A NOTE ON S1-ACTING COBORDISMS

 $\mathbf{B}\mathbf{y}$

Haruo SUZUKI

Introduction

Let Y be a connected compact oriented differentiable manifold (without boundary). Suppose that S^1 acts on Y differentiably and effectively without fixed points. This means that no point of Y is left fixed by the whole group, that is $Y^{S^1} = \emptyset$. Let Y' be another manifold which has the properties of Y and let W be a compact differentiable manifold, such that $\partial W = Y \cup (-Y')$ and S^1 -action on ∂W extends differentiably all over W. Suppose also that we have $W^{S^1} = \emptyset$ for the S^1 -action on W. If Y and Y' satisfy the above condition, we say that they are S^1 -acting cobordant or they belong to the same S^1 -acting cobordism class.

Any differentiable principal S^1 -bundle over a differentiable manifold is a manifold on which S^1 acts differentiably and effectively without fixed points by the multiplication of complex numbers in fibre. We shall consider the S^1 -acting cobordism for Y and Y' which have the differential principal S^1 -bundle structures over differentiable structures of a connected compact manifold M and have the S^1 -actions stated in the above. It should be noted that if Y and Y' are S^1 -acting cobordant by the manifold W, the S^1 -action on W is not necessarily free, that is, Y and Y' do not necessarily belong to the same equivariant cobordism class in the usual sense. By imposing some cohomology conditions upon M, Y and Y' have unique spin structures. The purpose of this note is to show, directly by the powerful invariant ρ of M. F. Atiyah and F. Hirzebruch [2], that when W has a spin-structure which is compatible with those of Y and Y' and the dimension of M is 2k, the principal S^1 -bundle structures of Y and Y' are isomorphic. Finally we shall show several examples.

§ 1. Statement of results

Let M be a connected compact oriented differentiable manifold of dimension 2k such that

(1)
$$H^1(M; Z_2) = 0, H^2(M; Z) = Z, w_2(M) \neq 0.$$

Suppose that if g is a generator of $H^2(M; Z)$, $g^k \in H^{2k}(M; Z)$ is not zero.

178 H. Suzuki

We regard $S^1 = SO(2)$ as the multiplicative group which consists of the complex numbers with absolute value 1. In the following, we assume complex line bundles have structural group U(1)=SO(2). The differentiable S^1 bundles are in 1-1 correspondence with the differentiable complex line bundles over the same base space. A complex line bundle ξ is characterized topologically by its first Chern class $c=c_1(\xi)$ which is of the form ag where a is an integer. We assume that ξ is a differentiable complex line bundle and we denote by Y_{ε} the total space of the principal S¹-bundle corresponding to ξ and denote by X_{ξ} the total space of the closed unit disk bundle corresponding to ξ . Y_{ξ} is a closed connected oriented differentiable manifold on which $S^1 = \{z | |z| = 1\}$ acts differentiably and effectively without fixed points by the multiplication of z^m in fibre, for some integer $m \neq 0$. We call this action a natural S¹-action on Y_{ε} for m. X_{ε} is a connected compact oriented differentiable manifold with the boundary Y_{ε} , on which S^1 acts also nontrivially. We notice that if ξ' is the complex line bundle having the first Chern class $c_1(\xi') = -ag$, S^1 -bundles Y_{ξ} , $Y_{\xi'}$ are isomorphic by the bundle map over the identity of M, which reverses the orientation of fibre.

We assume that $c_1(\xi) \equiv 0 \mod 2$. Then from the assumption (1), it follows that

$$H^1(Y_{\epsilon}; Z_2) = 0$$
, $w_2(Y_{\epsilon}) = 0$,

and

$$H^1(X_{\xi}; Z_2) = 0$$
, $w_2(X_{\xi}) = 0$.

Therefore Y_{ℓ} has (for some Riemannian metric) exactly one spin-structure up to isomorphism and X_{ℓ} also does, by the arguments of M. F. Atiyah and R. Bott [1], p. 480. We denote by \mathcal{S}_M the set of S^1 -bundles Y_{ℓ} over differentiable structures of M such that $c_1(\xi) = ag$, $a \rightleftharpoons 0 \mod 2$ and moreover if k is even, a is positive.

Let Y and Y' be connected compact oriented differentiable manifolds such that

$$H^{\scriptscriptstyle 1}(Y\,;\,Z_{\scriptscriptstyle 2})=H^{\scriptscriptstyle 1}(Y'\,;\,Z_{\scriptscriptstyle 2})=0\,,\ \ \, w_{\scriptscriptstyle 2}(Y)=w_{\scriptscriptstyle 2}(Y')=0\;.$$

And suppose that S^1 acts on them differentiably and effectively without fixed points. We say that Y and Y' are S^1 -acting spin-cobordant or they belong to the same S^1 -acting spin-cobordism class, if there exists a compact differentiable manifold W on which S^1 acts differentiably and effectively without fixed points and

$$H^1(W; Z_2) = 0$$
, $w_2(W) = 0$, $\partial W = Y \cup (-Y')$.

This definition of the S1-acting spin-cobordism is essentially due to M.F.

Atiyah and F. Hirzebruch [2].

Now we state the following main theorem.

Theorem 1.1. Any two S^1 -bundles of \mathcal{L}_M are isomorphic if and only if they belong to the same S^1 -acting spin-cobordism class up to topological equivalences, with respect to some natural S^1 -actions.

Remark (1) For the S^1 -equivariant oriented cobordism class, the theorem is a direct consequence of the invariance of the Chern number $(c_1)^k[M]$, but we are dealing with the S^1 -acting spin-cobordism class. (2) Suppose that k is even. Let ξ and ξ' be differentiable complex line bundles such that $c_1(\xi) = ag$, $w_2(M) = ag \mod 2$, a < 0 and $c_1(\xi') = a'g$, $w_2(M) = a'g \mod 2$, a' > 0. Reversing the orientation of fibre of $Y_{\xi'}$, we obtain the differentiable S^1 -bundle $Y_{\xi''}$ such that $c_1(\xi'') = (-a')g$. By the above theorem Y_{ξ} and $Y_{\xi''}$ are S^1 -bundle isomorphic if and only if they belong to the same S^1 -acting spin-cobordism class with respect to natural S^1 -actions.

To prove the Theorem 1. 1, we obtain, in §2, some results about values of local spin-numbers for the S^1 -action on X_{ℓ} . We shall give a proof of the main theorem and some examples in §3.

§ 2. The invariant $\rho(z, Y)$

Let Y be the connected compact oriented differential manifold (without boundary) of dimension 2k+1 such that $H^1(Y; Z_2)=0$, $w_2(Y)=0$. Suppose that S^1 acts on Y differentiably and effectively without fixed points and suppose that Y bounds a connected compact oriented differenteable S^1 -manifold X such that $H^1(X; Z_2)=0$, $w_2(X)=0$. We denote by $X_{\nu}^{S^1}$ a component of the fixed point set for the S^1 -action on X. By the definition of M. F. Atiyah and F. Hirzebruch [2] or M. F. Atiyah and I. M. Singer [3], we have

(2)
$$\rho(z, Y) = \sum_{\nu} \operatorname{spin}(z, X_{\nu}^{S^{1}}),$$

which does not depend on the choice of X.

For the S^1 -manifold X_{ε} in the preceding section, it is easily verified that the fixed point set $(X_{\varepsilon})^{S^1}$ is the zero section of the complex line bundle ξ . Hence it is diffeomorphic to the manifold M of base space and is connected. The normal bundle $N((X_{\varepsilon})^{S^1})$ of $(X_{\varepsilon})^{S^1}$ in X_{ε} is isomorphic to ξ and $z \in S^1$ operates as a multiplication of a complex number z^m in fibre, for the integer m. The eigenvalue of the operation of z in the fibre is z^m and for $z \in S^1$ but z not a root of unity, we have

(3)
$$\operatorname{spin}(z, (X_{\xi})^{S^{1}}) = (-1)^{(k+1)} \mathfrak{A}(M) (z^{-m/2} e^{c/2} - z^{m/2} e^{-c/2})^{-1} [M]$$

180 H. Suzuki

by M. F. Atiyah and F. Hirzebruch [2], where $\widehat{\mathfrak{U}}$ is the multiplicative sequence with the characteristic series

$$\frac{x/2}{\sinh x/2} = \frac{x}{e^{x/2} - e^{-x/2}}$$

and $c=c_1(\xi)$ is the first Chern class of ξ . c can be written as ag where g is a generator of $H^2(M; \mathbb{Z})$ and $a \in \mathbb{Z}$. By the definition of $\widehat{\mathfrak{A}}$, we have

$$\widehat{\mathfrak{A}}(M) = \sum_{r=0}^{\infty} \widehat{A}_r(p_1(M), \cdots, p_r(M))$$

where $\hat{A}_r(p_1(M), \dots, p_r(M)) \in H^{4r}(M; Q)$ are polynomials in the Pontrjagin classes $p_i(M)$. We notice that the right hand side of (3) is a rational function on the complex number plane C if m is even and it is a function on the double branched covering of C if m is odd.

To distinguish values of $\rho(z, Y_{\xi})$, we need the following lemma.

Lemma 2. 1. We have

$$(5) (z^{-m/2}e^{c/2}-z^{m/2}e^{-c/2})^{-1}=(z^{-m/2}-z^{m/2})^{-1}(1+\alpha_1c+\cdots+\alpha_kc^k),$$

where α_i is a polynomial of order i, in the variable

$$z' = (z^{-m/2} + z^{m/2})(z^{-m/2} - z^{m/2})^{-1}.$$

Proof. From direct computations, it follows that

$$(z^{-m/2}e^{c/2} - z^{m/2}e^{-c/2})^{-1}$$

$$= (z^{-m/2} - z^{m/2})^{-1} \left(1 + \frac{z'}{2}c + \frac{1}{2^2 2!}c^2 + \dots + \frac{z'^{(k-2[\lfloor k/2 \rfloor)}}{2^k k!}c^k\right)^{-1}.$$

We put

$$\left(1 + \frac{z'}{2}c + \frac{1}{2^22!}c^2 + \cdots + \frac{z'^{(k-2[k/2])}}{2^k k!}c^k\right)^{-1} = 1 + \alpha_1 c + \alpha_2 c^2 + \cdots + \alpha_k c^k.$$

Then α_i is determined uniquely by the following formulas:

$$\begin{split} &\alpha_1 + \frac{z'}{2} = 0\,, \\ &\alpha_2 + \alpha_1 \left(\frac{z'}{2}\right) + \frac{1}{2^2 2!} = 0\,, \\ &\dots \\ &\alpha_i + \alpha_{i-1} \left(\frac{z'}{2}\right) + \dots + \alpha_{i-j} \frac{z'^{(j-2\lfloor j/2 \rfloor)}}{2^j j!} + \dots + \frac{z'^{(i-2\lfloor i/2 \rfloor)}}{2^i i!} = 0\,, \\ &\dots \\ &\alpha_k + \alpha_{k-1} \left(\frac{z'}{2}\right) + \dots + \frac{z'^{(k-2\lfloor k/2 \rfloor)}}{2^k k!} = 0\,. \end{split}$$

By an obvious induction, the term of the highest power of z' in α_s is

$$(-1)^{i}(z')^{i}/2^{i}$$
.

Thus the lemma is proved.

Theorem 2. 2. It follows that

$$\begin{split} \rho(z, \ Y_{\mathfrak{k}}) &= \mathrm{spin}(z, \ (X_{\mathfrak{k}})^{S^{i}}) \\ &= (-1)^{k+1} (z^{-m/2} - z^{m/2})^{-1} F, \end{split}$$

where F is a polynomial of order k, in $z' = (z^{-m/2} + z^{m/2})(z^{-m/2} - z^{m/2})^{-1}$. If $c = c_t(\xi) = ag$, then the coefficient of $(z')^k$ in the polynomial F is

$$(-1)^k (a^k/2^k) g^k [M]$$
.

Proof. From (3), (4) and the above lemma, it follows that

$$\begin{split} (-1)^{k+1} \rho(z,\ Y_{\hat{\epsilon}}) &= \widehat{\mathfrak{A}}(M) (z^{-m/2} - z^{m/2})^{-1} (1 + \alpha_1 c + \dots + \alpha_k c^k) [M] \\ &= (z^{-m/2} - z^{m/2})^{-1} (\sum_{i=0}^{\infty} \widehat{A}_i(M)) (1 + \alpha_1 c + \dots + \alpha_k c^k) [M] \\ &= (z^{-m/2} - z^{m/2})^{-1} (\alpha_k \widehat{A}_0(M) c^k + \alpha_{(k-2)} \widehat{A}_1(M) c^{(k-2)} \\ &+ \dots + \alpha^{(k-2\lfloor k/2\rfloor)} \widehat{A}_{\lfloor k/2\rfloor}(M) c^{(k-2 \lfloor k/2\rfloor)}) [M] \\ &= (z^{-m/2} - z^{m/2})^{-1} (a^k \alpha_k g^k [M] + a^{(k-2)} \alpha_{(k-2)} \widehat{A}_1(M) g^{(k-2)} [M] \\ &+ \dots + a^{(k-2\lfloor k/2\rfloor)} \alpha_{(k-2 \lceil k/2\rfloor)} \widehat{A}_{\lceil k/2\rceil}(M) g^{(k-2 \lfloor k/2\rfloor)} [M]) \,. \end{split}$$

The formula

$$\begin{aligned} a^k \alpha_k g^k[M] + a^{k-2} \alpha_{(k-2)} \widehat{A}_1(M) g^{k-2}[M] + \\ &+ \dots + a^{(k-2 \lfloor k/2 \rfloor)} \alpha_{(k-2 \lfloor k/2 \rfloor)} \widehat{A}_{\lfloor k/2 \rfloor}(M) g^{(k-2 \lfloor k/2 \rfloor)}[M] \end{aligned}$$

is a polynomial in z' with rational coeffecients. The term of the highest order (kth order) of z' in the polynomial is in $a^k \alpha_k g^k[M]$ and it is

$$(-1)^k (a^k/2^k) g^k [M]$$
.

Thus the proof of the theorem is completed.

§ 3. S¹-acting cobordism of Y_{ε} and examples

Using results of the previous section, we prove our main theorem stated in §1.

Proof of Theorem 1.1. Let ξ_1 and ξ_2 be differentiable complex line bundles with structural group U(1), over differentiable structures of M. Y_{ξ_1} and Y_{ξ_2} denote the S^1 -bundles corresponding to ξ_1 and ξ_2 respectively.

Suppose that Y_{ξ_1} and $Y_{\xi_2} \in \mathcal{I}_M$ are topologically isomorphic differentiable S^1 -bundles. Natural S^1 -actions on them for each m are isomorphic. If we take

$$W = Y_{\varepsilon} \times I$$
,

then we have

$$H^1(W; Z_2) = H^1(Y_{\varepsilon_1}; Z_2) = 0$$
, $\partial W = Y_{\varepsilon_1} \cup (-Y_{\varepsilon_1})$ and $Y_{\varepsilon_2} \cong Y_{\varepsilon_2}$.

Let $\pi_1: Y_{\xi_1} \times I \longrightarrow Y_{\xi_1}$ be the projection to the first factor. It follows that

$$egin{aligned} w_2(W) &= w_2(Y_{\epsilon_1} imes I) \ &= \pi_1^* w_2(Y_{\epsilon_1}) \ &= 0 \ . \end{aligned}$$

Thus Y_{ξ_1} and Y_{ξ_2} belong to the same S^1 -acting spin-cobordism class up to topological equivalences, with respect to natural S^1 -actions for the same m.

Conversely, suppose that Y_{ξ} and $Y_{\xi'}$ with natural S^1 -actions for m_1 and m_2 respectively, belong to the same S^1 -acting spin-cobordism class. Then by M. F. Atiyah and F. Hirzebruch [2], we have

$$\rho(z, Y_{\xi_1}) = \rho(z, Y_{\xi_2})$$

and hence

$$\mathrm{spin}(z,\ Y_{\varepsilon_1})=\mathrm{spin}(z,\ Y_{\varepsilon_2})\,.$$

Let $c_1(\xi_1) = a_1 g$, $c_1(\xi_2) = a_2 g$ where a_1 , $a_2 > 0$.

By Theorem 2. 2, we have

$$m_1 = m_2$$
 and $a_1^k = a_2^k$.

Since a_1 , a_2 are positive integers, it follows that

$$a_1 = a_2$$
.

Thus we have $c_1(\xi_1) = c_1(\xi_2)$ and hence

$$\xi_1 \cong \xi_2$$
.

The proof of Theorem 1.1 is completed.

For the complex line bundle ξ over M with $c_1(\xi) = ag$, the manifold Y_{ξ} is obviously spin-cobordant to S^{2k+1} in the following sense: There exists a differentiable manifold W such that

$$\begin{split} &H^{1}(W;\,Z_{\mathrm{2}})=0\,,\quad w_{\mathrm{2}}(W)=0\,,\\ &\partial W=Y_{\mathrm{E}}\cup(-S^{2k+1})\,. \end{split}$$

But from Theorem 2. 2, we obtain,

Proposition 3. 1. If $c_1(\xi) \neq \pm g$, Y is not S¹-acting spin-cobordant to S^{2k+1} with the standard circle action.

We consider some examples of S^1 -bundles satisfying the conditions of Theorem 1. 1.

Example 1. Let M be a complex projective space $\mathbb{C}P^{2n}$. We take, as $\mathscr{S}_M = \mathscr{S}_{\mathbb{C}P^{2n}}$, the set of differentiable S^1 -bundles Y_ξ corresponding to differentiable complex line bundles ξ over differentiable structures of $\mathbb{C}P^{2n}$ such that $c_1(\xi) = ag$, $a \equiv 1 \mod 2$ and a > 0, where $g \in H^2(\mathbb{C}P^{2n}; \mathbb{Z})$ is the canonical generator. The condition (1) for $M = \mathbb{C}P^{2n}$ are easily verified. By Theorem 1. 1, any two S^1 -bundles of $\mathscr{S}_{\mathbb{C}P^{2n}}$ are isomorphic if and only if they are S^1 -acting spin-cobordant upto topological equivalences with respect to natural S^1 -actions.

Example 2. Let HP^n denote a quaternionic projective space of quaternionic dimension n. We can choose $M = CP^{2n} \sharp HP^n(n > 2)$ which is the connected sum of CP^{2n} and HP^n . The condition (1) for this manifold are satisfied. By similar arguments, one can also take, as M,

$$CP^{2n}\sharp HP^n\sharp \cdots \sharp HP^n,$$

$$CP^{2n}\sharp (HP^{k_1}\times HP^{k_2}\times \cdots \times HP^{k_r})\,(\Sigma\,k_i=n)\,.$$

References

- [1] M. F. ATIYAH and R. BOTT: A Lefschetz fixed point formula for elliptic complexes, II. Applications, Ann. of Math. (2) 88 (1968), 451-491.
- [2] M. F. ATIYAH and F. HIRZEBRUCH: Spin-manifolds and group actions, Essays on Topology and Related Topics (Memoires dédiés à Georges de Rham), Springer New York 1970, 29-47.
- [3] M. F. ATIYAH and I. M. SINGER: Index of elliptic operators, III, Ann. of Math. (2) 87 (1968), 546-604.

Department of Mathematics, Hokkaido University

(Received Oct. 30, 1970)