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SUCH THAT THE STABILIZER OF
TWO SYMBOLS IS CYCLIC

By
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1. Introduction

Let 2 be the set of symbols 1,2,---,#. In this paper we shall consider
the following situation.
(*) A group O is doubly transitive on  and the stabilizer & of the symbols
1 and 2 is a cyclic group of even order.
The purpose of this paper is to prove the following theorem.

Theorem. Let & satisfy (*). If n is odd, then & contains a regular
normal subgroup.

Remark. This theorem was proved by N. Ito and the author ([9], [11]
and [12]) in the case & is a 2-group or of order 2p, where p is prime. Thus
we shall consider the case that |®|=2'u, where « is odd and if [=1,u is
not prime.

We shall prove the theorem by induction on the degree .

Our notation is standard.

{--+>: the subgroup generated by---

N;(%X), Cy(¥X): the normalizer and the centralizer of a subset ¥ in a group
9), respectively

Z(%): the center of 9

0(9) : the largest normal subgroup of ¥) of odd order

D], |Y]: the order of ¥} and an element Y of ¥), respectively

J(): the set of symbols of A fixed by a subset 11 of a permutation group
on A

a(ll) : the number of symbols in $(11)

U'(F): the subgroup of a p-group P generated by the elements x” with x
in P

2. On the order of ®

1. Let  be the stabilizer of the symbol 1. & is generated by an element
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K and |K|=2'«, where u is odd. Let us denote the unique involution K¥™
by z and a Sylow r-subgroup of & by ®,. £, is generated by an element
K,. Let I be an involution with the cycle structure (1, 2)---. Then [ is con-
tained in Ng(&) and we have the following decomposition of &:

G=9+9I19.

Let & =<{K’) be the subgroup of ® consisting of elements inverted by 7. Set

d=|R'|. Let ¢g(2) and 2(2) denote the numbers of involutions in & and 9,
respectively. Then the following equality is obtained:

(2.1) g(2) = h(2)+d(n—1).

(See [9] or [10]).

Let = fix 7 (i=2) symbols of 2, say 1,2,---,7. By a theorem of Witt
[16, Th. 9.4] Cg(r) acts doubly transitively on J(r). Let &,=<(K,> be the
kernel of this permutation representation of Cg(r). Put &, =Cg(z)/®; and
|8 =2%u,, where u, is odd. Then |®&,|=:i(i—1)2""ulu,, Cgxlt)=2ui(i—1)
and C,(r)=2"u(i—1). ‘

At first, let us assume that n is odd. Let A*(2) be the number of
involutions in § which fix only the symbol 1. Then from (2.1) the following
equality is obtained:

(2.2) h*2Qn+nn—1)]i(i—1)

=h*2)+(n—1)/i—1)+d(n—1).
It follows from (2.2) that d>h*(2) and n=i{(fi—p+1), where f=d—n*(2).

Next let us assume that n is even. Let ¢*(2) be the number of involu-
tions in & which fix no symbol of 2. Then the following equality is
obtained :

(2.3) g*2)+nn—1)/iti—1)=n—1)/E—1)+d(n—1).

Since ® is doubly transitive on 2, ¢*(2) is a multiple of n—1. It follows
from (2.3) that d(n—1)>¢*(2) and n=¢{(fi—p+1), where f=d—g*(2)/(n—1).

2. We shall prove some lemmas.

Lemma 2.1. Let & satisfiy (*). Then B=d or d|2. If B=d|2, then
® has just two conjugate classes of involutions. Moreover B equals to the
number of involutions on & with the cycle structures (1,2)--- which are con-

Jjugate to t.
Proof. See [12, Remark 1].
Lemma 2.2. Let J be an involution in Ng(8,) satisfying the condition
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a({J,K,Y)=1. Let & be the stabilizer of two symbols a and b in J(R,) such
that a’=b and let d' be the number of elements in ~ inverted by J. Then
d=d'

Proof. As in the above n=i(f'i—f +1). Since p'=d or d'/2 by
Lemma 2.1, d=d'.

Lemma 2.3. If (K, I) is dihedral, where r+2, then J(X) is contained
in J(R,) for every element X(#1) or R,.

Proof. Assume J(8,) does not contain J(X). Then there exists an
element Y of ®, with the cycle structure (a, b)---, where a and & are symbols
in J(X). Let J be an involution with the cycle structure (a, b)---. Then
J is contained in Ng(R,), (YJ, X) is conjugate to a subgroup of & and hence
it is cyclic. Since (X, Y) is abelian, so is {J, X), which contradicts Lemma
2. 2.

Lemma 2.4. If X is an element (#1) of &,, then J(X)=J(z).

Proof. Assume J(X) is greater than ((z). By a theorem of Witt
Ng({X)) acts doubly transitively on J(X). As in the above [N (X))|=
|IK|i(fi—p +1)i—1)(fi+1) and a(X)=i(f'i—p +1), where f'=d or d/2 by
Lemma 2.1. If f=p', then a(X)=n and X=1. Thus p'=d/2 and f=d by
Lemma 2.1. Since |8|/|Ny((XD))|=(di—d+1)(di+1)/(di]2—d[2+1)(di]2+1)
is an integer, di/2+1 is a factor of di+1=2(di/2+1)—1, which is a con-
tradiction.

By this lemma every cycle in the cycle decomposition of £, not contained

in J(z) is |&]-cycle.

Lemma 2.5. If (n,|K,|)#1, then it is a factor of i.

Proof. Let r be a factor of (n, |K)]) and let X be an element of &, of
order . By Lemma 2.4 n—{ is divisible by r and hence r is a factor of 7.

Let X(#1) be a subgroup of &. By a theorem of Witt Ng(X) has a
doubly transitive permutation representation on (X). Let ,(X) and &,(%)
be the kernel and the image of this representation, respectively.

Lemma 2.6. Let X be a subgroup of & such thar J(X) is contained in
J(c). If @, is contains a regular normal subgroup, then &,(X) has a regular
normal subgroup and «(X) is a factor of i.

Proof. Let M be a normal subgroup of Cg(r) containing &, such that
N/K, be a regular normal subgroup of &,. It is clear that N (X) N is not
contained in . Thus (Ng4(X)qJt) K, (X)/K,(X) is normal in &;(X). Hence it
is a regular normal subgroup of &,;(¥). The second part of the lemma
follows from the equality a(¥X)=|(Ng(X)n%)&,(X)/8,(X)].
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Lemma 2.7. If n is odd and &, contains a regular normal subgroup,
then a(X) is odd for every element X(#1) of &.

Proof. By Lemma 2.6 we may assume that (X) is not contained in
J(z). Put Y=Xr. By the same lemma a(Y) is odd and &,({(X)) satisfies
(*). Therefore a(X)=a(Y)(f (a(Y)—1)+1) for some integer B’ and it is odd.

From now on, throughout this paper, we assume that n is odd.

3. The case 4, contains a regular normal subgroup

1. Since ®, contains a regular normal subgroup, i equals to a power
of an odd prime number, say p”. Let N be a normal subgroup of Cg(7)
containing &, such that N/K, is a regular normal subgroup of &,.

Lemma 3.1. If d/2 is odd and B=d|2, then & contains a regular
normal subgroup.

Proof. Assume a(l)=1. By Lemma 2.6 a(8&') is odd. Since J(K')'=
J(K), the unique symbol 7 in (1) is contained in (K'). I, IK',---, IK"¢?
and IK'®* Y fix only the symbol j and an involution in Cg(I) which is con-
jugate to I under & equals to I since h*(2)=d/2. Thus by [6] & contains
a regular normal subgroup.

Lemma 3.2. (n, |K|) is a power of p.

Proof. Assume (n, |K|)#1. Let r be a prime factor (#p) of (n, |K|)
and let X be an element of order ». Then X is not contained in &; by
Lemma 2.5. Set Y=Xr. Then J(Y) is a proper subset of (z). If J(Y)
=J(X), then r is a factor of a(Y) since n—a(Y) is divisible by r. If
a(Y)<a(X). Then R/8,((X)) is of even order. As in §2 we have a(X)
=a(Y)(a(Y)8'—pB +1), where 8’ is a factor of d. Since a(Y) is odd by
Lemma 2.6, so is a(X). By the inductive hypothesis &;((X)) contains a
regular normal subgroup and a(X) is a power of a(Y). Since n and n—a(X)
are divisible by 7,50 is a(Y). Tnus r=p since i—a(Y) is divisible by 7,
which is a contradiction. This completes the proof.

Lemma 3.3. Let B be a Sylow p-subgroup of N. Then B is normal
in N.

Proof. Let &, be a Sylow r-subgroup (#1) of &, where r#p. Assume
that Cyx (8, ,) does not contain %. Since Aut (f,,,) is cyclic and every element
(#1) of N/RK, is conjugate under Ny(R,)/R:, i=|N/R,|=p and i<r. Since
I, N[K, is dihedral, I is contained in Cg(®;,). Thus r is not a factor of
8. On the other hand, by Lemma 2.4 r is a factor of n—i=pi(i—1) and
hence it is a factor of i—1. This is a contradiction. Thus Cg(®,,) contains
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N. By the splitting theorem of Burnside M has a normal r-complement and
hence P is normal in N. This completes the proof.

2. The case |K,/=2. By Lemma 3.1 we may assume that f=d. Let
& be a Sylow 2-subgroup of Cg(r) containing <z, I). It is also a Sylow 2-
subgroup of &. Since (B&,/R)(N/K,) is a Frobenius group, S8/, =S/{()
is cyclic or a (generalized) quaternion group. If &/{(z) =4, there exists an
element S of & of order 4. Since all involutions are conjugate, we may
assume S?=z. Then SI is contained in {z), which is a contradiction. Thus
&=, ). By [7] and [13] & contains a regular normal subgroup.

From now on we may assume |K,|>2.

3. The case (K,,I> is dihedral or semi-dihedral. Since d is divisible
by 4, by Lemma 2.1 a Sylow 2-subgroup of Cy(zr) is that of &.

Lemma 3.4. If the order of a Sylow 2-subgroup 8., of R, is greater
than two and (K,,I) is dihedral or semi-dihedral, then it is a Sylow 2-
subgroup of &.

Proof. let © be a Sylow 2-subgroup of Cg4(B) containing &, and let
& be a Sylow 2-subgroup of Ng(8)=Cy(r) containing &', where L is a sub-
group of &, of order 4. Since Aut (B)=2 and Ng(%B) contains I, [S:&']=2
and it may be assume that ©=(&’ I). By Lemma 2.2 {(J,8) is dihedral
for every involution J(#7) in Ng(¥L¥). Thus 7 is the unique involution in
@' and hence & is cyclic since Z(&') contains L. & is dihedral or semi-
dihedral and contained in Ngx(8,). By Lemma 2.6 &,(R,) contains a regular
normal subgroup and &/&, is contained in a complement of a Frobenius
group. Thus &/8&, is cyclic or a (generalized) quaternion group and hence

S =<K, I).

Lemma 3.5. Let 8, be as in Lemma 3. 4. If & ,={t) and {K,, )
is dihedral or semi-dihedral, then |K,|=4 or (K, I) is a Sylow 2-Subgroup
of §.

Proof. Assume |K,|>4. Let ¥ be a subgroup of &, of order 4. Let
@' be a Sylow 2-subgroup of Cgx(8) and let & be a Sylow 2-subgroup of
Ny (L) containing &'. As in the proof of Lemma 3.4, it may be assume
that @=<(&' I>. Asin§2:{—1=((B)—1)({fa(B)+1). Since IK,,BK,/K>
is dihedral of order=4, by Lemma 2.1 8’ is even. Thus & is a Sylow 2-
subgroup of Cg(r). As in the proof of Lemma 3.4, we have &=(K,, I).

Lemma 3.6. Let K,, be as in Lemma 3.5. If K,,={z) and {K,, I,
is dihedral of order 8, then there exists no group.

Proof. Let J be an element of &, with the cyclie decomposition (1, 2)---
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which is conjugate to K,®,. Let J be a 2-element in . Then («(J,7)=2
and hence |J|)>2. On the other hand J is contained in I® and every 2-
element (#1) of IR—& is an involution. This is a contradiction.

3-1. The case {K,, I) is dihedral. By [7] and [13] & contains a regular
normal subgroup.

3-2. The case (K,, I) is semi-dihedral. At first assume |K,,|=4. All
involutions in I® are conjugate. Since ® is doubly transitive on 2, all
involutions in & are conjugate. Since |K,,|=4 and (IK,’=7, a(IK,)=1 and
IK, is not conjugate to an element of ®,,. By [17] ® has a normal sub-
group &' of index 2 and (K% I) is a Sylow 2-subgroup of &'. &' is also
doubly transitive. By [7] and [13] &’ contains a regular normal subgroup
and so is ®.

Next assume K,,=<(z). A Sylow Z2-subgroup of &, is isomorphic to
(K, ID[{z>. Since a({l, ))=1, &, has two classes of involutions. By [6,
Theorem 7.7.3] ®, has a normal subgroup ®," of index 2, but no normal
subgroup of index 4. &, is doubly transitive on {(r) and has also two
classes of involutions since a({Z, z))=1 and |K;*|=4. Thus & has a normal
subgroup @, of index 2, but no normal subgroup of index 4. &, must be
a normal subgroup of &, of index 4, which is a contradiction. Thus there
exists no group in this case.

4. The case d/2 is odd. By Lemma 3.1 it may be assume that f=d,
that is, @ has one conjugate class of involutions.

Lemma 3.7. If 8, is not contained in R, then d and d—1 are not
divisible by p.

Proof. Since &/8, is even and a({I, t))=1, &, has two conjugate classes
of involutions. As in §2 ;=7 (8'i'—pB +1), where i/=a(K,) for some K, in
8,. By Lemma 2.1 and 2.3, §/=d/2. Thus d/2—1 is divisible by p. This
proves the lemma.

4-1. The case |&| is not divisible by p. Let P be a Sylow p-subgroup
of M. Then it is an elementary abelian Sylow p-subgroup of & and normal
in Cy(r) by Lemma 3.3. Set |Cg(¥P)|=2uiy. If y=1, then {z) is normal
in Cg(*P) and hence in N(P). [G:NgPB))=di—d+1) {di+l)=—-d+1
(mod p), which contradicts the Sylow’s theorem. Thus y=#1. Let & be
a Sylow 2-subgroup of Cg () containing z. Then a(&)=1 and hence «(&)=:.
Therefore & is contained in £;,. Thus y is odd. Let r be a prime factor
of (y, |R](n—1)) and let R be a Sylow r-subgroup of Cyx(*). Since by Lemma
3.2 (nn)=1, a(R)=1 hence a(R)=i{. By the Frattini argument it may be
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assume that Ngx(R) contains r. Since a(R) is odd by Lemma 2.7 and
IR =FR), a({R, =X)=1. Therefore JF(R) is contained in F(r) and R is
a subgroup of &;, which is a contradiction. Thus y is a factor of di—d+1.

At first assume y does not equal to a power of p. Let r be a prime
factor (#£p) of y and let 9 be a Sylow r-subgroup of Cg(¥). Since there
exists a normal subgroup of Cg(%}) of order iy, by [6, Theorem 6.2.2] and
Lemma 3.2 it may be assume that Cgy(r) normalizes ¥). Let Y be an element
(#1) of 9. Then a(Y)=0. Since Ny ((X)) is contained in Cg(r) for every
element X(#1) of &R, by Lemma 2.3, [Cs(7): Cs(z)nCs(Y)] is a multiple of
2'7'd(i—1). Thus we have the following:

di—1)=y—1=2 'di—1).

From this /=1 and &,={z), which is a contradiction.

Next assume y is a power of p. Let ¥ be a Sylow p-subgroup of
Cg(P). Then ¥ is normal in Cgx(P) and of order 7y. Therefore & acts
on P'/B. Since, for every element X(#1) of &, Cyx(X) is contained in
Cg(z) by Lemma 2.3 and a theorem of Witt, C,.(X)=C,(X). By [6, Theorem
5.3.15] every element (#1) of & induces a fixed point free automorphism
of P'/B. Therefore y—1 is divisible by d. Thus d=p"7 D" 4+p" 74 ...+
p"+1. Since d is even, so is f. Thus d is divisible by i+1 and d is not
factor of i—1 since d/2 is odd. This proves the following :

Lemma 3.8. If |R| is not divisible by p, then & has a regular normal
subgroup or there exists a prime factor of d which is prime to i—1 and
d—1 is divisible by p.

4-2. The case || is divisible by p, but (d, p)=1. Let P a Sylow p-
subgroup of M. Set P'=PK,. Put |Cx(P)|=2"u|Z(P)|y, where 2hu,’=
|C. (BN Z(B')nR,|. If y=1, then {z) is normal in Cgx(P') and Ny (P’ is con-
tained in Cg(r). Therefore P’ is a Sylow p-subgroup of & and [G : Ny(R)]
=[®: Cy(r)][Cx(7) : Ng(P)]= —d+1 (mod p), which is a contradiction. Thus
y#1. As in the previous case, y is a factor of di—d+1. Since Ngx(8R,)
contains Cy(¥’) and Cg(r) does not contain Cg(P'), JF(&,) is not contained
in J(r) by a theorem of Witt. As in §2, a(K,)=a(K,7)(f (aK,r)—1)+1).
Since &,(f,) has a regular normal subgroup by inductive hypothesis and
a(K,7) is a power of p by Lemma 2.6, a(K,) is a power of p. [Ng(8,): Cx(P)]
= |8 a(K,)(a(K,)—1)/2u,"|Z(P)]y. Thus y is a power p and d—1 is divisible
by p. :
Let P” be a Sylow p-subgroup of Cgx(¥). Since, for every element
X(#1) of & ,Cy(X) is contained in Cg(r) by Lemma 2.3 and a theorem of
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Witt, Cy..(X) is contained in Z(%§¥). By [6, Theorem 5.3.15] every element
(#1) of & induces a fixed point free automorphism of B"/Z(P’). Therefore
y—1 is divisible by d. Thus d=p" V"+p" "+ ...4p"+1 and y=p™.
Since [Ng(8,): Ng(®,)nCg(7)] is divisible by y and |Ng(®,)1Cs(z)| is divisible
by |®,|a(K,z), |Ng(R,) is divisible by |&,|a(K,r)y. Thus d(i—1)+1=
B(a(K,r)—1)+1. Since d=p', d=p and i=a(K,r). This implies that &,
is contained in &,, which is a contradiction.

By Lemma 3.7, 3.8 and the case 4-2 we may assume that d+2, &,
contains &, and there exists a prime factor of d which is prime to i—1.

4-3. The case that d#2, &, contains &, and there exists a prime factor
of d which is prime to —1.

Lemma 3.9. A factor group of a Sylow 2-subgroup of Cg(z) by R,
is cyclic.

Proof. Let & be a Sylow 2-subgroup of Cg(r) containing </, K,). Then
S=68,/R, is cyclic or a (generalized) quaternion group since SN/K, is a
Frobenius group. Assume that & is a quaternion group. Let & be the
stabilizer of ({I, K,>). Let r be a prime factor of d which is prime to
i—1 and let &,=(K’,> be a Sylow r-subgroup of &. Since Aut (&',) is
cyclic, &', is not contained in &,. If &, =8, R/8, is contained in 0(Cs(z)/R,),
then by the Frattini argument it may be assumed that ' normalizes &’,,
which is a contradiction. By [3] (IK', YUK')&, is contained in 0(Cj(7)/R)).
This implies that K’,’R, is contained in 0(C;(z)/R,), which is a contradiction.
This proves the lemma.

By this lemma &/, is cyclic. Put &/®,=<(A&,). I & is abelian, it
is of type (2°, 2¢). If s#¢, then @ has a normal 2-complement by the splitting
theorem of Burnside. If s=¢, then & has also a solvable normal subgroup
by [2, Theorem 1, p. 317].

Next assume that & is non-abelian. Put |S/f,|=2°. Let ay(S) and
a'#(S) be the numbers of 2%-cycles in the cycle decomposition of an element
S of © contained in J(z) and 2—(z), respectively.

Lemma 3.10. An element B of © is contained in A(A% K,y if and
only if o »(B)=(i—1)/2° and o'y (B)=di(i —1)/2*"'. B’ =t and |B|=2""'=2"
Proof. Since n—i=di(i—1) is divisible by 2¢, i—1 is divisible by 27!
and 2°>2" ' Since Aut (R,) is isomorphic to Z,:< Zy -, if >4 or [=4, then
B or B? is contained in Z(&), respectively. The Burnside’s argument
implies that the unique involution in {(B) is conjugate under Ng(&). On the

other hand, since [&, &] is contained in &,. {z) is a characteristic subgroup
of &. Therefore y=¢ and |B|=2°"'. a'#(B)#0 if and only if |B]=2".
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Since n—i is divisible by 2°*! exactly, |B|=2""'. Since o'(I)=1 and o',(I)
=(1—1)/2, a'y»(B)=({—1)/2*. This completes the proof.

Let ©* be the focal subgroup of & in &. Let C be an element of &
which is conjugate unger & to an element B of A{A?% K,»>. From Lemma
3.8 C is contained in A(A? K,y and BC! is contained in (A% K,). By [6,
Theorem 7.3.1] @ has a normal subgroup &’ of index 2 and &'=({(A% K,)
is a Sylow 2-subgroup of &'.

Lemma 3. 11. (A% K,) is abelian.

Proof. If |K,|=4, then the lemma is trivial. Put I=A* X, where
X is an element of ®,. Since A¥ ' is contained in Z(&), A¥X’=:X’=1.
Thus X is of order 4 and X is commutative with A%. Therefore I is an
element of Z(&'). If (A% K,) is non-abelian, then /=7 as in the proof of
Lemma 3.10. Thus (A% K,) is abelian.

As in the case that & is abelian, &' contains a solvable normal subgroup
and so is @. Therefore & contains a regular normal subgroup.

4. The case &, does not contain a regular normal subgroup

1. Since &, does not contain a regular normal subgroup, by inductive
hypothesis /8, is of odd order. By [1] &, contains a normal subgroup ®,’
which (as a permutation group) is isomorphic to one of the simple groups
PSL (2, g), Sz (g) and PSU (3, ¢*, where g=2"=4. Here PSL (2, ¢) is the 2-
dimensional projective special linear group over GF (g), the field of ¢ elements;
Sz (g) is the Suzuki group over GF (q), here m is odd; PSU (3, ¢% is the 3-
dimensional projective special unitary group over GF (¢%). If @&, is isomor-
phic to PSL (2, q), Sz (q) or PSU (3, ¢%, then ¢ equals to g+1, ¢*+1 or ¢*+1,
respectively.

Lemma 4.1. Ng(®)=C4(R) and & R,=<{z).

Proof. Let &,, be a Sylow r-subgroup of &,. Then Ng(R,,)=Cy(r)
by Lemma 2.4 and a theorem of Witt. The center of a Sylow 2-subgroup
of &, is elementary abelian of order ¢ and its all involutions are conjugate
under &/&,. Since Aut (8,,) is cyclic, Cx(R,,.) contains a Sylow 2-subgroup
of Cg(r). Since &, is simple, it is a subgroup of Cgx(®,,)/f®,. Since & is
cyclic, Cy(R,,)/8 equals to ®,. From this Ng(R,,)=Cx(R,,) and (R, ,, I
is abelian. This completes the proof.

By this lemma d=2(g—1).

Lemma 4.2. 0(&') has a normal complement 1 in 9.

Proof. Let &' be a Sylow r-subgroup of &. Then it is also Sylow
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r-subgroup of . By Lemma 2.3 J(R,’) is contained in (r) and hence
I(R,)={1,2}). By the theorem of Witt Ngx(R,)=<I, &,'>. Thus Ny(®)

=Cy(R,") and O has a r-complement. This proves the lemma.

Lemma 4.3. Cy(zr) has a normal Sylow 2-subgroup.

Proof. Let M be a normal subgroup of Cg(r) containing , such that
N/K,=G,. Since (Cy(r)nD)/R, has a normal Sylow 2-subgroup, by Lemma
4.1 and the splitting theorem of Burnside, Cy(c)n® has a normal Sylow 2-
subgroup. This proves the lemma.

2. The case &, is isomorphic to PSL (2, ¢). In this case &,'=@, since
R/, contains an element with ({—2)-cycle in its cycle decomposition. By
Lemma 4.1 R, is contained in Z(Cg(z)). By [15] Cg(r) is isomorphic to
R, xPSL(2, q). Therefore a Sylow 2-subgroup of Cg(r) contained in © is
isomorphic to &,x&, where & is isomorphic to a Sylow 2-subgroup of
PSL (2, g) which is elementary abelian of order g¢.

Assume B=d, that is, ® has one class of involutions. Then &,x® is
a Sylow 2-subgroup of ®. Since it is abelian, by Burnside argument all
involutions in ®,% & are conjugate under Ng(&, «&). Thus [Ng(® <xS):
Cy(t)nNg (R, xS)]=2¢—1. Since a(®, xS)=1, Ng(R, xS)=Ny(R xS) and
by Lemma 4.3 [Ny(® x©&): Cy(r)]=2¢—1 and hence |[Ny(& x &)=
IR —1)(2¢g—1). But [D: N,(& xS)]=(2(¢g—1)i+1)/(2¢—1) is not integer,
which is a contradiction.

Next assume f=d/2. Then n=g¢*+1.

Lemma 4.4. &,=<{z).

Proof. Assume |R;]>2. U'(Z(8,x S))=<(&,%) is a characterisic subgroup
of 8 x&. Therefore (r) is normal in Ng(®,x &), which is a contradiction.

Let € be a Sylow 2-subgroup of $ containing &, %x©&. By Lemma 4.4
&, x & is elementary abelian. By Lemma 4.1, 4.2 and the splitting theorem
of Burnside £ is normal in . Since A*(2)=¢—1 and 0(R’) acts fixed-
point-freely on Z(%), it is elementary abelian of order ¢q. If 7Z(¥) is a
normal subset of &, ¢=[T : Cy(r)]=2¢%*2q since the number of involutions in
7Z(%) which are cojugate to r equals to g, which is a contradiction. Thus
T/Z(%) is non-abelian. Let Z,(¥) is a normal subgroup of ¥ containing Z(%)
such that Z,(¥)=Z(Z/Z(T)). Since 0(R’) is considered as a group of fixed
point free automorphisms of Z(Z/Z(T)), Z,(T)=q".

Lemma 4.5. Z/Z,(%) is elementary abelian.

Proof. Uf &|Z,(X) contains an element of order 4, then |¥/Z,(T)|=2(¢—1)
+(g—1)+1>2q9 by [6, Theorem 5.3.15], which is a contradiction. This
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proves the lemma.

If |2/Z,(3)]=2, then T={)B, where B=27Z,(F). If |T/Z,(T)|>2, then
there exists a subgroup ¥ of ¥ containing Z,(¥) such that T={r)>B. Since
every involution in § which is conjugate to r is already conjugate under 2.
Thus the focal subgroup of £ is contained in L. By [6, Theorem 7.3.1]
& has a normal subgroup ®' of index 2. ®’ is doubly transitive on 2. By
[1] & contains a normal subgroup &” which is isomorphic to PSU (3, ¢%.
7 induces an automorphism 7 of order 2. Since 7 is not an inner automor-
phism, by [15] it may be assumed that y=AB, where A is the automorphism
of GF (¢? of order 2 and B is an inner automorphism induced by an element
of Ng (0(R)). But such automorphism does not fix every element of 0(R).
Since & is abelian, this is a contradiction.

3. The case &, is isomorphic to Sz(g). Let N be as in the proof of
Lemma 4.3. As in the above case, ¢ is isomorphic to & x Sz(g). Let ,x&
be a Sylow 2-subgroup of 9N contained in . Here & is isomorphic to a
Sylow 2-subgroup of Sz(g) and Z(®) is elementary abelian of order g¢.

Assume B=d. Then 8,x& is a Sylow 2-subgroup of &. The number
of involutions of Z(R,x @) equals to 2¢—1. As in the above case, N; (&, x &)
=|®|E—1)(2¢—1). But[D: Ny(®, xS)]=(2(¢g—1)i+1)/(29—1) is not integer,
which is a contradiction.

Next assume B=d/2. Since n—1=¢*(¢*—q+1)=¢*(¢g+1*—3q), n—1
is divisible by 3 exactly. Let R be a Sylow 3-subgroup of £ containing ;.
Then R, is normal in R. By Lemma 4.2 and [6, Theorem 6.2.2] it may
be assumed that Ng(R) contains O(®'). Since Ng(0(R))= <, K>, 0(8’) induces
a fixed point free group of automorphisms of R/K,, which is a contradiction.

4. The case &, is isomorphic to PSU(3, ¢*.

Lemma 4.6. For every element X(#1) of &, J(X) is contained in J(z).

Proof. Let X be an element of & not contained in &'&,. If J(X) is
not contained in J(z), &,((X)) satisfies (*) by Lemma 2.4. Since a(Xr)=
g+1, as in §2 a(X)=(q+1)(f'q+1), where f'=d or d/2. Since (X))
contains a regular normal subgroup by inductive hypothesis, a(X) equals to
a power of a prime number . If f/=¢g—1, then a(X)=¢’+1. Therefore
¢’+1=9 and ¢=2, which is a contradiction. If f=2(¢g—1), then (¢g+1,
29(@q—1)+1)=5. Therefore

r=5; g+1=5; a(X)=5%;, i=65; n=65-5-77
By a theorem of Witt |Ngy((X))|=|K|5°(5°—1). Since n is not divisible by
5% [ : Ny({X))] is not an integer, which is a contradiction. Thus J(X) is
contained in (r). By Lemma 2.3 and 2.4 J(Y) is contained in (r) for
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every element Y(#1) of & &,. This completes the proof.
By this lemma n—z is divisible by |®].

Lemma 4.7. O(8) has normal complement I in 9.

Proof. By Lemma 4.2 0(&') has a normal complement 11 in . Since
(@P+1)(g—1), n—1)=1, R, is a Sylow r-subgroup, where r#2. If &, is
a subgroup of R, then Ny(f,)=C;(f,) by Lemma 4.1. If r is a factor of
g+1, then [Ny(R,)|=|R|¢g by Lemma 4.6 and a theorem of Witt. Since a
Sylow 2-subgroup of N;(&,)/R,(®,) is elementary abelian, By Lemma 2.2
Cy(8,)=Ny(8,). By the splitting theorem of Burnside $ has a normal 7-
complement. This proves the lemma.

Let &(g) be a subgroup of order (¢°—1)/e, where e=(q+1,3). For every
prime factor of |¥|, there exists a Sylow r-subgroup ¥, such that N,(%B,)
contains &(q) by [6, Theorem 6.2.2]. If r+2, then &(q) is a group of fixed
point free automorphisms of %, since (|Cy(7)], |€]) is a power of two. Thus
|B,]—1 is divisible by (¢*—1)/e.

Assume B=d/[2. Then n—1=q*(¢®—¢*+1). Since q#2, ¢*—¢*+1 does
not equal to a power of a prime number. Therefore there exist at least two
Sylow subgroups %, and B, with r,#7,. Thus

B, 18,12 (2(¢—1)/e+1) (4(g*—1)/e+1)
>q@+1)>¢*—¢*+1.

This is a contradiction.

Next assume B=d. Then n—1=¢*(2¢"—2¢°+29—1). & is of order 4
since @ has one class of involutions, the exponent of a Sylow 2-subgroup of
PSU (3, ¢?) equals to 4 and (K, I) is abelian.

Assume 2¢'—2¢*+2g—1=7r™ for a prime number r. Since 7”"—1 does
not divisible by 4, |N3(®,)|=2¢° or 4¢°*. r=2gx—1 for some integer x.

4-1. The case [T : N (P,)]=2¢°=1 (mod 7). Since 2¢'—2¢°+2¢—1=
(2¢°—1)(g—1)+39—2, (3¢g—2, 2¢°—1) divisible by r and r#3. Thus r=11
and ¢=2, which is a contradiction.

4-2. The case [T : N;(B,)]=4¢=1 (mod r). Since 2r"=(4¢*—1)(¢g—1)
+59—3, r is a factor of (4¢°—1, 5¢—3). Thus =17 and g=1, which is
a contradiction.

Thus n—1 is divisible by different two prime numbers 7, and r,. n—1
= ¢*r"r,"'t, where r"<r,” and ¢ is relatively prime to r, and r,. If
n"—1=24(¢*—1)/3 or ™' —1=10(¢*—1)/3, then r"r," >2¢'—2¢°+2¢q—1.
Therefore n™—1=2(¢*—1)/3 and ™" —1=4(¢*—1)/3, 8(¢°*—1)/3 or 2(¢*—1).
Since r™ry #2¢*—2¢*+2g—1, t+1 and put t=r""t', where (¢,7r;)=1 and
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rs is prime. 75" —1> 4(¢*—1). Thus r,'r""' >2¢'"—2¢°+2q—1. This is
a contradiction.
Thus Theorem is proved.
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