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1. Introduction 

Let Q be the set of symbols 1,2,..., n. 1n this paper we shall consider 
the following situation. 

( *) A group @ is drJUb1y transitive on Q and the stabilizer ~ of the symbols 

1 and 2 is a cyclic group of even order. 

The purpose of this paper is to prove the following theorem. 

Theorem. Let @ sati，めI (*). If n is odd, then @ contains a regular 
normal subgroujり.

Remark. This theorem was proved by N. 1to and the author ([9J, [11] 
and [12]) in the case ~ is a 2・group or of order 2p, where p is prime. Thus 
we shall consider the case that I~I =2 l u , where u is odd and if 1=1 , u is 
not pnme. 

We shall prove the theorem by induction on the degree n. 

Our notation is standard. 

<…>: the subgroup generated by... 
N." (I) , C~I (主): the normalizer and the centralizer of a subset 克 in a group 

ID , respectively 
Z(切): the center of 切
O@): the largest normal subgroup of ID of odd order 
IIDI , I YI: the order of ID and an element Y of ID , respectively 
-S'(U): the set of symbols of A 五xed by a subset U of a permutation group 

on A 

α(U) : the number of symbols in ，~(11) 

。l(弔): the subgroup of a p-group 事 generated by the elements x" with x 

in ~ 

2. On the order of @ 

1. Let わ be the stabilizer of the symbol 1. ~ is generated by an element 
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K and 1 Kl = 21u , where u is odd. Let us denote the unique involution K2l-> 
by T and a Sylow r-subgroup of ~ by ~r. ~r is generated by an element 

Kr. Let 1 be an involution with the cycle structure (1, 2) ・・・ Then 1 is conｭ

tainecl in N@(~) and we have the following decomposition of @: 

。=わ+わIわ.

Let ,5t:' = (K') be the subgroup of .~ consisting of elements inverted by 1. Set 

d= l~'l. Let g(2) and h(2) denote the numbers of involutions in @ and 争，

respectively. Then the following equality is obtainecl: 

(2. 1) g(2) = h(2)+d(n-1). 

(See [9] or [10]). 

Let T 五x i (iミ 2) symbols of Q , say 1, 2,..., i. By a theorem of Witt 
[16, Th. 9.4] C，ぷT) acts doubly transitively on S'(T). Let ~l=(Kl) be the 
kernel of this permutation representation of C@ (T). Put @l = C，⑨(r)j~l and 
l~ll =o2}'u1 , where Ul is ocld. Then 1@11 =i(i-1)21 - Z'uju j, C，也 (T)=2Iui(i-1)

ancl C'ﾎ'(T)=2Iu(i-1). 

At 五rst， let us assume that n is odd. Let h* (2) be the number of 

involutions in わ which fix only the symbol 1. Then from (2.1) the following 

equality is obtained: 

(2. 2) ん*(2)n+n(n-1)ji(i-1)

= h*(2)+(n-1)j(i-1)+d(n-1). 

It follows from (2.2) that d>h*(2) and n=i(戸-ß+1) ， where =゚d-h*(2). 

Next let us assume that n is even. Let g* (2) be the number of involuｭ

tions in @ which 五x no symbol of Q. Then the following equality is 

obtained: 

(2. 3) g* (2) 十 n(n-1)ji(i-1) = (n-1)j(i-1)+d(n-1). 

Since @ is doubly transitive on Q , g* (2) is a multiple of n -1. It follows 
from (2.3) that d(n-1)>g*(2) and n=i(戸-ß+1) ， where ゚ =d-g*(2)j(n-1). 

2. We shall prove some lemmas. 

Lemma 2.1. Let @ satisfiy (*). Then =゚d or dj2. 1f ß=dj2 , then 
@ has just two conjugate classes of involutions. Moreover ゚  equals to the 

number of involutions on @ with the cycle structures (1, 2) … which are conｭ
Jugate to T. 

Proof See [12, Remark 1]. 

Lemma 2. 2. Let J be an involution in N,y, (札) sati.的ing the condition 
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α(くよ Kr))=L Let 語 be the stabilizer of two symbols a and b in ~(St) such 
that aJ = b and let d' be the number of elements in さ inverted by よ Then
d=d'. 

Proof As in the above n=i(゚'i-゚'+1). Since '゚=d' or d'/2 by 

Lemma 2.1, d=d'. 

Lemma 2.3. lf <Kr' 1) is dihedral, where r学 2， then ~(X) is contained 

in ~(庇2) for every element X (手 1) or ~r. 

Proof Assume ~(~2) does not contain ~(X). Then there exists an 

element Y of ~2 with the cycle structure (a, b) …, where a and b are symbols 
in ~(刻 Let J be an involution with the cycle structure (a, b) …. Then 
J is contained in N.~(~r) ， <YJ, X) is conjugate to a subgroup of ~ and hence 
it is cyclic. Since くX， Y) is abelian, so is くJ， X) , which contradicts Lemma 
2.2. 

Lemma 2.4. lf X is 仰 element (=1= 1 )ザ~l> then ~(X)= ，~(-r). 

Proof Assume ~(X) is greater than ，~(r). By a theorem of Witt 

N.~(<X)) acts doubly transitively on ，~(X). As in the above I N.~(<X))I= 

IKli(戸'i-ß' 十 1)(i-1) (゚'i + 1) and α (X)=i(ß'i-ß'+1) ， where '゚=d or d/2 by 

Lemma 2. L If ﾟ = ß' , then α(X)=n and X=l. Thus ゚ '=d/2 and ゚ =d by 
Lemma 2.1. Since I@I/I N.~(<X))I =(di-d十 1)(di 十 1)/(di/2-d/2 + 1) (di/2 + 1) 
is an integer, di/2+1 is a factor of di+1=2(di/2+1)-1 , which is a con・

tradiction. 

By this lemma every cycle in the cycle decomposition of ~l not contained 

in ~(r) is I~ll-cycle. 

Lemma 2.5. lf(n, IKl l)=I= 1 , then it is afactor ofi. 

Proof Let r be a factor of (n , IK11) and let X be an element of ~l of 
order r. By Lemma 2. 4 n -i is divisible by r and hence r is a factor of i. 

Let 主(学 1) be a subgroup of~. By a theorem of Witt N.~(æ) has a 

doubly transitive permutation representation on ，~(主). Let ~l(主) and @l(主)
be the kernel and the image of this representation, respectively. 

Lemma 2.6. Let 支 be a subgroup of ~ such that ~(克) is contained in 

~(r). lf@l is contains a regular normal subgroup, then @l(主) has a regular 

normal subgroψ and α(主)ゐ a factor of i. 

Proof Let 況 be a normal subgroup of C，~(r) containing ~l such that 

況/~l be a regular normal subgroup of @l ・ 1t is clear that N.~(æ)n'R is not 

contained in .~. Thus (Nr，(主)n9~) 公l(完)/~l(主) is normal in @l (主). Hence it 

is a regular normal subgroup of @l (主). The second part of the lemma 

follows from the equality α(主)= I(N.~(主)n況)~l(主)/~l(克)1.
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Lemma 2.7. 1f n is 0必 and @1 contains a regular normal subgroup, 
then α(X) is odd for every element X(手 1) of~. 

Proof By Lemma 2.6 we may assume that ~(X) is not contained in 

~(，). Put Y=X,. By the same lemma α(Y) is odd and @1(くX>) satisfies 
( * ). Therefore α(X)=α (Y)(ß'(α(Y)-l) + 1) for some integer '゚ and it is odd. 
From now on, throughout this paper, we assume that n is odd. 

3. The case 制1 contains a regular normal subgroup 

1. Since @1 contains a regular normal subgroup, i equals to a power 
of an odd prime number, say pm. Let 況 be a normal subgroup of C':!j(') 
containing ~1 such that 況j~1 is a regular normal subgroup of @1 ・

Lemma 3.1. 1f dj2 is odd and ß=dj2 , then @ contains a regular 
normal subgroup. 

Proof Assume α(1)=1. By Lemma 2.6α(庇') is odd. Since ~ (K'Y = 
;J (K') , the unique symbol j in ;J σ) is contained in ;J(K'). 1， 1K'， … ， 1K'抑 2)

and 1K叫1) fix only the symbol j and an involution in c.:!j (1) which is con・

jugate to 1 under @ equals to 1 since h*(2)=dj2. Thus by [5] @ contains 

a regular normal subgroup. 

Lemma 3.2. (ゆn， I医KIり) i.β5αρμO叩er ~ザf.ιρρ

Pro~ザof王 Assume (n , IKI),* 1. Let r be a prime factor (,*p) of (n , IKI) 
and let X be an element of order r. Then X is not contained in ~1 by 
Lemma 2.5. Set Y = XτThen ;J (Y) is a proper subset of ~~ (,). If 3 ( Y) 
=~(X) ， then r is a factor of α(Y) since n一α(Y) is divisible by r. If 

α(Y)<α(X). Then ~j~I(<X>) is of even order. As in ~2 we have α (X) 

=α (Y)(α (Y)ß' -'゚ + 1) , where '゚ is a factor of d. Since α(Y) is odd by 
Lemma 2.6, so isα(X). By the inductive hypothesis @1(くX>) contains a 

regular normal subgroup and α(X) is a power of α(Y). Since n and n一α(X)

are divisible by r ,so isα(Y). Tnus r=p since iα(Y) is divisible by r , 
which is a contradiction. This completes the proof. 

Lemma 3.3. Let 可3 be a Sylow p-subgroup of 況 Then ~ is normal 

in ~. 

Proof Let ~υbe a Sylow r-subgroup ('* 1) of ~l> where r学p. Assume 

that C⑮ (~I ， r) does not contain 況 Since Aut ('~I ， r) is cyclic and every element 

(学 1) of 況j~1 is conjugate under N，争 (~I)j~l> i = I沢m11=p and i<r. Since 

くよ坑>j'~1 is dihedral, 1 is contained i出nC⑮ぷ(~宅l ， rふ.
.゚ On the other hand, by Lemma 2. 4 r is a factor of n-i =戸(i-1) and 

hence it is a factor of i -l. This is a contradiction. Thus C':!j (~I ， r) contains 
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呪 By the splitting theorem of Burnside lJ� has a normal r-complement and 

hence ~ is normal in 況 This completes the proof. 

2. The case IK21=2. By L后mma 3.1 we may assume that =゚d. Let 

0. be a Sylow 2-subεroup of CぷT') containing くT'， 1). It is also a Sylow 2-

subgroup of @. Since (0.f鐡 Sf!) (沢!Sf!) is a Frobenius group, 0Sf!/Sf! ~三 0/くT')
is cyclic or a (generalized) quaternion group. If 0/くT')孟 4 ， there exists an 

element S of 0 of order 4. Since all involutions are conjugate, we may 
assume SZ = T'・ Then S1 is contained in くT')， which is a contradiction. Thus 

0= くよ T'). By [7] and [13] @ contains a regular normal subgroup. 

From now on we may assume IKzl >2. 

3. The case <Kz , 1) is dihedral or semi-dihedral. Since d is divisible 
by 4, by Lemma 2. 1 a Sylow 2・subgroup of C'>l(T') is that of ゆ.

Lemma 3.4. 1f the order of αδ!ylow 2-subgroup Sf!,2 of Sf! is greater 
thαn two and くK2' 1) is dihedral 01' semi-dihedral, then it is a Sylow 2-
subgroup of @. 

Proof Let 0' be a Sylow 2-subgroup of C ,)j (5B) containing .f�2 and let 
o be a Sylりw2・subgroup of N"j(5B)=C"j(-r) containing 0' , where SS is a subｭ
group of 5f! of order 4. Since Aut (怒)=2 and N，>l(む) contains 1, [0: 0'] = 2 
and it may be assume that 0 = <0', 1). By Lemma 2.2 くJ，SS) is dihedral 

for every involution J( 手-r) in N,)j (む). Thus T' is the unique involution in 
0' and hence 0' is cyclic since 2(0') contains I.g. 0 is dihedral or semi同

dihedral and contained in N,)j (SfιBy Lemma 2.6 @! (札) contains a regular 
normal subgroup and !0/Sf2 is contained in a complement of a Frobenius 
group. Thus 0/Sf2 is cyclic or a (generalized) quaternion group and hence 
0=<Kz , 1). 

Lemma 3.5. Let Sf!,2 be as in Lemma 3. 4. 1f .5t:!,2 = < T')ωld くKz ， 1)

is dihedral 01' serni-dilzedral, then I K21 = 4 01' くKz， 1) is a Sylow 2-Subg1'Olφ 

of@. 

P1'oof Assume IK21 >4. Let 5B be a subgroup of 民 of order 4. Let 

0' be a Sylow 2・subgroup of C'>l (む) and let 0 be a Sylow 2・subgroup of 

N,"j (SS) containing 0'. As in the proof of Lemma 3.4, it may be assume 
that 0 = <0' ,1) . As in ~ 2 i -1 = (α(む )-1)(戸α(SS)+ 1). Since く1Kl>SS.f�!/Sf!) 
is dihedral of orderミ 4 ， by Lemma 2.1 '゚ is even. Thus 0 is a Sylow 2-
subgroup of C'>l (-r). As in the proof of Lemma 3.4, we have 0 = <Kz , 1) . 

Lemma 3.6. Let K 1,2 be as in Lernrna 3.5. 1f Kは=くT')ωzd <K2 , 1) 
is dihedral of o1'de1' 8, then the1'e exists no g1'oup. 

Proof Let.1 be an element of @! with the cyclie decomposition (1 , 2) … 
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which is conjugate to K 2Sf1 • Let J be a 2四element in J. Then (α (J， T)~2 
and hence !J!)2. On the other hand J is contained in 1Sf and every 2・

element (手 1) of 1Sf -sf is an involution. This is a contradiction. 

3-1. The case <K2 , 1) is dihedral. By [7] and [13] @ contains a regular 
normal subgroup. 

3-2. The case くK2 ， 1) is semi-dihedral. At f�st assume !K1.2! ~4. All 

involutions in 1.rtﾆ are conjugate. Since @ is doubly transitive on Q , all 
involutions in @ are conjugate. Since !K1.2! 孟 4 and (1K2)2 = T ， α (1K2) = 1 and 
1K2 is not conjugate to an element of Sfl.2' By [17] @ has a normal subｭ
group @' of index 2 and くKλ1) is a Sylow 2-subgroup of @'. @' is also 

doubly transitive. By [7] and [13] @' contains a regular normal subgroup 

and so is @. 

Next assume K1 ，2= くの A Sylow 2・subgroup of @1 is isomorphic to 

<K2 ， 1)/くの Since α(く1， T)) = 1 , @1 has two classes of involutions. By [6, 
Theorem 7.7.3] @1 has a normal subgroup @/ of index 2 , but no normal 
subgroup of index 4. @j' is doubly transitive on ~(T) and has also two 

classes of involutions since α(く1， T)) = 1 and !K22! 孟 4. Thus @' has a normal 

subgroup @/, of index 2, but no normal subgroup of index 4. @/' must be 
a normal subgroup of @1 of index 4, which is a contradiction. Thus there 
exists no group in this case. 

4. The case d/2 is odd. By Lemma 3.1 it may be assume that ß=d , 
that is, @ has one conjugate class of involutions. 

Lemma 3. 7. 1f Sf2 is not contained in Sfl> then d and d -1 are not 
divisible by p. 

Proof Since 氏周1 is even and α (<1， T))=1 , @1 has two conjugate classes 
of involutions. As in ~ 2 i 二 i'(ß'i'-ß'+1) ， where i'= α(K2) for some K2 in 
Sf2 ・ By Lemma 2. 1 and 2.3, '゚ = d/2. Thus d/2 -1 is divisible by p. This 
proves the lemma. 

4-1. The case !Sf! is not divisible by p. Let I.゚ be a Sylow p-subgroup 
of 況 Then it is an elementary abelian Sylow p-subgroup of @ and normal 
in C';I¥(T) by Lemma 3.3. Set !C@(弔)!=2l'U1iy. If y=1 , then くT) is normal 

in C場(事) and hence in N.-v, (弔). [@: N@(I.゚)] = (di-d十 1) (di + 1)三 -d+1

(mod p) , which contradicts the Sylow's theorem. Thus y 学1. Let IS be 
a Sylow 2・subgroup of C,-v, (I.゚) containing T ・ Then α(IS)孟 1 and hence α (1S)~i. 

Therefore IS is contained in Sf 1 ・ Thus y is odd. Let 1・ be a prime factor 

of (y , !Sf!(n-1)) and let ffi be a Sylow r-subgroup of C，-v，(弔). Since by Lemma 

3.2 (r, n)=1 ， α (R)~1 hence α (R) 孟 i. By the Frattini argument it may be 
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assume that N，~ (沢) contains , • Since α(沢) is odd by Lemma 2. 7 and 
~(沢)'=，'S (ffi) ， α(くffi，，))註1. Therefore ~(汎) is contained in 'S(T) and 沢 1S

a subgroup of ~1 ， which is a contradiction. Thus y is a factor of di -d + 1. 
At 五rst assume y does not equal to a power of p. Let r・ be a prime 

factor (*-ρ) of γand let 羽 be a Sylow r-subgroup of C，也(~). Since there 

exists a normal subgroup of C引事) of order 句， by [6, Theorem 6.2.2] and 
Lemma 3.2 it may be assume that C争(，) normalizes 切 Let Y be an element 

(手 1) of ID. Then α (Y)=O. Since N，~(くX)) is contained in C，唖(，) for every 
element X(手 1) of ~官2 by Lemma 2.3, [C,,(T): C争(，)nC争 (Y)] is a multiple of 

21-1d(i-1). Thus we have the following: 

d(i-1) ~γ-1 ミ;:2' ld(i-1). 

From this l = 1 and ~2 ニくの， which is a contradiction. 

Next assume y is a power of p. Let~' be a Sylow p-subgroup of 

C@ (~). Then~' is normal in C@ (~) and of order 句 Therefore ~' acts 

on ~'/~. Since, for every element X(学 1) of ~'， C，事 (X) is contained in 

C，~(，) by Lemma 2.3 and a theorem of Witt, C" ， (X)=C ぃ (X). By [6, Theorem 
5. :1.15] every element (*-1) of ~' induces a 負xed point free automorphism 

of ~'/弔 Therefore y -1 is divisible by d. Thus d =ρ(f 1)泊 +p(f 2)川+・・・+

Jう叫+1. Since d is even, so is f. Thus d is divisible by i 十 1 and d is not 

factor of i • 1 since d/2 is odd. This proves the following 

Lemma 3.8. 1f I~I is not divisible by p , then @ has a regular normal 
subgroup or there exists a prime factor of d which is Pゆne to i-l and 

d -1 is divisible by p. 

4-2. The case I~I is divisible by p , but (d,p)= 1. Let ~ a Sylow pｭ
subgroup of 況. Set ~'=~~1)' Put IC，~(~引 =21'U/IZ(~')1仏 where 2z,u/ = 
IC,5i , (~')/Z(~')n~ ]J I. If ν= 1, then くτ) is normal in c'ClI(~') and N，;<(~') is conｭ
tained in C((,). Therefore 弔， is a Sylow ρ-subgroup of @ and [@ : N，ClI(~')] 
=[@: C，明(，)] [Cヤ(，): N，ClI(~')]三 d+ 1 (modp) , which is a contradiction. Thus 
v 学1. As in the previous case, y is a factor of di -d + 1. Since N,Cj1 (~J 
contains C;I(~') and c'C¥I(T) does not contain C'.ll(~')， 'S (~1，) is not contained 

in S(,) by a theorem of Witt. As in ~2 ， α (Kp) =α (KpT) (ß'(αKp，)-l)+l). 

Since @j (~p) has a regular normal subgroup by inductive hypothesis and 

α (K1)，) is a power of p by Lemma 2.6 ， α (K1，l is a power ofρ. [N，ClI (~p): C~(弔1

=I~Iα (Kp)(α (Kl))-1)/2ut' IZ(~')1 γ. Thus y is a power p and d -1 is divisible 

by p. 

Let ~I/ be a Sylow ρ-subgroup of C~(~'). Since, for every element 
X(学 1) of ,Iff",C( (X) is contained in C'.ll(') by Lemma 2.3 and a theorem of 
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Witt, C!J" (X) is contained in Z(甲小 By [6, Theorem 5.3.15] every element 
(学 1) of ~' induces a 五xed point free automorphism of ~"jZ(~'). Therefore 
Y -1 is divisible by d. Thus d = 1り(f 幻明十1り(f-2)η'+ ・・・ +jう地+ 1 and Y=jう向.

Since [N，畠 (~]J):N占 (~ll)n C，，lj(')] is divisible by Y and 1 N，，lj(~]J)n C，，lj(，)1 is divisible 

by 1~ 1l 1α (Kp') , 1 N，>l(~)J)1 is divisible by I~ J! Iα (K))，)y. Thus d(i-1)+1= 

ß'(α (K])r) -l)+ l. Since dミ-; ß' , d = ゚' and i =α(Kp'). This implies that ~ll 
is contained in ~1' which is a contradiction. 

By Lemma 3.7, 3.8 and the case 4-2 we may assume that d*2 , ~1 
contains ~2 and there exists a prime factor of d which is prime to i -1. 

4-3. The case that d学 2 ， ~1 contains ~2 and there exists a prime factor 

of d which is prime to i -1. 

Lemma 3.9. A factor group of a Sylow 2・subgroup of C@(τ) by ~2 

is cyclic. 

Proof. Let!0 be a Sylow 2-subgroup of C，ぷ，) containing くよ K2>. Then 
� = !0~lj ~1 is cyclic or a (generalized) quaternion group since !0況j~1 is a 
Frobenius group. Assume that ( is a quaternion group. Let 争 be the 
stabilizer of ~(くよ K2> ). Let r be a prime factor of d w hich is prime to 

i-1 and let ~二 =<K'γ> be a Sylow r-subgroup of ~ぺ Since Aut (~'T) is 

cyclic, ~'r is not contained in ~1 ・Ifst'町t"， =~lr~d~1 iおs contained in 0 (C j; (ケτ)j~l)

then by the F ra瓜ttin凶1吐1 ar培gument it may be assumed t出ha抗t c no凹rrr立ma叫ali包ze白s ~主，.，

which is a contradiction. By [3] (IK' , lIK'r)st'1 is contained in O(Cむ (，)j札).

This implies that Kゾ札 is contained in O(C勺 (r)j~山 which is a contradiction. 

This proves the lemma. 

By this lemma !0j段2 is cyclic. Put !0j~2 = くA~2>. If!0 is abelian, it 
is of type (28 , 2'). If s 学 t ， then @ has a normal 2・complement by the splitting 

theorem of Burnside. If s = t , then @ has also a solvable normal subgroup 
by [2, Theorem 1, p. 317]. 
Next assume that !0 is non-abelia孔 Put l !0j公21=2". Let α主 (S) and 

α'~， (S) be the numbers of 2'-cycles in the cycle decomposition of an element 

S of !0 contained in ~(，) and Q- ;;S(,), respectively. 

Lemma 3.10. An element B of!0 is contained in A くN， K2> if ωzd 

only 1f a'2 ,, (B) = (i-1)j28 and α'~ ， ,(B)=di(i-1)j2" c[. B2'= , and IBI=28 1;;;;2l. 
Proof Since n-i=di(i-1) is divisible by 21, i-1 is divisible by 21-1 

and 2' 孟 21 1 Since Aut (札) is isomorphic to Z2;: Z2'.." if 1> 4 or 1 = 4 , then 
B 21 - , or B2 is contained in Z(!0) , respectively. The Burnside's argument 
implies that the unique involution in くB> is conjugate under N,,lj(!0). On the 
other hand, since [!0,!0] is contained in ~2 ・く，> is a characteristic subgroup 
of !0. Therefore 写=， and IBI ミ2ε1α';， (B)手 o if and only if IBI = 2' . 
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Since n -i is divisible by 28 ト 1 exactly, IBI=2811. Since a'I(I)=l and α'2(1) 
=(i-1)f2, a'2,(B)=(i-1)f28 • This completes the proof. 

Let eJ* be the focal subgroup of eJ in @. Let C be an element of eJ 

which is conjugate unger @ to an element B of A くA2 ， K2>. From Lemma 

3.8 C is contained in A くA2 ， K2> and BC-1 is contained in くA2， K2>. By [6, 
Theorem 7.3.1] @ has a normal subgroup @' of index 2 and eJ' =くA2， K2> 

is a Sylow 2-subgroup of @'. 

Lemma 3.11. くA2， K2> is abelian. 

Proof If IK21 =4 , then the lemma is trivial. Put I=A2'-'X , where 
X is an element of ~2 ・ Since A2" is contained in Z(eJ), A 2'X2= ,X 2= 1. 

Thus X is of order 4 and X is commutative with A 2 • Therefore 1 is an 

element of Z(eJ'). If <A 2, K2> is non-abelian, then 1=, as in the proof of 
Lemma 3.10. Thus くA2， K2> is abelian. 

As in the case that eJ is abelian, @' contains a solvable normal subgroup 
and so is @. Therefore @ contains a regular normal subgroup. 

4. The case &1 does not contain a regular normal subgroup 

1. Since @1 does not contain a regular normal subgroup, by inductive 
hypothesis ~f庇1 is of odd order. By [1] @1 contains a normal subgroup @1' 

which (as a permutation group) is isomorphic to one of the simple groups 

PSL (2, q), Sz (q) and PSU (3, q2), where q=2国孟 4. Here PSL (2, q) is the 2-
dimensional projective speciallinear group over GF (q), the 五eld of q elements; 

Sz (q) is the Suzuki group over GF (q), here m is odd; PSU (3, q2) is the 3-
dimensional projective special unitary group over GF (q2). If @/ is isomorｭ
phic to PSL(2, q), Sz(q) or PSU(3, q2), then i equals to q+1 , q2+1 or q3 十 1 ，

respectively. 

Lemma 4. 1. N.耳慣1)=C，窃 (~1) and ~'n~1 =く，>.

Proof Let ~1". be a Sylow r-subgroup of ~1 ・ Then N@(~I ，r)=ら(τ)
by Lemma 2.4 and a theorem of Witt. The center of a Sylow 2-subgroup 

of @/ is elementary abelian of order q and its all involutions are conjugate 

under ~f~l. Since Aut (~1".) is cyclic, C，⑨ (~I ， r) contains a Sylow 2・subgroup
of C@(,). Since @/ is simple, it is a subgroup of C@(~I ， r)f~l. Since ~ is 

cyclic, c.}l (~I ，r)f~1 equals to @1 ・ From this N占 (~1 ，...)= C,}l (~1 ，..) and く~1 ， n1>
is abelian. This completes the proof. 

By this lemma d=2(q-1). 

Lemma 4. 2. O(~') hω a normal complement U in や.

Proof Let~..' be a Sylow r-subgroup of ~'. Then it is also Sylow 
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r-subgroup of @. By Lemma 2. 3 3' (~r') is contained in 3' (,) and hence 
3'(札')={1， 2}. By the theorem of Witt N@(~r')= くよ ~r'). Thus N争(況~札町モ孔~r'

=c争ぷ(.~庇氏~r')

Lemma 4.3. C骨(，) has a normal Sylow 2・subgroψ.

Proof Let 91 be a normal subgroup of C@(r) containing ~1 such that 

況/~1=@1'. Since (C!I1(，)n争)/~1 has a normal Sylow 2・subgroup， by Lemma 

4.1 and the splitting theorem of Burnside, C争(，)n -P has a normal Sylow 2-

subgroup. This proves the lemma. 

2. The case @t' is isomorphic to PSL (2, q). In this case @t' =@1 since 
~/~1 contains an element with (i-2)ーcycle in its cycle decomposition. By 

Lemma 4.1 ~l is contained in Z(C@(,)). By [15] C，場(,) is isomorphic to 
~1 x PSL(2, q). Therefore a Sylow 2・subgroup of C,M(') contained in 争 IS

isomorphic to ~2 X~ ， where ~ is isomorphic to a Sylow 2・subgroup of 

PSL (2, q) which is elementary abelian of order q. 
Assume ß=d, that is , @ has one class of involutions. Then ~2 x ~ is 

a Sylow 2・subgroup of @. Since it is abelian, by Burnside argument all 
involutions in ~2)( ~ are conjugate under Nム (~1 >( ~). Thus [N占 (~l x~): 
CilI (')nNIll (~l x ~)]=2q- 1. Since α(庇1X ~)= 1, N@(~l)( ~)=N争 (~1 X~) and 
by Lemma 4. 3 [.M争 (~1 X ~) : C争(，)] = 2q -1 and hence IN争 (~l x ~)I = 
I~I (i-1)(2q-1). But [争 :N争 (~lx~)]=(2(q-1)i+1)j(2q-1) is not integer, 
which is a contradiction. 

Next assume ﾟ = d/2. Then n = q3 + 1. 

Lemma 4.4. ~2=<')' 

Proof Assume 1~21 >2. lJ1 (Z(~2 x ~))=く庇22) is a characterisic subgroup 

of ~2 X ~. Therefore く，) is normal in N占 (~2 X ~)， which is a contradiction. 

Let 定 be a Sylow 2-subgroup of 争 containing ~2 X ~. By Lemma 4.4 

~2 X ~ is elementary abelian. By Lemma 4.1, 4.2 and the splitting theorem 
of Burnside 定 is normal in 争 Since h*(2)=q-1 and O(~') acts 五xed­

point-freely on Z(定)， it is elementary abelian of order q. If τZ(定) is a 

normal subset of ~， qミ[定 :C~(，)]=2q3j2q since the number of involutions in 

，Z(定) which are cojugate to , equals to q , which is a contradiction. Thus 
定jZ(定) is non-abelian. Let Z2(定) is a normal subgroup of 定 containing Z(定)

such that Z2(定)=Z(定jZ(定)). Since O(~') is considered as a group of 五xed

point free automorphisms of Z(定/Z(定))， Z2(定)";;;;;， q2.

Lemma 4. 5. ~jZ2(定) is elementary abelian. 

Proof If ~jZ2(定) contains an element of order 4, then I定jZ2(定) I 孟 2(q-1)

+ (q-1) + 1> 2q by [6, Theorem 5.3.15], which is a contradiction. This 
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proves the lemma. 

If l定/Z2(定)1 =2 , then 定 =<T)怒， where m=Z2(定). If 1 定/Z2(定)1 >2 , then 
there exists a subgroup m of 芝 containing Z2(定) such that 定=くT)m. Since 

every involution in .p which is conjugate to T is already conjugate under m. 
Thus the focal subgroup of 定 is contained in m. By [6, Theorem 7.3. 1] 
@ has a normal subgroup @' of index 2. @' is doubly transitive on Q. By 

[1] @' contains a normal subgroup @" which is isomorphic to PSU (3, q2). 
T induces an automorphism 可 of order 2. Since ηis not an inner automor司

phism, by [15] it may be assumed that 万= AB, where A. is the automorphism 
of GF (q2) of order 2 and B is an inner automorphism induced by an element 
of N@ ， (O(公)). But such automorphism does not 五x every element of 0 (庇). 

Since st' is abelian, this is a contradiction. 

3. The case @/ is isomorphic to Sz(q). Let 沢 be as in the proof of 

Lemma 4.3. As in the above case，況 is isomorphic to St'l x Sz(q). Let St'2 x ~ 

be a Sylow 2・subgroup of 91 contained in 争 Here ~ is isomorphic to a 

Sylow 2・subgroup of Sz(q) and Z(~) is elementary abelian of order q. 

Assume ゚ =d. Then St'2 x ~ is a Sylow 2・subgroup of @. The number 

of involutions of Z(St'2 ><~) equals to 2q-1. As in the above case, N争 (St'2 X ~) 

= 1St'I(i-1)(2q-1). But [わ :N争 (St'2x~)]=(2(q-1)i+1)/(2q-1) is not integer, 
which is a contradiction. 

Next assume =゚d/2. Since n-・1= q3(q2_q+ 1) 士ポ((q+W-3q) ， n-1 

is divisible by 3 exactly. Let 沢 be a Sylow 3・subgroup of わ containing St'3' 

Then St'3 is normal in 沢. By Lemma 4.2 and [6, Theorem 6.2.2] it may 
be assumed that N,M (沢) contains O(町). Since N，M(O(町))=くよ K) ， O(町) induces 

a 五xed point free group of automorphisms of 沢/St'3' which is a contradiction. 

4. The case @t' is isomorphic to PSU(3, q2). 

Lemma 4.6. For 仰の element X(手 1) of St', ~(X) is contained in ~(T). 

Proof Let X be an element of st' not contained in St"St'2' If ,S(X) is 
not contained in S'(T), @l(くX)) satis五es (*) by Lemma 2.4. Since α (XT) = 

q+1 , as in ~2α(X)=(q+1)(ß'q+1) ， where '゚=d or d/2. Since @l(<X)) 
contains a regular normal subgroup by inductive hypothesis ， α (X) equals to 

a power of a prime number r. If '゚ = q -1 , then α(X)=q3+ 1. Therefore 
q3+1=9 and q=2 , which is a contradiction. If ß=2(q-1) , then (q+1 , 
2q(q-1)+ 1)=5. Therefore 

r=5; q+1=5; α(X)=53 ; i=65; n=65 ・ 5 ・ 77

By a theorem of Witt 11、~.!l(<X))1= IKI53(53-1). Since n is not divisible by 

53, [@:]\弘 (<X))] is not an integer, which is a contradiction. Thus ,S(X) is 
contained in ~ (T). By Lemma 2.3 and 2.4 S' (Y) is contained in st' (T) for 
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every element Y( * 1) of ~官2 ・ This completes the proof. 

By this lemma n-i is divisible by I~I. 

Lemma 4. 7. O(~) has normal complement 定 zn や.

Proof By Lemma 4.2 0 (庇') has a normal complement U in ~. Since 
((q3+1)(q-1), n-1)=1 , ~，. is a Sylow r-subgroup, where r学 2. If ~r is 
a subgroup of ~j ， then N，争(札)=c争(札) by Lemma 4. 1. If r is a factor of 
q+1, then 11ら (~r)1 = I~I q by Lemma 4.6 and a theorem of Witt. Since a 
Sylow 2・subgroup of ~争 (~r)f~j (氏) is elementary abelian, By Lemma 2. 2 
C争 (~r)=N骨 (~r)' By the splitting theorem of Burnside 争 has a normal rｭ
complement. This proves the lemma. 

Let ~(q) be a subgroup of order (q2-1)fe , where e=(q+1,3). For every 
prime factor of 1 定 1 ， there exists a Sylow r-subgroup 弔r such that N，争(可3r )

contains ~(q) by [6, Theorem 6.2.2]. If r手 2， then ~(q) is a group of 五xed

point free automorphisms of ~r since (IC争(7")1, 1定 1) is a power of two. Thus 

!日仏 1-1 is divisible by (q2-1)fe. 
Assume ゚ =df2. Then n_1=q4(q3_q2+1). Since q手 2 ， q3_q2+ 1 does 

not equal to a power of a prime number. Therefore there exist at least two 

Sylow subgroups 事行 and 弔r， with rj*η. Thus 

|仇 11吹|孟 (2(q2-1)fe+1) (4(q2ー仰+1)
> q(q2+ 1)>q3_q2+ 1. 

This is a contradiction. 

Next assume =゚d. Then n-1=q3(2q4_2q3+2q-1). ~2 is of order 4 

since @ has one class of involutions, the exponent of a Sylow 乙subgroup of 

PSU (3, q2) equals to 4 and くK2'1) is abelian. 

Assume 2q4_2q3+2q-1=r'" for a prime number r. Since r"'-1 does 

not divisible by 4, INl; (~r) 1 = 2q3 or 4q3. r= 2qx-1 for some integer x. 
4-1. The case [定 :Nl;(司3r)] =2q3三 1 (mod r). Since 2q4_2q3+2q-1= 

(2q3_1)(q-1)+3q-2 , (3q-2, 2q3_1) divisible by r and r手 3. Thus r=l1 

and q=2 , which is a contradiction. 
4-2. The case [定 :Nt (司3r)] =4q3三 1 (mod r). Since 2r"'=(4q3_1)(q-1) 

+5q-3 , r is a factor of (4q3_1, 5q-3). Thus r=17 and q=l , which is 
a contradiction. 

Thus n -1 is divisible by di宜erent two prime numbers rj and r2 ・ n-1

= q3rj叫rt"t， where rj'" < r2"" and t is relatively prime to rj and r2 ・ If

rj"'-1 孟4(q2_1)f3 or r2""-1孟 10(q2_1)f3 ， then rj"'rt">2q4_2q3+2q-1. 

Therefore rt'-1=2(q2_1)f3 and r2""-1=4(q2_1)f3, 8(q2_1)f3 or 2(q2_1). 
Since r j"'rì'*2q4_2q3+2q-1 , t*1 and put t=r3"'''t' , where (t' , r3)=1 and 
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r3 is prime. rt'" -1> 4(qZ-1). Thus rz'm'rt'''>2q4_2q3 十 2q-1. This is 

a contradiction. 

Thus Theorem is proved. 
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