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§1. Introduction.

In a compact oriented Riemannian manifold M of even dimension n,
the generalized Gauss-Bonnet formula ([1], [2]) is expressed by the following
integral :

(1) 2(M) = (Z/Cn)SMKndV

where X (M) is the Euler-Poincaré characteristic of M, ¢, is the volume of
the Euclidean unit n-sphere, K, denotes the Lipschitz-Killing curvature of
M, and dV is the volume element of M.

It is well known that the following is conjectured from the generalized
Gauss-Bonnet formula.

CONJECTURE. Let M be a compact oriented Riemannian manifold of
even dimension n(=2m). If the sectional curvatures are all non-negative,
then M has the non-negative FEuler-Poincaré characteristic X(M). If the
sectional curvatures are all non-positive, then (—1)"2(M)=0.

In 2-dimensional case, the sign of the Gaussian curvatures, i.e., of the
sectional curvatures determines the sign of %(M). In 4-dimensional case,
the conjecture is resolved by J. Milnor, and its proof was provided by S. S.
Chern [3]. S. S. Chern [3], J. A. Thorpe [4], and Y. K. Cheung and C. C.
Hsiung [7] gave certain answers under the curvature conditions respectively
for determining the sign of X(M).

The purpose of the present paper is to give an answer to the conjec-
ture on a Riemannian manifold with some other curvature conditions.

I would like to express my deep appreciation to Professor Yoshie Katsu-
rada for her constant guidance and criticism.

§ 2. Preliminaries.

Let M be a compact oriented Riemannian manifold of even dimension
n. Let A?(M) denote the bundle of p-vectors of M and let A*(x) be the
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fiber over xeM. The inner product on the fiber 4?(x) related to the inner
product on the tangent space M, of M at x is given by

(2) Qe pthy, 1 pr a0y = det[<u,v,)] (e, 0,6 M),

We can consider the Grassmann bundle G,(M) of tangent p-planes of M as
a subbundle of the unit sphere bundle of A?(M) by identifying PeG,(M)
with e, ,---re,€47(M) where {e,, ---, ¢,} is any orthonormal basis for P,

Let R be the curvature operator and R, the p-th curvature operator
which is used in [6]. Explicitly, this curvature operator R, is given by

(3) <Rp(u1/\"'/\up): le"'/\vp>

1
2%p!

Ei‘mi”é’j‘mj"R(uz', > Uz, Vj s 'sz)"'R(ui,,_,, Uiy Uiy 'Uj,,)
(ui , 'vj (S Mz>

where &% denotes the sign of permutation (i, --+,4,) of (1,---,p). Clearly
R,=R. Futhermore, for xeM,

(4> Kn(x)=<Rn<elA”'/\en)’ el/\“'/\en>

where {e,, ---,e,} is any orthonormal basis for M,.

§ 3. The p-th sectional curvatures K,.

Now for any positive even integer p=n, we define a smooth function
K, on the Grassmann bundle G,(M). The function K,, called the p-th
sectional curvature of M, means the Lipschitz-Killing curvature of the geo-
desic p-dimensional submanifolds of M. Clearly, the p-th sectional curvature
of M is the real valued function K, :G,(M)— R given by

(5) K,(P)=<{R,(P), P> (PG, (M)).
For p=2, K, is the usual sectional curvature K of M. We can easily get
the following

ProrosiTiON. Let M be +4-dimensional Einstein space with K,=0.
Then M is flat.

Proor. In <4-dimensional case, there exsists an orthonormal basis

{e, -+, e} of M, such that
1 .
( 6 ) K, (-7«) = —?37 {K12K34 + KK, + K Ky + (R1234)2 + (R1342>2 + (le)z} (.E (S M)

where K;;=K(e; re;). It is well known, that K,=K,,, K;;=K,,, and K,,=K,,
in #-dimensional Einstein space. Consequently M is flat (K=0). g.e.d.
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We consider the following curvature condition (C):
When the sectional curvatures are always non-negative (or, non-positive),
there exists the following property

K(P)- K, o(PY) = (R(P) AR, o(P), W)
(or, (=1FK(P)K, o(PY) = (=1 (R(P) s R, (P), W)

for any even p(=n) and all p-plane W=P,P'e G,(M) where P is 2-plane
and P! is the orthogonal complement of P in W.

ReEMARK 1. It is clear that the curvature condition (C) is satisfied for
the constant curvature. At this juncture, an equality is preserved.

Remark 2. It follows from the simple calculation that the curvature
condition (C) is satisfied for n=4.

§4. The main theorems.

We have the following Lemma in [5]:

LEMMA.  Suppose that p and q are positive even integers with p+q=<n.
The form QPP (see [4] and [5]) can be expressed as

Zl"'lp g
ol
o = Y%L TR
g =

where the sum ranges over all partitions A=(A,, A,) of {i,---,1,.,} into sets
A, of p elements and A, of q elements, and where (k,, -+, k,.,) is, for each
A, an even permutation of (i,--,1,.,) such that

k” ~",k,,€A1 and kp+1, "'skz)MGAz'

k1)+q

If we reform the above lemma, we have the following

LemMma*.  Suppose that p and q are even integers with p+q=n. For
QeG,. (M), let {e, -, e,.,} be an orthonormal basis for Q and let

‘8:{ei,/\"'/\ei,,il§i1<"'<ip§p—|—q},
Then BCG,(M) and
(7) R, Q)= ELQLZRP(P)ARQ(PL)
(p+q) re

where PL is the oriented orthogonal complement of P in Q.

THEOREM 1. Let M be a compact oriented Riemannian manifold of
even dimension n=2m. Suppose that M has the curvature condition (C).
If the sectional curvatures are all non-negative, then the FEuler-Poincaré
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characteristic is non-negative, and if the sectional curvatures are non-positive,
then (—1)"x(M)=0.
Proor. From the equation (4) and Lemma*, for xe M,

Kn(x) = <Rn(el/\ /\en>y €ppctt /\en>
_ 2=l 5 CR(PY AR, L(PY), M)

n! Pes,

where {¢,,-+,e,} is any orthonormal basis for M,. Here, we use the cur-
vature condition (C) over and over again. If K=K,>0,
K@z 2 ¥ KP) ¥ KP)~ % K(P )-K(P, )
n. res P,€8, P 1€8m

Where ‘81 = {ez'x/\eizlléil<i2§n}, R ABmvl = {ei n_z|1§i7t~3<in~v2§n}’
P, \* =e, e and (i, 1,) is an even permutation of (1,---,n). If K<O0,

"

(—1 K, @)z (=1 2 S KP) %N K(P, ) K(Py ).

n ' €8, P €8 1

n-3 A€

Comparison with (1) completes the proof. g.e.d.

For some even p dividing n, we consider the following curvature con-
dition (C*): When the p-th sectional curvatures are always non-negative
(or, non-positive), there exists the following property

K:)(P)‘Ku»1>p(PL>§<R»(P>ARu~ 1)p(Pl)’ W>
(or, (= 1FK,(P)-Kiy 1p(PH) = (=1 <R, (P) Ry (PY), W)

for any positive integer k(< n/p) and all kp-plane W=P , P* € G,,(M) where
P is a p-plane and P*' is the orthogonal complement of P in W.
We can easily obtain the following

THEOREM 2. Let M be a compact oriented Riemannian manifold of
even dimension n. Suppose that M has the curvature condition (C*). If,
Sor some even p dividing n, the p-th sectional curvatures are all non-negative,
then X(M)=0, and if the p-th sectional curvatures are non-positive, then
(=17 % (M) 0.

ReMARK 3. It is clear from [4], that the curvature condition (C*) is
satisfied when the p-th sectional curvatures are constant on G,(M). At this
Juncture an equality is preserved.

Theorem 2 contains the result of J. A. Thorpe (Theorem B in [4]).

Department of Mathematics
Hokkaido University



66

(1]

(2]

(3]

[4]

[5]

(6]

(7]

[3]

1. Hasegawa

References

C. B. ALLENDOERFER and A. WEIL: The Gauss-Bonnet theorem for Riemannian
polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101-129.

S. S. CHERN: A simple intrinsic proof of the Gauss-Bonnet formula for closed
Riemannian manifolds, Ann. of Math. 45 (1944), 747-752.

S. S. CHERN: On curvature and characteristic classes of a Riemannian manifold,
Abh. Math. Sem. Univ. Hamburg 20 (1956), 117-126.

J. A. THORPE: Sectional curvatures and characteristic classes, Ann. of Math. 80
(1964), 429-443.

J. A. THORPE: On the curvatures of Riemannian manifolds, Ill. J. Math. 10
(1966), 412-417.

J. A. THORPE: Some remarks on the Gauss-Bonnet integral, J. Math. Mech.
18 (1969), 779-786.

Y. K. CHEUNG and C. C. HSIUNG: Curvature and characteristic classes of com-
pact Riemannian manifolds, J. Differential Geometry 1 (1967), 89-97.

R. L. BIsHOP and S. I. GOLDBERG: Some implications of the generalized Gauss-
Bonnet theorem, Trans. Amer. Math. Soc. 112 (1964), 508-535.

(Received July 15, 1971)



	070
	071
	072
	073
	074

