ON SOME DOUBLY TRANSITIVE GROUPS SUCH THAT THE STABILIZER OF TWO SYMBOLS IS CYCLIC

By

Hiroshi KIMURA

1. Introduction

Let Ω be the set of symbols $1, 2, \dots, n$. In this paper we shall consider the following situation.

(*) A group \mathfrak{G} is doubly transitive on Ω and the stabilizer \mathfrak{R} of the symbols 1 and 2 is a cyclic group of even order.

The purpose of this paper is to prove the following theorem.

Theorem. Let \mathfrak{G} satisfy (*). If n is odd, then \mathfrak{G} contains a regular normal subgroup.

Remark. This theorem was proved by N. Ito and the author ([9], [11] and [12]) in the case \Re is a 2-group or of order 2p, where p is prime. Thus we shall consider the case that $|\Re| = 2^l u$, where u is odd and if l = 1, u is not prime.

We shall prove the theorem by induction on the degree n.

Our notation is standard.

- $\langle \cdots \rangle$: the subgroup generated by...
- $N_{\mathfrak{F}}(\mathfrak{X}), \ C_{\mathfrak{P}}(\mathfrak{X})$: the normalizer and the centralizer of a subset \mathfrak{X} in a group $\mathfrak{Y},$ respectively
- $Z(\mathfrak{Y})$: the center of \mathfrak{Y}
- $O(\mathfrak{Y})$: the largest normal subgroup of \mathfrak{Y} of odd order
- $|\mathfrak{Y}|, |Y|$: the order of \mathfrak{Y} and an element Y of \mathfrak{Y} , respectively
- $\mathfrak{J}(\mathfrak{U})\colon$ the set of symbols of \varLambda fixed by a subset \mathfrak{U} of a permutation group on \varLambda
- $\alpha(\mathfrak{U})$: the number of symbols in $\mathfrak{F}\left(\mathfrak{U}\right)$
- $\sigma^{1}(\mathfrak{P})$: the subgroup of a *p*-group \mathfrak{P} generated by the elements x^{p} with x in \mathfrak{P}

2. On the order of ^(S)

1. Let \mathfrak{D} be the stabilizer of the symbol 1. \mathfrak{R} is generated by an element

K and $|K|=2^{l}u$, where u is odd. Let us denote the unique involution $K^{2^{l-1}}$ by τ and a Sylow r-subgroup of \Re by \Re_r . \Re_r is generated by an element K_r . Let I be an involution with the cycle structure $(1,2)\cdots$. Then I is contained in $N_{\mathfrak{G}}(\Re)$ and we have the following decomposition of \mathfrak{G} :

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H}\mathfrak{H}$$
.

Let $\Re' = \langle K' \rangle$ be the subgroup of \Re consisting of elements inverted by I. Set $d = |\Re'|$. Let g(2) and h(2) denote the numbers of involutions in \Im and \Im , respectively. Then the following equality is obtained:

(2.1)
$$g(2) = h(2) + d(n-1)$$
.

(See [9] or [10]).

Let τ fix i ($i \ge 2$) symbols of Ω , say $1, 2, \dots, i$. By a theorem of Witt [16, Th. 9.4] $C_{\mathfrak{G}}(\tau)$ acts doubly transitively on $\mathfrak{F}(\tau)$. Let $\mathfrak{R}_1 = \langle K_1 \rangle$ be the kernel of this permutation representation of $C_{\mathfrak{G}}(\tau)$. Put $\mathfrak{G}_1 = C_{\mathfrak{G}}(\tau)/\mathfrak{R}_1$ and $|\mathfrak{R}_1| = 2^{l_1}u_1$, where u_1 is odd. Then $|\mathfrak{G}_1| = i(i-1)2^{l-l_1}u/u_1$, $C_{\mathfrak{G}}(\tau) = 2^lui(i-1)$ and $C_{\mathfrak{D}}(\tau) = 2^lu(i-1)$.

At first, let us assume that n is odd. Let $h^*(2)$ be the number of involutions in \mathfrak{H} which fix only the symbol 1. Then from (2.1) the following equality is obtained:

(2. 2)
$$h^*(2)n + n(n-1)/i(i-1) = h^*(2) + (n-1)/(i-1) + d(n-1).$$

It follows from (2.2) that $d>h^*(2)$ and $n=i(\beta i-\beta+1)$, where $\beta=d-h^*(2)$.

Next let us assume that n is even. Let $g^*(2)$ be the number of involutions in \mathfrak{G} which fix no symbol of Ω . Then the following equality is obtained:

$$(2.3) g^*(2) + n(n-1)/i(i-1) = (n-1)/(i-1) + d(n-1).$$

Since \mathfrak{G} is doubly transitive on Ω , $g^*(2)$ is a multiple of n-1. It follows from (2.3) that $d(n-1) > g^*(2)$ and $n = i(\beta i - \beta + 1)$, where $\beta = d - g^*(2)/(n-1)$.

2. We shall prove some lemmas.

Lemma 2.1. Let \mathfrak{G} satisfy (*). Then $\beta = d$ or d/2. If $\beta = d/2$, then \mathfrak{G} has just two conjugate classes of involutions. Moreover β equals to the number of involutions on \mathfrak{G} with the cycle structures $(1,2)\cdots$ which are conjugate to τ .

Proof. See [12, Remark 1].

Lemma 2.2. Let J be an involution in $N_{\mathfrak{G}}(\mathfrak{R}_r)$ satisfying the condition

 $\alpha(\langle J, K_r \rangle) = 1$. Let $\tilde{\Re}$ be the stabilizer of two symbols a and b in $\Re(\Re_r)$ such that $\alpha^{J}=b$ and let d' be the number of elements in $\tilde{\gamma}$ inverted by J. Then d=d'.

Proof. As in the above $n=i(\beta'i-\beta'+1)$. Since $\beta'=d'$ or d'/2 by Lemma 2.1, d=d'.

Lemma 2.3. If $\langle K_r, I \rangle$ is dihedral, where $r \neq 2$, then $\mathfrak{F}(X)$ is contained in $\mathfrak{F}(\Re_2)$ for every element $X(\neq 1)$ or \Re_r .

Proof. Assume $\Re(\Re_2)$ does not contain $\Re(X)$. Then there exists an element Y of \Re_2 with the cycle structure $(a, b) \cdots$, where a and b are symbols in $\mathfrak{F}(X)$. Let J be an involution with the cycle structure $(a,b)\cdots$. Then J is contained in $N_{\mathfrak{A}}(\Re_r)$, $\langle YJ, X \rangle$ is conjugate to a subgroup of \Re and hence it is cyclic. Since $\langle X, Y \rangle$ is abelian, so is $\langle J, X \rangle$, which contradicts Lemma 2. 2.

Lemma 2.4. If X is an element $(\neq 1)$ of \Re_1 , then $\Re(X) = \Re(\tau)$.

Proof. Assume $\mathfrak{F}(X)$ is greater than $\mathfrak{F}(\tau)$. By a theorem of Witt $N_{\text{ss}}(\langle X \rangle)$ acts doubly transitively on $\mathfrak{F}(X)$. As in the above $|N_{\text{ss}}(\langle X \rangle)| =$ $|K|i(\beta'i-\beta'+1)(i-1)(\beta'i+1)$ and $\alpha(X)=i(\beta'i-\beta'+1)$, where $\beta'=d$ or d/2 by Lemma 2.1. If $\beta = \beta'$, then $\alpha(X) = n$ and X = 1. Thus $\beta' = d/2$ and $\beta = d$ by Lemma 2.1. Since $|\mathfrak{G}|/|N_{M}(\langle X \rangle)| = (di-d+1)(di+1)/(di/2-d/2+1)(di/2+1)$ is an integer, di/2+1 is a factor of di+1=2(di/2+1)-1, which is a contradiction.

By this lemma every cycle in the cycle decomposition of \Re_1 not contained in $\mathfrak{F}(\tau)$ is $|\Re_1|$ -cycle.

Lemma 2.5. If $(n, |K_1|) \neq 1$, then it is a factor of i.

Proof. Let r be a factor of $(n, |K_1|)$ and let X be an element of \Re_1 of order r. By Lemma 2.4 n-i is divisible by r and hence r is a factor of i.

Let $\mathfrak{X}(\neq 1)$ be a subgroup of \mathfrak{R} . By a theorem of Witt $N_{\mathfrak{B}}(\mathfrak{X})$ has a doubly transitive permutation representation on $\mathfrak{F}(\mathfrak{X})$. Let $\mathfrak{R}_1(\mathfrak{X})$ and $\mathfrak{G}_1(\mathfrak{X})$ be the kernel and the image of this representation, respectively.

Lemma 2.6. Let \mathfrak{X} be a subgroup of \mathfrak{R} such that $\mathfrak{I}(\mathfrak{X})$ is contained in $\mathfrak{F}(\tau)$. If \mathfrak{G}_1 is contains a regular normal subgroup, then $\mathfrak{G}_1(\mathfrak{X})$ has a regular normal subgroup and $\alpha(\mathfrak{X})$ is a factor of i.

Proof. Let \mathfrak{N} be a normal subgroup of $C_{\mathfrak{B}}(\tau)$ containing \mathfrak{R}_1 such that $\mathfrak{R}/\mathfrak{R}_1$ be a regular normal subgroup of \mathfrak{G}_1 . It is clear that $N_{\mathfrak{G}}(\mathfrak{X})_{\cap}\mathfrak{R}$ is not contained in \Re . Thus $(N_{\mathfrak{A}}(\mathfrak{X})_{\cap}\mathfrak{R})\mathfrak{R}_{1}(\mathfrak{X})/\mathfrak{R}_{1}(\mathfrak{X})$ is normal in $\mathfrak{G}_{1}(\mathfrak{X})$. Hence it is a regular normal subgroup of $\mathfrak{G}_1(\mathfrak{X})$. The second part of the lemma follows from the equality $\alpha(\mathfrak{X}) = |(N_{\mathfrak{B}}(\mathfrak{X}) \cap \mathfrak{N}) \Re_1(\mathfrak{X}) / \Re_1(\mathfrak{X})|$.

Lemma 2.7. If n is odd and \mathfrak{G}_1 contains a regular normal subgroup, then $\alpha(X)$ is odd for every element $X(\neq 1)$ of \Re .

Proof. By Lemma 2.6 we may assume that $\Im(X)$ is not contained in $\Im(\tau)$. Put $Y = X\tau$. By the same lemma $\alpha(Y)$ is odd and $\Im(X)$ satisfies (*). Therefore $\alpha(X) = \alpha(Y)(\beta'(\alpha(Y) - 1) + 1)$ for some integer β' and it is odd. From now on, throughout this paper, we assume that n is odd.

3. The case 151 contains a regular normal subgroup

1. Since \mathfrak{G}_1 contains a regular normal subgroup, i equals to a power of an odd prime number, say p^m . Let \mathfrak{N} be a normal subgroup of $C_{\mathfrak{G}}(\tau)$ containing \mathfrak{R}_1 such that $\mathfrak{N}/\mathfrak{R}_1$ is a regular normal subgroup of \mathfrak{G}_1 .

Lemma 3.1. If d/2 is odd and $\beta = d/2$, then \mathfrak{G} contains a regular normal subgroup.

Proof. Assume $\alpha(I)=1$. By Lemma 2.6 $\alpha(\Re')$ is odd. Since $\Im(K')^I=\Im(K')$, the unique symbol j in $\Im(I)$ is contained in $\Im(K')$. $I, IK', \cdots, IK'^{2(\beta-2)}$ and $IK'^{2(\beta-1)}$ fix only the symbol j and an involution in $C_{\Im}(I)$ which is conjugate to I under \Im equals to I since $h^*(2)=d/2$. Thus by [5] \Im contains a regular normal subgroup.

Lemma 3.2. (n, |K|) is a power of p.

Proof. Assume $(n, |K|) \neq 1$. Let r be a prime factor $(\neq p)$ of (n, |K|) and let X be an element of order r. Then X is not contained in \Re_1 by Lemma 2.5. Set $Y = X\tau$. Then $\Im(Y)$ is a proper subset of $\Im(\tau)$. If $\Im(Y) = \Im(X)$, then r is a factor of $\alpha(Y)$ since $n - \alpha(Y)$ is divisible by r. If $\alpha(Y) < \alpha(X)$. Then $\Re/\Re_1(\langle X \rangle)$ is of even order. As in §2 we have $\alpha(X) = \alpha(Y)(\alpha(Y)\beta' - \beta' + 1)$, where β' is a factor of d. Since $\alpha(Y)$ is odd by Lemma 2.6, so is $\alpha(X)$. By the inductive hypothesis $\Im_1(\langle X \rangle)$ contains a regular normal subgroup and $\alpha(X)$ is a power of $\alpha(Y)$. Since n and $n - \alpha(X)$ are divisible by r, so is $\alpha(Y)$. Thus r = p since $i - \alpha(Y)$ is divisible by r, which is a contradiction. This completes the proof.

Lemma 3.3. Let $\mathfrak P$ be a Sylow p-subgroup of $\mathfrak R$. Then $\mathfrak P$ is normal in $\mathfrak R$.

Proof. Let $\Re_{1,r}$ be a Sylow r-subgroup $(\neq 1)$ of \Re_1 , where $r \neq p$. Assume that $C_{\mathfrak{B}}(\Re_{1,r})$ does not contain \Re . Since Aut $(\Re_{1,r})$ is cyclic and every element $(\neq 1)$ of \Re/\Re_1 is conjugate under $N_{\mathfrak{F}}(\Re_1)/\Re_1$, $i=|\Re/\Re_1|=p$ and i < r. Since $\langle I, \Re \rangle/\Re_1$ is dihedral, I is contained in $C_{\mathfrak{B}}(\Re_{1,r})$. Thus r is not a factor of β . On the other hand, by Lemma 2.4 r is a factor of $n-i=\beta i(i-1)$ and hence it is a factor of i-1. This is a contradiction. Thus $C_{\mathfrak{B}}(\Re_{1,r})$ contains

- \mathfrak{R} . By the splitting theorem of Burnside \mathfrak{R} has a normal r-complement and hence \mathfrak{P} is normal in \mathfrak{N} . This completes the proof.
- 2. The case $|K_2|=2$. By Lemma 3.1 we may assume that $\beta=d$. Let \mathfrak{S} be a Sylow 2-subgroup of $C_{\mathfrak{S}}(\tau)$ containing $\langle \tau, I \rangle$. It is also a Sylow 2subgroup of \mathfrak{G} . Since $(\mathfrak{S}\mathfrak{R}_1/\mathfrak{R}_1)(\mathfrak{N}/\mathfrak{R}_1)$ is a Frobenius group, $\mathfrak{S}\mathfrak{R}_1/\mathfrak{R}_1 \cong \mathfrak{S}/\langle \tau \rangle$ is cyclic or a (generalized) quaternion group. If $\mathfrak{S}/\langle \tau \rangle \geq 4$, there exists an element S of \otimes of order 4. Since all involutions are conjugate, we may assume $S^2 = \tau$. Then SI is contained in $\langle \tau \rangle$, which is a contradiction. $\mathfrak{S} = \langle I, \tau \rangle$. By [7] and [13] \mathfrak{S} contains a regular normal subgroup.

From now on we may assume $|K_2| > 2$.

- 3. The case $\langle K_2, I \rangle$ is dihedral or semi-dihedral. Since d is divisible by 4, by Lemma 2.1 a Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ is that of \mathfrak{G} .
- **Lemma 3.4.** If the order of a Sylow 2-subgroup $\Re_{1,2}$ of \Re_1 is greater than two and $\langle K_2, I \rangle$ is dihedral or semi-dihedral, then it is a Sylow 2subgroup of \&.
- *Proof.* Let \mathfrak{S}' be a Sylow 2-subgroup of $C_{\mathfrak{S}}(\mathfrak{V})$ containing \mathfrak{R}_2 and let \mathfrak{S} be a Sylow 2-subgroup of $N_{\mathfrak{B}}(\mathfrak{V}) = C_{\mathfrak{V}}(\tau)$ containing \mathfrak{S}' , where \mathfrak{V} is a subgroup of \Re_1 of order 4. Since Aut $(\mathfrak{V})=2$ and $N_{\mathfrak{V}}(\mathfrak{V})$ contains $I, [\mathfrak{S}:\mathfrak{S}']=2$ and it may be assume that $\mathfrak{S} = \langle \mathfrak{S}', I \rangle$. By Lemma 2.2 $\langle J, \mathfrak{B} \rangle$ is dihedral for every involution $J(\neq \tau)$ in $N_{\mathfrak{B}}(\mathfrak{B})$. Thus τ is the unique involution in \mathfrak{S}' and hence \mathfrak{S}' is cyclic since $Z(\mathfrak{S}')$ contains \mathfrak{V} . \mathfrak{S} is dihedral or semidihedral and contained in $N_{\mathfrak{G}}(\Re_2)$. By Lemma 2.6 $\mathfrak{G}_1(\Re_2)$ contains a regular normal subgroup and $\mathfrak{S}/\mathfrak{R}_2$ is contained in a complement of a Frobenius group. Thus $\mathfrak{S}/\mathfrak{R}_2$ is cyclic or a (generalized) quaternion group and hence $\mathfrak{S} = \langle K_2, I \rangle$.
- **Lemma 3.5.** Let $\Re_{1,2}$ be as in Lemma 3.4. If $\Re_{1,2} = \langle \tau \rangle$ and $\langle K_2, I \rangle$ is dihedral or semi-dihedral, then $|K_2|=4$ or $\langle K_2, I \rangle$ is a Sylow 2-Subgroup of 3.
- Assume $|K_2| > 4$. Let $\mathfrak V$ be a subgroup of $\mathfrak R_2$ of order 4. Let \mathfrak{S}' be a Sylow 2-subgroup of $C_{\mathfrak{W}}(\mathfrak{V})$ and let \mathfrak{S} be a Sylow 2-subgroup of $N_{\mathfrak{B}}(\mathfrak{B})$ containing \mathfrak{S}' . As in the proof of Lemma 3.4, it may be assume that $\mathfrak{S} = \langle \mathfrak{S}', I \rangle$. As in § 2 $i-1 = (\alpha(\mathfrak{V})-1)(\beta'\alpha(\mathfrak{V})+1)$. Since $\langle IK_1, \mathfrak{V}\mathfrak{R}_1/\mathfrak{R}_1 \rangle$ is dihedral of order ≥ 4 , by Lemma 2.1 β' is even. Thus \mathfrak{S} is a Sylow 2subgroup of $C_{\mathfrak{G}}(\tau)$. As in the proof of Lemma 3.4, we have $\mathfrak{S} = \langle K_2, I \rangle$.
- **Lemma 3.6.** Let $K_{1,2}$ be as in Lemma 3.5. If $K_{1,2} = \langle \tau \rangle$ and $\langle K_2, I \rangle$ is dihedral of order 8, then there exists no group.
 - *Proof.* Let J be an element of \mathfrak{G}_1 with the cyclic decomposition $(1, 2) \cdots$

which is conjugate to $K_2\Re_1$. Let J be a 2-element in \bar{J} . Then $(\alpha(J,\tau)\geq 2$ and hence $|J| \geq 2$. On the other hand J is contained in $I\Re$ and every 2-element $(\neq 1)$ of $I\Re - \Re$ is an involution. This is a contradiction.

- 3-1. The case $\langle K_2, I \rangle$ is dihedral. By [7] and [13] \mathfrak{G} contains a regular normal subgroup.
- 3-2. The case $\langle K_2, I \rangle$ is semi-dihedral. At first assume $|K_{1,2}| \ge 4$. All involutions in $I\Re$ are conjugate. Since $\mathfrak G$ is doubly transitive on $\mathfrak Q$, all involutions in $\mathfrak G$ are conjugate. Since $|K_{1,2}| \ge 4$ and $(IK_2)^2 = \tau$, $\alpha(IK_2) = 1$ and IK_2 is not conjugate to an element of $\Re_{1,2}$. By [17] $\mathfrak G$ has a normal subgroup $\mathfrak G'$ of index 2 and $\langle K_2^2, I \rangle$ is a Sylow 2-subgroup of $\mathfrak G'$. $\mathfrak G'$ is also doubly transitive. By [7] and [13] $\mathfrak G'$ contains a regular normal subgroup and so is $\mathfrak G$.

Next assume $K_{1,2} = \langle \tau \rangle$. A Sylow 2-subgroup of \mathfrak{G}_1 is isomorphic to $\langle K_2, I \rangle / \langle \tau \rangle$. Since $\alpha(\langle I, \tau \rangle) = 1$, \mathfrak{G}_1 has two classes of involutions. By [6, Theorem 7.7.3] \mathfrak{G}_1 has a normal subgroup \mathfrak{G}_1' of index 2, but no normal subgroup of index 4. \mathfrak{G}_1' is doubly transitive on $\mathfrak{F}(\tau)$ and has also two classes of involutions since $\alpha(\langle I, \tau \rangle) = 1$ and $|K_2| \geq 4$. Thus \mathfrak{G}' has a normal subgroup \mathfrak{G}_1'' of index 2, but no normal subgroup of index 4. \mathfrak{G}_1'' must be a normal subgroup of \mathfrak{G}_1 of index 4, which is a contradiction. Thus there exists no group in this case.

- **4.** The case d/2 is odd. By Lemma 3.1 it may be assume that $\beta = d$, that is, \Im has one conjugate class of involutions.
- **Lemma 3.7.** If \Re_2 is not contained in \Re_1 , then d and d-1 are not divisible by p.
- *Proof.* Since \Re / \Re_1 is even and $\alpha(\langle I, \tau \rangle) = 1$, \mathfrak{G}_1 has two conjugate classes of involutions. As in §2 $i = i'(\beta' i' \beta' + 1)$, where $i' = \alpha(\widetilde{K}_2)$ for some \widetilde{K}_2 in \Re_2 . By Lemma 2.1 and 2.3, $\beta' = d/2$. Thus d/2 1 is divisible by p. This proves the lemma.
- 4-1. The case $|\Re|$ is not divisible by p. Let \Re be a Sylow p-subgroup of \Re . Then it is an elementary abelian Sylow p-subgroup of \Im and normal in $C_{\Im}(\tau)$ by Lemma 3.3. Set $|C_{\Im}(\Re)| = 2^{i_1}u_1iy$. If y=1, then $\langle \tau \rangle$ is normal in $C_{\Im}(\Re)$ and hence in $N_{\Im}(\Re)$. $[\Im:N_{\Im}(\Re)] = (di-d+1)$ $(di+1) \equiv -d+1$ $(\operatorname{mod} p)$, which contradicts the Sylow's theorem. Thus $y \neq 1$. Let \Im be a Sylow 2-subgroup of $C_{\Im}(\Re)$ containing τ . Then $\alpha(\Im) \geq 1$ and hence $\alpha(\Im) \geq i$. Therefore \Im is contained in \Re_1 . Thus y is odd. Let r be a prime factor of $(y, |\Re|(n-1))$ and let \Re be a Sylow r-subgroup of $C_{\Im}(\Re)$. Since by Lemma 3.2 (r, n) = 1, $\alpha(R) \geq 1$ hence $\alpha(R) \geq i$. By the Frattini argument it may be

assume that $N_{\text{ss}}(\Re)$ contains τ . Since $\alpha(\Re)$ is odd by Lemma 2.7 and $\mathfrak{F}(\mathfrak{R})^r = \mathfrak{F}(\mathfrak{R}), \ \alpha(\langle \mathfrak{R}, \tau \rangle) \ge 1.$ Therefore $\mathfrak{F}(\mathfrak{R})$ is contained in $\mathfrak{F}(\tau)$ and \mathfrak{R} is a subgroup of \Re_1 , which is a contradiction. Thus y is a factor of di-d+1.

At first assume y does not equal to a power of p. Let r be a prime factor $(\neq p)$ of y and let \mathfrak{P} be a Sylow r-subgroup of $C_{\mathfrak{P}}(\mathfrak{P})$. Since there exists a normal subgroup of $C_{\text{\tiny LS}}(\mathfrak{P})$ of order iy, by [6, Theorem 6.2.2] and Lemma 3.2 it may be assume that $C_{\mathfrak{D}}(\tau)$ normalizes \mathfrak{P} . Let Y be an element $(\neq 1)$ of \mathfrak{P} . Then $\alpha(Y)=0$. Since $N_{\mathfrak{G}}(\langle X \rangle)$ is contained in $C_{\mathfrak{G}}(\tau)$ for every element $X(\neq 1)$ of $\Re'\Re_2$ by Lemma 2.3, $[C_{\mathfrak{P}}(\tau):C_{\mathfrak{P}}(\tau)\cap C_{\mathfrak{P}}(Y)]$ is a multiple of $2^{l-1}d(i-1)$. Thus we have the following:

$$d(i-1) \ge y-1 \ge 2^{i-1}d(i-1).$$

From this l=1 and $\Re_2 = \langle \tau \rangle$, which is a contradiction.

Next assume y is a power of p. Let \mathfrak{P}' be a Sylow p-subgroup of $C_{\mathfrak{G}}(\mathfrak{P})$. Then \mathfrak{P}' is normal in $C_{\mathfrak{G}}(\mathfrak{P})$ and of order iy. Therefore \mathfrak{R}' acts on $\mathfrak{P}'/\mathfrak{P}$. Since, for every element $X(\neq 1)$ of \mathfrak{R}' , $C_{\mathfrak{W}}(X)$ is contained in $C_{\mathfrak{B}}(\tau)$ by Lemma 2.3 and a theorem of Witt, $C_{\mathfrak{F}'}(X) = C_{\mathfrak{F}}(X)$. By [6, Theorem [5.3.15] every element $(\neq 1)$ of \Re' induces a fixed point free automorphism of $\mathfrak{P}'/\mathfrak{P}$. Therefore y-1 is divisible by d. Thus $d=p^{(f-1)m}+p^{(f-2)m}+\cdots+$ p^m+1 . Since d is even, so is f. Thus d is divisible by i+1 and d is not factor of i-1 since d/2 is odd. This proves the following:

Lemma 3.8. If $|\Re|$ is not divisible by p, then \Im has a regular normal subgroup or there exists a prime factor of d which is prime to i-1 and d-1 is divisible by p.

4–2. The case $|\Re|$ is divisible by p, but (d, p) = 1. Let \Re a Sylow psubgroup of \mathfrak{R} . Set $\mathfrak{P}' = \mathfrak{PR}_{v}$. Put $|C_{\mathfrak{W}}(\mathfrak{P}')| = 2^{l_1}u_1'|Z(\mathfrak{P}')|y$, where $2^{l_2}u_1' =$ $|C_{\mathfrak{R}_{\nu}}(\mathfrak{P}')/Z(\mathfrak{P}')\cap\mathfrak{R}_{\nu}|$. If y=1, then $\langle \tau \rangle$ is normal in $C_{\mathfrak{R}}(\mathfrak{P}')$ and $N_{\mathfrak{R}}(\mathfrak{P}')$ is contained in $C_{\mathfrak{B}}(\tau)$. Therefore \mathfrak{P}' is a Sylow p-subgroup of \mathfrak{B} and $[\mathfrak{B}:N_{\mathfrak{B}}(\mathfrak{R}')]$ $= [\mathfrak{G}: C_{\mathfrak{G}}(\tau)][C_{\mathfrak{G}}(\tau): N_{\mathfrak{G}}(\mathfrak{P}')] \equiv -d+1 \pmod{p},$ which is a contradiction. Thus $y \neq 1$. As in the previous case, y is a factor of di - d + 1. Since $N_{M}(\Re_{v})$ contains $C_{\mathfrak{A}}(\mathfrak{P}')$ and $C_{\mathfrak{A}}(au)$ does not contain $C_{\mathfrak{A}}(\mathfrak{P}')$, $\mathfrak{F}(\mathfrak{R}_p)$ is not contained in $\mathfrak{F}(\tau)$ by a theorem of Witt. As in $\S 2$, $\alpha(K_p) = \alpha(K_p\tau)(\beta'(\alpha K_p\tau) - 1) + 1)$. Since $\mathfrak{G}_1(\widehat{\mathfrak{R}}_p)$ has a regular normal subgroup by inductive hypothesis and $\alpha(K_p\tau)$ is a power of p by Lemma 2.6, $\alpha(K_p)$ is a power of p. $[N_{ss}(\Re_p):C_{ss}(\Re')]$ $=|\Re|\alpha(K_p)(\alpha(K_p)-1)/2u_1'|Z(\mathfrak{P}')|y$. Thus y is a power p and d-1 is divisible by p.

Let \mathfrak{P}'' be a Sylow p-subgroup of $C_{\mathfrak{G}}(\mathfrak{P}')$. Since, for every element $X(\neq 1)$ of $\Re', C_{\mathfrak{G}}(X)$ is contained in $C_{\mathfrak{G}}(\tau)$ by Lemma 2.3 and a theorem of

Witt, $C_{\mathfrak{F}''}(X)$ is contained in $Z(\mathfrak{P}')$. By [6, Theorem 5.3.15] every element $(\neq 1)$ of \mathfrak{R}' induces a fixed point free automorphism of $\mathfrak{P}''/Z(\mathfrak{P}')$. Therefore y-1 is divisible by d. Thus $d=p^{(f-1)m}+p^{(f-2)m}+\cdots+p^m+1$ and $y=p^{fm}$. Since $[N_{\mathfrak{P}}(\mathfrak{R}_p):N_{\mathfrak{P}}(\mathfrak{R}_p)\cap C_{\mathfrak{P}}(\tau)]$ is divisible by y and $|N_{\mathfrak{P}}(\mathfrak{R}_p)\cap C_{\mathfrak{P}}(\tau)|$ is divisible by $|\mathfrak{R}_p|\alpha(K_p\tau)$, $|N_{\mathfrak{P}}(\mathfrak{R}_p)|$ is divisible by $|\mathfrak{R}_p|\alpha(K_p\tau)y$. Thus $d(i-1)+1=\beta'(\alpha(K_p\tau)-1)+1$. Since $d\geq \beta'$, $d=\beta'$ and $i=\alpha(K_p\tau)$. This implies that \mathfrak{R}_p is contained in \mathfrak{R}_1 , which is a contradiction.

By Lemma 3.7, 3.8 and the case 4-2 we may assume that $d \neq 2$, \Re_1 contains \Re_2 and there exists a prime factor of d which is prime to i-1.

4-3. The case that $d \neq 2$, \Re_1 contains \Re_2 and there exists a prime factor of d which is prime to i-1.

Lemma 3.9. A factor group of a Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ by \mathfrak{R}_2 is cyclic.

Proof. Let \mathfrak{S} be a Sylow 2-subgroup of $C_{\mathfrak{S}}(\tau)$ containing $\langle I, K_2 \rangle$. Then $\mathfrak{S} = \mathfrak{S}_1/\mathfrak{R}_1$ is cyclic or a (generalized) quaternion group since $\mathfrak{S}\mathfrak{R}/\mathfrak{R}_1$ is a Frobenius group. Assume that \mathfrak{S} is a quaternion group. Let \mathfrak{S} be the stabilizer of $\mathfrak{F}(\langle I, K_2 \rangle)$. Let r be a prime factor of d which is prime to i-1 and let $\mathfrak{R}'_r = \langle K'_r \rangle$ be a Sylow r-subgroup of \mathfrak{R}' . Since Aut (\mathfrak{R}'_r) is cyclic, \mathfrak{R}'_r is not contained in \mathfrak{R}_1 . If $\mathfrak{R}'_r = \mathfrak{R}'_r \mathfrak{R}_1/\mathfrak{R}_1$ is contained in $0(C_{\mathfrak{F}}(\tau)/\mathfrak{R}_1)$, then by the Frattini argument it may be assumed that \mathfrak{S} normalizes \mathfrak{R}'_r , which is a contradiction. By [3] $(IK'_r \ ^1IK'_r)\mathfrak{R}_1$ is contained in $0(C_{\mathfrak{F}}(\tau)/\mathfrak{R}_1)$. This implies that $K'_r \mathfrak{R}_1$ is contained in $0(C_{\mathfrak{F}}(\tau)/\mathfrak{R}_1)$, which is a contradiction. This proves the lemma.

By this lemma $\mathfrak{S}/\mathfrak{R}_2$ is cyclic. Put $\mathfrak{S}/\mathfrak{R}_2 = \langle A\mathfrak{R}_2 \rangle$. If \mathfrak{S} is abelian, it is of type $(2^s, 2^t)$. If $s \neq t$, then \mathfrak{S} has a normal 2-complement by the splitting theorem of Burnside. If s = t, then \mathfrak{S} has also a solvable normal subgroup by [2, Theorem 1, p. 317].

Next assume that \mathfrak{S} is non-abelian. Put $|\mathfrak{S}/\mathfrak{R}_2|=2^s$. Let $\alpha'_2{}^{\iota}(S)$ and $\alpha''_2{}^{\iota}(S)$ be the numbers of 2^t -cycles in the cycle decomposition of an element S of \mathfrak{S} contained in $\mathfrak{F}(\tau)$ and $\Omega-\mathfrak{F}(\tau)$, respectively.

Lemma 3.10. An element B of \otimes is contained in $A \langle A^2, K_2 \rangle$ if and only if $\alpha'_{2^s}(B) = (i-1)/2^s$ and $\alpha''_{2^{s+1}}(B) = di(i-1)/2^{s+1}$. $B^{2^s} = \tau$ and $|B| = 2^{s+1} \ge 2^i$.

Proof. Since n-i=di(i-1) is divisible by 2^l , i-1 is divisible by 2^{l-1} and $2^s \ge 2^{l-1}$. Since Aut (\Re_2) is isomorphic to $Z_2 \times Z_{2^{l-2}}$, if l>4 or l=4, then $B^{2^{l-2}}$ or B^2 is contained in $Z(\mathfrak{S})$, respectively. The Burnside's argument implies that the unique involution in $\langle B \rangle$ is conjugate under $N_{\mathfrak{S}}(\mathfrak{S})$. On the other hand, since $[\mathfrak{S},\mathfrak{S}]$ is contained in \Re_2 . $\langle \tau \rangle$ is a characteristic subgroup of \mathfrak{S} . Therefore $\eta=\tau$ and $|B| \ge 2^{s+1}$. $\alpha''_2(B) \ne 0$ if and only if $|B|=2^t$.

Since n-i is divisible by 2^{s+1} exactly, $|B|=2^{s+1}$. Since $\alpha'_1(I)=1$ and $\alpha'_2(I)$ =(i-1)/2, $\alpha'_{2^s}(B)=(i-1)/2^s$. This completes the proof.

Let \mathfrak{S}^* be the focal subgroup of \mathfrak{S} in \mathfrak{S} . Let C be an element of \mathfrak{S} which is conjugate unger \mathfrak{G} to an element B of $A\langle A^2, K_2 \rangle$. From Lemma 3.8 C is contained in $A\langle A^2, K_2 \rangle$ and BC^{-1} is contained in $\langle A^2, K_2 \rangle$. By [6, Theorem 7.3.1] \mathfrak{G} has a normal subgroup \mathfrak{G}' of index 2 and $\mathfrak{S}' = \langle A^2, K_2 \rangle$ is a Sylow 2-subgroup of \(\mathbb{G}' \).

Lemma 3.11. $\langle A^2, K_2 \rangle$ is abelian.

Proof. If $|K_2|=4$, then the lemma is trivial. Put $I=A^{2^{t-1}}X$, where X is an element of \Re_2 . Since $A^{2^{s-1}}$ is contained in $Z(\mathfrak{S})$, $A^{2^s}X^2 = \tau X^2 = 1$. Thus X is of order 4 and X is commutative with A^2 . Therefore I is an element of $Z(\mathfrak{S}')$. If $\langle A^2, K_2 \rangle$ is non-abelian, then $I = \tau$ as in the proof of Lemma 3.10. Thus $\langle A^2, K_2 \rangle$ is abelian.

As in the case that ♥ is abelian, ♥' contains a solvable normal subgroup and so is S. Therefore S contains a regular normal subgroup.

The case & does not contain a regular normal subgroup

1. Since \mathfrak{G}_1 does not contain a regular normal subgroup, by inductive hypothesis \Re/\Re_1 is of odd order. By [1] \mathfrak{G}_1 contains a normal subgroup \mathfrak{G}_1' which (as a permutation group) is isomorphic to one of the simple groups PSL(2, q), Sz(q) and $PSU(3, q^2)$, where $q = 2^m \ge 4$. Here PSL(2, q) is the 2dimensional projective special linear group over GF(q), the field of q elements; Sz(q) is the Suzuki group over GF(q), here m is odd; $PSU(3, q^2)$ is the 3dimensional projective special unitary group over $GF(q^2)$. If \mathfrak{G}_1' is isomorphic to PSL (2, q), Sz (q) or PSU $(3, q^2)$, then i equals to q+1, q^2+1 or q^3+1 , respectively.

Lemma 4.1.
$$N_{\mathfrak{G}}(\Re_1) = C_{\mathfrak{G}}(\Re_1)$$
 and $\Re' \cap \Re_1 = \langle \tau \rangle$.

Proof. Let $\Re_{1,r}$ be a Sylow r-subgroup of \Re_1 . Then $N_{\mathfrak{G}}(\Re_{1,r}) = C_{\mathfrak{G}}(\tau)$ by Lemma 2.4 and a theorem of Witt. The center of a Sylow 2-subgroup of \mathfrak{G}_1 is elementary abelian of order q and its all involutions are conjugate under \Re/\Re_1 . Since Aut $(\Re_{1,r})$ is cyclic, $C_{\emptyset}(\Re_{1,r})$ contains a Sylow 2-subgroup of $C_{\mathfrak{B}}(\tau)$. Since \mathfrak{B}_1 is simple, it is a subgroup of $C_{\mathfrak{B}}(\mathfrak{R}_{1,r})/\mathfrak{R}_1$. Since \mathfrak{R} is cyclic, $C_{\mathfrak{G}}(\Re_{1,r})/\Re_1$ equals to \mathfrak{G}_1 . From this $N_{\mathfrak{G}}(\Re_{1,r}) = C_{\mathfrak{G}}(\Re_{1,r})$ and $\langle \Re_{1,r}, I \rangle$ is abelian. This completes the proof.

By this lemma d=2(q-1).

Lemma 4.2. $O(\Re')$ has a normal complement \mathfrak{U} in \mathfrak{H} .

Proof. Let $\Re_{r'}$ be a Sylow r-subgroup of \Re' . Then it is also Sylow

r-subgroup of \mathfrak{G} . By Lemma 2.3 $\mathfrak{F}(\mathfrak{R}_r')$ is contained in $\mathfrak{F}(\tau)$ and hence $\mathfrak{F}(\mathfrak{R}_r') = \{1,2\}$. By the theorem of Witt $N_{\mathfrak{G}}(\mathfrak{R}_r') = \langle I,\mathfrak{R}_r' \rangle$. Thus $N_{\mathfrak{F}}(\mathfrak{R}_r') = C_{\mathfrak{F}}(\mathfrak{R}_r')$ and \mathfrak{F} has a r-complement. This proves the lemma.

Lemma 4.3. $C_{\Phi}(\tau)$ has a normal Sylow 2-subgroup.

Proof. Let \mathfrak{N} be a normal subgroup of $C_{\mathfrak{B}}(\tau)$ containing \mathfrak{R}_1 such that $\mathfrak{N}/\mathfrak{R}_1 = \mathfrak{G}_1'$. Since $(C_{\mathfrak{R}}(\tau)_{\cap}\mathfrak{H})/\mathfrak{R}_1$ has a normal Sylow 2-subgroup, by Lemma 4.1 and the splitting theorem of Burnside, $C_{\mathfrak{P}}(\tau)_{\cap}\mathfrak{H}$ has a normal Sylow 2-subgroup. This proves the lemma.

2. The case \mathfrak{G}_1' is isomorphic to $\operatorname{PSL}(2,q)$. In this case $\mathfrak{G}_1'=\mathfrak{G}_1$ since $\mathfrak{R}/\mathfrak{R}_1$ contains an element with (i-2)-cycle in its cycle decomposition. By Lemma 4.1 \mathfrak{R}_1 is contained in $Z(C_{\mathfrak{G}}(\tau))$. By [15] $C_{\mathfrak{G}}(\tau)$ is isomorphic to $\mathfrak{R}_1 \times \operatorname{PSL}(2,q)$. Therefore a Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ contained in \mathfrak{S} is isomorphic to $\mathfrak{R}_2 \times \mathfrak{S}$, where \mathfrak{S} is isomorphic to a Sylow 2-subgroup of $\operatorname{PSL}(2,q)$ which is elementary abelian of order q.

Assume $\beta = d$, that is, \mathfrak{G} has one class of involutions. Then $\mathfrak{R}_2 \times \mathfrak{S}$ is a Sylow 2-subgroup of \mathfrak{G} . Since it is abelian, by Burnside argument all involutions in $\mathfrak{R}_2 \times \mathfrak{S}$ are conjugate under $N_{\mathfrak{G}}(\mathfrak{R}_1 \times \mathfrak{S})$. Thus $[N_{\mathfrak{G}}(\mathfrak{R}_1 \times \mathfrak{S}) : C_{\mathfrak{G}}(\tau) \cap N_{\mathfrak{G}}(\mathfrak{R}_1 \times \mathfrak{S})] = 2q - 1$. Since $\alpha(\mathfrak{R}_1 \times \mathfrak{S}) = 1$, $N_{\mathfrak{G}}(\mathfrak{R}_1 \times \mathfrak{S}) = N_{\mathfrak{F}}(\mathfrak{R}_1 \times \mathfrak{S})$ and by Lemma 4.3 $[N_{\mathfrak{F}}(\mathfrak{R}_1 \times \mathfrak{S}) : C_{\mathfrak{F}}(\tau)] = 2q - 1$ and hence $|N_{\mathfrak{F}}(\mathfrak{R}_1 \times \mathfrak{S})| = |\mathfrak{R}|(i-1)(2q-1)$. But $[\mathfrak{F}:N_{\mathfrak{F}}(\mathfrak{R}_1 \times \mathfrak{S})] = (2(q-1)i+1)/(2q-1)$ is not integer, which is a contradiction.

Next assume $\beta = d/2$. Then $n = q^3 + 1$.

Lemma 4.4. $\Re_2 = \langle \tau \rangle$.

Proof. Assume $|\Re_2| > 2$. $\mathcal{O}^1(Z(\Re_2 \times \mathfrak{S})) = \langle \Re_2^2 \rangle$ is a characterisic subgroup of $\Re_2 \times \mathfrak{S}$. Therefore $\langle \tau \rangle$ is normal in $N_{\mathfrak{S}}(\Re_2 \times \mathfrak{S})$, which is a contradiction.

Let \mathfrak{T} be a Sylow 2-subgroup of \mathfrak{F} containing $\mathfrak{R}_2 \times \mathfrak{S}$. By Lemma 4.4 $\mathfrak{R}_2 \times \mathfrak{S}$ is elementary abelian. By Lemma 4.1, 4.2 and the splitting theorem of Burnside \mathfrak{T} is normal in \mathfrak{F} . Since $h^*(2) = q - 1$ and $O(\mathfrak{R}')$ acts fixed-point-freely on $Z(\mathfrak{T})$, it is elementary abelian of order q. If $\tau Z(\mathfrak{T})$ is a normal subset of \mathfrak{T} , $q \geq [\mathfrak{T}: C_{\mathfrak{T}}(\tau)] = 2q^3/2q$ since the number of involutions in $\tau Z(\mathfrak{T})$ which are cojugate to τ equals to q, which is a contradiction. Thus $\mathfrak{T}/Z(\mathfrak{T})$ is non-abelian. Let $Z_2(\mathfrak{T})$ is a normal subgroup of \mathfrak{T} containing $Z(\mathfrak{T})$ such that $Z_2(\mathfrak{T}) = Z(\mathfrak{T}/Z(\mathfrak{T}))$. Since $O(\mathfrak{R}')$ is considered as a group of fixed point free automorphisms of $Z(\mathfrak{T}/Z(\mathfrak{T}))$, $Z_2(\mathfrak{T}) \geq q^2$.

Lemma 4.5. $\mathfrak{T}/\mathbb{Z}_2(\mathfrak{T})$ is elementary abelian.

Proof. If $\mathfrak{S}/Z_2(\mathfrak{T})$ contains an element of order 4, then $|\mathfrak{T}/Z_2(\mathfrak{T})| \ge 2(q-1) + (q-1) + 1 > 2q$ by [6, Theorem 5.3.15], which is a contradiction. This

proves the lemma.

If $|\mathfrak{T}/Z_2(\mathfrak{T})| = 2$, then $\mathfrak{T} = \langle \tau \rangle \mathfrak{B}$, where $\mathfrak{B} = Z_2(\mathfrak{T})$. If $|\mathfrak{T}/Z_2(\mathfrak{T})| > 2$, then there exists a subgroup \mathfrak{V} of \mathfrak{T} containing $Z_2(\mathfrak{T})$ such that $\mathfrak{T} = \langle \tau \rangle \mathfrak{V}$. Since every involution in \mathfrak{S} which is conjugate to τ is already conjugate under \mathfrak{B} . Thus the focal subgroup of \mathfrak{T} is contained in \mathfrak{B} . By [6, Theorem 7.3.1] \mathfrak{G} has a normal subgroup \mathfrak{G}' of index 2. \mathfrak{G}' is doubly transitive on Ω . By [1] \mathfrak{G}' contains a normal subgroup \mathfrak{G}'' which is isomorphic to PSU $(3, q^2)$. τ induces an automorphism η of order 2. Since η is not an inner automorphism, by [15] it may be assumed that $\eta = AB$, where A is the automorphism of GF (q^2) of order 2 and B is an inner automorphism induced by an element of $N_{\text{GS}}(0(\Re))$. But such automorphism does not fix every element of $0(\Re)$. Since \Re is abelian, this is a contradiction.

The case \mathfrak{G}_1 is isomorphic to $\operatorname{Sz}(q)$. Let \mathfrak{R} be as in the proof of Lemma 4.3. As in the above case, \Re is isomorphic to $\Re_1 \times \operatorname{Sz}(q)$. Let $\Re_2 \times \mathfrak{S}$ be a Sylow 2-subgroup of \Re contained in \Im . Here \Im is isomorphic to a Sylow 2-subgroup of Sz(q) and $Z(\mathfrak{S})$ is elementary abelian of order q.

Assume $\beta = d$. Then $\Re_2 \times \mathfrak{S}$ is a Sylow 2-subgroup of \mathfrak{S} . The number of involutions of $Z(\Re_2 \times \mathfrak{S})$ equals to 2q-1. As in the above case, $N_{\mathfrak{P}}(\Re_2 \times \mathfrak{S})$ $= |\Re|(i-1)(2q-1)$. But $[\Im: N_{\S}(\Re_2 \times \mathfrak{S})] = (2(q-1)i+1)/(2q-1)$ is not integer, which is a contradiction.

Since $n-1=q^3(q^2-q+1)=q^3((q+1)^2-3q), n-1$ Next assume $\beta = d/2$. is divisible by 3 exactly. Let \Re be a Sylow 3-subgroup of \Re containing \Re_3 . Then \Re_3 is normal in \Re . By Lemma 4.2 and [6, Theorem 6.2.2] it may be assumed that $N_{\mathfrak{G}}(\mathfrak{R})$ contains $0(\mathfrak{R}')$. Since $N_{\mathfrak{G}}(0(\mathfrak{R}')) = \langle I, K \rangle$, $0(\mathfrak{R}')$ induces a fixed point free group of automorphisms of \Re / \Re_3 , which is a contradiction.

The case \mathfrak{G}_1' is isomorphic to $PSU(3, q^2)$.

Lemma 4.6. For every element $X(\neq 1)$ of \Re , $\Im(X)$ is contained in $\Im(\tau)$.

Proof. Let X be an element of \Re not contained in $\Re'\Re_2$. If $\mathfrak{F}(X)$ is not contained in $\mathfrak{F}(\tau)$, $\mathfrak{G}_1(\langle X \rangle)$ satisfies (*) by Lemma 2.4. Since $\alpha(X\tau)=$ q+1, as in §2 $\alpha(X)=(q+1)(\beta'q+1)$, where $\beta'=d$ or d/2. Since $\mathfrak{G}_1(\langle X \rangle)$ contains a regular normal subgroup by inductive hypothesis, $\alpha(X)$ equals to a power of a prime number r. If $\beta' = q - 1$, then $\alpha(X) = q^3 + 1$. Therefore $q^3+1=9$ and q=2, which is a contradiction. If $\beta=2(q-1)$, then (q+1,2q(q-1)+1)=5. Therefore

$$r=5$$
; $q+1=5$; $\alpha(X)=5^3$; $i=65$; $n=65\cdot 5\cdot 77$

By a theorem of Witt $|N_{\mathfrak{G}}(\langle X \rangle)| = |K|5^3(5^3-1)$. Since *n* is not divisible by 5³, $[\mathfrak{G}:N_{\mathfrak{B}}(\langle X\rangle)]$ is not an integer, which is a contradiction. Thus $\mathfrak{F}(X)$ is contained in $\Re(\tau)$. By Lemma 2.3 and 2.4 $\Re(Y)$ is contained in $\Re(\tau)$ for

every element $Y(\neq 1)$ of $\Re'\Re_2$. This completes the proof.

By this lemma n-i is divisible by $|\Re|$.

Lemma 4.7. $O(\Re)$ has normal complement \mathfrak{T} in \mathfrak{H} .

Proof. By Lemma 4.2 $0(\Re')$ has a normal complement $\mathfrak U$ in $\mathfrak D$. Since $((q^3+1)(q-1),\ n-1)=1$, \Re_r is a Sylow r-subgroup, where $r\neq 2$. If \Re_r is a subgroup of \Re_1 , then $N_{\mathfrak D}(\Re_r)=C_{\mathfrak D}(\Re_r)$ by Lemma 4.1. If r is a factor of q+1, then $|N_{\mathfrak D}(\Re_r)|=|\Re|q$ by Lemma 4.6 and a theorem of Witt. Since a Sylow 2-subgroup of $N_{\mathfrak D}(\Re_r)/\Re_1(\Re_r)$ is elementary abelian, By Lemma 2.2 $C_{\mathfrak D}(\Re_r)=N_{\mathfrak D}(\Re_r)$. By the splitting theorem of Burnside $\mathfrak D$ has a normal r-complement. This proves the lemma.

Let $\Re(q)$ be a subgroup of order $(q^2-1)/e$, where e=(q+1,3). For every prime factor of $|\mathfrak{T}|$, there exists a Sylow r-subgroup \mathfrak{P}_r such that $N_{\mathfrak{P}}(\mathfrak{P}_r)$ contains $\Re(q)$ by [6, Theorem 6.2.2]. If $r\neq 2$, then $\Re(q)$ is a group of fixed point free automorphisms of \mathfrak{P}_r since $(|C_{\mathfrak{P}}(\tau)|, |\mathfrak{T}|)$ is a power of two. Thus $|\mathfrak{P}_r|-1$ is divisible by $(q^2-1)/e$.

Assume $\beta = d/2$. Then $n-1 = q^4(q^3 - q^2 + 1)$. Since $q \neq 2$, $q^3 - q^2 + 1$ does not equal to a power of a prime number. Therefore there exist at least two Sylow subgroups \mathfrak{P}_{r_*} and \mathfrak{P}_{r_*} with $r_1 \neq r_2$. Thus

$$\begin{split} |\mathfrak{P}_{r_1}||\mathfrak{P}_{r_2}| & \geqq \left(2(q^2-1)/e+1\right) \left(4(q^2-1)/e+1\right) \\ & > q(q^2+1) \! > \! q^3-q^2+1 \, . \end{split}$$

This is a contradiction.

Next assume $\beta = d$. Then $n-1 = q^3(2q^4 - 2q^3 + 2q - 1)$. \Re_2 is of order 4 since \Im has one class of involutions, the exponent of a Sylow 2-subgroup of PSU $(3, q^2)$ equals to 4 and $\langle K_2, I \rangle$ is abelian.

Assume $2q^4-2q^3+2q-1=r^m$ for a prime number r. Since r^m-1 does not divisible by 4, $|N_{\mathfrak{X}}(\mathfrak{P}_r)|=2q^3$ or $4q^3$. r=2qx-1 for some integer x.

- **4-1.** The case $[\mathfrak{T}:N_{\mathfrak{T}}(\mathfrak{P}_r)]=2q^3\equiv 1\pmod{r}$. Since $2q^4-2q^3+2q-1=(2q^3-1)(q-1)+3q-2$, $(3q-2,2q^3-1)$ divisible by r and $r\neq 3$. Thus r=11 and q=2, which is a contradiction.
- **4–2.** The case $[\mathfrak{T}:N_{\mathfrak{T}}(\mathfrak{P}_r)]=4q^3\equiv 1\pmod{r}$. Since $2r^m=(4q^3-1)(q-1)+5q-3$, r is a factor of $(4q^3-1,\ 5q-3)$. Thus r=17 and q=1, which is a contradiction.

Thus n-1 is divisible by different two prime numbers r_1 and r_2 . $n-1 = q^3 r_1^m r_2^{m'} t$, where $r_1^m < r_2^{m'}$ and t is relatively prime to r_1 and r_2 . If $r_1^m - 1 \ge 4(q^2 - 1)/3$ or $r_2^{m'} - 1 \ge 10(q^2 - 1)/3$, then $r_1^m r_2^{m'} > 2q^4 - 2q^3 + 2q - 1$. Therefore $r_1^m - 1 = 2(q^2 - 1)/3$ and $r_2^{m'} - 1 = 4(q^2 - 1)/3$, $8(q^2 - 1)/3$ or $2(q^2 - 1)$. Since $r_1^m r_2^{m'} \ne 2q^4 - 2q^3 + 2q - 1$, $t \ne 1$ and put $t = r_3^{m''} t'$, where $(t', r_3) = 1$ and

 r_3 is prime. $r_3^{m''}-1>4(q^2-1)$. Thus $r_2^{m'}r_3^{m''}>2q^4-2q^3+2q-1$. a contradiction.

Thus Theorem is proved.

References

- [1] H. BENDER: Doubly transitive groups with no involution fixing two points (to appear).
- [2] R. BRAUER: Some applications of the theory of blocks of characters of finite groups II, J. Alg., 1 (1964), 307-334.
- [3] R. BRAUER and M. SUZUKI: On finite groups of even order whose 2-Sylow subgroup is a quaternion group, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1757-1759.
- [4] W. FEIT and J. G. THOMPSON: Solvability of groups of odd order, Pac. J. Math., 13 (1963), 775-1029.
- [5] G. GLAUBERMAN: Central elements in core-free groups, J. Alg., 4 (1966), 403-420.
- [6] D. GORENSTEIN: Finite groups, Harper and Row, New York, 1968.
- [7] D. GORENSTEIN and J. H. WALTER: The characterization of finite groups with dihedral Sylow 2-subgrous, I, II, III, J. Alg., 2 (1965), 85-151, 218-270, 334-
- [8] B. HUPPERT: Endliche Gruppen I, Springer, Berlin, 1968.
- [9] N. ITO: On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 401–417.
- [10] H. KIMURA: On doubly transitive permutation groups of degree n and order 4(n-1)n, J. Math Soc. Japan, 21 (1969), 234-243.
- [11] H. KIMURA: On some doubly transitive permutation groups of degree n and order $2^{i}(n-1)n$, J. Math. Soc. Iapan, 22 (1970), 263-277.
- [12] H. KIMURA: On doubly transitive permutation groups of degree n and order 2p(n-1)n, Osaka J. Math., 7 (1970), 275–290.
- [13] H. LÜNEBURG: Charakterisierungen der endlichen desarguesschen projektiven Ebenen, Math. Zeit., 85 (1964), 419-450.
- [14] M. SUZUKI: Two characteristic properties of (ZT)-groups, Osaka Math. J., 15 (1963), 143-150.
- [15] R. STEINBERG: Automorphisms of finite linear groups, Can. J. Math., 12 (1960), 606-615.
- [16] H. WIELANDT: Finite permutation groups, Academic Press, New York, 1964.
- [17] W. J. WONG: On finite groups whose 2-Sylow subgroups have cyclicic subgroups of index 2, J. Austral. Math. Soc., 4 (1964), 90-112.

Department of Mathematics, Hokkaido University

(Received June 11, 1970)