 

detailed comparison [45].  Furthermore, we did not evaluate the variation in chorion thickness among 281 

wild eels, and changes in chorion thickness with increasing follicle diameter were not investigated.  282 

Therefore, this study is the first strict comparison of chorion thickness between wild and artificially 283 

matured eels.  Chorion thicknesses varied among wild eels, and those of two wild eels (No. 13 and No. 284 

15) were significantly thinner than those of the artificially matured eels.  Additionally, the chorion of 285 

an additional wild eel (No. 14) was thinner, although not significantly so, than those of artificially 286 

matured eels.  This result is in agreement with a previous report that the chorion of maturing wild 287 

New Zealand longfinned eels appeared to be much thinner than those of artificially maturing Japanese 288 

eels at 350–450 µm follicle diameters [22].  However, the chorions of No. 12 were significantly 289 

thicker than those of the remaining 3 wild eels and almost equally thick as those of artificially matured 290 

eels.  It is possible that No. 12 experienced a different environment, route and/or distance to the other 291 

3 eels during their spawning migration, although there is no evidence to support this.  292 

A possible reason why the chorions of artificially matured eels were generally thicker than those 293 

of wild eels may be the SPE injections.  The levels of the serum E2 cycle, with large fluctuations 294 

occurring within one week of SPE treatment in Japanese eels [42].  With the rapid increase in serum 295 
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E2, chorion protein was also over-synthesized; consequently, the chorion may have thickened.  In the 296 

present study, the chorion thickness of one wild eel was similar to that of the artificially matured eels; 297 

therefore, it is not possible to conclude that chorion thickness influences egg quality.  However, the 298 

positive correlation between the number of weekly SPE injections and chorion thickness suggests that 299 

improvements in SPE injection methods lead to the production of eggs morphologically similar to wild 300 

eggs; such improvements may lead to advances in artificial seed production in Japanese eels. 301 

 302 

Chorion ultrastructure in wild and artificially matured eels 303 

This study is the first study of chorion ultrastructure in wild post-spawning eels.  We found that 304 

the ZRI of post-ovulatory ovaries and ovulated eggs consisted of several layers of alternating light and 305 

dark, electron-dense structure in wild post-spawning eels as well as artificially matured eels.  As a 306 

similar structure was reported in artificially maturing eels in previous studies [33, 34], we had 307 

hypothesized that the formation of the electron-dense layer is particular to artificially maturing eels, 308 

owing to repeated SPE injections.  However, our results are not consistent with this hypothesis, 309 

suggesting that the layer structure of the ZRI is common to both wild and artificially maturing eels.  310 

Although similar layers have also been observed in other species, such as Medaka, the marbled 311 

swamp eel Synbranchus marmoratus, Atlantic bluefin tuna Thunnus thynnus and the gilthead seabream, 312 

the formative factor of the layer and structural difference between the dense and common layers is 313 

poorly understood [23, 56–58].  A previous study of artificially maturing eels reported that the 314 

number of ZRI layers appears to correspond with the number of SPE injections received [35].  Thus, 315 

we suspect that the fluctuation in blood E2 level induced by the weekly SPE injections caused the 316 

repeated pattern of limited and abundant protein accumulation during chorion formation, resulting in 317 

the formation of the electron-dense layer.  However, the present study demonstrated an inconsistency 318 

between the number of SPE injections and the number of layers; for example, the oocyte chorion of 319 

ovaries after ovulation in an artificially matured eel that received 13 SPE injections had six dense 320 

layers.  This inconsistency may be because the oocyte was at the oil droplet stage before receiving 321 

SPE injections, a stage potentially too early for chorion accumulation.  It was previously observed that 322 

the formation of the ZRI was initiated after the oocyte reached the early vitellogenic stage [34].  323 

Therefore, the first several SPE injections may not have contributed to layer formation.  324 
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In contrast, the ZRI of wild eels had the electron-dense layer, suggesting that the chorion 325 

formation cycle in wild eels is synchronized with behavioral and/or environmental fluctuations during 326 

their oceanic spawning migration.  One possible environmental factor that appears to affect chorion 327 

formation is the lunar cycle.  A recent bio-logging study found an obvious impact of the lunar cycle 328 

on the upper limit of migration depth in the tropical eel Anguilla marmorata [59].  We reviewed the 329 

bio-logging data of Jellyman and Tsukamoto [60], which include the depth and temperature profiles of 330 

the temperate eel Anguilla dieffenbachii during the oceanic spawning migration.  We found that the 331 

swimming depths during the full moon period were deeper than those during the new moon and that the 332 

empirical temperatures at the full moon were lower than those at the new moon (Fig. 6).  Furthermore, 333 

a bio-logging study of Japanese eels also showed similar behavioral patterns, i.e., that swimming 334 

depths during the full moon were deeper than those during the new moon during oceanic migration 335 

(Watanabe S, pers. comm., 2013).  The similar behavioral response of a tropical eel and a temperate 336 

eel to the lunar cycle suggests that this behavior is common to anguillid eels and that they may 337 

experience monthly temperature fluctuations during the oceanic spawning migration.  Several 338 

previous reports have suggested that steroidogenesis is affected by changes in water temperature in 339 

female eels [61–63].  Considering all these findings, we hypothesize that chorion formation is 340 

accelerated at higher temperatures during the new moon and delayed at lower temperature during the 341 

full moon, consequently forming electron-dense layers with a circalunar rhythm. 342 

Wild eel No. 12 had a thick chorion with many layers relative to the other 3 wild eels.  Assuming 343 

that the electron-dense layers form synchronously with the lunar cycle, the period of spawning 344 

migration may have been longer for No. 12 than for the other 3 wild eels.  The Japanese eel is 345 

distributed throughout Taiwan, China, the Korean Peninsula and Japan [15].  These geographic 346 

differences may influence individual variability during the spawning migration. 347 

In this study, we provide the first description of the histological characteristics of the oocyte 348 

chorion in wild post-spawning and artificially matured Japanese eels.  The chorion thickness of 349 

artificially induced eels was positively correlated with the number of SPE injections received.  The 350 

chorion thicknesses of two wild eels were significantly thinner than those of artificially matured eels.  351 

However, the influence of chorion thickness on egg quality remains unclear, and more experimental 352 

comparisons are needed.  Further research on the reproductive physiology and biology of artificially 353 
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matured and wild adult eels is needed to reveal the natural processes of oocyte development, and this 354 

information may lead to advances in the production of high-quality eggs in artificially matured eels. 355 
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 538 

Figure Captions 539 

 540 

Fig. 1  Changes in chorion thickness during artificially induced oogenesis (n = 276).  The dashed 541 

line indicates the breakpoint at 450 μm follicle diameter 542 

 543 

Fig. 2  Changes in chorion volume during artificially induced oogenesis (n = 276).  The dashed line 544 

indicates the breakpoint at 450 μm follicle diameter 545 

 546 

Fig. 3  Relationship between the number of SPE injections and chorion thickness within oocytes of 547 

380–420 μm follicle diameter in artificially maturing Japanese eels 548 

 549 
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Fig. 4  Box plots of chorion thickness of 380–420 µm oocytes from post-ovulatory ovaries of 550 

post-spawning wild and artificially matured Japanese eels.  The top and bottom of the boxes are the 551 

upper and lower quartiles, and the line in each box is the median.  The ends of the whiskers indicate 552 

the lowest/highest datum still within the 1.5 interquartile range of the lower/upper quartile.  Different 553 

letters indicate significant differences among individuals (P < 0.05) 554 

 555 

Fig. 5  Ultrastructure of the oocyte chorion in wild and artificially matured Japanese eels.  (a) 556 

Post-ovulatory ovarian follicle of No. 12, (b) No. 13, (c) No. 14, (d) No. 15 and (e) an artificially 557 

matured eel.  The zona radiata interna (ZRI) of the oocyte of No. 12 had eight layers (alternating dark 558 

and light bands); six layers were observed in the remaining three wild females (No. 13, No. 14 and No. 559 

15).  (f) Ovulated egg in No. 12.  The ZRI of the egg of No. 12 had eight layers.  Scale bars indicate 560 

2 μm 561 

 562 

Fig. 6  Relationship between lunar cycle and nighttime water temperature in 3 individual New 563 

Zealand longfin eels Anguilla dieffenbachii during their oceanic spawning migration (modified from 564 

Fig. 1 in Jellyman and Tsukamoto. [60]).  Filled symbols: average of a complete 12 h dataset; unfilled 565 

symbols: average of a 6 h dataset.  Dashed lines: days of full moon; solid lines: days of new moon.  566 

Arrows labeled Eel 1, 2 and 3 indicate the end of the liberty periods (see Jellyman and Tsukamoto. 567 

[60]) 568 
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