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Abstract 

This thesis consists of four distinct projects which sit at the crossroad between Labour, 
Education and Environmental Economics. The underlying and unifying theme is the 
examination of social and geographical inequalities using applied econometrics. 

In the first project, I estimate the effect of moving into a deprived high-density social 
housing neighbourhood on the educational attainments of teenagers in England. I 
exploit the timing of moving, which can be taken as exogenous because of long waiting 
lists for social housing in high-demand areas, to avoid the usual sorting problems. 
Using this strategy, I find no evidence for negative effects. 

The second project investigates the effect of neighbours' characteristics and prior 
achievements on teenagers' educational outcomes. The study relies on mover-induced 
variation in neighbourhood quality, whilst controlling for general gentrification trends 
and other unobservables. The results provide little evidence for significant effects on 
pupil test score progression. 

The third project looks at the size, significance and heterogeneity of ability peer 
effects in secondary schools in England. The methodological innovation is to identify 
ability peer effects using within-pupil-across-subject variation in students' test scores 
and peer prior achievements. The chapter shows that it is the low- and high-achievers, 
who account for most or all of the effect of average peer quality on the educational 
outcomes of other pupils and that this effect varies across genders. 

The final project presents -to the best of my knowledge- the first nationwide 
empirical assessment of residential electricity use in response to the timing of daylight 
for the US. Employing Geographical Information Systems (GIS), I calculate the solar 
times of sunrise and sunset for all locations in mainland US and show that two distinct 
sources of geographical variation can be used to estimate county-level responses in 
residential electricity consumption. Using both approaches I find that early sunrise is 
associated with lower residential electricity use in the North, but higher consumption 
in the South. This is a novel finding with potentially significant policy implications and 
I offer some suggestions about how future research should examine the behavioural 
channels that could cause these results. 
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1 Does geography matter?

Until the early twentieth century Geography was a discipline based around local, de-

tailed knowledge of particular places. The underlying assumption was that we shoud

study each individual location1 in order to gain an understanding of the world. The

importance of Geography was thus implied by the approach of the discipline in itself.

With the ’quantitative revolution’ in the middle of last century, some geograph-

ers started to study variations in phenomena over space rather than just focussing on

a particular location. Geography has always been a largely quantitative science, but

today increased attention is paid to theory. An example is the sub-field of Economic

Geography, in which the Marxist geographer David Harvey is the most influential fig-

ure. David Harvey theorises how space, in particular the housing market and the built

environment, is instrumental to the survival of capitalism, most prominently in Har-

vey (1973). This perspective is then used to study socioeconomic phenomena. Other

examples taken from the natural sciences are gravity theory or entropy-maximising

models. From Regional Science came ’Central Place Theory’, or Weber’s industrial

location theory (Johnston and Watts, 2000).

This introduction of theory had important consequences for the way geographers

study location. With the move of the discipline towards theory, the importance of

geography has become testable. Rather than being presumed according to the discip-

line, theoretical models can be used on the data, and we can test the importance of

geography in a positivist sense.

Similarly, Paul Krugman started to re-introduce space into mainstream theoretical

economics in the early 1990s (Krugman, 1992). Today many economists study the

importance of location for individual or firm outcomes, and the new sub-discipline of

Spatial Economics has emerged (Duranton and Rodríguez-Pose, 2005; Overman, 2004).

To the present day, for many questions it remains highly contested whether geo-

graphy, or space, simply offers a useful ’container’ or perspective to study social phe-

nomena, or whether geography has an independent explanatory power.

The approach taken by this thesis is to assess the importance of location-mediated

phenomena in a number of distinct settings using applied econometrics. Thus this

thesis presents an indirect test of geography. I briefly summarise the four main chapters

1In this thesis I will use the words geography, environment, space and location interchangeably.
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and how each of them tries to assess causal importance of geography in section 3 be-

low. First, the next section outlines the key methodological challenges to be overcome

when trying to assess causality in a geographical setting.

2 The quantitative empirical approach

2.1 Potential outcomes and selection

Parallel to the increase in awareness of location patterns in mainstream economics,

there has a development in applied research that Pischke and Angrist term the ’cred-

ibility revolution’(Angrist and Pischke, 2008). Led by the sub-discipline of Labour Eco-

nomics, applied researchers have increasingly turned their attention to the question of

causality. In particular, we have a much better understanding today of how research

design can support the causal interpretation of statistical associations. The applied

quantitative researcher is equipped with a multitude of statistical tools to support her

studies and claims of causality. In this section I outline the key challenges that need to

be addressed in order to claim causality in geographical settings.

All quantitative empirical work that tries to assess the impact of one particular

variable on another is faced with a fundamental problem: the counterfactual is never

observed. To understand the importance of the environment for individual outcomes,

for example, one would need to observe the same person at the same time in different

environments in order to support causal argumentation. This is not possible.

As first shown by Rubin (1974) we can derive the consequences this has for em-

pirical work using the potential outcomes notation. For simplicity, let us call some

characteristic of the environment that we are interested in ’treatment’, denoted by D,

which takes the values 1 and 0. Following Angrist and Pischke (2008), when Y denotes

the outcome of interest for the same individual i, there are two possible states:

D = 1, the person was treated. The expected outcome is denoted by E(Y|D = 1).2

D = 0, the person was not treated. The expected outcome is denoted by E(Y|D =

0)

The causal effect of the treatment γ can then be represented by the difference in

2Subscipt i omitted for simplicity. We also assume homogeneous treatment effects.
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expected outcomes:

γ = E(Y|D = 1)− E(Y|D = 0) (1)

The fundamental problem is that each individual can only be observed in one or the

other outcome. In other words, we can only observe the effect of the treatment for

people who were actually treated. Denoting the outcome of an individual who was

treated with Y_t and an outcome for an individual who was not treated with Y_c,

what we can actually observe is:

θ = E(Yt|D = 1)− E(Yc|D = 0) + E(Yt|D = 0)− E(Yt|D = 0) (2)

rearranging yields:

θ = E(Yt|D = 1)− E(Yt|D = 0) + E(Yt|D = 0)− E(Yc|D = 0) (3)

The first two terms now represent the ’treatment on the treated’, that is, the effect

of the treatment on people who were actually treated. The latter two terms repres-

ent the difference in expected outcomes between individuals in the treatment group

and those in the control group in a world where neither were actually treated. This

quantity is referred to as ’selection bias’. In programme evaluations selection bias be-

comes a problem if people self-select into treatment and control groups or if treatment

status is not assigned randomly in an experimental setup, for example. However, se-

lection bias can equally occur in other situations. Any pre-treatment outcome-relevant

unobserved differences between those treated and those who were not would cause

omitted variable bias. As a result of this, we need to carefully assess whether there

might be any differences between individuals -correlated with the outcome under

investigation- that are potentially not independent of treatment assignment in each

situation.

The most straightforward way to achieve this would be to randomise treatment

status, and as a result randomised experiments are regarded as the ’gold standard’

in applied empirical work. Unfortunately randomisation is rarely possible especially

once geographical treatments are considered. As a result, this thesis pays particular

attention to research design. Each section will outline the strategy followed to identify

causal relationships and the required assumptions will be discussed.
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2.2 The selection problem in the geographical context

The selection problem outlined in section 2.1 is particularly severe when studying

geographical patterns. This is because it is very hard to find distinct locations that only

differ along a clearly specified and observable dimension. Further, when asking about

the importance or influence of geography or some location-mediated phenomena on

some particular outcomes, we often do not have clear mechanisms in mind.

Many of the methodological challenges for quantitative empirical research which

tries to assess in a causal way the importance of location-mediated phenomena - or

what happens around us - have been formalised in the neighbourhood effects literat-

ure. Indeed, all parts of this thesis have to deal with methodological challenges that

can be understood in reference to the neighbourhood effects research setup. There-

fore, I now present a synopsis of ’identification’-problems in neighbourhood effects

research.

In a seminal paper Manski (1993) spelled out these identification problems. He

considers the following empirical model:

Yin = α0 + α1Xi + α2Xn,−i + α3Yn,−i + δn + �in (4)

In this specification, the term Yin represents an individual i’s outcome living in neigh-

bourhood n. The term Xi represents individual-i-specific characteristics that have an

influence on the outcome under consideration. The two terms that can be understood

as capturing location-mediated phenomena are Xn,−i and Yn,−i. The former presents

a measure of characteristics of people who live in neighbourhood n. The subscript

−i denotes that this measure is calculated net of the characteristics of individual i.

The latter term presents a measure of outcomes or actions that are undertaken by the

individuals who live in neighbourhood n, again measured net of the outcome of indi-

vidual i.

The coefficients of interest are α2 and α3. Since Manski (1993), α2 is called the ’exo-

genous’ or ’contextual’ effect, which is the effect that comes from the characteristics

X of the neighbours. When considering effects on school outcomes for teenagers, this

could, for example, capture the socioeconomic background of the neighbours. The

coefficient α3, on the other hand, would capture the effect of what neighbours are
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doing, that is an effect of neighbours’ outcomes, which are denoted by Yn,−i. In the

education-related example, this could represent average school results of neighbours.

Finally, the term δn captures neighbourhood-specific, potentially unobserved charac-

teristics that influence the outcome. Manski (1993) calls this the ’correlated effect’. In

this setting a number of identification problems are present but the selection mechan-

ism is particularly problematic.

To see this, note that δn potentially captures any common shock or neighbourhood

characteristic that has an effect on the outcome. In the study of neighbourhood ef-

fects on educational outcomes, a common candidate would be local school quality,

for example. This is problematic because the shocks or neighbourhood level variables

that are captured by δn are potentially correlated with both neighbours’ characteristics

(Xn,−i) and their actions (Yn,−i). The reason for this is that people ’sort’ themselves into

their neighbourhoods based on preferences and income through the housing market.

Therefore, it is likely to find a correlation between potentially unobserved neighbour-

hood quality variables and the characteristics of the people living in these neighbour-

hoods. However, if unobserved δn correlates with the neighbourhood measures, this

results in omitted variable bias similar to the selection bias discussed in the previous

section.

To clarify this further, consider the following example: assume that we are inter-

ested in measuring the effect of the presence of very well-performing teenagers at

school on the educational outcomes of other teenagers. In reference to equation (4),

we want an estimate for α3. To do this, our approach is to compare the outcomes of

individuals living in two different neighbourhoods, A and B, and for simplicity let’s

assume that only neighbourhood A has such high-performing individuals.

In this setting, following the discussion in section 2.1, the problem is that we can-

not observe the same individual living in both neighbourhoods. Instead, we can only

compare the outcomes of different individuals across neighbourhoods. Thus we can

only hope to measure the effect of the ’treatment on the treated’. As we have seen,

the critical condition that needs to hold is that the expected outcomes of the individu-

als in the two neighbourhoods would have been equal in the hypothetical absence

of the high-performers in neighbourhood A. Using the potential outcomes notation,

this selection term can be written as E(YA|D = 0)− E(YB|D = 0), where YA repres-
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ents teenagers’ test scores in neighbourhood A, and D denotes treatment status - the

presence of high-performers.

In this neighbourhood setting it is very unlikely that this term equals zero. This

is because the two neighbourhoods are likely to differ along other dimensions that

correlate with the presence of high performers. In particular, consider the possibil-

ity that neighbourhood A has better schools, partially unobserved by the researcher.

Since school quality is likely to correlate with individual test outcomes, this would

clearly induce bias. Worse, the selection problem in the geographical setting has a fur-

ther dimension: We know that neighbourhood-level amenities such as school quality

capitalise into house prices, as for example shown by Black (1999). As a result of the

higher house prices, we would further expect neighbourhoods to differ in terms of

the socioeconomic status of their residents, and potentially many other local amenit-

ies that could influence school results. Because of this kind of sorting of people with

higher socioeconomic status through the housing markets all these potentially unob-

served ’correlated’ effects could be wrongly attributed to the effect of the presence of

high performers on individual outcomes.

Throughout this thesis, I will pay particular attention to this sorting problem,

which is the geographical counterpart of the more general selection problem in ap-

plied quantitative work.3

The next section gives a brief summary of the four research projects presented here.

3 Overview of thesis

This thesis consists of four main research projects, presented in Chapters II to V.

3.1 Chapter II: Evidence on the importance of deprived neighbourhoods

The starting point for the question addressed by the second chapter is that poverty and

levels of educational attainment are not distributed evenly across space. Conversely,

we observe that poverty is concentrated in a small number of deprived neighbour-

3A separate -and often confused- identification problem in social interaction research is that α3 cannot
be identified due to reverse causality issues. Recall that α3 is meant to capture the effects of neigh-
bours’ outcomes on individual outcomes. If these effects are non-zero, then individual i’s outcomes will
naturally also affect the neighbours’ outcomes Yn,−i. Chapters II, III and IV solve this problem using pre-
determined measures of outcomes for the neighbours, which will be explained in detail. The reflection
problem does not cause any issues for the analysis presented in Chapter V.
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hoods, often in the largest cities. Here, we also observe students with the some of the

poorest outcomes at school. This gives rise to the possibility that the concentration of

poverty itself causes school disadvantage, which would have important consequences

for social mobility. Indeed, the generation and perpetuation of social inequalities and

the concept of ’equality of chances’ lies at the heart of our understanding of modern

democratic society, i.e. (Sen, 1980).

Researchers in both Economics and Sociology have identified a number of mech-

anisms to explain why living in deprived areas might exert negative influences in

its own right: peer group and role model effects could explain why our behaviour

depends on others around us (Akerlof, 1997; Glaeser and Scheinkman, 2001). Altern-

ative candidates are social networks (Granovetter, 1995; Calvo-Armengol and M.O.,

2004; Bayer et al., 2008; Zenou, 2008; Small, 2009; Gibbons et al., 2010) or conformism

(Bernheim, 1994; Fehr and Falk, 2002). Even if the people in your neighbourhood do

not exhibit any influences, differences in the quality of local resources might generate

the observed concentration of poverty (Durlauf, 1996).

The work presented in Chapter II argues that if living in a bad neighbourhood does

indeed have negative effects on outcomes such as school results, in England these ef-

fects will be most extreme in high-density social housing neighbourhoods. In this

study, I estimate the effect of moving into a very deprived neighbourhood, as iden-

tified by a high density of social housing, on the educational attainment of fourteen

years old (9th grade) students in England. Neighbourhoods with markedly high con-

centrations of social housing have very high unemployment and extremely low qual-

ification rates, as well as high building density, over-crowding and low house prices.

In order to identify the causal impact of moving into permanent social housing in a

highly deprived neighbourhood, this study exploits the timing of moving into these

neighbourhoods. I argue that the timing of a move can be taken as exogenous because

of long waiting lists for social housing in high-demand areas. I will argue that by fo-

cussing on the timing of the move, I can single out variation in neighbourhood quality

that is not confounded by the selection problem. Thus this new strategy bypasses the

usual sorting and endogeneity problems.

Using this approach, there is no evidence for otherwise negative effects, which has

potentially wide-ranging implications for housing policy.
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3.2 Chapter III: Evidence on the importance of peers in the neighbourhood

As we know from the sorting discussion in section 2.2, it is notoriously difficult to

cleanly identify neighbourhood effects. Moreover, there is some confusion in the lit-

erature about what constitutes a neighbourhood effect. Using Manski’s taxonomy,

Chapter II of this thesis estimates the reduced form effect from both the ’exogenous’

and the ’endogenous’ effects. I do not distinguish between effects that might be caused

by particular actions of neighbours, for example peer or gang pressure, and effects

coming from the characteristics of those neighbours. Furthermore, it is left open what

kind of neighbours might matter. I argue, however, that I carefully control for poten-

tial correlated effects, and include school fixed effects or neighbourhood fixed effects

in some of the specifications.

The work presented in the third chapter further disentangles potential channels

that could give rise to neighbourhood effects. In particular, we4 address the question

whether teenagers in similar age-groups affect other teenagers’ outcomes. This is pos-

sible using very detailed pupil-level and school-level administrative data matched to

detailed geographical information on pupils’ residence and geographical mobility, as

well as other administrative data sources. This combined set of information is used to

analyse to effect of quality of peers in the neighbourhood - and more generally quality

of the neighbourhood - on individual progress through secondary education.

To measure the quality of one student’s neighbourhood, we construct several ag-

gregate indicators based on geographical areas which group a handful of postcodes

surrounding a pupil’s place of residence. These include aggregate information about

the educational quality of the peers in the neighbourhood - such as average attain-

ments - as well as proxies for the overall quality of the neighbourhood - such as the

incidence of unemployment. The fact that we can use various levels of geographical

aggregation helps us to address the problem that there exists no clear-cut delimitation

of ’the neighbourhood’.

Regarding the geographical selection (sorting) problem, different strategies are

used to account for the fact that place of residence is determined by unobservable fam-

ily characteristics and preferences regarding school quality and neighbourhood amen-

ities. In the main specifications we focus on pupils who do not change their residential
4Since this chapter presents co-authored work I am using plural rather than singular pronouns when

referring to the author(s).
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locations themselves, and use variation in the neighbourhood composition that is gen-

erated by the mobility of other pupils around them. Given the detail of our data, we

are able to carefully control for parental sorting and other neighbourhood-level correl-

ated effects by individual, secondary-school-by-cohort-by-year, primary school fixed

effects and neighbourhood trends. We carefully discuss this strategy regarding ex-

ternal and internal validity and provide a series of robustness checks to support our

specification.

All in all, our results show little evidence of sizeable and significant neighbour-

hood effects on young people’s educational attainments.

3.3 Chapter IV: Evidence on the importance of peers at school

The previous two chapters argued that neighbourhood-level variables have little influ-

ence on teenagers’ school outcomes in England, controlling for school quality. How-

ever, local school quality can also be regarded as a neighbourhood amenity. Rather

than focussing on other characteristics of neighbourhoods and social interactions in

the neighbourhood, differences in peer composition at school could also cause differ-

ences in outcomes in later life. Chapter IV looks at schools and studies the scale and

nature of ability peer effects in secondary schools in England.

The identification problems inherent to peer effects studies at schools are largely

similar to neighbourhood effects research. In the context of peer effects the main diffi-

culty lies in convincingly controlling for the sorting of students into schools and local

differences in school quality, which might result in spurious correlations between

peers’ characteristics or ability and individual outcomes. From the methodological

perspective these issues are closely linked to geographical sorting into neighbour-

hoods and unobserved neighbourhood infrastructure characteristics in neighbour-

hood effects research.

In order to shed light on the nature of peer effects in secondary schools in Eng-

land, this chapter investigates which segments of the peer ability distribution drive

the impact of peer quality on students’ achievements. Additionally, we5 study which

quantiles of the pupil ability distribution are affected by different measures of peer

quality.

5Since this chapter presents co-authored work I am using plural rather than singular pronouns when
referring to the author(s).
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To do so, we use census data for four cohorts of pupils taking their age-14 national

tests in 2003/2004-2006/2007, and measure students’ ability by their prior achieve-

ments at age-11. We base our identification strategy on within-pupil regressions that

exploit variation in achievements across the three compulsory subjects (English, Math-

ematics and Science) tested both at age-14 and age-11. It is demonstrated that this

pupil fixed effect approach controls for geographical sorting.

In terms of findings, this chapter documents significant and sizeable negative peer

effects arising from students at the very bottom of the ability distribution. In contrast,

there is little evidence that average peer quality and the highest achieving peers signi-

ficantly affect pupils’ academic achievements. However, these results mask some sig-

nificant heterogeneity along the gender dimension, with girls benefiting significantly

from the presence of very academically bright peers, and boys significantly losing out.

We further provide evidence that the effect of the very best peers substantially varies

by the ability of other pupils. On the other hand, the effect of the very worst peers is

similarly negative and significant for boys and girls of all abilities.

Given the heterogeneity of the effect it is difficult to draw general policy conclu-

sions but the paper offers some discussion of potential policy interventions aimed at

increasing overall attainment.

3.4 Chapter V: Evidence on the importance of time zone assignment

The final research project that forms part of this thesis offers a slightly different angle

on the importance of geography. The three previous chapters present evidence on

neighbourhood effects and social interactions in schools and neighbourhoods making

use of rich individual-level panel data in order to examine how students are affected

by their environment. The last chapter of this thesis poses the question how people

are affected by their environment in a rather different setting: I examine effects of the

timing of daylight on electricity consumption. Electricity consumption presents an

interesting case because households spent 125 billion US-$ for electricity in the US in

2005 alone (USdOT, 2010). I argue that a better understanding of the effect of timing of

daylight on electricity consumption could potentially result in significant cost savings

and welfare improvements.

We generally know very little about the economic effects of local time and day-
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light on human activity. While there is an established medical literature on the posit-

ive effects of daylight, for example van den Berg (2005), there is very little empirical

evidence in other areas. For a given location local times of sunrise and sunset only

vary in a very smooth pattern over the year, which makes credible empirical estim-

ation difficult. In terms of variations in local time, the exceptions are changes due

to daylight-savings time (DST)6, and this variation has indeed been used to estim-

ate effects on residential energy consumption (USdOT, 1975; Rock, 1997; CEC, 2001;

Kandel, 2007; Kotchen and Grant, 2012; Kellogg and Wolff, 2008), coordination costs

(Hamermesh et al., 2008), effects on trade and FDI (Marjit, 2007), on financial markets

(Kamstra et al., 2000), and car accidents (Sood and Ghosh, 2007). Overall the results of

the literature on electricity consumption are inconclusive.

In Chapter V, I argue that rather than focussing on local changes in DST regimes,

nationwide geo-temporal variation in local times of sunrise can be used for estima-

tion. To do this, I employ Geographical Information Systems (GIS) to calculate the

solar times of sunrise and sunset for all geographical locations in the mainland US.

Combing this information with institutional factors of time zone assignment and the

daylight savings regime, I can uncover the non-standard variation in sunrise times in

standard local time over space. I show that the local time of sunrise depends on the

time-zone, daylight-saving time, and geographical position within zones, and identify

two distinct geographical sources of variation in the timing of daylight. This variation

is subsequently used to uncover county-level responses in residential electricity con-

sumption to changes in the timing of daylight.

In terms of findings, there is no robust overall effect of sunrise times. However,

using both sources of variation I find that early sunrise is associated with lower resid-

ential electricity use in the North, but higher consumption in the South. These results

would suggest that additionally splitting the US into time zones horizontally could

potentially generate welfare effects through substantial cost savings. I also present a

first rationalisation of these new stylised facts, but acknowledge that further research

is needed to examine behavioural channels in more detail.

The rest of the thesis is structured as follows: the next chapter presents evidence

on social housing neighbourhoods and school performance. Chapter III looks at peer

6Daylight savings time is also often referred to a British Summer Time.
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effects at the neighbourhood level, and Chapter IV examines the scale and nature of

peer effects in secondary schools in England. Finally, Chapter V assesses how the

timing of daylight, which is a function of (exogenous) geography and (endogenous)

institutions, affects residential electricity consumption.
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Table 9: Expanding  treatment period, years 6-9 and years 9-11 movers 
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CHAPTER V

EVIDENCE ON THE IMPORTANCE
OF TIME ZONE ASSIGNMENT
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1 Introduction

There are many reasons to believe that the timing of daylight matters for individual

utility and welfare. Humans do not usually derive joy from sitting in the dark and

we know that daylight has important impacts on health outcomes, i.e. van den Berg

(2005). This study estimates the effect of the timing of daylight on electricity con-

sumption. Electricity consumption presents an interesting case because US house-

holds spent 125 billion US-$ for electricity in 2005 alone (USdOT, 2010), which corres-

ponds to about one per cent of total GDP. I argue that a better understanding of the

effect of the timing of daylight on electricity consumption could potentially result in

significant cost savings and welfare improvements.

Surprisingly, we know very little about the economic effects of local time and day-

light on human activity. This is because for a given location, local times of sunrise

and sunset only vary in a very smooth pattern over the year, which makes credible

empirical estimation difficult. In terms of variations in local time, the exceptions are

changes due to daylight-savings time (DST), and this variation has indeed been used

to estimate effects on residential energy consumption (USdOT, 1975; Rock, 1997; CEC,

2001; Kandel, 2007; Kotchen and Grant, 2012; Kellogg and Wolff, 2008).1 The latter

two are empirical studies that focus on local changes in DST regimes in Australia and

the state of Indiana and use a local difference-in-difference approach for estimation.

Overall the results are inconclusive.

Contrary to Kotchen and Grant (2012) and Kellogg and Wolff (2008), I argue that

rather than focussing on local changes in DST regimes, nationwide geo-temporal vari-

ation in local times of sunrise can be used for estimation. My approach has the advant-

age that I can fully examine the heterogeneity in the response of residential energy

consumption across different latitudes and climate zones.

To obtain credible estimates for the elasticity of residential energy consumption

with respect to local sunrise times, I use geo-temporal variation that has never, to my

knowledge, been used before. To do this, I use Geographical Information Systems

(GIS) to calculate the exact solar time for each county of the mainland US. This allows

me to compute the length of the solar day (sunrise to sunset) and seasonal patterns

1Economists have developed an interest in time zones/DST to understand the costs of coordination
(Hamermesh et al., 2008), effects on trade and FDI (Marjit, 2007), on financial markets (Kamstra et al.,
2000), and car accidents (Sood and Ghosh, 2007).
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in daylight for each county. Using additional information on time zones and day-

light saving2, I demonstrate that local standard times of sunrise and sunset depend on

solar time, time zone, daylight savings regime, and the position within the time zone.

Building on these stylised facts, I show in a simple model that these geographic and

institutional patterns generate two different sources of variation that can be used to

estimate the effect of the timing of daylight on residential electricity consumption. In

principle both variation within time zone and across its boundaries can be used for

estimation.

The mainland US presents a very good case study for the effects of the timing

of daylight on residential electricity consumption because it is large enough to span

four time zones, yet all counties share common institutional factors. Moreover, the

US Department of Energy publishes panel data on residential electricity sales for each

year between 2001 and 2009 for the entire country. This data contains information

on annual retail revenue, sales, and customer counts, by state and by class of ser-

vice3, for each electric distribution utility, or energy service provider in all 50 states.

In total, over 3,400 providers generate and sell electricity to residential customers in

the US, which can be mapped into the counties of operation. The resulting data is a

county-level panel of average annual residential electricity consumption, which can

be directly used for estimation of the effects of the timing in daylight.

The coefficient for averaged annual sunrise time is insignificant for the US over-

all. However, this results masks stark heterogeneity across latitude and climate. In

the North, later sunrise is associated with increases in residential electricity consump-

tion, whereas in the hot South the effect goes the opposite direction. These patterns

are remarkably robust. In the most demanding specification I include controls for geo-

graphical latitude, time-varying county-level industry structure and employment, and

county-level census data on climate, land area, population, educational attainment,

median age and poverty, and state fixed effects, and my general conclusions remain

unaffected. I include this rich set of controls to hopefully capture all the unobserved

geographically correlated factors that might otherwise invalidate the approach. I also

test the robustness of these findings against a number of potential threats, including

measurement error and specification of the functional form.

2A synonym for ’British Summer Time’.
3including the Transportation sector, new in 2003.
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This chapter offers a first explanation of the channels that could give rise to differ-

ences in the effects of the timing of daylight in the North and the South. As I show,

people living in the North and the South get the same overall amount of daylight over

the year in principle. However, the North is much colder and has a larger seasonal

variation in sunrise times. A simple analysis suggests that in the hot South later sun-

rise could lead to lower residential electricity consumption if this shifts the hours of

human activity into the colder morning hours. Such a change could result in a reduced

demand for cooling, which is one of the major sources of residential electricity con-

sumption in hot areas. However, in the North, temperature-related arguments cannot

explain why early sunrise would reduce electricity consumption since most heating

uses fossil fuels. I argue that the extent of people’s waking hours at home (versus at

work) can generate a situation where early daylight is associated with lower residen-

tial electricity consumption through changes in the demand for lighting in the dark

mornings.

The finding of this heterogeneity in the effect of the timing of daylight on residen-

tial electricity consumption is completely novel and has potentially important welfare

consequences. This is because the timing of daylight is determined by institutional

factors which policymakers can directly influence. However, further work is required

to gain a better understanding of the economic channels that give rise to these effects.

While this chapter offers a first attempt to explain potential behavioural channels, it is

left to future research to examine these in detail.

The rest of the chapter is structured as follows. The next section reviews the literat-

ure and explains where the approach taken here differs from the existing literature on

electricity savings and daylight savings time. Section 3 presents stylised facts about

the geo-temporal variation in local daylight times that results from geography, time

zones and daylight savings regimes. A short historical discussion highlights the roles

that (exogenous) geography and (endogenous) institutions play in the generation of

this variation. Next, section 4 presents a simple model to show how this geo-temporal

variation can be used to estimate the effect of the timing of daylight on residential

electrify consumption. Section 5 presents the data. In section 6, I discuss the results

obtained from two different sources of variation. Section 7 presents a series of robust-

ness checks, before I offer a first explanation of the behavioural channels that could
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explain the new set of stylised facts in section 8. Finally, section 9, concludes and

outlines directions for future research on this topic.

2 Literature Review

To my knowledge, there exists no direct evidence for a link between electricity savings

and time zones. However, the existing literature on the effect of daylight savings time

regimes on electricity consumption can be seen as an indirect test of the general effect

of time zone assignment on electricity consumption. This is because standard time

varies across time zones by exactly one hour, equivalent to the variation around DST

time changes, when clocks are adjusted one hour forward or backward. As a result,

observing DST can be interpreted as changing time zones for the summer period.

While DST was originally established to reduce energy demand as first advocated

by Benjamin Franklin in 1784, there is a lack of empirical evidence as to whether it

achieves this aim. Aries and Newsham (2008) conclude in their literature on DST

and electricity savings that we are far from an understanding. They write: "There is

general consensus that DST does contribute to an evening reduction in peak demand

for electricity, though this may be offset by an increase in the morning." (p. 1858). This

is in line with the most recent study by Kotchen and Grant (2012), who present the

only microeconometric study in the field using US data to study DST and electricity

consumption in the state of Indiana. They use the fact that some counties in Indiana

changed their DST policies in 2006 and track changes in electricity consumption using

household level data. They find that for Indiana DST in fact increased residential

energy consumption, as there is a trade-off between electricity consumption in the

evening, and energy consumption for heating in the morning. The only other recent

econometric study looking at DST and energy consumption is by Kellogg and Wolff

(2008), who use a natural experiment in Australia, where some regions altered their

DST patters for the Sydney Olympics. Their main finding is that morning and evening

reductions and increases in electricity consumption offset each other.

However, studies comparing DST regimes across contiguous localities ignore the

effects of synchronisation. By this I mean that the existing literature on daylight and

electricity consumption neglects (or assumes away) the fact that we derive benefits

from coordinating activities across space. If a neighbouring locality, but not my own,
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changes its DST policy and I happen to work there, for example, I will need to adjust

my work patterns in accordance with this locality’s time policy, regardless of my own.

As a result, work schedules or national TV schedules do not necessarily change in

line with DST policies for each locality (i.e. holding solar time constant). Indeed,

Hamermesh et al. (2008) demonstrates that there are large benefits to synchronising

economic activity over space. They show that national TV scheduling has large effects

on the timing of economic activity. Hamermesh et al. (2008) shows that if your locality

just changed to Summer time, for example, whether your neighbour also changes time

affects when you get up. As a result, it is unclear to what extent any local differences

in DST, as in Kotchen and Grant (2012) for example, result in changes of behaviour

that in turn effect energy consumption. This is a general problem of difference-in-

difference DST studies, as localities with different DST regimes must be otherwise as

similar as possible for credible estimation.

The alternative is to compare electricity consumption before and after the actual

DST change, in Spring and Autumn. This is, of course, also not a viable approach, as

any results would be the local effects found around the dates of clock changes. Since

DST is introduced to generate summer savings, we would in fact expect the local effect

around the DST-changing dates to be close to zero, if DST was set optimally. Therefore,

in order to answer more general questions regarding year-round timing of sunlight

and electricity consumption, using the DST time-discontinuity would not be useful.

The existing literature holds daylight constant and examines changes in local times,

thus exposing itself to the issue of synchronization. As I show later, the variation that I

am using in this study is not affected by these issues. I can control for synchronisation

by holding local current times constant but varying daylight. A further problem of

local studies is that they cannot uncover potentially heterogeneous effects across dif-

ferent climates. For these reasons, it is unclear whether the local effects of DST can be

generalised. To my best knowledge, this study is the first to use nationwide data on

electricity consumption to fully examine heterogeneity across different climates and

latitudes.

The next section describes the geo-temporal variation in sunrise times that is used

for estimation.
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3 A short primer in astronomy and time zones: variation in

local time of sunrise

3.1 Sunrise and sunset of the solar day

Sunrise and sunset of the solar day and seasonal variations are geographically determ-

ined for each location depending on the exact position of that location on the surface

of the earth and the position of the earth with respect to the sun. As a result it is

possible to calculate these two variables for any location directly using a mathemat-

ical approximation for the shape of the globe and the path around the sun4. Figure 1

shows the resulting spatial variation in annual daylight for summer (June) and winter

(December). Seasonal differences in daylight depend on latitude offset over the year.

The North gets shorter days during December, but longer days in summer. Over the

whole year, differences in total minutes of daylight are negligible5. Independent of

the season, patterns in solar day-length only differ on the vertical axis, as can be seen

by the horizontal layers in Figure 1. This means that any two locations on the same

latitude experience exactly the same seasonal patterns of solar day-length. Ignoring

cloud cover, for any given day of the year, all locations on the same latitude band have

the same number of minutes of sunshine. Overall, each location in the US gets about

734 minutes of daylight per day on average, annually. These facts are exogenously

determined by geography.

3.2 A short history of time zones and daylight savings time (DST)

In order to derive local standard times of sunrise and sunset, i.e. the time shown on

local clocks, it is necessary to combine solar information with the respective time zone

(off-set from GMT) and daylight savings regime. Even if we regard time zones as daily

reality, they are only a relatively recent phenomenon. Historically, local timekeeping

only emerged with the development of mechanical clocks, and the word ’punctuality’

only emerged in the English language in the late 18th century (Levine, 1998). Dur-

4The U.S. Department of Commerce, National Oceanic & Atmospheric Administration,
provides a solar calculator that is highly accurate for locations within the US at URL:
http://www.srrb.noaa.gov/highlights/sunrise/NOAA_Solar_Calculations_day.

xls,whichIuseforcounty-levelcalculation

5Note that I ignore differences due to local weather or cloud cover, which are negligible over the long
run according to Hamermesh et al. (2008).
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ing the 19th century, villages would each have their clock tower and set noon to the

highest point of the sun. As a result, over 70 different time zones are recorded for the

1860s in the US alone (ibid.). The four time zones in the mainland US as we know

them today were only introduced in 1883 and formally established in 1918, and only

marginally changed thereafter (see Levine (1998) for a fully-fledged historical discus-

sion).

Daylight saving time is defined as temporarily advancing the time by one hour

during summertime, which is referred to as British Summer Time in the UK. This

procedure was first advocated in the US by Benjamin Franklin in 1784 and in the UK

by William Willett in 1907 (Aries and Newsham, 2008). The idea was to shift human

activity one hour backwards to save energy used for lighting. DST was first introduced

during WW1 by Germany and subsequently adopted by other European countries.

The US first introduced DST in 1918. Contrary to time zones, daylight-savings time

has continuously been modified. The US, for instance, was on ’year round DST time

(YRDST)’ in 1974-1975. The current British Prime Minister, David Cameron, wants to

put the UK on double-DST, effectively putting the United Kingdom into the GMT+1

time zone, for a trial period. Regarding the US, the last change in DST policies was

in 2007, when it was lengthened, and Indiana started observing DST in 2006 (all from

Aries and Newsham (2008) who discusses the historical background of DST in more

detail).

3.3 Variations in local standard time or sunrise

Combining local information on solar time, time zone and daylight saving, the local

standard time for sunrise can be calculated for each geographical location in the main-

land US. In order to do this, I augment the mathematical model that calculates solar

times with county-level information on time zone and daylight savings policy, by

year6. Figure 2 shows the local standard time for sunrise in summer (June), winter

(December) and annually (lower panel). Contrary to the previous exercise, time zones

and daylight-savings regimes matter here in the sense that they influence the spatial

pattern. The four time zones are clearly visible. Further, the local standard time for

sunrise changes discontinuously at the borders of time zones. Within each zone, local

6This program is written in visual basic, building on the solar times calculator used in section 3.1.
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standard time for sunrise increases smoothly as we move from the east to the west.

This is because the sun rises on the eastern horizon in the morning, and hence rises

earlier in the east, depending on the time zone. On average the sun rises at 6:49am, and

one standard deviation in the average annual sunrise time is about eighteen minutes.

Strong differences in seasonality are displayed in the upper panel of Figure 2. These

arise because the sun rises from the northeast in summer and from the southeast in

winter. Again, these differences cancel each other out over the year, so that time-

bands for local standard sunrise time run vertically through the time zones in the

lower panel. The total ’width’ of each time zone corresponds roughly to one hour.

That is, at the eastern border of each time zone, the sun rises about one hour earlier

than close to the western border, for any two locations within the same time zone7. Fi-

nally, Arizona and large parts of Indiana did not observe daylight savings time, which

is clearly visible in both the annual figure and also the top left-hand panel, showing

sunrise times for June. In December, on the other hand, Arizona and Indiana do not

stand out, as everyone is on standard time now8.

In a nutshell, local standard time for sunrise exhibits a non-standard variation

across space, depending on solar time, geographical location, and on position within

time zone and daylight saving. While the former is geographically determined, the lat-

ter are policy variables, and daylight savings regimes have frequently changed over

recent decades for reasons not related to robust empirical evidence. This is import-

ant to note, since it shows that policy can indeed affect the timing of daylight, which

makes the question of timing of daylight and electricity consumption relevant from a

policy perspective.

7This is this norm, given that there are 24 time zones for 24 hours on the globe. However, in other parts
of the world time zones follow actual solar time less closely. Europe has a single time zone at GMT+1
that is spanning a region from eastern Poland to western Spain (about two and a half hours differences
in sunrise-times), and China is on a single time zone.

8This map is drawn for the year 2003.
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4 A simple model of annual residential electricity consump-

tion

4.1 Intuition for the model

Figure 3 illustrates how the geo-temporal patterns described in the previous section

can be used for the estimation of the effect of the timing of daylight on residential

electricity consumption in a stylised way. The two boxes represent two time zones

which have a one-hour difference in local time. For example, the right (eastern) box

could represent the Central time zone, and the left box Mountain time. The smaller

white boxes inside show the sunrise times for people living close to the western or

eastern border within each time zone. Focussing on the left box, someone who lives

close to the western border observes local sunrise at 7am. Another person living in

the same time zone but close to the eastern border observes sunrise (and sunset) one

hour earlier in local time: here, the sun rises at 6am. This pattern is the same in the

other box (Central time zone). As a result, two sources of variation in the local time

of sunrise emerge. First, moving within time zone, it is possible to compare the elec-

tricity consumption of people living close to the western versus the eastern border.

Generally, moving horizontally within each time zone, daylight occurs later in local

time. For now, assuming that everyone gets up at 7am local time, this would generate

a variation of one hour in the timing of daylight.

The second source of variation comes from moving across time zone boundaries.

A person who lives close to the eastern border of the Mountain time zone in Figure

3 observes sunrise at 6am local time, whereas a person living close to the western

border of the Central time zone observes sunrise one hour later in local time, at 7am.

In principle, both sources could be used for estimation.

There are some important factors to consider. First, within time zones actual solar

time is changing but local time is constant. Everyone in the same time zone has the

same local time. In contrast, at the boundary actual solar time does not change (the

sun rises ’at the same time’) but local times differ by one hour. As we will see, this

has important consequences for the interpretation of the estimates. So far we assumed

that everyone always gets up at 7am local time. Indeed, different sunrise times can

only have real economic effects on electricity consumption if they are not mirrored by
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an exact behavioural response of getting up in the morning and going to bed in the

evening. For example, if people living in a county towards the western border of a

time zone get up about one hour later than people living in counties that are close to a

time zone boundary to the east, we would not expect to find any impact on electricity

consumption because their work-sleep patterns would not be different with respect to

solar time.

Indeed, the assumption that has always been implicit - but never tested - in the ex-

isting literature is that people perfectly adjust their behaviour according to their local

current time. This assumption implies that people always get up at the same local

time regardless of the position of the sun, i.e. solar time. Similarly, issues such as

coordination costs across space have been ignored. At the boundary, or when com-

paring counties that observe DST with neighbouring counties that do not, it is usu-

ally assumed that there are no coordination costs across space (Kotchen and Grant,

2012). However, these arise if people commute across a county or time zone bound-

ary to get to work, or simply because people watch live events on television at the

same time. Hamermesh et al. (2008) show that coordination costs across boundaries

are non-trivial, and we should therefore not assume them away without knowing the

consequences.

4.2 Setup

In order to understand how these different behavioural responses to changes in the

timing of daylight could affect reduced form effects, I present a simple model of local

times of waking and sunrise in the following9.

Sunrise in current time SRCT

SRCT = f (longitude, TZ) (1)

From Figure 2 we learn that sunrise in current time is a function of geographical

longitude and time zone. Sunrise in current time defines the actual time that is shown

9I continue to refer to sunrise times and waking times in the morning rather than the evening. While
sunrise in local time in the morning and sunset in the evening change symmetrically as we move across
longitude, there is the possibility that people who, say, get up earlier do not go to bed earlier by the same
time difference. For simplicity, we shall assume that the total hours people are awake does not vary
depending on geographical location within a time zone. However, this is an important assumption that
should be tested using the American Time Use Survey in future research.
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on the clocks in each location. Accordingly, SRCT is a function of longitude and time

zone, denoted by the term TZ. We ignore differences in daylight savings regimes for

simplicity.

Waking time in current time WCT

WCT = g(longitude, X) (2)

As discussed, the effect of the current time of sunrise on electricity consumption

also depends on how waking behaviour changes with sunlight. This is why waking

in current time, WCT, is a function of longitude to capture the potential response to

sunlight. The term X captures other influences over space that might affect the time

people get up in the morning. A potential candidate for X is coordination costs across

space, which will be discussed in more detail in section 6.2. Finally, WCT is not a

function of time zone. This implies the assumption that people in different time zones

in principle get up at the same time (i.e. at 7am). Taken together, residential electri-

city consumption then depends on how daylight changes, controlling for changes in

waking times.

Specifically, differencing equations 1 and 2 we get:

Residential electricity consumption REC

REC = f (SRCT)− g(WCT) (3)

Assuming linearity:

REC = [(α1longitude + α2TZ)− (β1longitude + β2X)] (4)

We can now partially differentiate equation 4 at the time zone boundary and within

time zones to shed some light on potential behavioural responses to changes in current

sunrise times. Imposing linearity is a potentially strong assumption, which will be

tested later on. Here, we keep the linear notation for simplicity.
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4.2.1 Partial derivative: Variation within time zone

Using equation 4 and taking the derivative with respect to longitude within time zone,

we get:

∂REC
∂longitude

= [α1 − β1] (5)

where α1 is how much SRCT changes when we move within TZ and β1 how much

WCT changes with changes in sunlight.

We can clearly see that if β1 is positive the reduced form effect will be a combina-

tion of the effect of position within time zone on sunrise times and waking behaviour.

4.2.2 Partial derivative: Variation at the time zone boundary

Using equation 4 and taking the derivative with respect to longitude at the time zone

boundary, we get

∂REC
∂boundary

= [α2 − β2] (6)

where α2 is equal to one since current time changes by one hour for each TZ in

the US. α1 is close to zero since latitudes of counties close to the time zone boundary

are similar. What this highlights, however, is that some measure that captures lon-

gitude should be included as running variable in regression analysis that exploits the

boundary discontinuity.

More importantly, β2 depends on coordination costs/changes in conventions in

WCT at the boundary. If people commute across the boundary to get to work, they

effectively need to live on the neighbouring time schedule. There might be other reas-

ons why people on both sides of the boundary would get up at different local times,

and hence simultaneously. As shown by Hamermesh et al. (2008) air times of popular

television programs have a significant effect on the time people get up in the morning

and go to bed in the evenings. This is important because all major television channels

air their programs simultaneously in the Eastern and Central time zone, for example.

This pattern is less clear at the other time zone boundaries and depends on actual

channels, but naturally all live events are aired simultaneously throughout the US.

Therefore, the assumption that β2 equals zero is a strong one and we have reasons to
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believe that β2 is positive. If this is the case, again the reduced form estimate would be

a combination of the time change at the boundary and the behavioural response and

would go towards zero. In the extreme, if coordination costs at the boundary were

prohibitive, and people got up simultaneously, there would be no effect on electricity

consumption.

4.3 Summary

In this section we have seen that, in principle, two different sources of variation emerge

from the spatial patterns described in section 3. Reduced form estimates of electricity

consumption on sunrise times can be estimated using either within-time-zone vari-

ation across longitude, or the boundary discontinuity. However, effects of daylight

timing on electricity consumption also depend on how people adjust their sleep pat-

terns with respect to changes in the timing of daylight. I have shown that the effects of

the two sources of variation will thus differ depending on the behavioural responses of

waking time. Since the behavioural response is due to different reasons at the bound-

ary versus within the boundary, it is not clear a priori why reduced form estimates

should be comparable in magnitude and significance.

For example, if coordination costs across space are high, the behavioural adjust-

ment in waking times within time zones should be minimal. This is because when

coordination matters, people who live close to the eastern border of a time zone will

need to get up simultaneously with other people living further west in the same time

zone. As a result, local clock time will determine when people get up, and not the po-

sition of the sun. In contrast, behavioural adjustment with respect to local time at the

boundary would be large. This is because if two people living on opposite boundaries

of a time zone need to get up simultaneously, they will in fact get up with a one-hour

difference in their local times. As shown by the model, the estimated effects would

vary accordingly. I will return to these important considerations when comparing the

estimates obtained from the two distinct sources of variation later in section 6.10

10The sum of β1 and β2 define the total time budget available, i.e. the total difference in waking times
that we can find across the whole of mainland US. If, for example, people in the Pacific time zone get
up exactly three hours later on average than people in the Eastern time zone, β1 and β2 needed to sum
to one. Whether this equality needs to hold is something that future research should examine using
geo-coded data from time use surveys.
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5 Data

5.1 Residential electricity consumption

The U.S. Energy Information Administration (EIA) requires all energy utilities in the

USA to report their annual residential electricity sales. Specifically, the form called

’EIA-861’ contains information on annual retail revenue, sales, and customer counts,

by state and class of service (including the Transportation sector, new in 2003), for

each electric distribution utility, or energy service provider in all 50 states. Each utility

or service provider also lists all counties of operation. Therefore, combining this in-

formation, it is possible to extract annual per-consumer (which is per electricity-meter)

residential energy sales. 11

In total, 3,420 different energy utilities sold electricity to residential customers in

the US between 2001 and 2009. Over ninety per cent of energy utilities both produce

and sell electricity. However, about six per cent of utilities do only produce and not

sell electricity to residential customers themselves. This electricity is sold through

the other providers or a small number of sales-only providers, on which information

is available, as well. Since we are interested in the location of residential electricity

consumption (and not production), we need to drop the six per cent of utilities that do

not directly sell to end consumers themselves 12.

The EIA also collects seasonal information on residential electricity consumption13,

however this information is only collected for a subsample of energy providers. There-

fore seasonal electricity consumption data is available for a sample of counties as well.

Table 1 shows descriptive statistics for annual county level per-customer electri-

city consumption in MWh. The first two columns show descriptive statistics for all

counties in mainland US, and the remaining columns split the US into time zones.

The first row gives averages for all latitudes, whereas the remaining rows split the

US into quintiles based on latitude of county centroid. The first quintile includes the

twenty per cent of counties furthest North, for example. All data is averaged over the

period from 2001 to 2009 and weighted by county population according to the 2001

census.
11All power-utilities are required to provide this information through an online portal knows as ’Single

sign-on’.
12Many thanks to Paul Hesse from the EIA for helpful explanations.
13This is done through the form EIA-862.
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Turning to the statistics, the first entry in column (1) is average annual per-customer

residential electricity consumption, which is 12.1 MWh. The remaining rows in column

(1) show how this consumption varies over five latitude quintiles. We can clearly see

that electricity consumption is higher in the South than in the North. In the most

southerly quintile, per-customer electricity consumption averages 13.82MWh, com-

pared to 10.63MWh in the most northern quintile. However, as the standard devi-

ations in column (2) show, there is substantial variation within these geographical

bands. As a result, these differences do not turn out to be statistically significant at

conventional levels.

Looking at time zones individually, it is interesting to see that the North-South

pattern documented in column (1) is not present in all four time zones. In fact, in the

Pacific and the Mountain time zones, overall consumption is higher in the North than

in the South. The overall pattern is thus driven by the Central and Eastern time zones.

In the Eastern zone in particular, there is a clear pattern of higher electricity consump-

tion in the North than in the South. The most northerly counties in the Eastern time

zone have an average electricity consumption of about 7.85MWh per customer, com-

pared to 14.12MWh in the South. These differences turn out to be significant, as we

can see from the standard deviations reported in column (10).

To conclude this section, overall there is a North-South pattern in residential elec-

tricity sales. Splitting the US into latitude quintiles, we can see that electricity use is

somewhat higher in the South. As I will argue in section 8.1 this is probably because

the use of air conditioning for cooling is very electricity-intensive in the hot South.

Patterns are somewhat different in the Mountain and Pacific time zones. These differ-

ences could be partly driven by climatic patterns. The next section describes data on

climatic variables in detail.

5.2 Climate: Cooling Degree Days and Heating Degree Days

Different climates might affect energy consumption, and the effects of daylight might

be different depending on climate. Table 2 shows indexes for Heating Degree Days

(HDD) and Cooling Degree Days (CDD) for the four time zones of the mainland US

and by latitude percentile. HDD and CDD are common measures in the energy sector.

As we can see from column (1) in table 2, the South has significantly more CDD than
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the North, which has significantly more heating degree days. This is unsurprising, of

course. Indeed, the correlation between geographical latitude and these measures is

very high. The correlation coefficient for latitude and HDD is 0.9357 and for latitude

and CDD -0.8737.

Turning to columns (3) to (10), CDD and HDD measures are shown for each time

zone individually. The general North-South pattern of increases in CDD and decreases

in HDD as we more further South is present in all four time zones. Interestingly, the

South in the Central and Eastern time zones have a much higher index for CDD com-

pared to the other time zones. For the most southern quintile, for example, the CDD

index is 7.21 and 7.18 for the Central and Eastern time zones respectively, and signific-

antly lower at 5.88 and 5.40 in the Pacific and Mountain time zones. The way the CDD

index is constructed, this difference translates into a factor of about two, meaning that

the Central and Eastern time zones have a much higher potential absolute demand for

cooling. Since cooling is very demanding in electricity, these patterns might explain

the overall higher electricity consumption in the south in these time zones, which we

detected in section 5.1.

5.3 Further control variables

Appendix table A.1 shows descriptive statistics of additional county-level variables.

The table shows data in the first five panels on population (measured in 2001), land

area (square miles), median age, educational attainment (high school graduate or

higher in 1990 and the number of persons below poverty level. This data is taken

from the ICPSR 2896 Historical, Demographic, Economic and Social Data DS81:2000

County Data Book, and I will include these variables as additional control variables

in some of the specifications that I discuss in the next section. The lower part of the

table further shows statistics on county-level industry specialisation and overall em-

ployment and the information on these two variables is extracted from the County

Business Pattern dataset for every year between 2001 and 2009. Since this is county-

level data, again all entries are weighted by county population as recorded by the 2001

census.

Overall, the table shows some regional variation across both time zones and latit-

ude, but these patterns do not seem significant. For example, there is a clear North-
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South pattern for both educational and poverty levels. Column (1) shows that in the

North people are on average better educated and less poor. However, there is also

substantial variation within the latitude bands and these differences are not signific-

ant. Similarly, differences across time zones are not remarkable.

6 Regression Analysis, main results

This section presents regression results from using two different sources of geograph-

ical variation in the timing of daylight. Section 6.1 presents results from using geo-

graphical variation across longitude and within latitude bands for estimation. Section

6.2, on the other hand, uses variation in the timing of daylight that arises because of

different current times on opposing sides of inland time zone boundaries in the main-

land US. Before turning to the specific analysis, let us first discuss two technical notes

that apply to all regression specifications presented below.

First, in all specifications I cluster the error term at the county level to account for

the fact that each county is observed in nine consecutive years and that the residual

is likely to be correlated within a county over time. Alternatively, I can use robust

standard errors to control for heteroscedasticity only, which results in similar estim-

ates. Since my treatment varies across geographical latitude I also clustered at the

state*year-level result, which results in even smaller standard errors. I also estimated

most specifications using two-way clustering to simultaneously control for potential

autocorrelation in the residual over time and across geographical latitude14. In par-

ticular, I clustered the error at the county level and additionally along twenty-four

latitude bands, which I constructed based on the integer values of the geographical

county-centroid latitude coordinates. This two-way clustering also only marginally

changed the estimated standard errors and never changed the interpretation of my

coefficients. I therefore concluded that autocorrelation in the error term across latit-

ude is not a major concern and cluster all standard errors only at the county level in

all of the analysis below.

Secondly, I will use county-level averages in residential electricity consumption

as dependent variable throughout. In principle, however, we want to make claims

14Two-way clustering was implemented in STATA using the cluster-command of the Ôivreg2’-routine,
which allows for multiple level clustering of the error term.
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about population electricity consumption. In order to do this we would ideally use

individual-level data. However, as explained in section 5 my data is only available

on the aggregated county level. Since counties differ in population, treating them

all as equal would not make it possible to make statements about overall electricity

consumption. Stated intuitively, this is because a change in the average electricity

consumption in a county with a very large population would result in a larger change

in national electricity consumption than a similar change in average electricity con-

sumption in a county with smaller population.15

We can solve this problem by using weighted least squares and assigning analytic

weights to the county-level regression. This can be done with the command ’aweight’

in STATA, which I use to scale the assumed variance of the county-level data by the in-

verse of the county population. The data on county population is taken from the 2001

Census as described in section 5. Notice that using WLS is justified solely because

I have grouped data. This is different to issues of heteroscedasticity or frequency

weighting because of non-random sampling. For notational simplicity I will ignore

the weighting matrix in the specifications spelled out below, but all results presented

are based on WLS using analytic weighting as described here.

6.1 Analysis using within time zone spatial variation in the timing of day-

light

6.1.1 Specification

The most basic specification that I estimate is the following:

lnYc,t =γ0 + γ1(avsunrise)c,t + γ2(timezone)c

+ γ3(year)t + γ4(timezone)(year)c,t + εc,t

(7)

In this specification, the term Yc,t represents annual per-household electricity con-

sumption for county c in year t. Sunrise times are in local current times. Further, time

zone and year dummies are included to capture any potentially unobserved time zone

year specific shocks. The coefficient γ1 is the main coefficient of interest.

15This is similar to Angrist (1998) who estimates the labour market impact of military service using
averaged data on earnings, see Angrist and Pischke (2008), p. 40 for a discussion.
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If the within-time-zone variation in local sunrise times were truly exogenous to

other factors that determine electricity consumption, then this simple specification

should already reveal an unbiased estimate of the reduced form relationship of timing

of daylight on electricity consumption as discussed in the model in section 4. How-

ever, there is the potential that historical time zone assignment has not been truly ran-

dom, or that firms or people sorted themselves into specific geographical locations in

ways that would confound causal interpretation. In order to alleviate these concerns

I also estimate specifications including additional controls. Specifically, I include vari-

ables on the geographical latitude of the county centroid, Cooling and Heating Degree

Days (CDD, HDD), industry specialisation and employment numbers, land area, pop-

ulation, a poverty measure and education16. These controls are included to capture

factors that potentially correlate with local time of sunrise and residential electricity

consumption over space. If unobserved, these factors could induce omitted variables

bias. Since it is not clear a priori which variables are likely candidates to capture such

geographical patterns, I follow a ’kitchen sink’ approach and include this wide range

of controls. The hope is that conditional on general control variables on education,

production and climate, there are no relevant unobserved factors correlated with local

times of sunrise and electricity consumption.17

To further alleviate potential concerns of omitted variable bias I also estimate re-

gressions that include state-by-year fixed effects. This is to control for any institu-

tional differences of states that could affect electricity consumption and also correlate

to within time zone geography. Estimating the effect of the timing of daylight on elec-

tricity consumption within states is very demanding because state fixed effects alone

explain about 44 per cent of the variation in annual electricity consumption condi-

tional on year and time zone.18.

6.1.2 Estimation results

Table 3 shows the estimates for the main coefficients of interest for specifications that

try to explain residential electricity consumption as a function of local times of sunrise

16For descriptive statistics on controls see Appendix Table A.1
17Since it is hard to see these general control variables as outcomes themselves, the hope is that in-

cluding these variables does not cause ’bad control’ issues, i.e. bias in the main coefficient of interest, as
explained by Angrist and Pischke (2008).

18Obtained by keeping the residual of the specification in column (2) with explanatory variable
avsunrise excluded. Over 43 per cent of the remaining variation in the residual is between states.
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using the spatial variation of local sunrise times within time zones. The first column

presents the γ1 estimate of specification 7 above. In the second column controls are

added to the specification, and the third column further includes state and state-times-

year fixed effects. Columns (4) to (6) and (7) to (9) repeat these regressions on a subset

of counties, splitting the US into two equal halves based on geographic latitude of

county centroids.

What we can see from the estimates in the first column of table 3 is that there is

a positive association between sunrise times and residential electricity consumption

across the whole US. The estimated effect is significant at the one-per cent level, and

very large: A one-hour-later sunrise is associated with about twenty per cent higher

annual residential electricity consumption in column (1). However, this estimate is

almost halved once we include a rich set of control variables in column (2). The fact

that the estimate is sensitive to the inclusion of controls shows that the regression in

column (1) suffered from omitted variable bias. Jointly, the additional control vari-

ables included in column (2) correlate with within-time-zone geography and electri-

city consumption. Indeed, the adjusted R2 rises to 0.45 in this specification, a dramatic

increase compared to the previous specification with an adjusted R2 of 0.16. Further,

adding state fixed effects in column (3) completely removes any association between

average annual sunrise times and residential electricity consumption across the US.

Controlling for state-by-year averages in residential electricity consumption makes it

possible to predict almost 80 per cent of the variation in residential electricity con-

sumption. At the same time the estimated standard error in column (3) remains unaf-

fected. This suggests that the insignificance of the estimate for the effect of the timing

of daylight on residential electricity consumption is not driven by lack of within-state

variation in the outcome or explanatory variables. Taken at face value, this estimate

means that shifting existing time zone boundaries towards the East or West would not

result in any overall residential electricity savings.

Moving to columns (3) to (9), where the US is split into North and South, it becomes

evident that there is substantial heterogeneity across geographical latitude. We should

note that the US is split into two halves crudely based on geographical latitude of

county centroid and ignoring any other boundaries or location-specific features.

The estimate in column (4) shows that in the North an one-hour-later annual av-
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erage sunrise is associated to about a thirty-five per cent increase in electricity con-

sumption in the unconditional specification. This is an unrealistically large effect and

once the rich set of control variables is included the estimated coefficient reduces from

0.341 to 0.250. Again, this suggests that the control variables are not randomly dis-

tributed over the within-time-zone geography. Adding state fixed effects in column

(6) further reduces the effect to a sixteen percentage-point change in residential elec-

tricity consumption. Overall, this set of results demonstrates that while the estimates

are sensitive to the inclusion of controls, the estimates remain large in size and highly

significant even in the most demanding specification.

Columns (7) to (9) show the estimates for the southern half of the United States.

Here, the results are opposite to the North. In the South, a one-hour-later average an-

nual sunrise is associated with a reduction in residential energy sales of about sixteen

per cent in the unconditional specification. Notice that this effect in the South is very

robust to the inclusion of a wide range of control variables. Indeed the point estimate

remains virtually identical in column (8). Here, even including state fixed effects does

not significantly alter the estimated coefficient. The unconditional estimate in column

(7) is estimated at -161, including state fixed effects reduces the coefficient only to -

0.131. This difference in estimates between the unconditional and most demanding

specification is not significant at the five-per cent level.

To recap, using the spatial variation within time zones to estimate the relationship

between residential electricity consumption and the timing of daylight we found two

results: first, there is no robust evidence for an overall association between average

annual sunrise times and electricity consumption. However, this overall result masks

significant heterogeneous effects across latitude. Splitting the US into two halves

along county latitude, in the North a delay in sunrise is associated with an increase in

residential electricity sales, whereas later sunrise with lower electricity consumption

in the South. While the estimated effect is sensitive to the inclusion of controls for the

North, the estimates for the South are remarkably robust to the inclusion of a wide

range of controls variables. We can even include additional state fixed effects, which

take out over 40 per cent of the variation used in the estimation, and the estimates

remain unchanged compared to the unconditional specification.
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6.2 Analysis using time zone boundary spatial variation in the timing of

daylight

An alternative approach to estimating the effect of daylight on residential electricity

consumption is to focus on time zone boundaries.

In order to implement regression analysis of boundary counties it is necessary to

first identify all counties that are close to the boundary. Initially, I focussed on counties

that are contingent to a time zone boundary only. However, it turned out that using

counties that share a border with the time zone boundary resulted in large estimates

of the standard errors due to the small sample size. Also, since counties in the eastern

US tend to be smaller than counties in the West, the overall area included was not

balanced across space. Therefore I now focus on 612 counties that lie within a 100km

buffer around a time zone boundary. Figure 4 shows these counties divided into ’treat-

ment’ and ’control’ groups. First, note that a few counties, mainly around Arizona, are

not grouped into control or treatment group, because they followed different daylight-

savings regimes for at least one year of the study period. While this is taken care of

in the construction of the average sunrise variable, it is less clear what would happen

to the discontinuity. In particular, it is not clear which would be a control county and

which ones would be treated. To be on the safe side, I exclude these counties from

the control and treatment groups for the boundary analysis. The remaining counties

are grouped into a treatment and control group, where the treatment group consists

of counties that lie east of the respective time zone boundary. These counties have a

local time one hour later than the control group, hence the estimated coefficient can

be interpreted as adding one hour, or as sunlight beginning one hour later under the

following two conditions.

Firstly, when using this variation it is only possible to estimate the coefficients of

interest on a subset of counties, namely counties that are close to a time zone boundary.

One concern is that these counties might not be representative and it might not be

possible to examine heterogeneity because of small numbers. Appendix Tables A.2,

A.3, and A.4 replicate Table 1, 2 and Table A.1 previously described in section 3, but

for the sample of boundary counties only. Notice that since counties around the state

of Arizona could not be included, there are some missing entries for the southern

quintiles in the Pacific time zone in these tables.

205



First turning to Appendix table A.2, which shows the average residential electricity

consumption the counties that lie within 100 km of an inland time zone boundary,

what we see is promising: the boundary counties are quite similar to the rest of the US.

Again, there is the overall North-South pattern with higher electricity consumption

in the South, as shown by column (1): the average customer in the most northern

boundary country uses about 9.57MWh, whereas this figure is 13.37MWh for the most

southern quintile. Notice that I again split the US into five latitude quintiles based on

the latitude of the county centroid. The climate variables on Cooling and Heating

Degree Days also follow a similar pattern, and they are tabulated in Appendix Table

A.3.

However, Appendix Table A.4 shows the descriptive statistics for the boundary

counties. Focussing on column (1), comparing numbers across to table A.1 it becomes

clear that the boundary counties are indeed not representative. The first column, for

example, shows that the average boundary county has a population of about 100,000,

which compares to 150,000 in the full sample. This is a potential caveat when trying

to generalise results from the boundary estimation.

A second concern, which I already pointed out in section 4, is that at a time zone

boundary daylight does not change much. Indeed, very close to the boundary the real

change in solar time is negligible. Instead, local current time changes by one hour.

We know from Hamermesh et al. (2008), who study time use in adjacent counties in

Arizona that followed different daylight savings regimes, that there is extremely little

impact on behaviour in terms of waking time when clocks are changed but neighbours

remain in a different time zone. The key problem is that it is not daylight that varies

across the boundary, but local current time. While we can probably assume that people

get up at the same local time within a time zone, it is harder to assume that they get up

with a one-hour time difference at the boundary. This would imply that β2 in Equation

6 is likely to be greater than zero. In fact, in order to compare estimates to the previous

exercise, one would need to assume an elasticity of waking up with respect to local

time of one at the boundary. If this is not met, the reduced form estimate will be lower

depending on β1 and β2 of equation 6, as shown in section 4.

206



6.2.1 Specification

The simplest specification that I estimate is the following:

Yc,t = δ0 + δ1(treatment)c + δ2(tzboundary)c,t

+δ3(year)t + δ4(longitude)c + υc,t

(8)

Here, δ1 is the main coefficient of interest and should capture the effect of being in the

treatment group, i.e. a one hour later local time, on electricity consumption. δ2 is an

estimate for the difference between the group of boundary counties shown in figure

4 overall, compared to all other counties which are still included in the regression to

reduce the Residual Sum of Squares. A significant coefficient here would indicate that

boundary counties are on average significantly different to the average other county

in the US. Note that it is now not possible to include time zone fixed effects but time

fixed effects are still included to capture any overall differences in annual electricity

consumption. As highlighted by the theoretical discussion in section 4 a measure

of longitude is included as running variable, here the longitudinal coordinate of the

county centroids. I continue to cluster the residual at the county level and weight each

county by its overall population using weighted regressions.

6.2.2 Results

Column (1) of table 4 shows the estimates for specification 8. Here, all latitudes and

time zones are bunched together. First, note that the estimate for β2, reported in the

second row, is negative and significant. This raises important concerns from an ex-

ternal validity perspective as this shows that boundary counties have lower residen-

tial electricity sales compared to the rest of the mainland US. The main coefficient of

interest reported in the first row is also significant (and positive), but these are only

the unconditional results.

However, it turns out that the inclusion of the usual set of control variables in

column (2) does not change much, and even state fixed effects (column (3)) do not

change the message: using the boundary variation there seems to be an overall pos-

itive association between sunrise times and electricity consumption. The finding of a

positive effect in the most robust specification in column (3) especially seems to con-

tradict the earlier finding that there is no significant overall effect. However, recall
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that we had to drop a significant number of counties in the South due to the changing

DST regimes around Arizona from the control and treatment groups. In the within-

time-zone analysis, splitting the US into two halves by county centroid ensured an

equal number of counties in the North and South in the previous analysis. Here, more

counties in the North are treated than in the South. Therefore, these results are less in-

formative. This becomes clearer when looking at the effects for northern and southern

counties separately.

Columns (4) to (6) show estimates for the same regressions but using counties in

the northern half only, and (7) to (9) are for the South. Again, the estimates in the

second row all turn out significant and negative. Counties close to the boundary are

non-representative as they have lower per-customer annual electricity consumption.

Turning to the estimates for the treatment, later sunrise is significantly associated

with higher electricity consumption. The estimated effect is always significant at the

one-per cent level. The unconditional estimate reported in column (4) is 0.094, which

is only reduced to 0.089 by the inclusion of the usual set of control variables. Further

including state fixed effects reduces the coefficient to 0.060. To summarise, the estim-

ated effect in the North is robust to the inclusion of controls, though it does decrease

by about three percentage points. However, this reduction is not significant at the

five-per cent level.

Columns (7) to (9) show the respective estimates for southern counties. In the

South, there seems to be less of a problem in terms of representativeness, which doc-

uments itself in the fact that the ’tzboundary’-estimate is insignificant in two of the

three specifications, and also smaller in absolute terms. In contrast, the treatment

coefficients are consistently estimated at negative values. The unconditional estim-

ate in column (7) is -0.024, which is significant at the five-per cent level. Including

control variables in column (8) reduces the coefficient to -0.021, which makes it just

non-significant. However, including state fixed effects increases the estimated effect

to -0.030, which is precisely estimated due to the reduction in the residual and there-

fore significant at the one per cent level. Again, we conclude that there is a negative

association between average sunrise time and electricity consumption that is robust to

the inclusion of a rich set of control variables, and even state fixed effects.

Summarising the boundary estimates, overall the results point in a similar direc-
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tion to the findings using the within-time-zone variation. The estimates again suggest

that the North could benefit from earlier sunrise, while the South would benefit from

later sunrise. As before, the estimated effects are remarkably robust against the in-

clusion of controls, especially in the South. This is exactly what we previously found

using the totally different variation in average sunrise times within time zones.

However, the results of the boundary counties should be taken with a pinch of

salt. First, as the significant estimates for the dummy variable indicating boundary

status indicates, these boundary counties are significantly different to the rest of the

US in terms of electricity consumption. Therefore it is not clear if these results can be

generalised across the US.

In addition, in order to interpret the estimate as the effect of sunlight on electricity

consumption at the boundary, we have to make the unrealistic assumption that the

elasticity of getting up with respect to local time equals one. As argued before, this is

not very likely to be the case due to coordination costs across the boundary. For both

of these reasons, the magnitudes of these results are not directly comparable to those

obtained from the within-time-zone variation.

Keeping these caveats in mind, we do find the same overall pattern using both

completely orthogonal sets of variation: the North benefits from early light, whereas

the South suffers.

7 Robustness checks

7.1 Functional form

All findings so far come from specifications assuming linearity. As already mentioned

in section 4 this is a potentially strong assumption, which is relaxed in table 5. Here,

I estimate nine different regressions and the first three columns present results from

regressions for the mainland US, columns (4) to (6) for the North and (7) to (9) for

the South. Note that these results estimate the effect using within-time-zone variation

in the timing of daylight, as in section 6 only. This is because the ’treatment’ close

to the boundary is not continuous, which makes it impossible to consider alternative

functional forms.19

19Technically, this is not possible simply because the boundary treatment is captured by a dummy
variable, and a dummy is equal to its own square.
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In contrast to the results presented in table 3, the explanatory variable for average

local sunrise time is now also included as a quadratic and first two rows show the

respective estimates. Since it is difficult to compare these results to the previous linear

specifications directly, table 5 also reports computed marginal effects at variable means

in the third row.

The first thing to note is that most estimates of both the linear and quadratic term

are significant at the one-percent level. In principle, this would suggest that the quad-

ratic term should be included. It is only in columns (7) and (8) that the estimates

are non-significant. However, when turning to the marginal effects, the results are

very close to the linear specification results presented in table 3, both in terms of mag-

nitudes and significance. Indeed, the estimated marginal effects are almost identical

and never different from the linear model in any of the specifications at any conven-

tional significance level. Comparing the most robust specifications that include state

fixed effects, the estimated marginal effects are -0.008, 0.174** and -0.158**, which com-

pares with -0.002, 0.163** and -0.131** in table 3. Therefore I conclude that the linearity

assumption is defensible on grounds of simplicity.

7.2 A closer look at heterogeneity by latitude

The findings so far suggest that there is heterogeneity across latitude in the effect of

average local sunrise times on residential electricity sales. This section examines this

finding in more detail, splitting the US not only into North and South but into five

latitude bands based on quintile of county centroid. This is again only possible when

looking at variation within time zones. Around the boundary, there are not enough

observations for each quintile to obtain precise estimates.

Columns (1) to (3) of table 6 mimic the regressions of the first three columns of

table 3, but coefficients are estimated separately for each latitude quintile. All effects

are estimated from running separate regressions for each quintile, thus table 3 reports

results obtained from fifteen different regressions. As before, in columns (2) and (3)

we subsequently add control variables and state fixed effects.

Turning to the results, column (1) shows estimates for specification (7) broken

down by latitude quintile. Moving from the North to the South, there is a strong

and similarly-sized positive estimated effect in the northern two quintiles, which then
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turns negative in the third quintile to -0.011, but not significantly different to zero at

conventional levels. Moving further south, the fourth and fifth quintile both have

large negative associations between average sunrise and residential electricity sales.

In fact, the coefficient for the most southern quintile is somewhat smaller than for the

fourth quintile. However, these are only the unconditional results.

In column (2) the usual set of control variables is included. Here, there are some

marginal changes in the coefficients resulting in a smooth pattern as we move from

the North to the South. The inclusion of additional state-times-year fixed effects again

does not change much. As we can see in column (3), here the magnitudes of the effects

are reduced in the North, but amplified in the South, resulting in a very similar overall

pattern.

To summarise the findings so far, breaking up the US into latitude quintiles con-

firms the previous finding that the effect of average sunrise times on residential elec-

tricity sales is heterogeneous by latitude. The results in table 3 for the North and South

of the US are not driven by some outliers or few counties, but there is evidence for an

overall North-South pattern across latitude quintiles. For the middle quintile of the US

there is no evidence for a significant association between sunrise times and electricity

consumption in any of the specifications. Therefore, we can conclude that this pattern

is robust and the later sunrise is indeed associated with higher electricity consumption

in the North, and lower consumption in the South.

7.3 Measurement error

There is no measurement error in the timing of daylight variable but as explained in

section 5, some power utilities serve more than one county, and whenever this has

been the case, per-customer sales have been averaged over the entire service area.

Theoretically, it is unclear why measurement error in the dependent variable should

bias my results. Nevertheless, table 7 reports the main results relying only on county

level electricity consumption data that was derived using utilities that serve at most

10 counties PanelA, or exactly one county PanelB. While these restrictions result in a

loss of up to 65 per cent of the counties for which electricity data is available, none of

these changes significantly affects the main results.
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8 Interpretation

Due to the lack of empirical evidence it has not been clear a priori what to expect in

terms of findings. Equally there are no clear theoretical predictions of the effect of the

timing of daylight on electricity consumption. This is because it is difficult to generate

clear theoretical predictions without any empirical guidance, and the relationship is

further complicated by the fact that people do not maximize their daily schedules with

respect to sunlight and electricity consumption only. Indeed, the timing of daylight

certainly matters for individual utility and welfare in many other dimensions.

This study presents the first nationwide empirical assessment of the timing of day-

light and residential electricity consumption. Guided by these new empirical results

I present a first attempt to rationalism the findings in the following. In particular,

I am proposing two different mechanisms to explain the documented associations

between daylight and electricity consumption in the North and the South. In any

case, I acknowledge that more research is needed to examine these, and potentially

other, channels in more detail.

8.1 The demand for cooling in the hot South

According to the US Annual Energy Review (USdOT, 2010), American households

used electricity equivalent to 0.88 quadrillion Btu20 for cooling in 2005, which con-

stituted 20 per cent of overall household electricity consumption. Unfortunately, re-

gional data is not available, but given that the South has a much higher demand for

cooling, it follows that electricity use for cooling is responsible for a high share of

overall electricity consumption in the hot South.

One possible explanations for the finding that later sunrise could reduce electri-

city consumption in the South is illustrated by figure 5: the functions show a typical

relationship between air temperature and daytime. In particular, the coldest point of

the day just after sunrise, whereas the hottest time of the day is in the afternoon.21

Further assuming that demand cooling is higher when people are awake during day-

time, shifting daylight later can result in electricity savings. For instance, if people get

up at 7am and go to bed at 11pm and only demand cooling during this time, the area

20One kilowatt-hour=3.412 Btu
21Source: http://www.wisegeek.com/what-is-the-coldest-time-of-the-day.htm
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between 7am and 11pm that lies under curve (A) represents potential total demand for

cooling. Shifting daylight later, the temperature schedule also shifts as shown by func-

tion (B). Since it is colder in the morning than in the evening, the area between 7am

and 11pm under function (B) is strictly smaller compared to function (A). Put simply,

a relatively later sunrise shifts the hours of human activity into the cooler times of

the day, which can potentially result in savings for cooling demand. These effects are

exacerbated if people are at work from 9am to 6pm and only demand cooling when

at home as the savings from the early morning hours would be a larger proportion of

overall consumption of cooling.

This diagram can be used to generate a number of predictions that should be

brought back to the data in future research: in particular, a critical assumption is that

demand for cooling is lower when people are asleep. This could imply that the as-

sociation between timing of daylight and electricity consumption should not hold in

the South in months when it is so hot that people leave the air conditioning running

24 hours a day. Future research should address this prediction using seasonal data on

electricity consumption in hot areas.

8.2 The demand for lighting in dark mornings in the North

The demand for cooling cannot possibly explain the findings for the North since the

overall demand for cooling is low in cold places. Instead, heating mainly relies on

fossil fuels rather than electricity, which only makes up about 6.5 per cent of total

energy use for residential space heating. Again, no regional information is available,

but it seems plausible to assume that colder areas are less likely to use electricity for

space heating since fossil fuel is more efficient. As a result it seems unlikely that a

temperature-related story gives rise to the patterns documented for the North of the

mainland US.

Figure 2 shows that the sun rises at the same local time in the North and South

in the annual average. However, what the lower panel of figure 2 does not show is

that there is much larger variation in sunrise and sunset times in the North. In the

summer, the sun raises extremely early and days are very long, as we can see in the

upper panel. During winter days are very short and the sun raises after people would

normally get up.
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Figure 6 shows that in situations when people get up (and switch on the light)

before the sun raises, early sunrise can result in savings. Making a few additional

assumptions, this is because the equivalent ’loss’ of daylight in the evenings occurs

at a point in time when people are still at work. To see this, notice that the top part

of figure 6 shows total hours of daylight over the time of the day. Two situations

are compared, when the sun rises after people get up in scenario (A) and when the

sun rises exactly when people get up, scenario (B). Assuming that people do not

consume electricity for lighting when at work, the lower part of the figure backs out

the hours when people would need to switch on the light under both regimes. If the

sun rises late (A), people consume lighting before going to work and after coming

back. In contrast, if the sun is already up when people get up in the morning, they

only consume lighting after work (B). Again, future research should examine these

channels and test whether, for example, effects only emerge where and when people

get up before sunrise.

9 Discussion of results and concluding remarks

In this chapter I have shown that the variation in local standard times of sunrise are

non-standard across space, and depend on geographical position, time of the year,

time zone, daylight savings regime, and position within the time zone. Building on

these stylised facts I have demonstrated that two different sources of geographical

variation in the timing of daylight can be used in order to estimate the effects on res-

idential electricity consumption. First, variation in the timing of daylight that arises

along latitude bands within time zones can be used. Alternatively, we can use differ-

ences in local current times that arise in counties in proximity to either side of inland

time zone boundaries.

Using the within-time-zone variation in the timing of daylight along geographical

latitude bands for estimation, I find no evidence for an overall effect of average sun-

rise times on residential electricity sales in the most robust specification. However,

this finding masks substantial heterogeneity along geographical latitude. In particu-

lar, I show that a one-hour-later sunrise in the annual average is associated to an about

16-per cent increase in residential electricity sales in the North. Contrary, in the South

a one-hour-later average annual sunrise is associated with a reduction in residential
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electricity sales of about 13 per cent in the most demanding specification. Especially

for the South these estimates are insensitive to the inclusion of a rich set of county

level control variables, including industry specialisation, industry employment, pop-

ulation, area, educational levels, median age, climate variables, latitude, a poverty

index, and state-times-year fixed effects. Further, the heterogeneity across latitude is

shown to be a general pattern that is present throughout latitude quintiles.

Next, the variations in local times across time zone boundaries are used for estim-

ation. Using this totally different source of variation, I can confirm the general pattern

of the previous findings. In the most robust specification a one-hour-later average an-

nual sunrise is associated to a six-per cent higher electricity consumption, whereas the

effect in the South is estimated to be negative at three per cent in the most demanding

specification.

I have also shown in a theoretical discussion of these two sources of variation that

the reduced form estimates from within-time-zone variation and at the boundary cap-

ture different behavioural responses towards the solar position of the sun and local

time. In particular, coordination costs at the boundary could explain why the estim-

ates coming from the boundary variation are lower than those from the analysis that

uses the within-time-zone variation in daylight for estimation. Therefore I am not

overly concerned by differences in the point estimates, but future research should ex-

amine the proposed behavioural responses to explain the differences in findings. This

could be done using geographically localised time use data, for example.

In this paper, I also present a first attempt to highlight potential channels that could

give rise to this new set of stylised facts, namely that early daylight is associated with

increased electricity consumption in the South and lower consumption in the North.

I argue that later sunrise in the hot South could shift human activity into the cooler

hours of the day, which would then result in electricity savings. In the North, ad-

ditional assumptions about work times are necessary to generate a situation where

earlier sunrise can reduce electricity demand if people get up before sunrise other-

wise. I believe that testing these theoretical channels or finding better explanations is

a fruitful path for future research.

Finally, another potentially important channel that should be examined by future

research are supply side reactions to changes in electricity demand. If we believe my
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results that early sunrise creates long-term higher demand in the South, for example,

then in principle this can be used to estimate the slope of the long-run supply curve of

electricity production in the South. This is because a change in demand induced by the

timing of daylight is unlikely to enter the production function of electricity directly. As

a result, both the within-time zone and the time zone boundary variation in the timing

of daylight should be valid instruments for estimating long-run electricity supply.

As a final note of caution, the supply side also matters for the interpretation of

the results presented so far. If electricity production, for example, exhibits increasing

returns to scale, this would affect the interpretation of the reduced form results that

I estimated here. This is because people who live in counties with lower electricity

demand would potentially pay higher prices for their electricity, thus further reducing

their demand depending on the exact slope of the demand curve. Once the slopes of

the supply and demand curves are known, the reduced form effects of daylight on

electricity consumption could be decomposed into a price and pure quantity effect.

With all these precautionary notes in mind, interpreting my reduced form find-

ings at face value my results would imply that introducing a new time zone boundary

which splits the US horizontally along the median latitude could result in substan-

tial residential electricity savings. In 2005 annual residential electricity sales totalled

124.74 billion US dollars (USdOT, 2010) (Table 2.5). Taking my estimates, this means

that introducing a horizontal time zone boundary would result in residential electri-

city savings of about 13 billion US dollars annually, which is equivalent to over 0.1 per

cent of GDP in 2005. However, changing the timing of daylight is likely also to affect

other outcomes, in particular expenditure for fossil fuel heating, and these should be

examined. Future work should also validate the behavioural channels that give rise to

the large effects documented here, either using seasonal, or even better micro-data, as

I outlined above.
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Table 6: Main results by five latitude bands

(1) (2) (3)
NORTH (1) 0.217∗∗ 0.179∗∗ 0.178∗∗

(0.026) (0.027) (0.038)
N 5418 5418 5418
Adj. R2 0.62 0.67 0.79
(2) 0.373∗∗ 0.282∗∗ 0.194∗∗

(0.027) (0.033) (0.039)
N 5438 5438 5438
Adj. R2 0.38 0.49 0.65
(3) -0.011 -0.039 0.010

(0.029) (0.023) (0.019)
N 5263 5263 5263
Adj. R2 0.68 0.76 0.87
(4) -0.242∗∗ -0.195∗∗ -0.101∗∗

(0.023) (0.024) (0.031)
N 5394 5394 5394
Adj. R2 0.70 0.76 0.86
SOUTH (5) -0.154∗∗ -0.167∗∗ -0.222∗∗

(0.023) (0.021) (0.042)
N 5378 5378 5378
Adj. R2 0.51 0.64 0.69
Controls � �
State FX �
Standard errors in parentheses & clustered at county level.
∗ p < 0.05, ∗∗ p < 0.01
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Figures

Figure 1: Length of the solar day, sunrise to sunset
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Figure 2: Local standard time of sunrise, June, December and Annual Average

Figure 3: Model: some intuition first

Figure 4: Boundary counties to inland time-zones, excluding Arizona
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Figure 5: South: later daylight reduced demand for cooling

Figure 6: North: earlier daylight reduced demand for lighting
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CHAPTER VI

CONCLUSION
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Conclusion

I have argued in the introduction of this thesis that econometric methods can be ap-

plied to geographical questions in order to gain a better understanding of the human-

environment relationship. In this thesis, I have presented four main chapters that look

at specific settings where geography is arguably related to socio-economic outcomes.

In Chapter II I estimated the effect of moving into deprived social housing neigh-

bourhoods on teenage test scores in England. Numerous sociological and economic

theories hypothesis a negative effect from living in deprived neighborhoods on indi-

vidual outcomes such as cognitive outcomes at school. Overall, my analysis shows

that there is little evidence to support such claims at least in the short run. I do not

find evidence of negative effects of moving into high density, deprived social housing

neighbourhoods during the early teenage years once I credibly control for otherwise

unobserved geographical sorting. I believe that this finding is informative for social

housing and area based policies.

Chapter III presents work undertaken jointly with Steve Gibbons and Olmo Silva

where we examine the importance of peers in the neighbourhood. Using a very rich

panel of pupils in England, we can identify similar-aged students at the neighbour-

hood of residence and use variation coming from residential mobility for estimation.

Notice that contrary to Chapter II, this study isolates the effect of social interaction

on student outcomes. Overall, there is little support for the notion that peers in the

neighbourhood matter for own cognitive outcomes.

Chapter IV is based on joint work with Victor Lavy and Olmo Silva and a slightly

extended version of this work has recently been accepted for publication in the Journal

of Labor Economics. Here, we turn the attention towards peers at schools and show

that there are negative effects on cognitive outcomes from having a high proportion of

poorly performing peers at school. Contrary, there is no overall evidence for positive

effects stemming from a high proportion of very bright peers, but this finding masks

some heterogeneity along the gender dimension with girls marginally benefitting and

boys loosing out from the presence of very academically able peers. Again, our results

provide important evidence for policy intervention.

Finally, in Chapter V I ask the question how human behaviour is affected by the

timing of daylight, specifically studying household electricity consumption in the
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United States. To do this I first calculate the average solar and current times of sunrise

for all locations in mainland US to derive stylised facts about spatial variations in the

annual timing of daylight. Building on these findings I show in a model that two dif-

ferent sources of geographical variation in local sunrise times can be used to estimate

the effect on electricity consumption. Using both I find that earlier daylight is associ-

ated with higher electricity consumption in the South, whereas the opposite holds for

the North. I provide a first attempt to explain these findings in terms of behavioural

channels and outline directions for future research. If my results are confirmed, addi-

tionally splitting the U.S. into time zones horizontally could result in substantial cost

savings.

Overall, I believe that my work presented here makes a compelling case for using

applied econometrics in geographical settings. As I have demonstrated particular at-

tention has to be paid towards the geographical sorting problem as any unobserved

geographical heterogeneity could potentially confound the analysis. I believe that in

addition to advances in the availability and handling of geographically localised data,

close attention to research design will continue to play an important role in the ana-

lysis of socioeconomic phenomena.
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