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Panageas, Christopher Polk, Rohit Rahi, Andrea Vedolin, Michela Verardo, Paul Woolley

and Jean-Pierre Zigrand. I also owe special thanks to David Webb, Kathy Yuan, Yves Nos-

busch, Ron Anderson, Amil Dasgupta, Mary Comben and Osmana Raie for their support

in various ways throughout the doctoral programme. I was lucky enough to benefit from

the hospitality of the department of finance at INSEAD during several short stays. I would

like to thank Bernard Dumas, Harald Hau, Pascal Maenhoult, Massimo Massa, Joel Peress,

Astrid Schornick for their time and warm welcome. I also benefited from the encouragement

of my new colleagues and co-workers at the Federal Reserve Board, where I completed the

second chapter of the dissertation, in particular Erik Heitfield and Michael Gordy. I enjoyed

the company, discussions, wit and support of many good friends at LSE and elsewhere. To

name but a few, let me mention Miguel Anton, Fabian Garavito, Carlos Brando, Alex Cas-
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Abstract

In this thesis, I study the effects of market power and financial constraints on arbitrage,

liquidity provision, financial stability and welfare. In Chapter 1, I consider a dynamic model

of imperfectly competitive arbitrage with time-varying supply. The model can explain the

well-documented empirical features that (quasi)-identical assets can trade at significantly

different prices; these price differences vanish slowly over time, resulting in apparently slow-

moving capital; the price differences can invert over time; market depth is time-varying. I

also show that entry does not necessarily correct these effects, although the mere threat of

entry may improve liquidity.

In Chapter 2, I introduce in the model the realistic feature that trading requires cap-

ital and assume that arbitrageurs’ positions must be fully collateralized, which rules out

default. I compare liquidity provision, asset prices and welfare in the monopoly case to the

perfect competition case studied by Gromb and Vayanos (2002). I show that relative to

the competitive case, the monopoly is less efficient but also less capital-intensive, as rents

captured over time allow her to build up capital. Consequently, when capital is scarce,

financially-constrained competitive arbitrageurs may provide less liquidity at later stages

than an unconstrained monopoly. In some cases, this increases aggregate welfare but with-

out being Pareto-improving. I discuss implications for market-making via a specialist.

In Chapter 3, I assume that some arbitrageurs have deeper pockets than others and allow

for default. The capital-rich arbitrageurs (predators) either provide liquidity to other mar-

ket participants (competitive hedgers) or engage in predatory trading against a financially-

constrained peer (prey). In this strategy, predators depress the price of the asset to trigger

a margin call on the prey’s position and gain from her subsequent firesales. I show that

the hedgers’ reactions to the possibility of predation can make predatory trading cheaper,

reducing the prey’s staying power. In anticipation of the prey’s firesales, hedgers may run

on the asset, strengthening and to some extent substituting to the predators’ price pressure.

Further, their reaction leads to a reduction in the prey’s price impact, which decreases her

already limited ability to support the price and avoid a margin call. Predatory trading is

likely to occur when hedgers are sufficiently risk-averse or the asset sufficiently risky.
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Chapter 1

Dynamic Strategic Arbitrage

Abstract: Real-world arbitrage often involves a limited number of large financial intermediaries

(e.g. dealers, hedge funds) with price impact. I study a multi-period model of imperfectly com-

petitive arbitrage, in which supply shocks generate price differences between two identical assets

traded in segmented markets. Arbitrageurs seeking to exploit these price differences split up their

orders to limit their price impact. I show that order split-up and specific supply shock patterns

can explain the empirical evidence that i) identical assets can trade at different prices, ii) these

price differences revert slowly over time, as if capital was slow-moving, and iii) the sign of price

differences can switch over time. The model also yields new predictions about the determinants

and evolution of market depth, about which arbitrage strategies attract arbitrageurs in equilibrium,

and how the number of arbitrageurs in a given strategy evolves over time.

1.1 Introduction

In contrast to the textbook case, in which many atomistic investors ensure that the law of

one price holds, arbitrage opportunities and mispricings are often chased in the real world by

only a limited number of large, highly specialized financial institutions (e.g. broker-dealers,

hedge funds, proprietary trading desks). These arbitrageurs manage sizable portfolios and

recognize that their trades affect asset prices, implying that arbitrage should be studied as a

strategic choice.1 In this chapter, I study how the behaviour of a limited number of strategic

arbitrageurs affects the dynamics of asset prices and market liquidity. I also determine which

markets attract arbitrageurs and how the level of competition between arbitrageurs changes

over time.

1For instance, Quantum Fund and Tiger Management closed funds in 2000 because their sizes impaired
their ability to take advantage of pricing anomalies (Attari and Mello, 2006). Chen, Stanzl and Watanabe
(2002) find evidence of substantial price impact costs in equity markets.

7
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Arbitrageurs who recognize their price impact avoid trading too aggressively against

mispricings and split up their orders to preserve the profitability of their strategy. Based on

this simple insight and variation in the supply of assets that can be arbitraged, I show that

imperfectly competitive arbitrage can explain three well-documented empirical phenomena:

i) assets with identical cash-flows can trade at different prices, ii) this price difference vanishes

only slowly over time, resulting in apparently slow-moving capital2; iii) price differences

between identical assets may switch sign over time (sign inversion). Sign inversions between

pairs of similar assets have been documented during the recent crisis in the interest rate

swap spread and the municipal bond market (Bergstresser, Cohen and Shenai, 2011).

In addition to these price dynamics, I determine how the endogenous number of arbi-

trageurs depends on entry costs3, the risk-return profile of the arbitrage opportunity, or the

existing market structure. This allows me to characterize which markets or arbitrage oppor-

tunities are likely to be - or remain - concentrated, and the implied effects on asset prices

and liquidity. First, the model predicts a non-monotonic relationship between the volatility

of fundamentals and the number of arbitrageurs, confirming a conjecture made by Shleifer

and Vishny (1997): more volatile markets do not necessarily attract more arbitrageurs,

in particular if the risk-bearing capacity of other market participants is low. Second, the

model generates new predictions about the evolution of competition and its implications

for liquidity and the speed of arbitrage. When new arbitrageurs can enter a strategy over

time, incumbents attempt to deter them. They are likely to succeed when entry costs are

sufficiently high, so that a concentrated structure may persist over time even though con-

centration means that large rents are available. With lower entry costs, however, the mere

threat of entry can bring prices closer to fundamental values. With even lower entry costs,

the model predicts that liquidity, defined as market depth, improves ahead (more precisely,

in anticipation) of future entry. Hence a novel prediction of the model is that market depth

should be a leading indicator of the number of arbitrageurs active in a given strategy.

I consider a setting with two identical assets (say A and B) traded in segmented markets

and a risk-free asset. Risk-averse local investors operate in the segmented markets and receive

2Price differences between (quasi) identical assets are well-documented for Siamese stocks (Froot and
Dabora, 1999, Lamont and Thaler, 2003), on-the-run / off-the-run bonds (Krishnamurthy, 2002). The swap
spread and the CDS-bond basis are two other prominent examples. The second phenomenon - slow-moving
capital - has been documented at different frequencies and in various markets. See, for instance, Duffie
(2010), Mitchell, Pedersen and Pulvino (2007) and Coval and Stafford (2007).

3One can imagine that trading across different exchanges, identifying mispricings and / or setting up
arbitrage desks require some fixed investment in the first place.
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endowment (liquidity) shocks over time. The shocks are correlated with the fundamental

of the assets, and thus affect local investors’ valuation for their local assets. Since local

investors in market A receive opposite shocks to local investors in market B, trading would

help investors to fully share risk, but cannot take place because of market segmentation.

This pushes the prices of assets A and B apart. Another group of risk-averse investors,

the arbitrageurs, have the ability to trade freely across markets and can exploit this price

difference by intermediating trades between A- and B-investors. There is however only a

finite number of arbitrageurs, who understand how their trades affect prices in each market.

In particular, arbitrageurs understand that by fully intermediating the trades across markets,

they would bring prices in line with fundamentals, and earn zero profits. As a result, they

limit the quantities they buy from local investors with low valuation for the asset and sell to

investors with high valuation, keeping the spread between the prices of assets A and B open,

and earning profits. Of course, as competition among arbitrageurs intensifies, the pressure

to intermediate trades increases and the spread decreases. Hence the model predicts that the

magnitude of mispricings should increase in the concentration of arbitrageurs. Ruf (2011)

finds evidence consistent with this prediction in the commodities options market.

As arbitrageurs’ trades bring prices closer to each other in a permanent manner, ar-

bitrageurs are willing to split up orders to limit their price impact over time and exploit

mispricings as long as possible. Time-variation in the endowment shocks received by local

investors cause changes in the supply of assets that arbitrageurs can arbitrage. Changes in

the supply may be known in advance or be uncertain. The first contribution of the paper

is to provide an interesting laboratory to understand the effects of known (and potentially

time-varying) and risky shocks on the dynamics of asset prices.4 When shocks are constant

over time, corresponding to a constant arbitrage supply, arbitrageurs increase gradually their

positions to limit their price impact, which leads to gradual convergence of prices towards

fundamentals. Hence the arbitrageurs’ strategic considerations can account for the observed

slow movement of capital towards buying opportunities documented after supply shocks

(Oehmke, 2010, Duffie, 2010). Again, an increase in competition reduces this effect, and

increases the speed of convergence of the arbitrage.

When shocks are known to decrease over time, arbitrageurs’ activity leads to sign inver-

4In papers analyzing price impact in other Cournot-based models (e.g. DeMarzo and Urosevic, 2007,
Pritsker, 2009), the supply of the asset is constant. Introducing time-varying shocks is equivalent to consider
a time-varying risky asset supply in these models. The model also allows for uncertainty about future shocks
/ asset supply. See Section 1.3.2 for an analysis of arbitrageurs’ risk-management strategies in the presence
of uncertain shocks.
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sion. Suppose for instance that a large positive shock in market A is followed by a small

positive shock (and vice versa in market B).5 In this case, the equilibrium spread is first pos-

itive and then negative, even if the sign of shocks is unchanged, implying that the same asset

should be more expensive throughout. A-investors, who receive a positive supply shocks,

first sell the asset to hedge their risk. As shocks decrease, they find that they have oversold

the asset, and seek to buy back. Arbitrageurs limit liquidity, pushing the price of asset A

above its expected value. It is then optimal for A-investors to remain excessively short the

asset, as the price of asset is expected to revert to its expected value (on average) when the

asset pays off.

The prediction of sign inversion may shed light on recent anecdotal and empirical ev-

idence. In 2010, the swap spread turned negative for the first time. Bergstresser, Cohen

and Shenai (2011) find that insured municipal bonds became cheaper than similar uninsured

bonds issued by the same city. The present model highlights the role of the market struc-

ture of dealers / arbitrageurs to explain sign inversion in these markets. Further, one can

interpret the decrease in shocks as an easing of supply imbalances or liquidity needs in the

market, which seems to correspond to a post-crisis situation.

If the magnitude of future shocks is uncertain, arbitrageurs face a risky trading oppor-

tunity. Uncertainty about future shocks increases local investors’ willingness to hedge, and

consequently the profitability of the arbitrage. However, arbitrageurs do not necessarily re-

act to an increase in uncertainty by an increase in their positions, even if they tend towards

risk neutrality. In fact, as uncertainty also raises local investors’ reluctance to hold their

assets, arbitrageurs’ price impact increases, and this may prompt them to decrease their

positions. Further I show that even if arbitrageurs increase their positions, their reaction

does not offset local investors’ increased liquidity demand, so that in equilibrium, heightened

uncertainty about future shocks always leads to less efficient pricing. These predictions are

novel relative to the limits of arbitrage and noise trader risk literatures, which focused on the

level rather than the uncertainty of supply imbalances / noise trader risk (see e.g. Shleifer

and Vishny, 1997, Brunnermeier and Pedersen, 2008).

These predictions obtain with a fixed market structure. However rents available from

strategic arbitrage should attract new players over time. Indeed, successful trading strate-

5For the sake of exposition, I assume that shocks are known in advance, i.e. the arbitrage is risk-free.
I show that similar effects obtain when the arbitrage is risky, i.e. when future shocks are random. In this
case, there is an additional effect since arbitrageurs must also adjust their strategies when they learn about
the size of the shock.
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gies or financial innovations tend to attract copycats and imitators. For instance, LTCM’s

relative-value and convergence strategies became increasingly popular as the hedge fund

produced double-digit returns in the 1990s.6 What determines the number of arbitrageurs

active in a given strategy? How does the market structure evolve over time?

The second contribution of the paper is to formally address these questions by i) analyzing

a simultaneous entry game between risk-averse arbitrageurs - the previous literature has

considered risk-neutral arbitrageurs; and ii) analyzing a strategic deterrence game between

incumbent arbitrageurs and new entrants.

My results about simultaneous entry show that allowing for entry does not necessarily

correct the strategic rationing of liquidity (measured as the spread) caused by imperfect

competition among arbitrageurs. The risk-averse arbitrageurs must decide ex-ante whether

to enter (and sink a fixed cost) under uncertainty about the arbitrage profitability. An

increase in average shocks makes the arbitrage more profitable, and increases entry. But

an increase in the volatility of shocks does not necessarily increase entry, in particular if

local investors are sufficiently risk-averse. Indeed, on one hand, a higher volatility makes

the arbitrage more risky, which hurts the risk-averse arbitrageurs, and on the other hand,

it increases local investors’ willingness to hedge their exposure to liquidity shocks (indirect

effect), and thus the arbitrage profitability. The first effect dominates and reduces entry

if the risk-bearing capacity is small (highly risk-averse investors), and / or the market is

concentrated, and / or if volatility is small relative to the average shock (most likely, a

large shock will hit the market). Hence entry depends on the “market structure of risk-

bearing capacity” (Pritsker, 2009). These results imply that, all else equal, the number

of arbitrageurs may first decrease or be stable and then increase along the northeastern

direction of the mean-variance frontier of arbitrage opportunities (Figure 1.1).

Once arbitrageurs are in place, their ability to move prices can help them limit future

entry, in particular if entry costs are high for new arbitrageurs, and even if the arbitrage

is risk-free. Deterring new entrants requires to decrease the profitability of the arbitrage,

i.e. by reducing the spread between A- and B-asset prices more quickly. This contradicts

arbitrageurs’ objective to decrease the spread only gradually. When entry costs are suffi-

ciently large for the entrant, the cost of deterrence is low for incumbents. As entry costs

6Similarly, there is anecdotal evidence that Leland and Rubinstein’s portfolio insurance strategy became
widely imitated in the 1980s:“The LOR principals could do little to prevent rivals from producing similar
portfolio insurance products. (...) the competition accelerated and firms like Morgan Stanley, Bankers Trust,
Chase Investors Management and Kidder Peabody entered the business.” (Kyrillos and Tufano, 1994)
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decrease, arbitrageurs must tackle the mispricing more aggressively ex-ante, which increases

liquidity and the speed of arbitrage. In this sense, the arbitrage is contestable and the mere

threat of entry improves market efficiency. As entry costs decrease further, this deterrence

strategy becomes very costly as incumbent arbitrageurs must bear the cost of their adverse

price impact. As a result, they engage in less aggressive preemptive buying and let the new

arbitrageur enter.

When entry occurs in equilibrium, market liquidity improves along two dimensions. First,

arbitrageurs keep trading more aggressively than without entry threat, which decreases the

spread. This effect is consistent with evidence presented by Tufano (1989), who shows

that intermediaries launching new financial products charge nearly competitive prices even

during the early stages where they enjoy a monopolistic position in the product. Second,

local investors’ current demand becomes more elastic as they rationally anticipate a more

favourable market structure in the future. This leads to an increase in market depth and

shows that with low entry costs, an improvement in market depth should be a leading

indicator of an increase in the number of arbitrageurs. More generally, this result highlights

a key feature of the model: market depth is endogenously determined by the current and

anticipated market structure, as arbitrageurs’ market power and its evolution determine the

risk-sharing opportunities available to local investors, and thus the prices at which they are

willing to absorb arbitrageurs’ trades.

This paper introduces time-varying and uncertain shocks and an endogenous market

structure in models where large investors competing à la Cournot trade with a competitive

fringe of investors (e.g. DeMarzo and Urosevic, 2007, Pritsker 2009).7 The time-variation

in shocks generates time-variation in the arbitrage profitability and encompasses “gradual

arbitrage”, as in Oehmke (2010), with the difference that the market depth is endogenous.

Time variation in shocks also generates a novel sign inversion effect, in which arbitrageurs

prevent prices from converging. Arbitrageurs’ destabilizing behaviour arises as an endoge-

nous response to the deterioration of the arbitrage profitability. This is in contrast to the

predatory trading literature, where arbitrageurs can be destabilizing as a response to the

need of other traders to reduce their positions, or to induce them to do so (Brunnermeier

and Pedersen, 2005, Attari, Mello and Ruckes, 2006, Fardeau, 2011a).

The analysis of arbitrageurs’ entry in the literature has been either informal (e.g. Shleifer

7There is another class of dynamic models of imperfectly competitive trading without competitive fringe:
see Vayanos (2001) and Rostek and Weretka(2011). I draw some comparisons between the two types of
models in Section 1.3.
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and Vishny 1997, Kondor 2009) or based on risk-neutral arbitrageurs (Oehmke, 2010, Zi-

grand, 2004 and 2006). Allowing for risk-averse arbitrageurs generates new effects such as the

non-monotonic relationship between entry and volatility conjectured by Shleifer and Vishny.

More generally, the model shows that entry decisions depend on the interaction between the

market structure and the risk-bearing capacity of all market participants. Pritsker (2009)

highlights the role of the “market structure of risk-bearing capacity” in a related paper about

large investors, but does not consider entry.

Sequential entry of arbitrageurs has - to the best of my knowledge - not been studied

in an asset pricing context. While the literature has traditionally focused on information

asymmetry and traders’ risk-aversion (or inventory effects) as determinants of market depth,

the model highlights market structure and its potential evolution as a new determinant

of market depth. Sequential entry and contestability are the subjects of classic papers in

Industrial Organization (e.g. Fudenberg-Tirole, 1987, Baumol, 1982).8 In a financial market,

it is interesting to see that the anticipations of consumers (here local investors) of the product

(liquidity) play an important role and make the equilibria self-fulfilling. For instance, the

mere anticipation of entry improves market depth, which makes it harder for arbitrageurs to

deter new traders from coming in. In other words, while classic IO papers typically assume

that there exist a representative consumer with a continuum of asset valuation, here the

elasticity of the liquidity demand (price impact) is endogenous. It affects and is affected by

the firms’ (i.e. arbitrageurs) strategic entry decisions.

Some predictions of the model are observationally equivalent to predictions delivered by

limits of arbitrage models.9 In particular, both types of models predict that assets with

identical cash-flows and risks can trade at different prices and that the spread between these

assets should decrease over time. The drivers of these effects are imperfect competition

on one hand, and capital constraints on the other hand, therefore it should be empirically

possible to disentangle these theories. Ruf (2011) shows that both effects matter to explain

the skewness risk premium in options market.

Imperfect competition among financial intermediaries (market-makers) is the subject of

an extensive literature in market microstructure (e.g. Dennert, 1993, Biais, Martimort and

8Note that simultaneous entry is also studied in the literature on non-competitive foundations of general
equilibrium. See Zigrand (2004) and references therein.

9Some examples of this extensive literature include Shleifer and Vishny (1997), Xiong (2001) , Kyle and
Xiong (2001), Gromb and Vayanos (2002, 2009, 2010) and Brunnermeier and Pedersen (2009). A related
strand of literature attempts to explain the well-documented slow movement in capital (Duffie, 2010, and
Duffie and Strulovici, 2010)
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Rochet, 2000). The key difference with these papers is that I assume that all information

is public, which allows me to isolate the effect of market power on liquidity. Instead, Den-

nert considers price competition in a framework were market-makers face adverse selection.

Further, in his model, market-makers post quotes first, while here arbitrageurs compete in

quantities taking local investors’ schedules as given. In Biais et al., market-makers supply

liquidity by posting limit order schedules, whereas in my set-up arbitrageurs submit market

orders (Cournot competition).

I proceed as follows. In section 1.2, I describe the model. I solve for the equilibrium

with a given market structure in Section 1.3. In Section 1.4, I endogenize the number of

arbitrageurs. Section 1.5 concludes. All proofs and figures are in the appendix.

1.2 A model of imperfectly competitive arbitrage

The model features two markets for identical assets (A and B). Some investors (arbitrageurs)

can trade freely across both markets, while others (local investors) are constrained to trade

in only one market, a building block similar to Gromb and Vayanos (2002). A key difference

with this paper is that arbitrageurs are imperfectly competitive and are not financially

constrained.

1.2.1 Set-up

Assets and timeline. The economy has three periods 0, 1 and 2, and consists of two

identical risky assets (A and B) in zero net supply. The risky assets pay off a liquidating

dividend at time 2, D2 = D + ε1 + ε2, where εt are iid normal variables with mean 0 and

variance σ2. The fundamental shocks ε1 and ε2 are realized at time 1 and time 2, respectively,

and are publicly observed. I denote Dt = Et (D2), the conditional expected value of the

dividend. There is also a risk-free asset in perfectly elastic supply with return r normalized

to 0. Trading takes places at time 0 and time 1 and consumption at time 2.

Agents and preferences. The economy is made of two types of traders. First, there are

local investors in markets A and B, each represented by a competitive agent with CARA util-

ity and absolute risk-aversion coefficient a: u
(
Ck

2

)
= − exp

(
−aCk

2

)
, with k = A,B. Second,

there is a finite number n of arbitrageurs indexed by i (i = 1, 2, . . . , n < ∞)). In the basic

version of the model, n is fixed. Later on, I endogenize the number of arbitrageurs and allow
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for n to change endogenously over time through the entry of new arbitrageurs at time 1. Arbi-

trageurs have CARA utility with absolute risk-aversion coefficient b: U (Ci
2) = − exp (−bCi

2),

with i = 1, ..., n. Arbitrageurs have no endowment in the risky assets. Importantly, local

investors are restricted to trade their local risky asset, while arbitrageurs can trade all risky

assets. In other words, markets A and B for the risky asset are completely segmented. All

investors have access to the risk-free asset.

Liquidity / supply shocks. The local investors in market k receive endowment shocks

sk0ε1 at time 1 and sk1ε2 at time 2. I assume that shocks are opposite across markets: sAt =

−sBt = st, for t = 0, 1. The shocks are correlated to the payoff of the risky asset, and

are opposite across markets. Since risky assets are identical and A- and B markets, local

investors could achieve perfect risk sharing by trading with each other in the risky asset.

However market segmentation prevents direct trading between local investors and creates a

trading opportunity for arbitrageurs, who can intermediate trades by buying from investors

with low valuation (in market A) and selling to investors with high valuation (in market B).

Doing so, arbitrageurs will contribute to integrate markets A and B and provide liquidity

to local investors. Thus the endowment shocks create a demand for liquidity and constitute

the “supply” of assets available for arbitrage from the point of view of arbitrageurs.

I consider two situations. In the first situation, all traders know in advance the values of

s0 and s1, i.e. they know the magnitude of the supply. In this case, the trading opportunity

corresponds to a textbook arbitrage since it involves no risk. Allowing for s0 to be different

from s1 helps me understand how changes in supply affect the dynamics of arbitrage. Many

results can be derived in this simple risk-free arbitrage case, in particular gradual arbitrage

and sign inversion. The second situation is closer to a real-life arbitrage opportunity, because

it entails some risk. I assume that the magnitude of the second shock, s1, is random from

the point of view of time 0 for all traders: s1 is normally distributed with mean s̄1 and

variance z2
1 , and is independent of εt. This risky arbitrage case allows me to investigate how

uncertainty affects the dynamics of strategic arbitrage and arbitrageurs’ risk-management

strategies.

Discussion. The framework has two different interpretations. In the first one, arbitrageurs

stand for market-makers providing immediacy for traders with opposite trading motives who

arrive in the market at different times, as in Grossman-Miller (1988). In this interpreta-

tion, assets A and B stand for the same asset in two different subperiods of each time and
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arbitrageurs smooth out the temporary order imbalances by holding the asset in between

subperiods. In the second interpretation, arbitrageurs can be thought of as large hedge funds

or prop trading desks chasing mispricings between identical or quasi-identical assets, such

as on-the-run and off-the-run Treasuries, Siamese stocks (e.g. Royal Dutch and Shell), etc.

Long-Term Capital Management (LTCM) is a standard example of this kind of traders.10

The shocks affecting local investors can stem from institutional or regulatory frictions. For

instance, index trackers and mutual fund managers must rebalance their portfolios following

index additions or deletions because of benchmarking constraints. Negative shocks in one as-

set can force portfolio managers of open-ended funds to sell other assets to meet redemptions,

etc.11

1.2.2 Maximization problems

Local investors. At time 2, local investors consume their entire wealth:

Ck
2 = W k

2 = Y k
1 D2 + Ek

1 , k=A,B

In this equation, Y k
1 and Ek

1 represent investors k’s end-of-period positions in the risky and

risk-free assets at time 1. That is, local investors in market k enter period 2 at which they

only consume with a position Y k
1 in the risky asset and Ek

1 in the risk-free asset.12 I denote

ykt the time t trade in risky asset k and pkt its price. The law of motion of positions is:

Y k
t = Y k

t−1 + ykt for the risky asset and Ek
t = Ek

t−1 − ykt + skt εt+1, for the risk-free asset, for

k = A,B.13 The local investors’ dynamic budget constraint follows:

W k
t+1 = W k

t + Y k
t

(
pkt+1 − pkt

)
+ skt εt+1, k=A,B (1.1)

This equation shows that local investors’ wealth changes either because of capital gains,

Y k
t

(
pkt+1 − pkt

)
, or because of shocks, skt εt+1. The local investors maximize the expected

10LTCM also provide a good illustration of the issue of size and market impact. As Pérold (1999) puts it:
“The firm had also experienced many instances in which prices moved adversely while LTCM was attempting
to exit a position after it had converged, suggesting that the firm’s trades were having a larger market impact”
(than previously).

11Gromb and Vayanos (2010) provide more details and other examples.
12Observe also that at time 2, each market is perfectly liquid, so that pk2 = D2.
13Since local investors have CARA preferences, we can set their initial endowment Ek−1 = 0 without loss

of generality.
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utility of consumption subject to the dynamic budget constraint:

for k = A,B, max
(Y kt )

t=0,1

E
[
u
(
Ck

2

)]
(1.2)

s.t. W k
t+1 = W k

t + Yt
(
pkt+1 − pkt

)
+ skt εt+1

Arbitrageurs. Arbitrageurs face a different budget constraint because they can trade in

both markets. Their final wealth W i
2 is equal to:

W i
2 = Bi

1 +
∑
k=A,B

X i,k
1 D2, i = 1, . . . , n (1.3)

Note that X i,k
t and xi,kt represent the arbitrageur i’s position and trades at time t in asset k,

and are related as follows: X i,k
t = X i,k

t−1 + xi,kt . The position in the risk-free asset evolves as:

Bi
t = Bi

t−1 −
∑

k=A,B x
i,k
t p

k
t . Therefore the dynamic budget constraint is:

W i
t+1 = W i

t +
∑
k=A,B

X i,k
t

(
pkt+1 − pkt

)
, i = 1, . . . , n

As in Gromb and Vayanos (2002), I will focus on equilibria in which arbitrageurs take

opposite positions in each market: for t = 0, 1, xi,At = −xi,Bt = xit. Given that assets A and

B are both in zero net supply, this implies that arbitrageurs do not bear any aggregate risk.14

With opposite positions in markets A and B, the dynamic budget constraint becomes:

W i
t+1 = W i

t +Xt

(
pBt − pAt −

(
pBt+1 − pAt+1

))
= W i

t +Xt (∆t −∆t+1) , i = 1, . . . , n (1.4)

The arbitrageur’s dynamic budget constraint shows that their wealth changes via capital

gains in the arbitrage. The arbitrageurs’ problem is to choose trades xit, t = 0, 1, to maximize

their expected utility of consumption subject to (1.4) and the price schedules for assets A

and B. The price schedules are derived from local investors’ inverted demand schedules, and

imposing market-clearing:

Y k
t +

n∑
i=1

X i,k
t = 0, k = A,B, t = 0, 1 (1.5)

14In the more general case where the supply is different from zero, an additional risk-sharing motive would
emerge along the results presented in the paper.
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The price schedules map the effect of arbitrageurs’ trades into the price in each market. That

is, a price schedule represent the market-clearing price at which the competitive fringe of local

investors in each market is ready to trade all possible quantities submitted by arbitrageurs.

Hence arbitrageurs will internalize their price impact in each market when choosing their

positions in the risky asset. Of course, the specific form of the local investors’ demand

schedules also depends on the liquidity / supply shocks, and in particular, on whether future

shocks are known in advance or are random. In the next section, I derive the equilibrium in

the risk-free and risky arbitrage cases.

1.3 Equilibrium with risk-free and risky arbitrage

In this section, I solve for local investors’ and arbitrageurs’ equilibrium strategies, taking the

number of arbitrageurs as given. When the arbitrage is risk-free, the price dynamics depend

crucially on whether the supply shocks are constant or not. The risky arbitrage case allows

me to analyze in details arbitrageurs’ risk-management strategies.

1.3.1 Risk-free arbitrage

Price schedules. Here I assume that s0 and s1 are positive shocks and are known in

advance by all market participants. As a first step, it is useful to look at the price schedules

faced by arbitrageurs at time 1. In our standard CARA-normal framework, local investors’

demand in market A is:

Y A
1 =

E (D2)− pA1
aσ2

− s1 (1.6)

Local investors in market A experience a positive shock s1, which reduces their demand

for asset A. In market B, local investors have similar demand functions (in pB1 ), except

that they experience an opposite shock, increasing their demand for asset B. Using the

assumption of opposite positions in markets A and B, and imposing market-clearing (1.5),

these demand functions generate the following price schedules pk1 (Q1), where I use as a
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shorthand Q1 =
∑n

i=1X
i
1:

pA1 (Q1) = E1 (D2)− aσ2

[
s1 −

n∑
i=1

X i
1

]
= E1 (D2)− aσ2

[
s1 −

n∑
i=1

xi0 −
n∑
i=1

xi1

]

pB1 (Q1) = E1 (D2) + aσ2

[
s1 −

n∑
i=1

X i
1

]
= E1 (D2) + aσ2

[
s1 −

n∑
i=1

xi0 −
n∑
i=1

xi1

]

Note that we used the assumption that arbitrageurs have no preexisting position in any of

the risky assets, i.e. xi0 = X i
0. Combining the two schedules, we get the following schedule

for the arbitrage spread, ∆1 (Q1) = pB1 (Q1)− pA1 (Q1):

∆1 (.) = 2aσ2

[
s1 −

n∑
i=1

xi0 −
n∑
i=1

xi1

]
(1.7)

The schedule has an intuitive form. The first component, 2aσ2s1 is the price wedge that

would prevail between assets A and B in the absence of trading. That is, A-investors, who

experience a positive liquidity (supply) shock, would have to hold all the additional supply

and would thus value the asset at a discount aσ2s1 relative to its expected payoff E1 (D2).

B-investors would value the risky asset at exactly the opposite premium, as they experience

a negative shock of similar magnitude. Hence in total the price wedge would be 2aσ2s1,

increasing with the risk of the asset, σ2, the risk-aversion of local investors a, and the size of

the liquidity shock s1. The second component of (1.7) represents the impact of arbitrageurs’

trades. Arbitrageurs can bring prices of assets A and B closer by setting up a long position

in the spread (corresponding to a long position in asset A minus a short position in asset B).

Arbitrageurs’ price impact, |∂∆1

∂xi1
| = 2aσ2, depends on local investors’ risk-aversion and the

risk of the fundamental.15 When they are more risk-averse, local investors are more reluctant

to hold the risky asset, and thus will require larger price concessions when trading, resulting

in a larger price impact.

Equilibrium strategies and spreads. To illustrate the strategic choice faced by arbi-

trageurs, note that because arbitrageurs set up opposite positions, their objective at time

1 boils down to maximizing the trading profit, xi1∆1 (.), where ∆1 (.) is given by (1.7) and

depends not only on arbitrageur i’s trade, xi1, but also all other arbitrageurs’ trades
∑
−i x

−i
1 ,

with
∑
−i x

−i
1 + xi1 =

∑n
i=1 x

i
1, and on the positions established at time 0,

∑
i x

i
0. Hence at

time 0, arbitrageurs takes into account the dynamic impact of their own trades as well as of

15I take the absolute value of the derivative as it is more intuitive to compare positive numbers.
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other arbitrageurs’ on the spread. In the appendix, I work backwards to derive arbitrageurs’

optimal trading strategies and obtain the following result:

Proposition 1 In the risk-free case, there is a unique (symmetric) equilibrium in which

arbitrageurs’ trades in market A are:

xi0 = x0 =
1

φn
s0 +

n− 1

(n+ 1)2 φn
s1 (1.8)

xi1 = x1 = − n

(n+ 1)φn
s0 + φ̄ns1, (1.9)

The equilibrium spread is:

∆0 = 2aσ2
[
ψns0 + ψ̄ns1

]
(1.10)

∆1 = 2aσ2

[
− n

(n+ 1)φn
s0 + φ̄ns1

]
(1.11)

with φn =
n3 + 4n2 + 3n+ 2

(n+ 1)2 ; φ̄n =
1

n+ 1
− n (n− 1)

(n+ 1)3 φn

ψn =
n2 + n+ 2

n3 + 4n2 + 3n+ 2
; ψ̄n =

3n2 + 5n+ 2

n3 + 4n2 + 3n+ 2

Gradual arbitrage with constant liquidity shocks (s0 = s1 = s)

To gain intuition into the equilibrium, it is useful to consider the special case s0 = s1 = s,

with s > 0, to fix ideas. Then arbitrageurs’ trades are xi0 = κ0,ns and xi1 = κ1,ns, with for all

n ≥ 1, κ0,n ≡ 1
φn

(
1 + n−1

(n+1)2

)
∈ ]0, 1[ and κ1,n ≡ − n

(n+1)φn
+ φ̄n ∈ ]0, 1[. Further, the total

purchases are:

n∑
i=1

xi0 = nκ0,ns < s and
n∑
i=1

xi1 = nκ1,ns < s

Hence arbitrageurs never fully absorb the asset supply caused by the liquidity shock in each

market. As a result, the spreads between A- and B-asset prices remain strictly positive in

equilibrium:

∆0 = 2aσ2κ̄0,ns > 0, ∆1 = 2aσ2κ̄1,ns > 0
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Why does competition not eliminate the mispricing as soon as n > 1? It can be seen

from the time-1 objective:

max
xi1

xi1∆1 (.) = max
xi1

2aσ2xi1

(
s−

n∑
i=1

xi0 −
∑
−i

x−i1 − xi1

)
(1.12)

For a given liquidity shock s, given other arbitrageurs’ trades
∑
−i x

−i
1 , and initial positions∑

i x
i
0, arbitrageur i has no interest to buy the entire residual supply, s−

∑n
i=1 x

i
0−
∑
−i x

−i
1 ,

for he would then close the spread and make a zero profit on his trade. Instead, his best

response, from the first-order condition of problem (1.12), is to trade half the residual supply:

xi1 =
s−
∑n
i=1 x

i
0−
∑
−i x

−i
1

2
. Since each arbitrageur has the same impact on the price, all arbi-

trageurs play a symmetric role, and in the unique (subgame) equilibrium, all arbitrageurs

trade the same quantity, xi1 =
s−
∑n
i=1 x

i
0

n+1
.

This quantity is negatively related to the arbitrageurs’ first period trades,
∑n

i=1 x
i
0. In-

deed, to keep the spread open, arbitrageurs need to limit their price impact, which is perma-

nent, as shown by equation (1.7). The reason why price impact is permanent is that for local

investors in, say market A, who have a low valuation for the asset, selling the asset to arbi-

trageurs helps insure against the first liquidity shock, but also, to some extent, against the

second liquidity shock. Indeed the second shock is also correlated with the asset payoff (and

has same constant part s). Hence hedging at time 0 can serve as proxy hedging for time 1.

Thus there is some substitutability between insurance (liquidity) received from arbitrageurs

at time 0 and that received at time 1. The fact that the liquidity received by local investors at

time 0 “durably” reduces their hedging demand at time 1 erodes arbitrageurs’ market power.

Hence providing liquidity by intermediating trades across markets bears resemblance to the

provision of a durable good by a monopolist and is subject to similar Coasian dynamics.16

The equilibrium implication of these dynamics is that when the profitability of the arbi-

trage is constant over time (s0 = s1 = s), arbitrageurs increase their positions only gradually.

This results in gradual convergence of prices towards the fundamental, even more so if the

market is particularly concentrated. When competition increases, each arbitrageurs buys

16Coase (1972)’s intuitions about the durable goods problem for a monopoly have been formalized by
Stockey (1981), Bulow (1982) Gul, Sonnenschein and Wilson (1986) and Kahn (1986), among others. In an
asset pricing context, see Vayanos (1999), Kihlstrom (2000), DeMarzo and Urosevic (2007), Pritsker (2009),
and Edelstein, Sureda-Gomilla, Urosevic, and Wonder (2010). Here the fixed horizon of the model works as
a commitment device for arbitrageurs. The discrete trading periods also limits the substitutability between
time 0 and time 1 liquidity. In a full-fledged model, with shrinking time among trading periods and an
infinite horizon, the Coase conjecture would apply and the spread would always be zero.
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(sells) a smaller amount in market A (B). However the aggregate quantity traded in equi-

librium increases, as Figure 1.3 shows. In the limit, arbitrageurs fully intermediate trades

between A- and B-investors and the equilibrium spread converges to zero. The following

corollary summarizes these results:

Corollary 1 Suppose s0 = s1 = s, then

• the spread is always positive and decreases with the number of arbitrageurs at time 0

and time 1: ∂∆t

∂n
< 0, t = 0, 1,

• the spread decreases over time: ∆2 = 0 < ∆1 < ∆0,

• and it decreases faster as n increases:
∂
[

∆1−∆0
∆0

]
∂n

< 0.

• When n→∞, the arbitrageurs absorb the entire liquidity shock at time 0 and time 1,

and the spread converges to zero: limn→∞∆t = 0, t = 0, 1.17

These results generalize the idea of “gradual arbitrage” developed in Oehmke (2010) in a

setting where the price schedules against which arbitrageurs trade are endogenous. Owing

to imperfect competition, arbitrageurs can slow down the speed of arbitrage across markets,

resulting in gradual convergence of prices towards the fundamental value.18 Said differently,

as arbitrageurs will set better prices in the future, it is optimal for local investors to hold

some of the excess supply created by their liquidity shock. As Oehmke points out, this mech-

anism can account for the observed slow reversal of prices towards fundamentals following

shocks documented, for instance, by Mitchell, Pulvino and Stafford (2002) in the convertible

arbitrage market, and Coval and Stafford (2007) in the equity market.

Time-varying price impact. In Oehmke’s model, as in other related papers in the liter-

ature (e.g. Carlin, Sousa-Lobo and Viswanathan, 2007, Brunnermeier and Pedersen, 2005),

arbitrageurs trade against an exogenous price schedule with constant price impact coeffi-

cient.19 With endogenous price schedules, the arbitrageurs’ price impact is no longer constant

over time. It decreases as time passes and depends on the market structure:20

17Note that this result does not depend on the assumption s0 = s1 = s.
18In Oehmke’s model, the arbitrage is risky but arbitrageurs are risk-neutral.
19As some of these models are framed in continuous time, there is also a temporary price impact component

that helps pin down the equilibrium speed of trading.
20This result is general and does not depend on the assumption that shocks are constant over time, or

that shocks are known in advance.
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Corollary 2 Price impact decreases over time, even more so if the market is concentrated

(n small):

• At time 1, arbitrageurs’ price impact is |∂∆1

∂xi1
| = 2aσ2 (i = 1, . . . , n)

• At time 0, the equilibrium spread schedule is

∆0 (Q0) = 2aσ2

[
s0 +

s1

(n+ 1)
− n+ 2

n+ 1

∑
i

xi0

]
, (1.13)

i.e. arbitrageurs’ price impact is |∂∆0

∂xi0
| = 2aσ2 n+2

n+1
> |∂∆1

∂xi1
|.

The spread schedule at time 0 has two components. The first component, 2aσ2
(
s0 + s1

(n+1)

)
,

is the spread that would obtain if arbitrageurs did not trade at time 0 in equilibrium. It is

increasing in s0 and s1, because local investors anticipate that risk-sharing at time 1 will be

limited due to arbitrageurs’ market power. Indeed, an increase in market competitiveness

improves risk-sharing and in the limit eliminates s1. The second component represents the

arbitrageurs’ price impact, aσ2 n+2
n+1

. Two opposite effects determine the evolution of price

impact over time. First, given that new information accrues over time, the conditional

variance of the asset payoff is decreasing over time as uncertainty realizes. This implies that

local investors in each market are “more risk-averse” at time 0 than at time 1. Since the

variance of each innovation εt is constant over time, price impact should be twice as large

at time 0 than at time 1. This is not the case, however, because a second effect tends to

reduce price impact.21 As local investors anticipate that arbitrageurs will provide further

liquidity at time 1, they understand that they will have another trading opportunity to

share risk, and this reduces their effective level of risk-aversion ex-ante. Said differently,

local investors are less desperate to receive liquidity if they anticipate that more liquidity

is coming later on.22 The more concentrated the market is, however, the more rationed

liquidity will be (aσ2 n+2
n+1

is maximal for n = 1), and therefore price impact is higher at

time 0 if the market is concentrated - or, more precisely, expected to remain concentrated.23

Note that at time 1, arbitrageurs’ price impact depends only on risk-aversion and not on

the market structure. This is because at time 2, the asset pays off, which is equivalent to

21It is easy to see that, indeed for any n ≥ 1, 2aσ2 n+2
n+1 < 4aσ2.

22As noted above, these Coasian dynamics crucially depend on the fixed horizon of the model, and arbi-
trageurs’ inability to commit to trade only once.

23In Section 1.4.2, I allow for a new arbitrageur to enter at time 1 upon sinking a fixed cost, therefore
local investors’ expectations about the future number of arbitrageurs determines price impact at time 0.



24 CHAPTER 1. DYNAMIC STRATEGIC ARBITRAGE

restoring perfect liquidity in the market. If the market was perfectly competitive also at

time 1, the market structure adjustment of time 0 price impact would disappear, and price

impact would be constantaσ2 n+2
n+1
→ aσ2.

This dynamic “contamination” of illiquidity from period 1 to period 0 is therefore due to

imperfect competition and the limited risk-sharing that it implies. The same dynamic effect

is present in Rostek and Weretka (2010), who study a setting with n strategic arbitrageurs

and no competitive fringe. Their model, however, predicts that price impact should increase

over time, because only the second effect, stemming from the opportunity to retrade and

diversify risk further in the future, is present. The comparison of our results therefore reveals

that the direction of change of market depth over time - whether it increases or decreases

over time - should depend not only on the market microstructure but also on the uncertainty

surrounding the asset payoff. Here the model predicts that price impact should decrease as

the date of the asset payoff approaches, but even more so if only a few large arbitrageurs are

active in the trade.

Optimal execution with endogenous market depth. An interesting implication of

the time-varying price impact is that a monopolistic arbitrageur does not equally split his

trade across periods: for n = 1, κ0,1 = 2
5
> κ1,1 = 3

10
, i.e. x0 > x1. (More generally, for

an arbitrary number of arbitrageurs, x0 > x1) This is a key difference with the literature

on optimal execution of large orders (e.g. Bertsimas and Lo, 1998), which shows that with

constant price impact, it is optimal for a monopolistic trader to break up orders equally over

time. Thus the model highlights that in concentrated markets, optimal order execution and

market depth are jointly determined and depend on the deep characteristics of the market,

such as investors’ risk-aversion, asset volatility and the market structure.

Sign inversion with changing supply shocks (s0 ≥ 0, s1 ≥ 0)

The case where the supply of arbitrage changes over time brings further insight into the

mechanisms and generates new predictions. First, proposition 1 shows that the time-0 trade

(1.8) depends on both s0 and s1, unless there is a single arbitrageur. This shows that when

competition increases, the pressure to share risk with local investors increases, so that local

investors are able to start hedging their future risk. Note that, independently of the number

of arbitrageurs, the time-0 equilibrium spread always depends on both s0 and s1, because

future certain shocks are immediately reflected in asset prices.
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Sign inversion. Changes in shocks, i.e. variation in the arbitrage supply, generates sign

inversion: when both shocks are positive, ∆1 may become negative, even though s1 ≥ 0.

Remember that a positive shock implies that A-investors should value the asset less than

B-investors, suggesting that ∆1 should be positive. Note from equation (1.10), that ∆0 is

always positive with s0 ≥ 0 and s1 ≥ 0. The sign of the spread can switch over time if the

profitability of the arbitrage deteriorates:

Corollary 3 Suppose that s0 and s1 are positive.

• At time 0, the spread is always positive and decreases with the number of arbitrageurs:
∂∆0

∂n
< 0.

• At time 1:

– The spread is negative if and only if s1 is small enough relative to s0: ∆1 ≤ 0 ⇔
s1 ≤ αns0, with 0 < αn < 1.

The condition for sign inversion is that liquidity shocks decrease sufficiently over time, i.e.

that the arbitrage profitability decreases sufficiently. An interpretation of the condition is

that sign inversion may occur in the aftermath of a large shock, and close to the time where

assets mature, or where convergence occurs for exogenous reasons (e.g. when an on-the-run

bond is close to becoming off-the-run). Hence the model predicts that sign inversion should

occur following periods of low liquidity (or equivalently large price divergence).

To understand the intuition of the mechanism, consider an example in which s0 > 0

and s1 = 0. In this case, local investors in market A initially short the asset, receiving

partial insurance against the positive supply (liquidity) shock from arbitrageurs who limit

the amount they buy thanks to market power. At time 1, since there is no reason to hedge

anymore (s1 = 0), local investors seek to close their hedge by buying back the asset (indeed,

yA1 > 0). However, arbitrageurs continue to limit liquidity at this time, so that local investors

cannot fully close their short position. This pushes the price of asset A above its expected

value. As a consequence, local investors remain short, Y A
1 < 0, as one can see by setting

s1 = 0 in equation (1.6). This is optimal since the price of asset A will (on average) drop

at time 2. (Arbitrageurs are not subject to this effect since they are not exposed to market

risk, taking opposite positions across markets.) Since the opposite must occur in market B,

the price of asset A trades at a premium relative to the fundamental and the price of asset B

at a discount, resulting in a negative spread at time 1. Of course, arbitrageurs earn a profit
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even if the spread sign inverts, because their profit depends on the fact that prices do not

converge and not on the sign. As I show in the proof of Proposition 1, the trading profit at

time 1, x1∆1, is equal to 2aσ2 (s1−
∑n
i=1 x

i
0)

2

(n+1)2 , with x1 =
s1−

∑n
i=1 x

i
0

n+1
and ∆1 = 2aσ2 s1−

∑n
i=1 x

i
0

n+1
.

Hence, arbitrageurs care about the magnitude of the mispricing rather than the sign.

As Lemma 3 shows, s1 does not have to be zero, but small enough relative to s0. Intu-

itively, the need to revert the hedge must simply be large enough for the spread to invert at

time 1. Hence, the time-1 spread can turn negative even though all liquidity shocks imply

that it should be positive. Interestingly, it is precisely when local investors’ demand pres-

sures decrease that arbitrageurs push the spread to invert. Hence it is when asset prices

should converge towards their fundamental value that arbitrageurs cause a breakdown of the

intuitive relationship between A-and-B asset prices. What causes this breakdown is that

arbitrageurs limit liquidity both when local investors need to sell and to buy. Because it is

driven by the variation in the arbitrage profitability, this result is not present in Oehmke

(2010) in which only the initial shock matters.24

This result may shed light on recent puzzling evidence about closely-related assets. Indeed

several standard and intuitive relationships broke down in the aftermath of the 2007-2009

financial crisis. For instance, the 7-and 10-year swap spread turned negative for the first time

in 2010 (Business Week, 23/03/2010). Uninsured municipal bonds became more expensive

than similar insured bonds issued by the same city also in 2010 (Bergstresser et al., 2011).25

The extent of the mispricing, in particular in the municipal bond market, makes standard

explanation implausible. For instance, a negative swap spread may be justified by heightened

concerns about sovereign risk. Similarly, concerns about monoline insurers may reduce the

premium attached to insured bonds to zero. However, it is hard to see how it could generate a

negative premium. Although these explanations may be partially correct, the model offers a

single complementary mechanism based on market structure and easing of demand pressures.

24Specifically, Oehmke considers the time-inconsistent trading strategies of strategic arbitrageurs facing
two exogenous demand curves for the same asset. Since the strategy is solved ex-ante, all results are a
function of the initial liquidity shock, which eliminates the possibility of time variation in the arbitrage
profitability.

25Inflation-protected Treasuries also became cheaper than similar nominal bonds (Pflueger and Viceira,
2011). Although our explanation could be appealing, the timing seems less consistent with our mechanism,
since the sign inversion occurred in 2009, presumably, in the middle of the crisis instead of at the end.
Pflueger and Viceira show that the negative breakeven inflation in the Treasury market can be attributed
to a larger liquidity discount for the TIPS and not to a sign of deflation expectations.
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1.3.2 Risky arbitrage

In this section, I assume that s1 is not known at time 0. Investors only know that it is

normally distributed with mean s̄1 and variance z2
1 . I also make the following assumption

about the parameters:

Assumption 1 a2σ2z2
1 <

(n+1)2

2n+1

Since the second shock is random from the point of view of time 0, the arbitrage is no

longer risk-free. Therefore, even if arbitrageurs can eliminate all fundamental risk by taking

opposite positions in assets A and B, they face uncertainty about the future profitability

of the arbitrage. As in standard noise trader risk models, the potential deepening of the

mispricing is short-lived, and the prices assets A and B converge at time 2 when the assets

pay off. This risky arbitrage case allows me to delve more deeply into the mechanisms and

to analyze arbitrageurs’ risk-management strategies.

Price schedules and equilibrium

At time 1, the problem is not different from the risk-free case. However at time 0, all investors

face uncertainty about the magnitude of the future liquidity shock. I show in the appendix

that at time 0, the spread schedule faced by arbitrageurs is the following:

∆0 (.) = 2aσ2

[
s0 +

s̄1

(n+ 1) ra
− n+ 2

n+ 1
(1 + φa)

∑
i

xi0

]
, (1.14)

with φa =
a2σ2z2

1

(n+ 1)2 ra
and ra = 1− a2σ2z2

1

2n+ 1

(n+ 1)2 (1.15)

There are two key differences with respect to the risk-free case, in which the schedule is given

by equation (1.13), which I reproduce here for convenience: ∆0 (.) = 2aσ2
[
s0 + s1

(n+1)
− n+2

n+1

∑
i x

i
0

]
.

The first part of the schedule, s0 + s̄1
(n+1)ra

, represents the price divergence that would pre-

vail in equilibrium in the absence of trade. Given that ra < 1, we have: s0 + s̄1
(n+1)ra

>

E0

[
s0 + s1

(n+1)

]
, which captures the effect of convexity, as in Jensen’s inequality. The second

part represents arbitrageurs’ price impact. It increases by a factor 1 +φa > 1 relative to the

risk-free case. The increase is larger if the volatility of the liquidity shock z2
1 , fundamental

volatility σ2, or risk aversion a is large. The effect of the market structure, captured by

the term n+2
n+1

, is amplified by the uncertainty about future liquidity shocks. Price impact

increases because local investors require larger discounts to hold their risky asset when future

shocks are random.
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Uncertainty about future liquidity shocks also affects arbitrageurs’ strategies at time 0,

both through their own risk aversion and through the change in the price schedules. The

different channels appear clearly in their value function:

Proposition 2 At time 0, the arbitrageurs’ value function is given by

J i0 = max
xi0

−r−
1
2

b exp

[
−2baσ2

(
xi0∆̂0 + (1− φb)

(
∑

i x
i
0)

2

(n+ 1)2 −
s̄1

(n+ 1)2 rb

(
2
∑
i

xi0 − s̄1

))]

where ∆̂0 =
∆0 (.)

2aσ2
, rb = 1 +

4abσ2z2
1

(n+ 1)2 and φb =
4abσ2z2

1

(n+ 1)2 rb
(1.16)

Arbitrageurs’ value function is made of three components:

1. Their time-0 trading profit 0, xi0∆̂0, i.e. quantity times (normalized) price gap ∆̂.

2. The time-1 continuation profit, in which we can distinguish two parts, depending on

their relation to risk aversion:

(a) The first part, (1− φb)
(
∑
i x
i
0)

2

(n+1)2 , is decreasing in arbitrageurs’ risk aversion b, and

more generally in z2
1 , σ2, and a. Hence I will refer to it as the precautionary (or

hedging) motive. The coefficient φb measures by how much arbitrageurs reduce

their aggressiveness in tackling the arbitrage gap at time 0 for fear of facing too

much risk at time 1. Note that φb depends on the product of a and b because

an increase in local investors’ risk-aversion makes them more reluctant to hold

the risky asset and thus restricts arbitrageurs’ risk-sharing opportunities. The

hedging motive is, perhaps surprisingly, increasing in the total size of previous

trades,
∑

i x
i
0. This is because trading aggressiveness at time 0 works as an

indirect hedge against large shocks at time 1 by reducing the spread permanently.

The strength of the hedging motive also depends on the number of arbitrageurs.

A change in market structure has two conflicting effects:

Corollary 4 At time 1, when the number of arbitrageurs increases, there is

• a business-stealing effect:
∂ 1

(n+1)2

∂n
< 0, which reduces the coefficient 1−φb

(n+1)2 ,

• a co-insurance effect: ∂(1−φb)
∂n

> 0, which increases it.
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The business-stealing effect always dominates the co-insurance effect, i.e.
∂

1−φb
(n+1)2

∂n
<

0.

The business-stealing effect is the standard consequence of stronger competition

in a Cournot setting. The co-insurance effect is positive because as n increases,

risk-sharing becomes more effective: more competition means that arbitrageurs

supply more liquidity and each arbitrageur benefits from this collective effect.

(b) The second part of the time-1 continuation payoff represents the “strategic mo-

tive”:

− s̄1

(n+ 1)2 rb

(
2
∑
i

xi0 − s̄1

)

It is increasing in arbitrageurs’ risk-aversion b and decreasing in previous trades,

as arbitrageurs have an incentive to strategically limit their positions at time 0

to be able to fully exploit the arbitrage opportunity later. The key driver of the

strategic motive is the expected level of arbitrage risk s̄1 instead of the risk of the

arbitrage risk z2
1 , as explained in more details below.

Proposition 3 When arbitrage is risky, there is a unique (symmetric) equilibrium charac-

terized by:

xi0 =
s0 + s̄1

(n+1)ra
− 2s̄1

(n+1)2rb

φn + (n+ 2)φa + 2nφb
(1.17)

xi1 =
s1 −

∑
i x

i
0

n+ 1
(1.18)

The equilibrium spread between asset B and asset A is

∆0 = 2aσ2

[
Φa

(
s0 +

s̄1

(n+ 1) ra

)
+ (1− Φa)

2s̄1

(n+ 1)2 rb

]
, with Φa ∈ [0, 1] (1.19)

∆1 =
2aσ2

n+ 1

[
−n
d
s0 +

(
s1 −

n

(n+ 1)2

(n+ 1) rb − 2ra
drarb

s̄1

)]
(1.20)

with d = φn + (n+ 2)φa + 2nφb.

The time 1 subgame is similar to the risk-free case, thus I focus on time 0 where uncertainty

about future shocks generates a number of interesting effects. By comparing (1.8) and

(1.17), one can see that arbitrageurs equilibrium trades generalize in a very intuitive way.
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To understand the mechanisms, it is helpful to decompose x0 in two terms:

x0 =
s0 + s̄1

(n+1)ra

φn + (n+ 2)φa + 2nφb
−

2s̄1
(n+1)2rb

φn + (n+ 2)φa + 2nφb
(1.21)

The first term shows that arbitrageurs buy a fraction 1
φn+(n+2)φa+2nφb

of the expected spread

that would prevail in the absence of liquidity provision (the maximum spread), s0 + s̄1
(n+1)ra

.

This maximum spread represents the demand for liquidity addressed to arbitrageurs at

time 0. Only part of this demand is served as arbitrageurs’ market power allows them to

ration liquidity. Arbitrageurs serve a smaller fraction of the demand as their risk aversion

b increases, due to precautionary concerns, and as local investors’ risk aversion a increases,

because arbitrageurs have a larger price impact at time 0, which prompts them to scale

back their trade (as captured by the coefficient φa). What is interesting is that arbitrageurs

provide less than a fraction of the maximum spread, since the second term in (1.21) is

negative. The second term captures the effect of the arbitrageurs’ strategic motive. It

becomes more negative as risk-aversion decreases. In the limit, as arbitrageurs become risk-

neutral, the strategic motive is strongest:

when b→ 0, xi0 →
s0 + s̄1

(n+1)ra

φn + (n+ 2)φa
−

2s̄1
(n+1)2

φn + (n+ 2)φa
(1.22)

In fact, the strategic motive is present even in the absence of uncertainty about liquidity

shocks. To eliminate uncertainty, consider the limit case where arbitrageurs are risk-neutral

b→ 0, and uncertainty vanishes z1 → 0. Then x0 converges to (1.8), its equilibrium quantity

when the arbitrage is risk-free (assuming s1 = s̄1):

When z1 → 0, b→ 0, xi0 →
s0 + s̄1

(n+1)

φn
−

2s̄1
(n+1)2

φn
=

1

φn
s0 +

n− 1

(n+ 1)2 φn
s1

Hence in hindsight, this decomposition highlights a fact that was hard to identify when

the arbitrage was risk-free. Arbitrageurs respond to their commitment problem by buying

less than a fraction of the maximum spread, s0 + s1
(n+1)ra

. This reduction, − 2s̄1
(n+1)2rb

, arises

because arbitrageurs strategically refrain from tackling the spread too aggressively at time

0, in the hope that a large shock will increase the local investors’ risk-sharing needs at time

1. Arbitrageurs “speculate” more when the market is more concentrated (n small) and the

expected shock s̄1 is large. Given the partial substitutability between liquidity provision at

time 0 and time 1, arbitrageurs must reduce liquidity provision, i.e. decrease x0, to exploit
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large liquidity needs as much as possible later on.

The strategic motive resembles the standard risk-management mechanism that arises

in models where competitive arbitrageurs face financial constraints. Several papers in the

limits of arbitrage literature (e.g. Shleifer and Vishny, 1997, Gromb and Vayanos, 2002)

show that financially-constrained arbitrageurs refrain from taking on too much risk early on

in order to save capital and be able to exploit potentially large price discrepancies at later

periods. This mechanism is based on the limited amount of capital available to competitive

arbitrageurs in the short-term. Here the effect is related to market power and is a response

to the perfect foresight of local investors, which erodes arbitrageurs’ market power as in

the classic durable goods monopoly problem. Interestingly, the strategic motive is strongest

when arbitrageurs are risk-neutral, precisely when they are most likely to aggressively tackle

arbitrage opportunities.

Since the precautionary and the strategic motives have opposite dependence on arbi-

trageurs’ risk aversion, an increase in b has an ambiguous effect.

Arbitrageurs’ risk aversion and liquidity

According to Friedman (1953), speculators reduce price volatility by smoothing out tempo-

rary price fluctuations. Given that this view implies a contrarian behaviour, it may seem

desirable to have risk-loving arbitrageurs for markets to be efficient. This is no longer the

case when arbitrageurs have price impact: the spread between assets A and B may increase

as arbitrageurs become risk-neutral. On one hand, a decrease in risk aversion increases

arbitrageurs’ trading aggressiveness to tackle the arbitrage. On the other hand, a lower

risk-aversion makes them more likely to engage in strategic “speculation”, as shown by the

following result:

Corollary 5 An increase in arbitrageurs’ risk-aversion may result in them providing more

or less liquidity at time 0. There are two opposite effects:

∂xi0
∂b

= κ

−n (n+ 1)2

(
s0 +

s̄1

(n+ 1) ra

)
︸ ︷︷ ︸

precautionary motive < 0

+ s̄1

(
d+

2n

rb

)
︸ ︷︷ ︸

reduction in strategic motive > 0

 , κ > 0
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The reduction in strategic motive dominates iff s1 is large enough relative to s0:

∂xi0
∂b
≥ 0⇔ s̄1

(
d− n ((n+ 1) rb − 2ra)

rarb

)
≥ n (n+ 1)2 s0

The following lemma shows a special case in which the strategic motive is so strong that a

decrease in risk aversion does lead to an decrease in liquidity provision (and conversely, an

increase in risk aversion leads to higher liquidity):

Lemma 1 Suppose that s0 → 0. If n ≤ 2 and local investors’ risk-aversion a is small

enough (or equivalently, σ2 or z2
1 small enough), then, following a small increase in their

risk-aversion, arbitrageurs provide more liquidity, which decreases the time 0 spread and

increases the expected return of the arbitrage. This effect is stronger if they are not very

risk-averse.

Unsurprisingly, the strategic motive dominates in a very concentrated market, and even

more so if arbitrageurs are not too risk-averse. Note that if s0 is very small, on average, the

spread will decrease between time 0 and time 1, implying a negative return. As b increases,

arbitrageurs increase their trade at time 0, and this reduces the time 0 spread more than

the time 1 spread, leading to a less negative return.

How do arbitrageurs respond to an increase in arbitrage risk?

In the presence of arbitrage risk, it is important to understand whether arbitrageurs’ reac-

tions to changes in risk are stabilizing (i.e. leading to smaller spreads), or destabilizing. In

the limits of arbitrage literature, it is common to study how positions and prices respond to

an increase in “noise trader risk” (Shleifer and Vishny, 1997), or demand pressures / supply

imbalances (Gromb and Vayanos, 2010, Brunnermeier and Pedersen, 2009). It is shown

that arbitrageurs do not necessarily increase their positions ex-ante when they face larger

future shocks, and this may push prices further away from their fundamental values. Here, I

analyze arbitrageurs’ responses to an increase in the level of the future shock, s̄1, and in the

volatility of the shock z1. Surprisingly, the literature on limits of arbitrage has to the best

of my knowledge focused only on the first comparative static (dubbed noise trader risk).

Corollary 6 Following an increase in the expected shock s̄1, arbitrageurs increase their po-

sitions at time 0, but the spread nevertheless increases:
∂xi0
∂s̄1
≥ 0 and ∂∆0

∂s̄1
≥ 0.
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The two parts of the result may seem contradictory, as one would expect the increase in

arbitrageurs’ positions to lead to a smaller spread. It is not the case because an increase in

s̄1 also causes an increase in local investors’ liquidity demand, and arbitrageurs’ response,

albeit positive, is not commensurate with local investors’ increased need for liquidity. This is

in particular due to the fact that an increase in s̄1 increases the profitability of the arbitrage

butt also arbitrageurs’ strategic motive. This result contrasts with predictions in models of

financially-constrained arbitrage, where an increase in positions leads to more efficient prices

(e.g. Shleifer and Vishny, 1997, Brunnermeier and Pedersen, 2009).

Next, it is interesting to understand how arbitrageurs respond to increased uncertainty

about the future profitability of the arbitrage. As one would expect, increased uncertainty

reduces arbitrageurs’ strategic motives and increases their precautionary motives. However,

uncertainty about future profitability matters even when arbitrageurs are risk-neutral, as it

affects local investors’ liquidity demand, as well as arbitrageurs’ price impact.

Corollary 7 Consider the limit case where arbitrageurs are risk neutral, i.e. b → 0. Then

arbitrageurs respond to an increase in arbitrage risk z2
1 by taking larger positions if and only

if volatility is small enough and the expected shock is large enough relative to the current

shock. Otherwise, arbitrageurs decrease their positions.

∂xi0
∂z2

1

≥ 0 ⇔

{
a2σ2z2

1 < cn with cn <
(n+1)2

2n+1

s̄1 ≥ θn,as0

No matter how arbitrageurs respond, the spread always increases following an increase in z2
1:

∂∆0

∂z2
1
≥ 0.

The result shows that even if arbitrageurs are risk-neutral, they may scale down their posi-

tions when uncertainty about arbitrage profitability increases. There are two effects: first,

local investors are demanding more liquidity, as the convexity effect (i.e. the need to insure

against shocks) increases with z1 (see equation (1.14). This increases the arbitrage supply,

which prompts arbitrageurs to increase their positions, but also increases the spread. Second,

an increase in uncertainty steepens local investors’ demand for the asset in each market, as

local investors are more reluctant to hold the asset. This results in larger price impact, which

pushes arbitrageurs to decrease their positions. When volatility is already high, this effect

dominates, and an increase in volatility leads to a reduction in arbitrageurs’ positions. In-

terestingly, whether arbitrageurs increase their positions or not, the spread always increases,
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showing that the increase in liquidity demand always outweighs the increase in arbitrageurs’

positions.

Market power and spread autocorrelation

Arbitrageurs’ activity also implies a number of properties for the behaviour of the spread

between assets A and B. First, one can see in Proposition 3 that at time 0, the spread is a

weighted average (since Φa ∈ [0, 1]) of the maximum spread (s0 + s̄1
(n+1)ra

) and arbitrageurs’

strategic motive. At time 1, the spread is decreasing in the previous shock and reflects

the adjustment between the expected shock s̄1 and its realization s1. Market power also

generates autocorrelation of the spreads at one lag:

Corollary 8 The spread has the following properties:

• Comparative statics: the current shock increases the spread.

∂∆t

∂st
> 0, t = 0, 1

• Serial correlation: suppose s0 is random from the point of view of time -1. Then, when

the number of arbitrageurs is finite, the half spread exhibits negative serial correlation

between time 0 and time 1:

autocov−1

(
∆0

2
,
∆1

2

)
< 0

When perfect competition obtains, the serial correlation vanishes:

lim
n→∞

autocov−1

(
∆0

2
,
∆1

2

)
= 0

Given that arbitrageurs revert trades in proportion of previous shocks to keep the spread

open as long as possible, previous shocks continue to affect the current spread. This generates

serial correlation at one lag. As competition increases, arbitrageurs absorb liquidity shocks

fully in each period, thus serial correlation disappears.
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1.4 Entry

I now turn to endogenize the number of arbitrageurs. I consider ex-ante free entry, as well as

gradual entry. I assume that arbitrageurs only know the distribution of future shocks when

they decide ex-ante. High ex-ante uncertainty about the profitability may in this regard

reduce risk-averse arbitrageurs’ incentive to enter if there is enough risk-bearing capacity.

When new arbitrageurs can enter gradually, arbitrageurs already active can deter new ones

from entering, perpetuating market concentration. The mere threat of future entry, however,

can improve liquidity.

1.4.1 Simultaneous (free) entry

I assume that arbitrageurs must sink a set-up cost I at time -1 to enter the market. Through-

out this section and the next, one can think of I as the investments required to set up an

arbitrage desk, gather information, subscribe to data-providers, etc.

Risk-free arbitrage

For the sake of tractability, I consider the special case s0 = s1 = s and assume that from the

perspective of time -1, s is random and normally distributed with mean s̄ and variance z2.

Proposition 4 At time -1, the arbitrageurs’ expected utility from entering the market (net

of entry cost) is:

J̃ i0 = − 1√
1 + 4abσ2z2πn

exp

[
−b
(

2aσ2πns̄
2

1 + 4abσ2z2πn
− I
)]

(1.23)

J̃ is decreasing in n. Thus there exists n∗, defined as the first integer such that{
J̃ (n∗) ≥ −1

J̃ (n∗ + 1) < −1

Note that as long as I is not too large, arbitrageurs will enter the trade even if there will

be no liquidity shock on average, i.e. even if s̄ = 0. This is because the random nature

of local investors’ liquidity shocks (from the point of view of time -1) creates “optionality”

in the trade, and this induces arbitrageurs to enter. Since J̃ is decreasing in n, there is a
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single Nash equilibrium in the free-entry game. The equilibrium number of arbitrageurs n∗

depends on the characteristics of the segmented markets as follows:

Corollary 9 There is more entry into markets characterized by large arbitrage risk and /

or risk-averse local investors: n∗ increases with s̄, a, and σ2 and decreases with I.

The effect of an increase in the volatility of the arbitrage risk, z, is ambiguous:

• n∗ decreases with z when the market is initially concentrated, or if local investors

(or arbitrageurs) are sufficiently risk-averse, or equivalently, if the asset is sufficiently

risky, and increases in the opposite situations.

• Hence markets that are likely to be illiquid from an ex-ante perspective attract fewer

arbitrageurs.

Arbitrageurs prefer to enter in markets in which the arbitrage gap is large (on average).

However, facing an increasing uncertainty about the size of the arbitrage gap may lead to

more or less entry depending on the level of risk-aversion of investors and arbitrageurs in

the economy. Intuively, uncertainty can be desirable because it increases the “optionality”

of the trade, but at same time, it can be costly because arbitrageurs are risk-averse. I

show in the proof of the corollary that a key driver of the comparative static is the variable

θ = 2abσ2πn, which measures the risk-bearing capacity of the market. If the market has a

small risk-bearing capacity, an increase in the volatility of shocks may discourage arbitrageurs

from entering. Because the concentration of the market is also a (negative) determinant of

risk-bearing capacity, the same applies if the initial number of arbitrageurs is small.26 The

dependance on n highlights the fact that there are both strategic substitutabilities (business-

stealing) and strategic complementarities (co-insurance) between arbitrageurs. Note that

this result does not depend on the entry cost: the effect is present even when I → 0.27

Intuitively, if the market cannot absorb enough risk, arbitrageurs will be reluctant to enter.

Thus, the markets that are the most likely ex-ante to be illiquid (high volatility of arbitrage

risk, and low risk-bearing capacity) are those in which arbitrageurs enter the least. However,

the picture is not entirely bleak because, as shown above, a high level of arbitrage risk attracts

arbitrageurs, which then exert a corrective force on market liquidity:

26One can imagine a situation in which, at t = −1a, all investors believe that the volatility of the arbitrage
risk is z and the number of entrants is determinant. Then at t = −1b, investors learn that the volatility is
actually z

′
> z. The corollary states that if the market was concentrated at −1a, it will be even more at

−1b. Intuitively, the presence of many arbitrageurs has a positive externality in terms of risk-absorption.
27As I decreases, there is more and more entry. However, an increase in the uncertainty about the

profitability of the arbitrage dampens the effect of a reduction in entry costs.
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Corollary 10 Entry of arbitrageurs counters the effect of an increase in local investors’

risk-aversion (or equivalently volatility of the fundamental) on the spread:

d∆0

da
= 2σ2︸︷︷︸

>0

[
ψn∗s0 + ψ̄n∗s1

]
+ 2aσ2

∂ψn∗
∂a︸ ︷︷ ︸
<0

s0 +
∂ψ̄n∗

∂a︸ ︷︷ ︸
<0

s1



Oehmke (2010) derives results that are similar in spirit. He finds, however, that illiquid

markets attract less arbitrageurs, taking the coefficient of short-term price impact as a

measure of illiquidity. Here, an increase in local investors’ risk-aversion makes the market

more illiquid but also attracts more arbitrageurs. An increase in a in my model would

correspond to an increase in the coefficient of permanent price impact in Oehmke’s model.

Combining the two previous results, we can predict what kind of risk-return profile is

most attractive to arbitrageurs. The number of arbitrageurs unambiguously increases with

the average magnitude of the mispricing s̄. However, there is a non-monotonic relation

between entry and the volatility of liquidity shocks z. I show in the proof of Corollary 9 that

an increase in volatility reduces the equilibrium number of arbitrageurs if

z2 ≤ s2 − 1

4abσπn

Hence for z small enough, an increase in volatility reduces entry. The constraint is looser (i.e.

one can meet the constraint with larger volatility z), if risk-aversion (a or b) is high or the

fundamental is risky (high σ) or the market very concentrated (small n, leading to a large

πn). Figure 1.1 illustrates the analysis. It shows that for a high enough level of volatility

(z ≥ z∗), there should be more arbitrageurs as one goes in the northeastern direction of the

risk-return diagram. In this region, entry plays a corrective role against illiquidity (caused

by large shocks and large uncertainty). It is the opposite in the left-hand side of the graph.

In this region, the number of arbitrageurs should be about stable as one goes towards the

northeast, since two forces work in opposite directions: large shocks (on average) attract

more arbitrageurs, while an increase in volatility reduces entry. The cutoff z∗ increases as

the market structure of risk-bearing capacity in the market becomes weaker and converges

to s̄ as risk-aversion increases.
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s̄

zz = s̄z∗

Lower risk-bearing capacity

More entry

Ambiguous effect

Figure 1.1: Entry as a function of the risk-return profile of the arbitrage

Risky arbitrage

In this section, I assume that the first shock, s0, is unknown at time -1, when arbitrageurs

must decide or not to invest and that it is randomly distributed: s0 ∼ N (s̄0, z
2
0). The

expected utility of entering the market, net of entry cost, is given in the following proposition.

Proposition 5 At time 0, arbitrageurs’ certainty equivalent is given by

CEi
0 = π0s

2
0 + π1s

2
1 + π0,1s0s̄1 (1.24)

At time -1, arbitrageurs’ expected utility, net of entry cost, is:

Ĵ i0 = −
exp

[
−η
(
π0,1(s̄0s̄1− η2π0,1s̄21z

2
0)+π0s̄20

1+2ηπ0z2
0

+ π1s̄
2
1

)]
exp (bI)√

rb (1 + 2ηπ0z2
0)

, with η = 2abσ2 (1.25)

Although the expected utility can be calculated in closed form, it is hard to produce

general comparative statics or monotonicity results as the coefficients π0, π1 and π0,1 are
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complex functions of the parameters. Instead, I investigate some numerical examples.

Numerical examples. Figures 1.5, 1.6 and 1.7 show comparative statics of the endoge-

nous number of arbitrageurs with respect to risk-aversion, and the level and volatility of

arbitrage risk. The figures show that Ĵ is decreasing in the number of arbitrageurs, ensuring

that there is a unique equilibrium to the entry game. Arbitrageurs respond positively to an

increase in local investors’ risk-aversion, or equivalently, in the volatility of the risky assets.

The sensitivity to the level and volatility of the arbitrage risk is more complex and seems to

be different across periods. For instance an increase in s̄0 seems to increase n∗ more than

an increase in s̄1. This seems intuitive, because local investors have more opportunities to

handle future shocks than the immediate shock. The comparative statics with respect to

the volatility of the liquidity shocks at time 0 and time 1 are interesting. An increase in z0

seems to play the same role as z in the risk-free case: it may decrease the number of entrants,

as shown in panel a of Figure 1.7, or increase it (panel b), depending on the risk-bearing

capacity of the market.28 Intuitively, the volatility of the first shock is undiversifiable, since

there is no trading at time −1, thus the risk-bearing capacity of the market plays a key

role in arbitrageurs’ entry decisions. An increase in the volatility of the second shock, z1,

however, seems to have an unambiguous positive effect on n∗. In this case, arbitrageurs can

manage risk ex-ante by trading in the risky asset. Figure 1.8 puts this analysis in perspective

by comparing the impact on n∗ of different parameters in the risk-free and risky arbitrage

cases. For the comparison to make sense, I set the level and risk of arbitrage risk to be

equal from an ex-ante perspective. Namely, I set z2 = z2
0 + z2

1 . When the total volatility

of the arbitrage risk increases, whether it comes from z0 or z1 makes a difference. In the

risk-free case, if z2 increases from 1 to 3, n∗ tends to decrease (for other parameter values,

there could be an increase, see Corollary 9). In the risky case, if the increase in volatility is

matched through an increase in z0, the effect is similar: n∗ tends to decrease (panel a). If it

is matched by an increase in z1, the effect is opposite n∗ unambiguously increases (panel b).

1.4.2 Gradual entry and strategic deterrence

I the previous section, I analyzed which markets are likely to attract arbitrageurs ex-ante. In

practice, there are many reasons for financial markets to be concentrated at the early stages

of their development (e.g. because of financial innovation, learning, uncertainty etc.), but one

could expect the degree of competition to increase over time as strategies become copied and

28Note however, that it is much harder to obtain the case in which the number of entrants increases: the
variance must be multiplied by 10, while risk-aversion of market participants is divided by 3.
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rents lure new players in. This is particularly true in the financial industry, where trading

strategies are difficult to patent, and personnel mobility, as well as business relationships (e.g.

with broker-dealers and other counterparties) make it hard to keep strategies secret. For

instance, there is anecotal evidence that LTCM’s strategies were widely copied on Wall-Street

following the fund’s high returns between 1994 and 1997.29 Similarly, portfolio insurance

strategies became widely popular in the 1980s, as they were easy to copy and implement.30

To assess whether and when concentration is likely to persist, I now assume that there

are n arbitrageurs in place at time 0 (incumbents) and that at time 1, a new arbitrageur

may enter upon sinking a fixed cost, I. For simplicity, I focus on the risk-free arbitrage case

and assume that the liquidity schocks are identical at time 0 and 1: s0 = s1 = s. The new

arbitrageur (indexed by n + 1) will enter if her expected payoff at time 1 is larger than the

entry cost:

2aσ2

(
s−

∑n
j=1 x

j
0

)2

(n+ 2)2 ≥ I (1.26)

However, as equation (1.26) shows, because the new arbitrageur enters with a lag, the

expected payoff depends on the previous trade by the n incumbents. It may be in the

incumbents’ interests to decrease the rents available at time 1 in order to prevent entry

(deter). When entry costs are low, this can however be significantly costly, as incumbents

must alter their trading strategies and tackle the spread more aggressively at time 0 than

they would otherwise do. Hence incumbents may as well choose to accommodate and let the

new arbitrageur enter. The following result describes the equilibrium.

Equilibrium

Proposition 6 Suppose that s0 = s1 = s and define ρ =
√

I
2aσ2 .

If there is a monopolist arbitrageur at time 0, the new arbitrageur enters at time 1 if and

only if ρ < ρ̂. If ρ > ρ̂bmk, the incumbent arbitrageur can deter at no cost.

If there is an oligopoly of n ≥ 2 arbitrageurs at time 0:

• If ρ ∈
]
0, ρ
]
, incumbent arbitrageurs accommodate and the new arbitrageur enters.

29See Perold (1999) and Lowenstein (2000).
30Kyrillos and Tufano (1994) note: “the basic ideas underlying the product were well described in the

academic literature and could not be patented”.
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ρ ρ̄ ρbmk
ρ

Entry

Mult.

Eq.

No entry

but contestable

No entry,

not contestable

Figure 1.2: Equilibrium with sequential entry and strategic deterrence

• If ρ ∈ ]ρ̄,∞), incumbents deter the new arbitrageur from entering. If ρ > ρbmk > ρ̄,

the incumbents deter the new arbitrageur at no cost.

• if ρ ∈
]
ρ, ρ̄
]
, the two equilibria coexist.

The equilibrium has a very intuitive form, summarized in Figure 1.2. When entry costs

are low (or the arbitrage is very profitable because of high local investors’ risk-aversion or

equivalently large volatility of the fundamental), incumbents accommodate and the new

arbitrageur enters at time 1. Given the low entry costs, deterring would carry a large

opportunity cost. Indeed note that if entry costs are particularly high (ρ > ρbmk or ρ > ρ̄bmk

in the monopoly case)), there is no need for incumbents to deter.

When there is an oligopoly of incumbents, the two types of equilibria may coexist. The

multiplicity of equilibria stems from a coordination problem between arbitrageurs at time

0. For instance, when his current competitors decide to deter the new arbitrageur, an

incumbent may decide between altering his optimal strategy to avoid losing market power,

or sticking to it and keep the same market structure. Local investors play an interesting

role for the outcome of the game, even though they take prices as given: if they anticipate

entry, their liquidity demand at time 0 decreases, because they expect the market to be

more competitive in the future. One can see this by comparing the price schedule for the

spread between both assets faced by arbitrageurs at time 0. I show in the appendix that

if local investors anticipate entry, the price impact coefficient decreases from n+2
n+1

to n+3
n+2

.

This optimal delaying of liquidity demand adds a self-fulfilling flavour to the equilibrium

that generates the multiplicity: the anticipation of entry by local investors makes it harder

for an incumbent to decrease the spread and deter the entrant, which, in turn, makes the

anticipation more likely to realize.

When does entry occur in equilibrium? Proposition 6, shows that entry costs are the

key driver of the equilibrium. But the thresholds ρ, ρ̄ and ρbmk are functions of the liquidity
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shocks s and the number of incumbent arbitrageurs n. Hence it is possible to calculate the

likelihood that the market remain concentrated as a function of the number of incumbent ar-

bitrageurs. The model delivers an interesting prediction regarding the persistence of market

concentration over time:

Corollary 11 If I, a, σ, s and n are such that ρ < ρ, i.e. entry occurs in equilibrium,

then, all else equal, a decrease in the number of incumbent arbitrageurs n does not modify

the equilibrium.

If parameters are such that ρ ≥ ρ̄, i.e. the incumbent arbitrageurs deter at no cost in

equilibrium, then all else equal, a decrease in the number of incumbent arbitrageurs can shift

the equilibrium towards entry, multiple equilibria, or deterrence. The more concentrated the

market initially is, the more likely it is that the equilibrium remains deterrence (assuming

uniform distribution for ρ).

Intuitively, there are two effects driving this comparative statics. On one hand, a smaller

number of incumbents means that there are larger rents available, which for a given entry cost

will make entry more profitable for the new arbitrageur. On the other hand, a small number

of incumbent arbitrageurs makes coordination on deterrence easier to achieve. Figure 1.11

illustrates the second effect: I plot the likelihood of the accommodate and deter equilibria,

assuming that the variable ρ is uniformly distributed between 0 and ρbmk, i.e. I normalize

entry cost to be always sufficiently low, so it is not possible to deter at no cost. The graph

shows that concentration benefits coordination among incumbents to deter new entrants: the

light-shaded grey area, which represents the deter equilibrium, is largest when n is small.

To take into account the first effect, I construct a different comparative statics. Starting

from given entry costs, number of incumbents and determinants of arbitrage profitability,

I compare the equilibrium that results from an increase in market concentration for the

different regions given in Proposition 6. Since ρ is decreasing in n, for a given level of entry

cost such that ρ < ρ, an increase in market concentration can only widen the region in

which entry is the equilibrium. In this region, the first effect always dominate. Given that

the other thresholds ρ̄, ρbmk are also decreasing in n, it is not necessarily the case when the

initial situation is that ρ ≥ ρ̄ or ρ ≥ ρbmk. A new equilibrium may arise following an increase

in market concentration.

To calculate the probability of the new equilibrium, consider the following example where

ρ ≥ ρbmk (n) for a given level entry costs, volatility, liquidity shock and number of incum-

bents. I assume that ρ is uniformly distributed between ρbmk (n) and ρbmk (n− 1), with
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ρbmk (n) < ρbmk (n− 1), and calculate the thresholds ρ (n− 1) and ρ̄ (n− 1). I find that

ρbmk (n) < ρ̄ (n− 1) and ρ̄ (n) < ρ (n− 1), which implies that the equilibrium must shift if

ρ ∈
[
ρbmk (n) , ρ̄ (n− 1)

[
or ρ ∈

[
ρ̄ (n) , ρ (n− 1)

[
. Using the uniform distribution assumption

for ρ, I then calculate the probability of shifting to entry, multiple equilibria or remaining

a deterrence equilibrium. My calculations show that the probability of remaining in the

deterrence equilibrium increases as the market becomes more concentrated. For instance,

when the number of arbitrageurs decreases from 4 to 3, and 3 to 2, the probabilities of the

different equilibria are given in Table 1.1. Note that the assumption that ρ’s distribution

Table 1.1: Probability of equilibrium change if ρ > ρbmk

Probability From n=4 to n=3 From n=3 to n=2
Switch to Entry 0.44 0.41

Switch to Multiple 0.14 0.10
Remain Deterrence 0.42 0.49

has an upper bound understates the likelihood that the equilibrium remains deterrence.

Overall, the key insight from Corollary 11 is that when entry costs are sufficiently low, the

first effect dominates, and a decrease in market concentration makes it (all else equal) even

more profitable for a new arbitrageur to enter. Instead, if entry costs are high enough, the

second effect dominates and as the market becomes more concentrated, then the probability

of remaining in the deterrence equilibrium increases as arbitrageurs are able to coordinate

on deterring.

Implications for liquidity and predictions

Since reducing the available rents require to decrease the spread, strategic deterrence leads

to an improvement in liquidity along several dimensions, provided entry costs are sufficiently

low:

Corollary 12 Liquidity, measured by the spread, improves at all dates for any ρ < ρbmk.

Liquidity measured by the price impact coefficient (“Kyle’s lambda”) improves at time 0 for

any ρ ≤ ρ.

The speed of convergence towards the fundamental value is higher than in the benchmark

case without entrant if ρ ≤ ρ.

Panel (c) of Figure 1.11 plots the time-0 spread as a function of ρ. A similar pattern would

emerge at time 1. If there is entry, the spread remains strictly positive as I assumed that
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there is only one entrant.31 Corollary 12 shows that liquidity improves in terms of the spread,

the price impact and speed of convergence if and only if ρ < ρ, i.e. when there is entry in

equilibrium. Hence the model predicts that faster price convergence and a deeper market

should lead the increase in the number of traders. If entry is simply a threat, the model

predicts only a decrease in the spread. When arbitrageurs deter the entrant, the spread

exhibits surprising properties:

Corollary 13 For ρ ∈
[
ρ̄, ρbmk

[
, the spread increases with the entry cost I at all dates and

with the number of arbitrageurs at time 0, and is independent of the liquidity shock s.

A decrease in entry costs can cause a discontinuous increase in liquidity (measured by

the spread and the price impact).

Based on Corollary 13, the model predicts that when entry costs are in the middle range (i.e.

when the market can be contested), the spread should be higher at time 0 in more competitive

markets. The intuition for this result is that more competition exhausts rents available for

the entrant, meaning that the incumbents need not decrease the spread as intensively at time

0. Of course, on this interval, there is substitutability between the size of entry costs and the

deterrence, meaning that the spread will decrease the lower the entry costs are. Because of

the multiplicity of equilibria, there is an interval in which the equilibrium is undetermined. A

small decrease in entry costs can then lead to downward, discontinuous jump in the spread,

as illustrated by Figure 1.11.

1.5 Conclusion

In this chapter, I study an asset pricing model in which market segmentation and demand

pressure effects cause the prices of two identical assets to diverge. Only a small number of

strategic arbitrageurs can exploit this price difference and internalize their impact on asset

prices. I show that this results in rationing of liquidity, a gradual convergence of prices

towards fundamentals, and, when the demand pressures decrease, an inversion of the spread

between the two assets. I also highlight the role of the market structure of risk-bearing

capacity, i.e. the interaction between the market structure and the risk-bearing capacity of

the economy, as a determinant of asset prices dynamics and the arbitrageurs’ entry decisions.

31With an arbitrary number of potential entrants, the spread would certainly be lower. Discontinuities
due to integer issues may however prevent the spread from falling to 0, even when the entry costs converge
to 0.
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The model shows that arbitrageurs do not necessarily enter more aggressively in markets

with more volatile price differences, although this increases potential rents from liquidity

provision. This holds in particular if the market structure of risk-bearing capacity is not

strong enough. Another interesting conclusion is that the mere threat of entry can improve

liquidity (i.e. reduce price differences), and that the prospect of future entry also improves

market depth ex-ante.

An important feature of real-world arbitrage this chapters abstracts from is that trading

requires capital. In the next chapter, I study how the market structure interacts with

financial constraints. I focus on the case of constant profitability and show that relative to a

competitive market, a monopolistic arbitrageur provides less liquidity but also operates with

less capital in equilibrium. As a result, when capital is scarce in the economy, the monopoly

may provide more liquidity than the competitive market at certain dates. These results

stress the importance of analyzing arbitrage as a strategic choice for our understanding of

capital markets.
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1.6 Proofs and Figures

1.6.1 Two useful results

Lemma 2 Let (p, q) ∈ R2 with p 6= q and consider the (n, n) matrix

Mn =


p q · · · q

q p · · · q
...

...
. . .

...

q q · · · p


Mn is invertible and its inverse is given by:

M−1
n =

1

(p− q) (p+ (n− 1) q)


p+ (n− 2) q −q · · · −q

−q p+ (n− 2) q · · · −q
...

...
. . .

...

−q −q · · · p+ (n− 2) q



Proof. Mn being a square matrix with independent lines and columns, it is invertible.

It is straightforward to check that Mn.M
−1
n = M−1

n .Mn = I.

Lemma 3 Let (A,B) ∈ R2 and X ∼ N (µ, σ2), then

E
(
exp

(
−AX2 +BX

))
=

exp (y)√
2Aσ2 + 1

,with y = B2σ2+2µ(B−Aµ)
2(2Aσ2+1)

.

Proof. Since X is normally distributed:

E
(
exp

(
−AX2 +BX

))
=

∫ ∞
−∞

exp (−Ax2 +Bx) exp
(
− (x−µ)2

2σ2

)
σ
√

2π
dx

=

∫ ∞
−∞

exp
(
−2Aσ2+1

2σ2 x2 + µ+σ2B
σ2 x− µ

2σ2

)
σ
√

2π
dx
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Rewrite the exponential in the integrand as exp
(
− (x−m)2

2z2

)
exp (y). This gives, by identifi-

cation of the terms:

1

2z2
=

2Aσ2 + 1

2σ2
⇒ z2 =

σ2

2Aσ2 + 1
m

z2
=
µ+Bσ2

σ2
⇒ m =

µ+Bσ2

2Aσ2 + 1

This implies that m2

2z2 − y = µ2

2σ2 , i.e. y = B2σ2+2µ(B−Aµ)
2(2Aσ2+1)

. Thus,

E
(
exp

(
−AX2 +BX

))
=

exp (y)√
2Aσ2 + 1

∫ ∞
−∞

exp
(
− (x−m)2

2z2

)
z
√

2π
dx =

exp (y)√
2Aσ2 + 1

1.6.2 Risk-free arbitrage

Proposition 1

Proof. At each date, going backward, I first solve for the demand of local investors in

markets A and B, and then solve for the arbitrageurs’ optimal trades.

Time 1 - local investors’ problem It is enough to solve for the demand of local

investors in market A, as market B is the symmetric case, thus I drop the superscript A. At

time 1, W2 = E1 + Y1D2 = E0 − y1p1 + s1ε2 + Y1D2. s1 is revealed to all agents at time 1.

The local investors’ maximization problem is

V1 = max
y1

E (W2) = max
y1

− exp

(
−a
(
E0 − y1p1 + Y1D1 −

aσ2

2
(Y1 + s1)2

))

From the FOC, Y1 + s1 =
D1 − p1

aσ2
(1.27)

Using market-clearing, pA1 = D1 − aσ2

(
s1 −

n∑
i=1

X i,A
1

)
(1.28)

By analogy, pB1 = D1 − aσ2

(
−s1 −

n∑
i=1

X i,B
1

)
(1.29)

Arbitrageurs’ problem at time 1
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Starting from arbitrageurs’ wealth at time 2 given by equation (1.3), and using the

assumption of opposite positions, we can rewrite wealth as:

W i
2 = Bi

0 + xi1
(
pB1 − pA1

)
= Bi

0 + 2aσ2xi1

(
s1 −

n∑
i=1

X i
1

)
,

where the second line of the maximization problem comes from equations (1.28) and (1.29).

Note that by an abuse of notation, I use i both as a counting variable and to

refer to arbitrageur i. Arbitrageurs maximize their expected utility of wealth, thus:

J i1 = max
xi1

E

[
u

(
Bi

0 + 2aσ2xi1

(
s1 −

n∑
i=1

X i
1

))]

We can write
∑n

i=1X
i
1 =

∑n
i=1X

i
0 +
∑n
−i x

−i
1 +xi1 =

∑n
i=1 x

i
0 +
∑n
−i x

−i
1 +xi1, where −i denote

all arbitrageurs but arbitrageur i, and solve for the zero of the first-order condition for each

arbitrageur i:

2xi1 +
∑
−i

x−i1 = s1 −
n∑
i=1

xi0, i = 1, . . . , n

thus, xi1 +
n∑
i=1

xi1 = s1 −
n∑
i=1

xi0, i = 1, . . . , n

Stacking the n equations together and using matrix notation gives:

Anx̃1 =

(
s1 −

n∑
i=1

xi0

)
I,

where An is an (n, n) matrix with 2’s on the diagonal and 1’s elsewhere, x̃1 is a (n, 1) vector

of trades, x̃−1
1 = (x1

1, . . . , x
n
1 ) and I is the identity matrix. We can then use Lemma 3 to find

A−1
n , invert the system and get the equilibrium trade at time 1,

xi1 =
s1 −

∑
i x

i
0

n+ 1
, i = 1, . . . , n (1.30)

Then, plugging equation (1.30) into (1.28) and arbitrageur i’s objective function gives the
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equilibrium price and value function in the time 1 subgame:

pA1 = D1 − aσ2 s1 −
∑n

i=1 x
i
0

n+ 1

J i1 = u

(
Bi

0 + 2aσ2 (s1 −
∑n

i=1 x
i
0)

2

(n+ 1)2

)

Similarly, plugging the previous expression for pA1 into (1.27) gives the local investors’ equi-

librium certainty equivalent in the subgame:

CE1 = E0 + Y0p1 + Y1 (D1 − p1)− aσ2

2
(Y1 + s1)2

= E0 + Y0p1 +
aσ2

2

(s1 −
∑n

i=1 x
i
0)

2

(n+ 1)2 − aσ2s1
s1 −

∑n
i=1 x

i
0

n+ 1

with E0 = E−1 − x0p0 + s0ε1 = −x0p0 + s0ε1, for simplicity.

Time 0 - local investors

Going backward and using the expression for their certainty equivalent and for E0, the

A investors’ problem is:

V0 = max
y0

−E exp

(
−a

(
−y0p0 + Y0p1 +

aσ2

2

(s1 −
∑

i x
i
0)

2

(n+ 1)2 − aσ2s1
s1 −

∑
i x

i
0

n+ 1
+ s0ε1

))

Hence, evaluating the expectation,

V0 = max
y0

− exp−a
(
−y0p0 + Y0

(
D − aσ2 s1 −

∑
i x

i
0

n+ 1

)
− aσ2

2
(Y0 + s0)2

)
. exp−a

(
aσ2

2

(s1 −
∑

i x
i
0)

2

(n+ 1)2 − aσ2

2
s1
s1 −

∑
i x

i
0

n+ 1

)
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From the first-order condition,

aσ2 (Y0 + s0) = D − aσ2 s1 −
∑

i x
i
0

n+ 1
− p0

i.e. p0 = D − aσ2 s1 −
∑

i x
i
0

n+ 1
− aσ2s0 + aσ2

∑
i

xi0 by market-clearing

i.e. p0 = D − aσ2

(
s0 +

s1

n+ 1

)
+
n+ 2

n+ 1
aσ2

∑
i

xi0

By analogy, pB0 = D + aσ2

(
s0 +

s1

n+ 1

)
− n+ 2

n+ 1
aσ2

∑
i

xi0

where I also used the fact that xit = xi,At = −xi,Bt for the last equation. The spread between

A and B is thus

∆0 = pB0 − pA0 = 2aσ2

(
s0 +

s1

n+ 1
− n+ 2

n+ 1

∑
i

xi0

)

Time 0 - Arbitrageurs

Using this expression for ∆0 and Bi
0 = Bi

−1 −
∑

k=A,B x
i,k
0 pk0 = −x0∆0 (again I assume

that Bi
−1 = 0 for simplicity and wlog in this setting), arbitrageur i’s problem is:

J i0 = max
xi0

−E0 exp−b

(
2aσ2xi0∆̂0 + 2aσ2 (s1 −

∑
i x

i
0)

2

(n+ 1)2

)
, with ∆̂0 = ∆0

2aσ2

= max
xi0

− exp−b

(
2aσ2xi0

(
s0 +

s1

n+ 1
− n+ 2

n+ 1

∑
i

xi0

)
+ 2aσ2 (s1 −

∑
i x

i
0)

2

(n+ 1)2

)

From the first-order condition,

s0 +
s1

n+ 1
− n+ 2

n+ 1

(
n∑
i=1

xi0 + xi0

)
=

2

(n+ 1)2

(
s1 −

n∑
i=1

xi0

)
, i = 1, . . . , n

i.e.
n+ 2

n+ 1
xi0 +

n2 + 3n

(n+ 1)2

n∑
i=1

xi0 = s0 +
n− 1

(n+ 1)2 s1

Stacking the n equations together and solving for the equilibrium using Lemma 3, I get after

some simple algebra:

xi0 =
s0

φn
+

n− 1

(n+ 1)2

s1

φn
, with φn = n3+4n2+3n+2

(n+1)2
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The equilibrium quantities for xi1, ∆0 and ∆1 follow from plugging xi0 into (1.30) and the

price schedules.

Corollary 2

This result is proved in the proof of Proposition 1.

Corollary 1

Proof. If s0 = s1 = s, then after some algebra, we get:

∆0 =
4n2 + 6n+ 4

n3 + 4n2 + 3n+ 2︸ ︷︷ ︸
κ̄0,n

s

∆1 =
n+ 2

n3 + 4n2 + 3n+ 2︸ ︷︷ ︸
κ̄1,n

s

Clearly, for any n ≥ 1, ∆0 > ∆1 > 0 = ∆2, and ∂∆t

∂n
< 0 (t=0,1). Further, ∆1

∆0
= n+2

4n2+6n+4
is

decreasing in n and limn→∞∆t = 0(t = 0, 1).

In the more general case with s0, s1, limn→∞ φn = 0 implies that ∆0 and ∆1 converge to

0 when n becomes large.

Corollary 3

Proof. The first comparative statics is straightforward.

For the second part of the result, note that ∆1 ≤ 0 iff s1 ≤ n3+2n2+n
n3+4n2+3n+2

s0 ≡ αns0. The

RHS is smaller than s0 for any n.

I now calculate the first derivative of ∆1 with respect to n:

∂
(

n
(n+1)φn

)
∂n

= −n
4 + 2n3 + n2 − 4n− 2

(n3 + 4n2 + 3n+ 2)2

and
∂φ̄n
∂n

= −n
6 + 6n5 + 20n4 + 46n3 + 37n2 + 16n+ 2

(n+ 1)2 (n3 + 4n2 + 3n+ 2)2

Hence ∂∆1

∂n
≥ 0 ⇔ κns0 ≥ s1, with κn = n6+4n5+6n4−9n2−12n−2

n6+6n5+20n4+46n3+37n2+16n+2
. Clearly, κ1 < 0 and

∀n ≥ 2, 0 < n6 + 4n5 + 6n4 − 9n2 − 12n − 2 < n6 + 6n5 + 20n4 + 46n3 + 37n2 + 16n + 2,

thus if n ≥ 2, κn ∈ ]0, 1[.
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1.6.3 Risky arbitrage

Proposition 2

Proof. At time 1, the problem is similar to the risk-free arbitrage case. From the proof

of Proposition 1, recall that:

pA1 = D1 − aσ2 s1 −
∑n

i=1 x
i
0

n+ 1

J i1 = u

(
Bi

0 + 2aσ2 (s1 −
∑n

i=1 x
i
0)

2

(n+ 1)2

)

CE1 = E0 + Y0p1 + Y1 (D1 − p1)− aσ2

2
(Y1 + s1)2

= E0 + Y0p1 +
aσ2

2

(s1 −
∑n

i=1 x
i
0)

2

(n+ 1)2 − aσ2s1
s1 −

∑n
i=1 x

i
0

n+ 1

Hence, after rearranging terms,

CE1 = E0 + Y0

(
D + aσ2

∑n
i=1 x

i
0

n+ 1

)
+ aσ2 (

∑n
i=1 x

i
0)

2

(n+ 1)2

−aσ2s1

(
Y0

n+ 1
− n

n+ 1

∑
i

xi0

)
− aσ2 2n+ 1

2 (n+ 1)2 s
2
1 (1.31)

with E0 = −y0p0 + s0ε1.

Time 0 - local investors

At time 0, the local investors in market A solve the following problem:

V0 = max
y0

Es1,ε1 [− exp (−a (CE1))]

Es1,ε1 [− exp (−a (CE1))] = − exp

[
−a

(
−y0p0 + Y0

(
D + aσ2

∑n
i=1 x

i
0

n+ 1

)
+ aσ2 (

∑n
i=1 x

i
0)

2

(n+ 1)2

)]

.Es1,ε1
[
exp

(
−a
(
−aσ

2

2
(Y0 + s0)2 − aσ2s1

(
Y0

n+ 1
− n

∑
i x

i
0

(n+ 1)2

)
− aσ2 2n+ 1

2 (n+ 1)2 s
2
1

))]

By Lemma 3, and setting −A = a2σ2 2n+1
2(n+1)2 , B = a2σ2

(
Y0

n+1
− n

∑
i x
i
0

(n+1)2

)
, µ = s̄1 and σ2

x = z2
1 ,
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we have:

E
[
exp

(
−As2

1 +Bs1

)]
= r

− 1
2

a exp

[
1

2ra
C

]
(1.32)

with C = a4σ4z2
1

(
Y0

n+ 1
− n

(n+ 1)2

∑
i

xi0

)2

+ 2s̄1a
2σ2

((
Y0

n+ 1
− n

(n+ 1)2

∑
i

xi0

)
+ s̄1

2n+ 1

2 (n+ 1)2

)
and ra = 1− a2σ2z2

1

2n+ 1

(n+ 1)2

Thus investors in market A solve the following problem:

max
y0

−r−
1
2

a exp−a

(
−x0p0 + Y0

(
D + aσ2

∑
i x

i
0

n+ 1

)
+ aσ2 (

∑
i x

i
0)

2

(n+ 1)2 −
aσ2

2
(Y0 + s0)2

)

. exp−a

(
−a

3σ4z2
1

2ra

(
Y0

n+ 1
− n

∑
i x

i
0

(n+ 1)2

)2

− aσ2s̄1

ra

(
Y0

n+ 1
− n

∑
i x

i
0

(n+ 1)2 +
2n+ 1

2 (n+ 1)2 s̄1

))

The FOC yields

D + aσ2

∑
i x

i
0

n+ 1
− aσ2 (X0 + s0)− a3σ4z2

1

(n+ 1) ra

(
X0

n+ 1
− n

∑
i x

i
0

(n+ 1)2

)
− aσ2s̄1

ra
= p0

By market-clearing: Y0 = −
∑

i x
i
0, since x0 = X0 by the assumption of zero net supply of

the asset and that arbitrageurs do not initially hold the risky asset. After regrouping terms,

this gives:

p0 = D − aσ2

(
s0 +

s̄1

(n+ 1) ra

)
+ aσ2n+ 2

n+ 1
(1 + φa)

∑
i

xi0 (1.33)

with φa =
a2σ2z2

1

(n+ 1)2 ra

By symmetry, the price schedule faced by arbitrageurs in market B is:

pB0 = D + aσ2

(
s0 +

s̄1

(n+ 1) ra

)
− aσ2n+ 2

n+ 1
(1 + φa)

∑
i

xi0 (1.34)

Arbitrageurs’ problem at time 0
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Arbitrageurs’ value function:

J i0 = max
xi0

E
[
u

(
Bi

0 + 2aσ2 s1 −
∑

i x
i
0

(n+ 1)2

)]
= max

xi0

−E

[
exp−b

(
xi0∆0 + 2aσ2 s

2
1 − 2s1

∑
i x

i
0 + (

∑
i x

i
0)

2

(n+ 1)2

)]
(1.35)

Using Lemma 3, I get

E
[
exp

(
− 2abσ2

(n+ 1)2 s
2
1 +

4abσ2
∑

i x
i
0

(n+ 1)2

)]
=

r
− 1

2
b exp−b

(
−8a2bσ4z2

1 (
∑

i x
i
0)

2

(n+ 1)4 rb
− s̄1

(n+ 1)2 rb

(
4aσ2

∑
i

xi0 −
2aσ2

(n+ 1)2 s̄1

))
(1.36)

From equations (1.33) and (1.34), I get ∆0 = 2aσ2
(
s0 + s̄1

(n+1)ra
− n+2

n+1
(1 + φa)

∑
i x

i
0

)
. De-

noting ∆̂0 = ∆0

2aσ2 , and using equations (1.35) and (1.36), and rearranging terms gives the

value function stated in the proposition.

Corollary 4

Proof. Direct from Proposition 2.

Proposition 3

Proof. Using Proposition 2, the first-order condition gives, for all i ∈ {1, ..., n}:

s0 +
s̄1

(n+ 1) ra
− n+ 2

n+ 1
(1 + φa)

(∑
i

xi0 + xi0

)
+ 2 (1− φb)

∑
i x

i
0

(n+ 1)2 − 2
s̄1

(n+ 1)2 rb
= 0

Stacking the n equations together and using Lemma 2 to solve for the equilibrium, gives,

after some algebra:

xi0 =
s0 + s̄1

(n+1)ra
− 2s̄1

(n+1)2rb

φn + (n+ 2)φa + 2nφb
(1.37)

Note that the facts that 1− φb < 1 and n+2
n+1

(1 + φa) >
n+2
n+1

> 1 ensures that the maximand

is concave in xi0, which guarantees that the optimum is a maximum.

Using equations (1.33) and (1.37), one can get the equilibrium price of asset and the
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spread between assets B and A:∑
i

xi0 =
n

d

[
s0 +

s̄1

(n+ 1) ra
− 2s̄1

(n+ 1)2rb

]
pA0 = D − aσ2

(
s0 +

s̄1

(n+ 1) ra

)
+ aσ2n+ 2

n+ 1
(1 + φa)

∑
i

xi0

⇒ pA0 = D − aσ2Φas0 − aσ2Φa
s̄1

(n+ 1) ra
− 2aσ2 (1− Φa)

s̄1

(n+ 1)2 rb

with Φa = 1− n (n+ 2)

(n+ 1) d
(1 + φa)

d = φn + (n+ 2)φa + 2nφb

Note that Φa = 1− n (n+ 2) (1 + φa)

(n+ 1) (φn + (n+ 2)φa + 2nφb)

=
n2+n+2
n+1

+ n (n+ 2)φa + 2n (n+ 1)φb

(n+ 1) (φn + (n+ 2)φa + 2nφb)

The second equation follows from the definition of φn given in Proposition 2. Since (n+ 1)φn >
n2+n+2
n+1

, Φa ∈ [0, 1].

Corollary 5

Proof. From the expression of xi0 given in Proposition 3,

∂xi0
∂b

=
∂

∂b

[
s0 + s̄1

(n+1)ra

φn + (n+ 2)φa + 2nφb

]
− 2

∂

∂b

[
s̄1

(n+1)2rb

φn + (n+ 2)φa + 2nφb

]

I first calculate the second term in brackets.

First, note that (n+ 1)2rb = (n+ 1)2 + 4abσ2z2
1

Thus
s̄1

(n+ 1)2 rb
=

s̄1

4abσ2z2
1 [1 + f (b)]

, with f (b) = (n+1)2

4abσ2z2
1

⇒ ∂

∂b

1

(n+ 1)2 rb
= − 1

(4abσ2z2
1)

2

4aσ2z2
1

[1 + f (b)]2
= − 1

4ab2σ2z2
1 [1 + f (b)]2

(1.38)
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Second,
∂φb
∂b

=
∂

∂b

(
1

1 + f (b)

)
= − f ′ (b)

[1 + f (b)]2

Noting that f ′ (b) = − (n+ 1)2

b24aσ2z2
1

= −f (b)

b

gives
∂φb
∂b

=
f (b)

b [1 + f (b)]2
(1.39)

Hence, using equations (1.38) and (1.39), and the notation d = φn+(n+ 2)φa+2nφb, gives:

∂

∂b

s̄1
(n+1)2rb

φn + (n+ 2)φa + 2nφb
=

s̄1

d2

[
− d

4ab2σ2z2
1 [1 + f (b)]2

− 2nf (b)

b [1 + f (b)]2 (n+ 1)2 rb

]
= − s̄1

4ab2σ2z2
1d

2 [1 + f (b)]2

(
d+

2n

rb

)
(1.40)

The second line follows from the fact that f(b)

b(n+1)2 = 1
4ab2σ2z2

1
. I now turn to the first term in

brackets:

∂

∂b

[
s0 + s̄1

(n+1)ra

φn + (n+ 2)φa + 2nφb

]
= −

2nφ
′

b

(
s0 + s̄1

(n+1)ra

)
d2

= −
2nf (b)

(
s0 + s̄1

(n+1)ra

)
bd2 [1 + f (b)]2

(1.41)

Comibining equations (1.41) and (1.40), noting that f(b)
b

= (n+1)2

4ab2σ2z2
1

and rearranging terms

gives:

∂xi0
∂b

=
1

2ab2σ2z2
1 [1 + f (b)]2 d2

[
−n (n+ 1)2

(
s0 +

s̄1

(n+ 1) ra

)
+ s̄1

(
d+

2n

rb

)]
The rest of the corollary follows immediately.

Lemma 1

Proof. The result follows as a limit case of two lemmata:

Lemma 4 It holds that:

i) The sign of
∂xi0
∂b

is independent of b.

ii) If n ≤ 2, d+ 2n
rb
− n(n+1)

ra
> 0 if a2σ2z2

1 is small enough. Thus, in this case,
∂xi0
∂b
≥ 0 is

equivalent to s̄1
s0

large enough if s0 > 0, and is always satisfied if s0 ≤ 0.

iii) If n > 2 or n ≤ 2 and a2σ2z2
1 is large enough,

∂xi0
∂b
≥ 0 is equivalent to s̄1

|s0| small

enough for s0 < 0, and is never satisfied if s0 > 0.
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iv)
∂xi0
∂b
≥ 0 ⇒ ∂2xi0

∂b2
≤ 0.

Proof. Recall from Corollary 5 that

∂xi0
∂b

= κ

[
−n (n+ 1)2

(
s0 +

s̄1

(n+ 1) ra

)
+ s̄1

(
d+

2n

rb

)]
with κ = 1

2ab2σ2z2
1d

2[1+f(b)]2
. Hence the sign of the derivative depends on the expression in

parenthesis. Given that d = φn + (n+ 2)φa + 2nφb, the terms in b are given by

2nφb +
2n

rb
= 2n

4abσ2z2
1

(n+ 1)2 rb
+

2n

rb

=
2n

rb

(
1 +

4abσ2z2
1

(n+ 1)2

)
=

2n

rb
rb = 2n

This proves i).

As a consequence, one can write:

d+
2n

rb
−n (n+ 1)

ra
= φn+(n+ 2)φa−

n (n+ 1)

ra
+2n = φn+2n+

(n+ 2) a2σ2z2
1 − n (n+ 1)3

(n+ 1)2 ra

Developing and rearranging the terms,

d+
2n

rb
− n (n+ 1)

ra
=

3n3 + 8n2 + 5n+ 2

(n+ 1)2 +
(n+ 2) a2σ2z2

1 − n (n+ 1)3

(n+ 1)2 ra

=
−n4 + 5n2 + 4n+ 2− n(6n3+18n2+14n+4)

(n+1)2 a2σ2z2
1

(n+ 1)2 ra

Note that if n = 1, the numerator equals 10 − 42
4
a2σ2z2

1 . From Assumption 1, a2σ2z2
1 <

4
3
.

Hence, d+ 2n
rb
− n(n+1)

ra
≥ 0 iff a (or σ2 or z2

1) is small enough. The same applies if n = 2. If

n > 2, −n4 + 5n2 + 4n+ 2 < 0, thus d+ 2n
rb
− n(n+1)

ra
< 0. ii) and iii) follow.

Finally, I compute the second derivative of xi0 with respect to b:

∂2xi0
∂b2

=
−2nr′bs̄1

r2
b
− κ′b

(
−n (n+ 1)2

(
s0 + s̄1

(n+1)ra

)
+ s̄1

(
d+ 2n

rb

))
κ2

It is easy to see that r′b > 0. Recall that κ = 2ab2σ2z2
1d

2 [1 + f (b)]2, with f (b) = (n+1)2

4abσ2z2
1
.

b2 [1 + f (b)]2 increases with b. Further, d2 and rb increase with b. Hence, κ increases with
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b. Given that
∂xi0
∂b
≥ 0 ⇔ − n (n+ 1)2

(
s0 + s̄1

(n+1)ra

)
+ s̄1

(
d+ 2n

rb

)
≥ 0,

∂xi0
∂b
≥ 0 implies

∂2xi0
∂b2
≤ 0. This proves iv).

Lemma 5 Define the expected return of arbitrage r0,1 ≡ E
[

∆1

∆0
− 1
]
, then if


∂xi0
∂b
≥ 0

s̄1 ≥ s0
n+2
n+1

(1+φa)− 1
(n+1)ra

, then
∂r0,1

∂b
≥ 0

Proof. Recall from the proof of Proposition 3 that

∆0 = 2aσ2

[
s0 +

s̄1

(n+ 1) ra
− n+ 2

n+ 1
(1 + φa)

∑
i

xi0

]

∆1 =
2aσ2

n+ 1

(
s1 −

∑
i

xi0

)

Thus using the definition of r0,1:

∂r0,1

∂b
≥ 0 ⇔

∑
i

∂xi0
∂b

(
s0 +

s̄1

(n+ 1) ra

)
− n+ 2

n+ 1
(1 + φa)

∑
i

xi0

+
n+ 2

n+ 1
(1 + φa)

∑
i

∂xi0
∂b

s̄1 −
∑

i x
i
0

n+ 1
≥ 0

⇔
∑
i

∂xi0
∂b

(
−s0 −

s̄1

(n+ 1) ra
+
n+ 2

n+ 1
(1 + φa) s̄1

)
≥ 0

Note that
n+ 2

n+ 1
(1 + φa)−

1

(n+ 1) ra
=

(n+ 2) (n+ 1)2 ra + a2σ2z2
1 (2n2 + 4n+ 3)− (n+ 1)3

(n+ 1)3 ra

=
n (n+ 1)2 − (n− 1) a2σ2z2

1

(n+ 1)3 ra

Thus n+2
n+1

(1 + φa) − 1
(n+1)ra

> 0 ⇔ a2σ2z2
1 < n(n+1)2

n−1
. Note that (n+1)2

2n+1
< n(n+1)2

n−1
, hence

Assumption 1 implies that n+2
n+1

(1 + φa) − 1
(n+1)ra

> 0. Therefore if
∂xi0
∂b
≥ 0 and s̄1 >

s0
n+2
n+1

(1+φa)− 1
(n+1)ra

, then the derivative is positive .

The results of Lemma 1 obtain by taking s0 → 0 in Lemmata 4 and 5.
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To plot Figure 1.10, I calculate E (∆1)−∆0. The following lemma gives two useful results:

Lemma 6 When s0 → 0, ∆0 > 0.

If n ≤ 2, E (∆1) |s0→0 ≥ 0

∀n ≥ 1, E (∆1 −∆0) |s0→0 =
2anσ2 [(n+ 2) (1 + φa)− 1]

(n+ 1)2 d

(
1

ra
− 2

(n+ 1) rb

)
s̄1

Proof. The first result follows taking the limit of ∆0 given in Proposition 3, when s0 → 0.

For the second result, let’s start from equation (1.20):

E (∆1) =
2aσ2

n+ 1

[
−n
d
s0 +

(
1− n

(n+ 1)2 d

(
n+ 1

ra
− 2

rb

))
s̄1

]

We can prove that 1 − n
(n+1)2d

(
n+1
ra
− 2

rb

)
∈ [0, 1] when n ≤ 2. Let’s show first that 1 is an

upper bound. Skipping some lines of algebra, I get:

1− n

(n+ 1) dra
+

2n

(n+ 1)2 drb
< 1 ⇔ −4abσ2z2

1

n+ 1
− 2 (2n+ 1)

(n+ 1)2 < n− 1

The second inequality is always verified. Second, 1− n
(n+1)dra

+ 2n
(n+1)2drb

> 0 is equivalent to

(n+1)2

n
d > n+1

ra
− 2

rb
. Given that d = φn+(n+ 2)φa+2nφb = φn+(n+ 2)

a2σ2z2
1

(n+1)2ra
+2n

4abσ2z2
1

(n+1)2rb
,

the inequality is equivalent to

(n+ 1)2 φn
n

+
(n+ 2) a2σ2z2

1 − n (n+ 1)

(n+ 1)2 ra
+

2 (1 + 4abσ2z2
1)

(n+ 1)2 rb
> 0

The third term is clearly positive. Thus it is sufficient that the sum of the first two terms is

positive. Using the definition of φn, the sum of the first two terms is equal to:

(n+ 1)2 φnra + (n+ 2) a2σ2z2
1 − n (n+ 1)

nra
=

(n3 + 4n2 + 3n+ 2)
(

1− 2n+1
(n+1)2a2σ2z2

1

)
+ (n+ 2) a2σ2z2

1 − n (n+ 1)

nra
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The numerator is n3 + 3n2 + 2n+ 2 + a2σ2z2
1

(
n+ 2− (2n+ 1) (n3 + 4n2 + 3n+ 2)

(n+ 1)2

)
> 0

⇔ a2σ2z2
1 <

(n+ 1)2 (n3 + 3n2 + 2n+ 2)

2n (n3 + 4n2 + 3n+ 1)

Note that
(n+1)2(n3+3n2+2n+2)

2n(n3+4n2+3n+1)
− (n+1)2

2n+1
=

(n+1)2(−n3+n2+3n+2)
2n(2n+1)(n3+4n2+3n+1)

. This expression is strictly

positive for n = 1, and n = 2, and negative for n > 2. Hence for n ≤ 2, Assumption 1

implies that 1− n
(n+1)dra

+ 2n
(n+1)2drb

> 0, which implies that E (∆1) |s0→0 ≥ 0.

Finally, I calculate the expected change of the spread E (∆1 −∆0) using equations (1.19)

and (1.20):

E (∆1 −∆0) = 2aσ2

[
1

n+ 1

(
1− n

(n+ 1) dra
+

2n

(n+ 1)2 drb

)
−
(

Φa

(n+ 1) ra
+

2 (1− Φa)

(n+ 1)2 rb

)]
s̄1

− 2aσ2

(
n

(n+ 1) d
+ Φa

)
s0

Recall that Φa = 1− n(n+2)(1+φa)
(n+1)d

, we have:

E (∆1 −∆0) |s0→0 =
2anσ2 [(n+ 2) (1 + φa)− 1]

(n+ 1)2 d

(
1

ra
− 2

(n+ 1) rb

)
s̄1

Corollary 6

Proof. From the expression of the equilibrium spread (1.19), ∂∆0

∂s̄1
= 2aσ2

[
Φa

(n+1)ra
+ 2(1−Φa)

(n+1)2rb

]
>

0 since Φa ∈ ]0, 1[. Similarly, from equation (1.17),

∂xi0
∂s̄1

=
1

d

(
1

(n+ 1) ra
− 2

(n+ 1)2 rb

)
,with d = φn + (n+ 2)φa + 2nφb

Replacing ra and rb by their expressions, and rearranging terms, this simplifies into:

∂xi0
∂s̄1

=
n− 1 +

4abσ2z2
1

n+1
+ 2aσ2z2

1
2n+1

(n+1)2

d
> 0, for any n ≥ 1

Corollary 7

Proof. Since both the denominator and the numerator of xi0 depend on z2
1 , I first

calculate the derivative of each part. Starting from the expression of the equilibrium trade
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xi0 given by (1.17), and the definition of ra, φa, rb and φb given by equations (1.15) and

(1.16), we get:

∂ra
∂z2

1

= −a2σ2 2n+ 1

(n+ 1)2 < 0;
∂φa
∂z2

1

=
a2σ2 (n+ 1)2 r1 + a2σ2 2n+1

(n+1)2a2σ2z2
1

(n+ 1)2 r2
a

=
a2σ2

(n+ 1)2 r2
a

> 0

∂rb
∂z2

1

=
4abσ2

(n+ 1)2 > 0,
∂φb
∂z2

1

=
4abσ2 (n+ 1)2 rb − 4abσ2

(n+1)2 4abσ2z2
1

(n+ 1)4 r2
b

=
4abσ2

(n+ 1)2 r2
b

> 0

This implies that the derivative of the numerator of xi0 is:

∂

s̄1
(n+1)ra

− 2s̄1
(n+1)2rb

∂z2
1

=
s̄1

n+ 1

[
∂r−1

a

∂z2
1

− 2

n+ 1

∂r−1
b

∂z2
1

]
=

s̄1

n+ 1

[
(2n+ 1) a2σ2

(n+ 1)2 r2
a

+
8abσ2

(n+ 1)3 r2
b

]

Similarly, the derivative of the denominator of xi0 is:

∂ (φn + (n+ 2)φa + 2nφb)

∂z2
1

=
(n+ 2) a2σ2

(n+ 1)2 r2
a

+ 2n
4abσ2

(n+ 1)2 r2
b

Thus combining both derivatives and using the notation d = φn + (n+ 2)φa + 2nφb, I get:

∂xi0
∂z2

1

=

ds̄1
n+1

[
(2n+1)a2σ2

(n+1)2r2
a

+ 8abσ2

(n+1)3r2
b

]
−
(
s0 + s̄1

(n+1)ra
− 2s̄1

(n+1)2rb

)(
(n+2)a2σ2

(n+1)2r2
a

+ 2n 4abσ2

(n+1)2r2
b

)
d2

Thus
∂xi0
∂z2

1
≥ 0 iff

ds̄1

n+ 1

[
(2n+ 1) a2σ2

(n+ 1)2 r2
a

+
8abσ2

(n+ 1)3 r2
b

]
≥
(
s0 +

s̄1 ((n+ 1) rb − 2ra)

(n+ 1)2 rarb

)(
(n+ 2) a2σ2

(n+ 1)2 r2
a

+ 2n
4abσ2

(n+ 1)2 r2
b

)

Now let’s consider the limit case where arbitrageurs become risk-neutral, b → 0. The

previous condition becomes:

∂xi0
∂z2

1

≥ 0 ⇔ db→0s̄1

n+ 1

(2n+ 1) a2σ2

(n+ 1)2 r2
a

≥
(
s0 +

s̄1 (n+ 1− 2ra)

(n+ 1)2 ra

)
(n+ 2) a2σ2

(n+ 1)2 r2
a
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Since db→0 = φn + (n+ 2)φa, we can rearrange terms and get:

If b→ 0,
∂xi0
∂z2

1

≥ 0 ⇔
(

(2n+ 1) (φn + (n+ 2)φa)

(n+ 1) (n+ 2)
− n+ 1− 2ra

(n+ 1)2 ra

)
︸ ︷︷ ︸

Θ

s̄1 ≥ s0

After a simple calculation, I get Θ > 0 iff a2σ2z2
1 < cn ≡ (n+1)2

2n+1
(n+1)(2n+1)φn+n+3−(n+1)2

(n+1)(2n+1)φn+n+3
.

Clearly, (n+1)(2n+1)φn+n+3−(n+1)2

(n+1)(2n+1)φn+n+3
< 1, thus cn <

(n+1)2

2n+1
. Hence there are two cases:

• If cn ≤ a2σ2z2
1 <

(n+1)2

2n+1
, then Θ < 0 and

∂xi0
∂z2

1
< 0

• If 0 < a2σ2z2
1 < cn, then Θ > 0 and

∂xi0
∂z2

1
≥ 0 iff s1 > Θ−1s0

In the result, I use the notation θn,a = Θ−1.

To derive the comparative statics of the spread, I start from the expression of the spread

schedule (1.14), and get:

∂∆0

∂z2
1

= 2aσ2

∂
(
s0 + s̄1

(n+1)ra

)
∂z2

1

− n+ 2

n+ 1
(1 + φa)

∂ (
∑n

i=1 x
i
0)

∂z2
1

− n+ 2

n+ 1

n∑
i=1

xi0
∂φa
∂z2

1


When b→ 0, this gives:

∂∆0

∂z2
1

=
2n+ 1

(n+ 1)3 r2
a

a2σ2s̄1 −
n+ 2

n+ 1
(1 + φa)

ds̄1
n+1

a2σ2 2n+1
(n+1)2r2

a
−
(
s0 + s̄1(n+1−2ra)

(n+1)2ra

)
(n+2)a2σ2

(n+1)2r2
a

d2

−n+ 2

n+ 1

a2σ2

(n+ 1)2 r2
a

n
(
s0 + s̄1(n+1−2ra)

(n+1)2ra

)
d

After rearranging terms, I get:

∂∆0

∂z2
1

= αa2σ2s̄1 + βa2σ2

(
s0 +

s̄1 (n+ 1− 2ra)

(n+ 1)2 ra

)
,with
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α =
2n+ 1

(n+ 1)3 r2
a

− (n+ 2) (2n+ 1)

(n+ 1)4 r2
ad

(1 + φa) =
2n+ 1

(n+ 1)4 r2
ad

[
n3 + 2n2 + n

n+ 1
+ (n+ 2) (n− 1)φa

]
> 0

β =
(n+ 2)2 (1 + φa)

(n+ 1)3 r2
a

− n (n+ 2)

(n+ 1)3 r2
ad

=
n+ 2

(n+ 1)3 r3
ad

(n+ 2)φn − n︸ ︷︷ ︸
>0

+φa (n+ 2) (φn + (n+ 2)φa + n+ 2)


Hence with α and β strictly positive, the derivative is positive.

Corollary 8

Proof. Follows from Proposition 3.

1.6.4 Entry

Simultaneous (free) entry

Risk-free arbitrage Proposition 4

Proof. From Proposition 1, I calculate the arbitrageurs’ certainty equivalent in equilib-

rium. Skipping a few lines of algebra, this gives, assuming w.l.o.g. that Bi
0 = 0:

CEi
0 = 2aσ2

[
ω0s

2
0 + ω1s

2
1 + ω0,1s0s1

]
with ω0 =

n4 + 3n3 + 6n2 + 5n+ 2

(n3 + 4n2 + 3n+ 2)2

ω1 =
4n6 + 14n5 + 21n4 + 22n3 + 21n2 + 14n+ 4

(n+ 1)2 (n3 + 4n2 + 3n+ 2)2

ω0,1 =
2n4 + 5n3 + 8n2 + 3n+ 2

(n3 + 4n2 + 3n+ 2)2

Note that ω0+ω1+ω0,1 = 7n6+28n5+54n4+66n3+55n2+30n+8
(n+1)2(n3+4n2+3n+2)2 ≡ πn. Thus assuming that s0 = s1 = s

and s ∼ N (s̄, z2), we have by Lemma 3 (with “B”= 0):

−E
(
exp−2abσ2πns

2
)

= −
exp

[
− 2abσ2s̄2πn

1+4abσ2z2πn

]
(1 + 4abσ2z2πn)

1
2
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Let us denote θ = −2abσ2πn.

J̃ i0 = −
exp

(
θs̄2

1−2θz2 + bI
)

√
1− 2θz2

(1.42)

J̃ must be compared to the payoff from the alternative, which consists in doing nothing and

brings the agent a utility of − exp (0) = −1. To see that J̃ is decreasing in n, note that J̃ is

decreasing in θ. Since θ decreases with πn and πn decreases with n, θ increases with n, i.e.

J̃ decreases with n.

Corollary 9

Proof. J̃ decreases with I, hence J̃0 decreases with I. Since θ = −2abσ2πn increases

with n, n∗ decreases with I. Since J̃ increases with s̄, the same logic applies and n∗ increases

with s̄. Further, θ decreases with a and σ2. Since J̃ increases in both a and σ2, J̃−1 also

does and therefore n∗ increases in a and σ2.

The comparative static with respect to z requires to calculate the derivative. Using

equation (1.42), and noting that

∂ θs̄2

1−2θz2

∂z2
=

2θ2s̄2

(1− 2θz2)2

∂J̃ i0
∂z2

= −
2θ2s̄2

√
1−2θz2

(1−2θz2)2 exp
(

θs̄2

1−2θz2

)
+ θ√

1−2θz2 exp
(

θs̄2

1−2θz2

)
1− 2θz2

= −
exp

(
θs̄2

1−2θz2

)
(1− 2θz2)

3
2

[
2θ2s̄2

1− 2θz2
+ θ

]

Hence
∂J̃i0
∂z2 ≤ 0 ⇔ 2θ2s̄2

1−2θz2 + θ ≥ 0 ⇔ 2θs̄2

1−2θz2 + 1 ≤ 0, because θ < 0. This is equivalent to

s̄2 − z2 ≥ −1

2θ
=

1

4abσ2πn

The condition is satisfied if a or b or σ2 are large, or if πn is large, i.e. if n is small. Since J̃

decreases with n, n∗ decreases with z if θ is large enough. θ is large when a or b or σ2 are

large or n is small.

Corollary 10
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Proof. φn and ψ̄n are given in Proposition 1. It is easy to see that they are decreasing

in n. Since n∗ is increasing in a, ψn∗ and ψ̄n∗ are decreasing in a.

Risky arbitrage

Proposition 5

Proof. To calculate arbitrageurs’ certainty equivalent in equilibrium, recall from the

proof of Proposition 3 that

xi0 =
s0

d
+

(n+ 1) rb − 2ra

(n+ 1)2 rarbd
s̄1∑

i

xi0 =
n

d
s0 +

n (n+ 1) rb − 2nra

(n+ 1)2 rarbd
s̄1

∆̂0 = Φas0 +
(n+ 1) rbΦa + (1− Φa) 2ra

(n+ 1)2 rarb
s̄1

with Φa = 1− n (n+ 2)

n+ 1

1 + φa
d

Thus, skipping some tedious algebra, arbitrageurs’ certainty equivalent is given by

CEi
0 = xi0∆̂0 + (1− φb)

(
∑

i x
i
0)

2

(n+ 1)2 −
s̄1

(n+ 1)2 rb

(
2
∑
i

xi0 − s̄1

)
= π0s

2
0 + π1s

2
1 + π0,1s0s̄1

with π0 =
Φa

d
+

1− φb
(n+ 1)2

n2

d2
(1.43)

=
(n+ 1)2 φn − n (n2 + 2n+ 2) + (n+ 1) (n+ 2)φa + n (2n2 + 2n+ 2)φb

(n+ 1)2 d2

π1 =
[(n+ 1) rb − 2ra]

2

(n+ 1)4 r2
ar

2
bd

2

[
Φad+

n2 (1− φb)
(n+ 1)2

]
− 2 (n− 1)

(n+ 1) rb − 2ra

(n+ 1)4 rar2
bd

+
1

(n+ 1)2 rb
(1.44)

π0,1 =
2 [(n+ 1) rb − 2ra]

(n+ 1)2 rarbd

[
Φa +

n

(n+ 1)2 d

]
− 2 (n− 1)

(n+ 1)2 rbd
(1.45)
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Therefore at time 0 arbtrageurs’ equilibrium utility is

J i0 = −r−
1
2

b exp
(
−2abσ2

(
π0s

2
0 + π1s

2
1 + π0,1s0s̄1

))
= −r−

1
2

b exp
(
−2abσ2π1s̄1

)
exp

(
−2abσ2π0s

2
0 − 2abσ2π0,1s0s̄1

)
Hence assuming that s0 ∼ N (s̄0, z

2
0), and using Lemma 3:

E−1

[
exp

(
−2abσ2π0s

2
0 − 2abσ2π0,1s0s̄1

)]
=

exp

(
2a2b2σ4π2

0,1s̄
2
1z

2
0+s̄0(−2abσ2π0,1s̄1−2abσ2π0s̄0)

1+4abσ2π0z2
0

)
√

1 + 4abσ2π0z2
0

=
exp

(
−2abσ2 s̄0(π0,1s̄1+π0s̄0)−abσ2π2

0,1s̄
2
1z

2
0

1+4abσ2π0z2
0

)
√

1 + 4abσ2π0z2
0

This implies that arbitrageurs’ expected utility at time -1 (net of entry cost) is:

Ĵ i0 = −
exp

[
−η
(
π0,1(s̄0s̄1− η2π0,1s̄21z

2
0)+π0s̄20

1+2ηπ0z2
0

+ π1s̄
2
1

)]
exp (bI)√

rb (1 + 2ηπ0z2
0)

, with η = 2abσ2 (1.46)

1.6.5 Gradual entry

Proposition 6

Proof.

I start with the oligopoly case ( n ≥ 2). The proposition is based on the following three

results.

Proposition 7 Arbitrageurs accommodate entry iff ρ < ρ̄. There is no accommodate equi-

librium if ρ > ρacc > ρ̄. The equilibrium trades are:

∀i = 1, . . . , n, xi0 =
(n+ 1) (n+ 4)

n3 + 6n2 + 9n+ 6
s

∀i = 1, . . . , n+ 1, xi1 =
s−

∑
i x

i
0

n+ 2
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Proof. At time 1, following arguments given in the proof of Proposition 1, the payoff

(certainty equivalent) of the subgame is given by 2aσ2 (s−
∑
j x

j
0)

2

(n+2)2 . Hence, the new arbitrageur

enters iff(
s−

∑
j x

j
0

)2

(n+ 2)2 ≥ I

2aσ2
= ρ2 (1.47)

In the benchmark case with no gradual entry, the equilibrium trades are (from Proposition

1):

xi0 =
n2 + 3n

n3 + 4n2 + 3n+ 2
s

This implies that s −
∑

j x
j
0 = (n+1)(n+2)

n3+4n2+3n+2
s. Plugging this expression into condition 1.47

shows that at time 1, if ρ > ρbmk ≡ n+1
n3+4n2+3n+2

s, it is not profitable for the new arbitrageur

to enter. Thus incumbent arbitrageurs can deter the entrant without altering their trading

strategy, i.e. at no cost.

Let’s now assume that local investors believe at time 0 that entry will occur at time 1

and that incumbents trade accordingly, i.e. assume that n+ 1 traders will be active at time

1. Following the same steps as in the benchmark case of Proposition 1, the spread at time

0 is:

∆0 = 2aσ2

[
s0 +

s1

n+ 2
− n+ 3

n+ 2

∑
j

xj0

]
= 2aσ2n+ 3

n+ 2

[
s−

∑
j

xj0

]
, with s0 = s1 = s

Hence incumbents solve the following problem:

CEi,acc
0

2aσ2
= max

xi0

n+ 3

n+ 2
xi0

(
s−

∑
j

xj0

)
+

(s−
∑

i x
i
0)

2

(n+ 2)2

Solving for the first-order condition:

∀i = 1, . . . , n,
n+ 3

n+ 2

(
s−

∑
j

xj0 − xi0

)
− 2

(n+ 2)2

(
s−

∑
j

xj0

)
= 0

Collecting the n equations and stacking them together in vectors, and applying Lemma 3
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gives the equilibrium trade:

xi0 =
(n+ 1) (n+ 4)

n3 + 6n2 + 9n+ 6
s

As a result, s−
∑

j x
j
0 = (n+2)(n+3)

n3+6n2+9n+6
s, and the anticipation that the new arbitrageur enters

is verified iff
(s−

∑n
j=1 x

j
0)

2

(n+2)2 ≥ ρ2 ⇔ ρ ≤ ρacc ≡ n+3
n3+6n2+9n+6

s. Of course, the above strategy is

a Nash equilibrium only if the entrant can commit ex-ante to enter no matter what. Since

it is not possible here, we must take into account the possibility for arbitrageurs to deter

entry by deviating at time 0. When ρ ≤ ρacc, the incumbents’ certainty equivalent is

CEi,acc
0 =

(n+ 3)2 (n2 + 5n+ 5)

(n3 + 6n2 + 9n+ 6)2 s
2 ≡Ms2 (1.48)

Since each incumbent is pivotal, a deviation by one incumbent arbitrageur can deter the

new arbitrageur from entering by reducing the available rent at time 1. In this case, the

time 1 payoff changes to 2aσ2 (s−
∑
j x

j
0)

2

(n+1)2 . To analyze the deviaton, let’s assume that n − 1

incumbents (indexed by −i) trade x−i0 = (n+1)(n+4)
n3+6n2+9n+6

s (“accommodate”). This implies that

s −
∑
−i x

−i
0 =

2(n2+5n+5)
n3+6n2+9n+6

s. A deviating incumbent thus solves (holding local investors’

beliefs fixed):32

CEi,dev,acc
0

2aσ2
= max

xi0

n+ 3

n+ 2
xi0

(
s−

∑
−i

x−i0 − xi0

)
+

(
s−

∑
−i x

−i
0 − xi0

)2

(n+ 1)2

s.t.
(s−

∑
i x

i
0)

2

(n+ 2)2 < ρ2 (1.49)

Ignoring the constraint first, and solving the maximisation problem gives:

xi,dev0 =
n3 + 5n2 + 5n− 1

2 (n3 + 5n2 + 6n+ 1)

(
s−

∑
−i

x−i0

)
=

(n3 + 5n2 + 5n− 1) (n2 + 5n+ 5)

(n3 + 5n2 + 6n+ 1) (n3 + 6n2 + 9n+ 6)
s

One can check whether by deviating to this quantity, an incumbent deters entry: in this

case, s−
∑
−i x

−i
0 − xi0 =

(n3+5n2+7n+3)(n2+5n+5)
(n3+5n2+6n+1)(n3+6n2+9n+6)

s and therefore the no-entry constraint is

satisfied iff ρ >
(n3+5n2+7n+3)(n2+5n+5)

(n+2)(n3+5n2+6n+1)(n3+6n2+9n+6)
s ≡ ρ̂. However, we are considering the interval

[0, ρacc[, and ρacc− ρ̂ = − n2+9n+9
(n+2)(n3+5n2+6n+1)(n3+6n2+9n+6)

< 0. This means that to deter entry,

32Since I assumed that ρ ≤ ρacc, the only potentially optimal deviation is to prevent entry. Without the

constraint in the maximisation problem, the solution would simply be xi0 =
2(n2+5n+5)
n3+6n2+9n+6s, by definition.
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the deviating incumbent must trade xi,dev0 to meet the no-entry constraint (1.49), i.e. such

that: (
s−

∑
−i x

−i
0 − x

i,dev
0

)2

(n+ 2)2 < ρ2

Assuming that s−
∑
−i x

−i
0 − x

i,dev
0 ≥ 0 (which will be true in equilibrium), this amounts to

xi,dev0

n+2
>

s−
∑
−i x

−i
0

n+2
− ρ. Since it is suboptimal to increase his position too much, the deviating

arbitrageur chooses xi,dev0 = s−
∑
−i x

−i
0 − (n+ 2) (ρ− ε), with ε > 0 and small, i.e.

xi,dev0 =
2 (n2 + 5n+ 5)

n3 + 6n2 + 9n+ 6
− (n+ 2) (ρ− ε)

We can thus compute the payoff from deviating. Skipping a few lines of algebra, I get:

CEi,dev,acc
0

2aσ2
= − (n+ 2) (n3 + 5n2 + 6n+ 1)

(n+ 1)2 ρ2

+

(
2 (n+ 3) (n2 + 5n+ 5)

n3 + 6n2 + 9n+ 6
s+

2 (n+ 2) (n3 + 5n2 + 6n+ 1)

(n+ 1)2 ε

)
ρ

− (n+ 2) (n3 + 5n2 + 6n+ 1)

(n+ 1)2 ε2 − 2 (n+ 3) (n2 + 5n+ 5)

n3 + 6n2 + 9n+ 6
sε

We can derive the condition under which accommodate is a Nash equilibrium in rational

expectations by comparing payoffs:

1

2aσ2

(
CEacc

0 − CEdev,acc
0

)
|ε→0 ≥ 0⇔ a1ρ

2 + a2ρ+ a3 ≥ 0

with a1 =
(n+ 2) (n3 + 5n2 + 6n+ 1)

(n+ 1)2

a2 = −2 (n+ 3) (n2 + 5n+ 5)

n3 + 6n2 + 9n+ 6
s

a3 =
(n+ 3)2 (n2 + 5n+ 5)

(n3 + 6n2 + 9n+ 6)2 s
2

The discriminant of a1ρ
2 + a2ρ+ a3 is ∆ =

(n+3)2(n2+5n+5)
(n3+6n2+9n+6)2 ∆̃s2, with

∆̃ =
(
n2 + 5n+ 5

)
− (n+ 2) (n3 + 5n2 + 6n+ 1)

(n+ 1)2 =
2n+ 3

(n+ 1)2 (1.50)



70 CHAPTER 1. DYNAMIC STRATEGIC ARBITRAGE

There are two positive roots ρ1 and ρ2, with ρ1 < ρ2, given by ρ1 = −a2+
√

∆
2a1

≡ ρ̄ and

ρ2 = −a2+
√

∆
2a1

. After some simplifications, I get:

ρ̄ =
n+ 3

n3 + 6n2 + 9n+ 6

(n+ 1)2
(
un −

√
∆̃un

)
(n+ 2) vn

s = ρacc
(n+ 1)2

(
un −

√
∆̃un

)
(n+ 2) vn

(1.51)

ρ2 =
n+ 3

n3 + 6n2 + 9n+ 6

(n+ 1)2
(
un +

√
∆̃un

)
(n+ 2) vn

s = ρacc
(n+ 1)2

(
un +

√
∆̃un

)
(n+ 2) vn

(1.52)

with un = n2 + 5n+ 5

vn = n3 + 5n2 + 6n+ 1

It is clear that ρ2 > ρ
2

= ρacc (n+1)2un
(n+2)vn

. Further, the fact that for all n ≥ 2, (n+1)2un
(n+2)vn

> 1,

implies that ρ2 > ρacc.

Regarding the position of ρ̄ relative to ρacc, note that ∀ (a, b) ∈ (R+)
2
, with a > b,

a − b −
√
a (a− b) =

√
a− b

[√
a− b−

√
a
]
< 0, as the square root is increasing. Rewrite

∆̃ = un − n+2
(n+1)2vn, and apply the previous result to the thresholds:

ρ̄ < ρacc ⇔
(n+ 1)2

(
un −

√
∆̃un

)
(n+ 2) vn

< 1

⇔ un −
n+ 2

(n+ 1)2vn <

√
un

(
un −

n+ 2

(n+ 1)2vn

)
The previous inequality holds. Thus incuments accommodate iff ρ < ρ̄ < ρacc. Note that for

ρ > ρacc, the payoff from deviating will always dominate the payoff from accommodating,

as can be seen from Figure 1.11. The constrained part of CEi,dev,acc
0 is above CEi,acc

0 when

ρ > ρacc because the function is still increasing after ρ̄ for some time: the peak of CEi,dev,acc
0

is ρm > ρacc > ρ̄. This can be verified by direct calculation.

Proposition 8 If ρ > ρbmk, arbitrageurs deter without altering their optimal strategy. Equi-

librium trades are as in Proposition 1, with s0 = s1 = s.

If ρ ≤ ρbmk, arbitrageurs deter iff ρ > ρ, with ρbmk > ρ. Arbitrageurs must alter their

trading strategy as follows:

∀i = 1, . . . , n, xi0 =
1

n
[s− (n+ 2) ρ+ ε] , ε > 0 and ε ≈ 0

∀i = 1, . . . , n, xi1 =
s−

∑
i x

i
0

n+ 1
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Proof. The case ρ > ρbmk was treated above. I focus instead on ρ ≤ ρbmk. I assume that

local investors believe at time 0 that the new arbitrageur will not enter the market in the next

period, meaning that the incumbent arbitrageurs face the following schedule for the spread:

∆0 = 2aσ2 n+2
n+1

(
s−

∑
j x

j
0

)
. When ρ ≤ ρbmk, incumbents must alter their benchmark trading

strategies to decrease the time 1 payoff and prevent entry. x0 satisfies:
(s−

∑
j x

j
0)

2

(n+2)2 < ρ2, i.e.

assuming that s −
∑

j x
j
0 ≥ 0 (which will be true in equilibrium ),

∑
j x

j
0 > s − (n+ 2) ρ.

Since incumbents have an interest in minimizing the deviation from their optimal strategy,

they choose the smallest quantity such that the previous inequality is satisfied. Imposing

symmetry across incumbents, this gives the following candidate equilibrium strategy:

∀i = 1, . . . , n, xi0 =
1

n
[s− (n+ 2) ρ+ ε] , with ε positive and small (1.53)

The objective function of arbitrageurs is
CEi,det0

2aσ2 = maxxi0
n+2
n+1

xi0

(
s−

∑
j x

j
0

)
+

(s−
∑
j x

j
0)

2

(n+1)2 .

Plugging the strategy (1.53) into the objective function, and skipping a few lines of calcula-

tion, I get:

CEi,det
0

2aσ2
= − (n2 + 2n+ 2) (n+ 2)2

n (n+ 1)2 ρ2 +

[
(n+ 2)2

n (n+ 1)
s+

2 (n22n+ 2) (n+ 2)

n (n+ 1)2 ε

]
ρ

+
n+ 2

n (n+ 1)
sε+

n2 + 4n+ 2

n (n+ 1)2 ε2 (1.54)

This is the payoff from deterring entrance, when local investors believe that there will be no

entry in equilibrium. Since deterring requires to alter the time-0 trading strategy, it may be

too costly for incumbent arbitrageurs. I now analyze under which conditions (1.53) forms a

Nash equilibrium in rational expectations.

Suppose n − 1 incumbents, indexed by −i, follow the deterrence strategy and trade

x−i0 = 1
n

[s− (n+ 2) ρ+ ε]. This leads to s −
∑
−i x

−i
0 = s

n
+ (n−1)(n+2)

n
ρ − n−1

n
ε. Then for
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incumbent arbitrageur i, A deviating incumbent solves the following problem:

CEi,dev,det
0

2aσ2
= max

xi0

n+ 2

n+ 1
xi0

(
s−

∑
−i

x−i0 − xi0

)
+

(
s−

∑
−i x

−i
0 − xi0

)2

(n+ 2)2

s.t. x−i0 =
1

n
[s− (n+ 2) ρ+ ε]

2aσ2 (s−
∑n

i=1 x
i
0)

2

(n+ 2)2 ≥ I (1.55)

Solving the first-order condition (assuming the entry constraint is satisfied) gives

xi0 =
n3 + 6n2 + 10n+ 6

2 (n3 + 6n2 + 11n+ 7)

[
s+

(n− 1) (n+ 2)

n
ρ− n− 1

n
ε

]
(1.56)

Note xi0 > 0. Further, x−i0 ≥ 0 ⇔ s > (n+ 2) ρ− ε, which is verified for any ρ < ρbmk.

We can check under which condition the deviation leads to the new arbitrageur’s entry

at time 1. Given the construction of the deterrence strategy x−i0 , it is sufficient to compare

xi0 and x−i0 . In particular if xi0 < x−i0 , then the deviation leads to entry. Skipping a few lines

of algebra,

x−i0 − xi0 =
n3 + 6n2 + 12n+ 8

2 (n3 + 6n2 + 11n+ 7)

s

n
− n4 + 7n3 + 16n2 + 18n+ 8

2 (n3 + 6n2 + 11n+ 7)

[
n+ 2

n
ρ− ε

n

]
Hence, x−i0 > xi0 ⇔ ρ− ε

n+ 2
< ρdev ≡ (n+ 2)2 s

n4 + 7n3 + 16n2 + 18n+ 8
(1.57)

Comparing ρdev with ρbmk shows that ∀n ≥ 1, ρdev < ρbmk. Hence if ρ ∈
[
ρdev, ρbmk

[
, the

deviation does not lead to entry. Since on this interval xi0 ≥ x−i0 , the deviating arbitrageur

would have to buy x−i0 −η, with eta > 0 and small. This strategy must be dominated, since it

implies a strictly lower time-1 continuation payoff (for the entrant steals some business), but

only a very small gain at time 0, relative to the deterrence strategy. Thus if ρ ∈
[
ρdev, ρbmk

[
,

then deterring is optimal.

If ρ < ρdev, there is a trade-off between deviating and letting the new arbitrageur enter

and deterring for arbitrageur i. I plug (1.56) into the objective function and, after rearranging

terms, I obtain the payoff from deviating for arbitrageur i:

CEi,dev,det
0

2aσ2
=

(n+ 2)4

4 (n+ 1) (n3 + 6n2 + 11n+ 7)

[
s+

(n− 1) (n+ 2)

n
ρ
n− 1

n
ε

]2

(1.58)
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I now derive under which condition the strategy is a Nash equilibrium in rational ex-

pectations by comparing payoffs. Recalling equation (1.54), and rearranging terms, I take

ε→ 0, and get:

CEi,det
0 − CEi,dev,det

0

2aσ2
≥ 0⇔ b1ρ

2 + b2ρ+ b3 ≥ 0

with b1 = −(n+ 2)2

n

[
n2 + 2n+ 2

(n+ 1)2 +
(n− 1)2 vn

n
< 0

]

b2 =

[
(n+ 2)2

n (n+ 1)
− 2 (n− 1) (n+ 2) vn

n2

]
s

b3 = −vn
n2
s2 < 0

and vn ≡
(n+ 2)4

4 (n+ 1) (n3 + 6n2 + 11n+ 7)

After some algebra, I get the following expressions for b1, b2 and the discriminant:

b1 = − (n+ 2)2wn

4n2 (n+ 1)2 (n3 + 6n2 + 11n+ 7)

b2 =
(n+ 2)2 (n4 + 7n3 + 16n2 + 18n+ 8)

2n2 (n+ 1) (n3 + 6n2 + 11n+ 7)
s

∆ =
(n+ 2)4 ∆̄

4n4 (n+ 1)2 (n3 + 6n2 + 11n+ 7)2

with wn = n7 + 11n6 + 47n5 + 101n4 + 132n3 + 120n2 + 72n+ 16

∆̄ =
(
n4 + 7n3 + 16n2 + 18n+ 8

)2 − (n+ 2)2

n+ 1
wn

=
n2 (7n4 + 60n3 + 160n2 + 188n+ 84)

n+ 1

The discriminant being positive, there are two roots ρ3 = −b2+
√

∆
2b1

≡ ρ and ρ4 = −b2−
√

∆
2b1

with

ρ4 > ρ > 0. It is possible to calculate these roots explicitly. Skipping a few lines of algebra,

I get:

ρ3+k =
(n+ 1)

(
n4 + 7n3 + 16n2 + 18n+ 8− (−1)k

√
∆̄
)

wn
s, k = 0, 1

Finally, I compare the roots to the threshold ρbmk. Note that ρ4 >
(n+1)(n4+7n3+16n2+18n+8)

wn
≡

ρ
4
. Further, ρ

4
− ρbmk > 0 ⇔ n(n+1)(4n3+10n2−2n−12)

(n3+4n2+3n+2)wn
> 0, which is true ∀n ≥ 2. Hence
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ρ4 > ρbmk.

Further, note that

ρ− ρdev

s
=

(n+ 1)
(
n4 + 7n3 + 16n2 + 18n+ 8−

√
∆̄
)

wn
− (n+ 2)2

n4 + 7n3 + 16n2 + 18n+ 8

=
(n+ 1)

[
∆̄− (n4 + 7n3 + 16n2 + 18n+ 8)

√
∆̄
]

wn (n4 + 7n3 + 16n2 + 18n+ 8)

Then write ∆̄ = a − b, with a = − (n4 + 7n3 + 16n2 + 18n+ 8)
2

and b = (n+2)2

n+1
wn. ∆̄ > 0

⇒ a > b, hence a − b −
√
a (a− b) =

√
a− b

[√
a− b−

√
a
]
< 0 (since a − b < a and

√
is

increasing). Thus, ρ < ρdev. Since ρdev < ρbmk, ρ < ρbmk. Summing up, deterring is a Nash

equilibrium in rational expectations on
[
ρ, ρbmk

]
.

Proposition 9 ∀n ≥ 2, ρ < ρ̄.

Proof. By direct calculation. Recall from the proofs of Propositions 7 and 8 that

ρ̄ = ρacc
(n+ 1)2

[
un −

√
∆̃un

]
(n+ 2) vn

with vn = n3 + 5n2 + 6n+ 1, ∆̃ =
2n+ 3

(n+ 1)2 , ρ
acc =

n+ 3

n3 + 6n2 + 9n+ 6

and ρ =
(n+ 1)

[
zn −

√
∆̄
]

wn
with wn = n7 + 11n6 + 47n5 + 101n4 + 132n3 + 120n2 + 72n+ 16

zn = n4 + 7n3 + 16n2 + 18n+ 8

∆̄ =
n2 (7n4 + 60n3 + 160n2 + 188n+ 84)

n+ 1

Hence ρ̄ > ρ ⇔ (n+ 1) ρaccwn

[
un −

√
∆̃un

]
−vnzn+vn

√
∆̄ > 0 ⇔ (n+ 1) ρaccwn−vnzn >

(n+ 1) ρaccwn
√

∆̃un− vn
√

∆̄. Skipping several lines of algebra, I find that the numerator of

the LHS is qn = n11 +19n10 +156n9 +729n8 +2160n7 +4134n6 +6107n5 +6454n4 +5254n3 +

3142n2 + 1172n + 192. Since un < (n+ 3)2,
√

∆̃un <
(n+3)

√
2n+3

n+1
< (n+3)(2n+3)

n+1
. Hence, it is

sufficient to prove that qn > (n+ 3)2 (2n+ 3)wn. After some algebra, I find that the LHS

is equal to 2n10 + 37n9 + 295n8 + 1330n7 + 3768n6 + 7215n5 + 9423n4 + 8996n3 + 6072n2 +

2520n+ 432 < qn for all n ≥ 2. Hence ρ̄ > ρ.
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Monopoly case.

Last, I consider the case n = 1. If there is a monopolistic arbitrageur at time 0, the

equilibrium at time 0 is not a Nash equilibrium in rational expectations, but simply a rational

expectations equilibrium.

The thresholds ρbmk and ρacc remain the same, with n = 1. From the results of Proposi-

tion 7, I get: ρbmk = 0.2 and ρacc = 2
11

. For ρ > ρbmk, the monopolist has no interest to let

the new arbitrageur enter. For ρ < ρbmk, the monopolist compares the payoff from accom-

modating and deterring. If the monopolist accommodates, his payoff is CEacc
0 = 2aσ2 4

11
s2

(from equation (1.48). If he deters, since ρ ≤ ρbmk, he must set x1
0 such that the time 1

payoff is smaller than the entry cost for the new arbitrageur, i.e. x1
0 = s − 3ρ − ε, with ε

small and strictly positive. The payoff, for ε very small, is CEdet
0 = 2aσ2

(
−9

2
ρ2 + 9

2
sρ
)
.

Given that there is no coordination problem, I compare directly the payoffs CEacc
0 and

CEdet
0 , while in the n ≥ 2 case, I was holding the local investors’ beliefs fixed and checking

each arbitrageur’s incentives to deter or accommodate. After a straightforward calculation,

I find that CEacc
0 ≥ CEdet

0 ⇔ ρ ≤ ρ̂ or ρ ≥ ρ̂′, with ρ̂ = 1 − 2
9

√
δ and ρ̂′ = 1 + 2

9

√
δ,

where δ =
√

747
2
√

11
. Clearly, ρ̂′ > 1 > ρbmk > ρacc > ρ̂. Thus, in equilibrium, the monopolist

accommodates if ρ ≤ ρ̂ and the new arbitrageur enters, and the monopolist deters if ρ > ρ̂,

with no entry. The deterrence is not “costly” if ρ > ρbmk.

Corollary 12

Proof. Using the results of Propositions 7 and 8, I get, after straightforward calculations:

If ρ > ρbmk, ∆bmk
0 = 2aσ2 (n+ 2)2

n3 + 4n2 + 3n+ 2
s (1.59)

∆bmk
1 = 2aσ2 n+ 2

n3 + 4n2 + 3n+ 2
s =

∆bmk
0

n+ 2

If ρ ≤ ρ, ∆acc
0 = 2aσ2 (n+ 3) (n+ 2)

n3 + 6n2 + 9n+ 6
s (1.60)

∆acc
1 = 2aσ2 n+ 2

n3 + 6n2 + 9n+ 6
s =

∆acc
0

n+ 3

If ρ ∈
[
ρ̄, ρbmk

]
, and ε small ∆det

0 = 2aσ2 (n+ 2)2

n+ 1
ρ (1.61)

∆det
1 = 2aσ2n+ 2

n+ 1
ρ =

∆det
0

n+ 2

Comparison of spreads across the three regimes
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First, a simple calculation shows that ∀n ≥ 2, ∆bmk
0 > ∆acc

0 , which implies that ∆bmk
1 >

∆acc
1 .

Second, ∆det
0 (ρ̄) > ∆acc

0 iff (n+2)2

n+1
ρ̄ > (n+1)(n+3)

n3+6n2+9n+6
s = n+1

n+2
ρacc. Recall from equation

(1.51) in the proof of Proposition 7 that ρ̄ = ρacc
(n+1)2

(
un−
√

∆̃un

)
(n+2)vn

. Hence ∆det
0 (ρ̄) > ∆acc

0

iff vn − (n+ 1)un + (n+ 1)
√

∆̃un < 0, which is equivalent to
√

∆̃un < (n+2)2

n+1
. Using

the definition of ∆̃, this simplifies to (2n+ 3)un = (2n+ 3) (n2 + 5n+ 5) < (n+ 2)4, i.e.

2n3 + 13n2 + 25n + 15 < (n+ 2)4, which holds for any n. Hence ∆det
0 (ρ̄) > ∆acc

0 . This

implies that ∆det
1 (ρ̄) > ∆acc

1 .

Third, consider ∆det
0

(
ρ
)
− ∆acc

0 = 2aσ2 (n+ 2) s

(
(n+2)(zn−

√
∆̄)

wn
− (n+3)

n3+6n2+9n+6

)
. Hence

∆det
0

(
ρ
)
> ∆acc

0 iff (n+ 2) (n3 + 6n2 + 9n+ 6) zn−(n+ 3)wn−(n3 + 6n2 + 9n+ 6)
√

∆̄ > 0.

By the definition of ∆̄, and given that (n+ 2) (n3 + 6n2 + 9n+ 6) zn − (n+ 3)wn = n7 +

13n6+75n5+233n4+394n3+360n2+176n+48, this is equivalent to
√

7n4+60n3+160n2+188n+84
n+1

<

n7+13n6+75n5+233n4+394n3+360n2+176n+48
n(n+2)(n3+6n2+9n+6)

. Taking the square on each side and developing, one can

check that this inequality is always satisfied after some tedious algebra. Hence ∆det
0

(
ρ
)
−∆acc

0 ,

and thus ∆det
1

(
ρ
)
−∆acc

1

Fourth, it is immediate that ∆det
0

(
ρbmk

)
−∆bmk

0 = 0. This implies that the inequality is

also verified at time 1.

Note that ∆det
t (ρ) is increasing in ρ on its interval, so that it was sufficient to compare

the spread at the thresholds ρ and ρ̄, ρbmk. Figure 1.11 represents ∆0 as a function of ρ, and

summarizes all the previous results.

Speed of convergence

Clearly,
∆bmk

1

∆bmk
0
− 1 =

∆det
1

∆det
0
− 1 = −n+1

n+2
>

∆acc
1

∆acc
0
− 1 = −n+2

n+3
.

The price impact coefficient is n+2
n+1

when ρ > ρ̄ and n+3
n+2

when ρ ≤ ρ. Thus arbitrageurs

have a lower price impact when ρ ≤ ρ.

Corollary 13

Proof. The first part of the corollary follows from the definition of (1.61). The second

part follows from the facts that ∆acc
0 < ∆det

0

(
ρ
)
< ∆det

0 (ρ̄) and the multiplicity of equilibria

on
[
ρ, ρ̄
]
.
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Figure 1.3: Trades and race effect in the risk-free case. The parameters are: s0 =
s1 = 1.
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(a) Local investors more risk-averse than arbitrageurs (a =
3.5, b = 0.5)
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(b) Local investors as risk-averse than arbitrageurs (a = b =
2)
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Chapter 2

Market Structure and the Limits of

Arbitrage

Abstract: How does imperfect competition among financially-constrained arbitrageurs affect liq-

uidity and asset prices? I study a multi-period model in which arbitrageurs (e.g. market-makers,

dealers, hedge funds) provide market liquidity and face capital constraints, and compare monopo-

listic competition to the competitive case studied by Gromb and Vayanos (2002). I show that the

monopoly is both less efficient and less capital-intensive, as rents captured over time allow her to

build up capital. Consequently, when capital is scarce, arbitrageurs may provide more liquidity at

later stages under monopolistic competition than under perfect competition. In some cases, this

increases aggregate welfare but without being Pareto-improving. Further, when a monopolistic ar-

bitrageur has an intermediate level of capital, she may tackle the arbitrage in a way that leaves her

constrained in the future. Surprisingly, this may improve liquidity relative to a situation without

financial constraints. I discuss implications for market-making via a monopolistic specialist.

2.1 Introduction

In line with the theoretical predictions of the limits of arbitrage literature, there is a growing

body of empirical evidence showing that the amount of capital held by financial institutions

affects market liquidity and asset prices.1 The theory is based on the assumption that

arbitrageurs are competitive, and predicts that the aggregate amount of arbitrageurs’ capital

matters. In practice, however, arbitrage is carried out by large, highly specialized financial

institutions (hedge funds, proprietary trading desks, broker-dealers, etc.), who recognize their

1For recent empirical evidence, see for example Hu, Pan and Wang (2011), Mitchell and Pulvino (2011)
and Jylha and Suominen (2009).
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price impact.23 Hence in reality capital is often concentrated in the hands of a few large,

strategic players instead of being distributed across a large number of small competitive

investors. This implies that the market structure and the distribution of capital should be

an important determinant of asset prices and liquidity.

To understand how the size of arbitrageurs and the distribution of capital affect market

efficiency, I extend Gromb and Vayanos’ (2002) model of financially constrained compet-

itive arbitrage to the non-competitive case. In Gromb and Vayanos’ model, competitive

arbitrageurs exploit price differences between two identical risky assets traded in segmented

markets. Market liquidity, defined as the spread between the prices of the risky assets, de-

pends on arbitrageurs’ aggregate capital: with abundant capital, competitive arbitrageurs

eliminate the spread immediately. With a smaller amount of capital, financial constraints

bind and the spread decreases gradually over time, as capital gains captured by arbitrageurs

progressively relax their financial constraint. By contrast, I study a situation in which all

the capital is deployed through a single, monopolistic arbitrageur who recognizes her price

impact. This allows me to compare liquidity and welfare across the two market structures. I

show that switching from perfect to monopolistic competition (or equivalently from a largely

disaggregated capital distribution to an extremely concentrated one) has substantial impli-

cations for liquidity provision, asset prices and welfare that go beyond the simple efficiency

loss associated with market power.

First, I show that when capital is concentrated in the hands of a single arbitrageur, a

trade-off between market efficiency and capital intensity appears. A monopolistic arbitrageur

(“‘the arbitrageur”, or “the monopoly”) internalizes her impact on the spread. Thus, facing

a positive spread between the two identical assets, the arbitrageur trades in a way that keeps

the spread open in equilibrium, even if her financial constraint is not binding. This allows her

to reap profits over time and therefore to increase her capital. Understanding that the price

of each asset will not converge to its fundamental value for this precise reason (even in the

2See Chen, Stanzl and Watanabe (2002) and references therein for empirical evidence of institutional
investors’ price impact. Numerous firms propose algorithms or programmes to help institutional investors
minimize their price impact. In extreme cases, one trader may become the dominant player in one market
or in a specific strategy, such as LTCM with relative-value and convergence trades or Amaranth and Enron
with energy derivatives.

3There is a large theoretical literature on limits of arbitrage. See for example, Shleifer and Vishny (1997),
Gromb and Vayanos (2002) and Brunnermeier and Pedersen (2009). In effect, the assumption of perfect
competition also means that entry has already occurred in the market, so that an increase in capital cannot
stem from new players. Attari and Mello (2006) do analyze the trading strategy of a monopolistic financially-
constrained arbitrageur but do not draw comparison across market structures. I discuss their paper in more
details when I review the literature below.
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absence of risk), financiers demand less collateral to fund the arbitrageur’s position. Hence

in equilibrium the monopoly prevents the arbitrage to close while competitive arbitrageurs

would eliminate all mispricings. At the same time, the monopoly requires less initial capital

to do so than a competitive market.

The key driver of this result is the modeling of the arbitrageur’s financial constraint which

implies that the arbitrageur’s financiers are sophisticated enough to understand the impact

of the market structure on the equilibrium price. Indeed, in the model, the arbitrageur is re-

quired to post collateral in each leg of the arbitrage only to cover the risk associated with the

position, which depends on the volatility of the fundamental. Predictable discounts/ premia

arising from the monopoly’s rationing lower the collateral requirement, because financiers

realize that they are not facing additional risks. In other words, margins have a counter-

cyclical effect relative to liquidity.4 Although arguably strong, this assumption constitutes

an interesting and unavoidable benchmark: according to Brunnermeier and Pedersen (2009),

countercyclical, stabilizing margins are “hard to escape in a theoretical model”. Moreover, if

the market is concentrated, the dominant arbitrageur is likely to be visible to other market

participants and financiers may understand how she affects liquidity. There is anecdotal

evidence that LTCM, which held very large positions in fixed-income markets, had access to

cheaper funding than its competitors.5

An interesting consequence of the efficiency - capital intensity trade-off is that, contrary

to the competitive case, an increase in the volatility of the fundamental does not necessarily

tighten the arbitrageur’s financial constraint. There are two opposite effects at work. On

one hand, an increase in volatility increases the maximum potential loss on the arbitrageur’s

position and makes it more risky for financiers to fund it, which tightens the constraint.

This effect is the same as in the competitive case (Gromb and Vayanos, 2002, 2010). On the

other hand, an increase in volatility increases the profitability of the arbitrage opportunity,

which lowers collateral requirement. The reason is that the arbitrage opportunity arises

in the first place because of demand pressure stemming from local investors who trade in

segmented markets. These investors receive liquidity shocks that are correlated with the

payoff of the risky asset. Local investors in each market (say A and B) receive opposite

shocks and would thus benefit from trading with each other to share risk but are prevented

4I keep Gromb and Vayanos (2002)’s modeling of the financial constraint in order to facilitate comparisons.
Brunnermeier and Pedersen (2009) consider closely-related constraints but allow for the financiers to be
imperfectly informed about sources of illiquidity in the market, and show that this can generate procyclical
margins.

5See Pérold (1999).
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to do so by market segmentation. The arbitrageur instead is the only investor who can

trade across both markets. As volatility increases, local investors are ready to accept larger

price concessions to share their risk, which benefits the arbitrageur. Financiers recognize

this second effect, which loosens the financial constraint.

Second, and quite surprisingly, I show that the arbitrageur may choose to be constrained

at certain dates in equilibrium. Specifically, when the amount of capital is intermediate, and

volatility sufficiently low, the monopoly trades in a way that makes her financial constraint

binding in the future, even though with a different trading strategy, the amount of capital she

holds would allow her to remain unconstrained until the assets pay off. The reason for this

behaviour is that to maximize profits, the arbitrageur seeks not only to keep the arbitrage

spread open while buying, but also to keep it open as long as possible. Since the positions

already established continue to affect the spread over time (permanent price impact), the

arbitrageur split up her order and increases her position progressively over time. Local

investors anticipate that this will gradually reduce the arbitrage spread. This reduces their

willingness to accept large price concessions at present dates, which erodes the arbitrageur’s

current market power.6 In this context, the financial constraint can work as a commitment

device for the arbitrageur to keep the spread open over time: if the constraint binds, future

spreads will be large, which increases the local investors’ willingness to share risk and accept

a large price concession early on.

This equilibrium arises only for an intermediate level of capital. Indeed, if the arbitrageur

had a large amount of capital, her trading strategy would not be dynamically consistent:

she would be able to reoptimize in the future, which would be optimal from her viewpoint.

Since local investors are smart, they can foresee this behaviour and therefore the commitment

power of the financial constraints unravels if the arbitrageur is too well-capitalized. At the

same time, if capital is too scarce, the arbitrageur cannot respond to the increase in local

investors’ demand for liquidity at earlier dates that result from the anticipation that her

constraint will be binding in the future.

Third, I compare liquidity provision and welfare across market structures. When there is

abundant capital, the market is perfectly liquid under perfect competition and imperfectly

6Hence providing liquidity is subject to the same dynamics as a durable good provided by a monopolist.
In the model, trading happens at discrete dates and the spread closes as the asset matures. These features
represent “frictions” that limit the substitutability of one trade with another. With an infinite horizon, or
with a shrinking time between two trading dates, the Coase conjecture would apply, i.e. the spread would
immediately reach zero. See Vayanos (2001), DeMarzo and Urosevic (2007, and Pritsker (2009).
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liquid under monopolistic competition, because the monopolistic arbitrageur limits liquidity

to extract rents. Since the monopoly is less capital intensive than the competitive market, a

more interesting case is where there is not enough capital for the competitive market to be

unconstrained but enough for a monopoly to be unconstrained (or voluntarily constrained).

I show that in this case the monopoly may provide more liquidity, resulting in a tighter

spread, before the asset matures. For some parameter cases, I can show analytically that

the improvement occurs only close to the date at which the asset matures, and is associated

with a reduction in liquidity before. Suppose for instance that the monopoly is voluntarily

constrained. The monopoly is able to decrease the spread in the future precisely because

she limits liquidity further at the beginning. Doing so, she maximizes intermediate capital

gains, which relaxes the financial constraint and results in lower future spreads. I show that

this change can hurt local investors’ welfare, as the deterioration of current liquidity offsets

the benefit of the future improvement. Arbitrageurs, however, benefit from this change in

market structure. In an example, I show that aggregate welfare may increase as a result.

The analysis has implications for the debate about the size of financial intermediaries

and how much capital they should hold. The debate about the size of intermediaries follows

from the failure of large institutions during the 2007-2009 crisis. In the media or among

economists, it often revolves around the lack of competition in the financial industry, and

the implicit government protection on large systemically important institutions. This paper

abstracts from government protection in case of default but shows that market power has

consequences not only for market efficiency and the law of one price but also for margins and

access to funding liquidity. The model predicts that large institutions with market power can

operate with less capital and that this may be beneficial for market liquidity in situations

where capital is scarce. However, the benefits in terms of liquidity seems small (in numerical

examples) and involve some wealth transfers to arbitrageurs.

I show that, when dividend volatility is not too large, voluntarily-constrained monopolis-

tic arbitrageurs provide more liquidity than unconstrained monopolistic arbitrageurs. This

has implications for the level of capital monopolistic market-makers, such as NYSE special-

ists, should hold, depending on the underlying characteristics of the market they make. In

assets with limited dividend volatility, it is preferable, surprisingly, that specialists are not

too much capitalized if one cares about market liquidity. This however leads to transfers rel-

ative a market with many competitive market-makers. Thus opening specialists businesses

to competition would redistribute gains from trade to customers and liquidity consumers

but may reduce aggregate welfare and affect the provision of liquidity through time (better
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liquidity ahead of dividend payoff, lower close to payoff).

This paper departs from the literature of limits of arbitrage by studying the effects of the

concentration of capital into a large arbitrageur. Consistent with the idea that the capital

is concentrated, I relax the assumption of price-taking behaviour that prevails in models of

financially constrained arbitrage.7

Attari and Mello (2006) also study the trading strategy of a monopolistic arbitrageur.

There are two key differences with my analysis. First, in Attari and Mello, the arbitrageur

faces a constraint based only on current prices, which generates an immediate feedback

effect from capital to asset prices. This effect is absent in my model, as I assume that

the financial constraint is forward-looking and is based not only on current but also future

prices.8 Second, all investors are rational in my model. In particular, local investors’ demand

for the asset is endogenous. By contrast, Attari and Mello assume that local investors

have an exogenous downward-sloping demand curve. This assumption has two important

consequences: i) it allows me to carry out a welfare analysis under different market structures;

ii) it plays a central role in the dynamics of market depth and asset prices. It generates

Coasian dynamics: as local investors rationally anticipate the price path, a monopolistic

arbitrageur competes with herself over time. Vayanos (1999, 2001), Kihlstrom (2000) and

DeMarzo and Urosevic (2007) have emphasized the analogy between the durable goods

problem studied by Coase (1972) and asset pricing with non-competitive investors. Basak

(1997) studies a Lucas economy with a monopolistic trader able to make future commitments.

To the best of my knowledge, this paper is the first to solve the dynamic problem of a

monopolistic investor under realistic financial constraints when all investors are rational and

the monopolist cannot commit ex-ante. My contribution in this context is to show that

financial constraints may alleviate the arbitrageur’s commitment problem by providing a

credible commitment device without impairing market liquidity.9 Finally, this paper builds

on a companion paper (Fardeau, 2011), where I derive the trading strategies and entry

decisions of an oligopoly of unconstrained arbitrageurs. There I focus on price effects, and

derive new predictions about the dynamics of entry.

7Gromb and Vayanos (2010) survey this extensive theoretical literature. My model is similar to a two-
period version of Gromb and Vayanos (2002) with risk-free arbitrage and mean-variance preferences.

8Both constraints are plausible, but may stem from different contractual frictions. However, financial
constraints of financial firms is a largely unexplored area. As an exception, He and Krishnamurthy (2011)
embed a static contractual problem à la Holmstrom Tirole (1997), which generates an equity constraint, into
an asset pricing model. The mechanisms generated by this constraint seems consistent with our results.

9There is a loose analogy between this effect and the use of leverage as a strategic bargaining tool by
shareholders against unions (Perotti and Spier, 1993).
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I proceed as follows. I present the model in the next section. In section 2.3, I review the

competitive equilibrium and its properties. In Section 2.4, I study the monopolistic equi-

librium. I compare liquidity across market structures in Section 2.5. Section 2.6 concludes.

The appendix contains the proofs.

2.2 Model

The model extends Gromb and Vayanos (2010)’s setting to imperfectly competitive arbi-

trageurs. It has three periods, indexed by t = 0, 1, 2. The financial market is open at time

0 and time 1, and consumption takes place at time 2. There are two identical risky assets,

A and B, and a risk-free asset with return rf normalized to 0. Assets A and B are in zero

net supply and pay a dividend D2 at time 2, with D2 = D + ε1 + ε2, where εt is a random

variable with a symmetric bounded support [−ē, ē], a mean of 0 and volatility σ. The dis-

tribution need not be further specified, but to facilitate the interpretation of the results, I

will sometimes use a particular distribution described below. The information εt is revealed

to all investors at time t before trading. The price of asset k at time t is denoted pkt . Each

asset k is traded on its own, segmented market.

There are two types of investors. First, in each market, there are risk-averse local investors

with mean-variance preferences: for k = A,B, U
(
W k

2

)
= E

(
W k

2

)
− a

2
V
(
W k

2

)
. Local investors

experience liquidity shocks sεt that are correlated with the dividend of the risky asset. That

is, at time t = 0, 1, local investors in market A receive a shock sεt+1, where the magnitude

of the shock, s > 0, is deterministic. B-investors receive opposite shocks, −sεt+1.10 Since

k-investors have only access to asset k (market segmentation) and the risk-free security,

they cannot share risk, although they could perfectly insure each other. The shocks and

market segmentation imply potential price differences between assets A and B, although

their cash-flows are identical. In particular, A-investors have a low valuation for the asset,

and B-investors a high valuation.

At time 2, local investors consume their wealth W k
2 . Let Ek

t and Y k
t denote their end-

of-period positions in the risk-free and risky asset k, respectively. Then we can write local

10The results do not depend on the mean-variance framework. I use these preferences because they offer
greater tractability when liquidity shocks are stochastic, an extension that I am planning to consider in
future work.
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investors’ final wealth as follows:

for k = A,B, W k
2 = Ek

1 + Y k
1 D2,

The dynamic budget constraint follows from the dynamics of asset holdings: Y k
t = Y k

t−1 + ykt

and Ek
t = Ek

t−1 − ykt pkt + sεt+1, where ykt denotes the time-t trade of investors k.

There is an additional investor, the arbitrageur, who can trade all assets without re-

striction. The arbitrageur is also endowed with mean-variance preferences over wealth:

u (W2) = E (W2) − b
2
V (W2), albeit with a potentially different risk-aversion b. Given that

she has access to all securities, the arbitrageur’s final wealth is

W2 =
∑
k=A,B

Xk
1D2 +B1

with for each asset k, Xk
t = Xk

t−1 +xkt denotes the end-of-period position at time t in asset k,

xkt the corresponding trade, and Bt = Bt−1 −
∑

k=A,B x
k
t p
k
t , the arbitrageur’s risk-free asset

holdings at the end of period t. I assume that the arbitrageur has no endowment in the risky

assets Xk
−1 = 0, k = A,B and starts with an initial wealth W−1 = B−1. Apart from Section

2.3, where I assume that the arbitrageur stands for a continuum of competitive investors, I

assume that the arbitrageur is a price-setter in both A and B markets. Specifically, I assume

that the arbitrageur chooses positions, knowing the local investors’ demand in each market,

and imposing market-clearing.

Whether the arbitrageur is price-taker or price-setter, she needs capital to trade the

risky assets. I model the financial constraint in the same fashion as Gromb and Vayanos

(2002, 2010). Arbitrageurs have a margin account V k
t in each market, and their positions

must be fully collateralized. That is, the arbitrageur’s wealth in this account must cover the

maximum possible loss on the position over the next period:

V k
t−1 ≥ max

pkt+1

Xk
t

(
pkt − pkt+1

)
Hence, in total, the arbitrageur’s wealth must cover the total maximum loss on each ac-
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count:11

Wt−1 ≥
∑
k=A,B

max
pkt+1

Xk
t

(
pkt − pkt+1

)
(2.1)

The presence of the financial constraint implies that arbitrageurs may not be able to fully

eliminate the price differences between A and B assets. The modeling of the constraint also

implies that asset A cannot be used as collateral for asset B (and vice-versa). In other words,

cross-collateralization is not allowed, which can be viewed as a consequence of the assumption

of market segmentation. In practice, cross-collateralization is often limited by financiers who

are concerned about imperfect correlation between assets (although this would not be an

issue here). Sometimes traders also voluntarily avoid it in order to avoid revealing their

trading strategies.12 The full-collateralization of each separate account rules out default in

equilibrium.

The constraint corresponds to one-periods VaR constraint at the 100 percent level (as

implied by the assumption of full collateralization). The 100 percent level is for simplicity

only, as it rules out default in equilibrium and thus makes welfare comparisons simpler13,

but the constraint is motivated by real-world margin setting.14 An important feature of the

constraint is that it is forward-looking, in the sense that it is based on both current and

future prices. This is in contrast to Attari and Mello (2006), who also study the trading

strategy of a monopolistic arbitrageur but consider a constraint based only on current prices.

Following Gromb and Vayanos (2002), I will focus on equilibria in which the arbitrageur

holds symmetric positions in both assets, i.e. XA
t = −XB

t = Xt. Given that the arbitrageur

starts with no endowment in the risky assets, this implies that xAt = −xBt = xt, for t =

0, 1. Using the symmetry assumption, we can rewrite the arbitrageur’s budget constraint as

11I define Wt−1 as the end-of-period wealth, while Gromb and Vayanos (2002) use W̃t as the beginning-of-
period wealth. Given this difference in notation: Wt−1 = W̃t. The same applies to the definition of margin
accounts.

12For instance, Pérold (1999) reports: “LTCM inernalized most of the back-office functions associated
with contractual arrangements, due to the complexity and and advanced nature of many of the firm’s trades.
This also helped maintain the confidentiality of its positions. LTCM chose Bear Stearns as a clearing agent
partly because Bear Stearns was committed to customer business rather than being focused on proprietary
trading, and thus there were fewer conflicts of interest.”

13There is no need to compute the welfare of financiers on the other side of the constraint.
14See Brunnermeier and Pedersen (2009), Appendix A, for additional institutional details.
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follows:

W2 = W−1 +
∑
t=0,1

xt∆t, with ∆t = pBt − pAt

The equation shows that by setting up opposite position in each leg of the arbitrage, the

arbitrageur eliminates all fundamental risk and derives all her profits from exploiting the

price difference ∆ between the two markets. The symmetry assumption also simplifies the

financial constraint, because it implies that the risk premia on asset A and B are opposite.

That is, φAt = Dt − pAt = ∆t

2
= −φBt , where Dt is the conditional expected value of the asset

at time t: Dt = Dt−1 + εt. This implies that pkt − pkt+1 = φkt+1 − φkt − εt+1 = ∆t+1−∆t

2
− εt+1.

As a result, we can rewrite the financial constraint (2.1) as follows:

Wt−1 ≥
∑
k=A,B

max
pkt

Xk
t

(
pkt − pkt+1

)
≥ max

εt+1

Xt

(
∆t+1 −∆t

2
− εt+1

)
+ max

εt+1

−Xt

(
−∆t+1 −∆t

2
− εt+1

)
≥ 2Xt

(
∆t+1 −∆t

2

)
+ max

εt+1

Xt (−εt+1) + max
εt+1

−Xt (−εt+1)

≥ 2|Xt|ē−Xt (∆t −∆t+1)

The last step follows from the symmetric support of the distribution. Since the arbitrage

is risk-free, the arbitrageur will hold a long position in equilibrium, Xt ≥ 0. Thus, we can

rewrite the right-hand side as mtXt, where the margin mt is

mt = 2ē− (∆t −∆t+1)

The properties of the margin are key for the dynamics of the model. Clearly, margins increase

with the dispersion (and consequently, volatility) of the fundamental ē. A more volatile

asset leads to a larger potential loss on the position, which induces financiers to ask for more

collateral. Margins also depend on the mispricing between asset A and B. More specifically,

they depend on the change in the mispricing, ∆t−∆t+1. If financiers expect market liquidity

to improve, i.e. ∆t+1 ≤ ∆t, they reduce current margins. Hence, the financiers’ behaviour

assumed here leads to countercyclical margins relative to mispricings (illiquidity). Said

differently, margins play a stabilizing role for asset prices. If a drop in liquidity (i.e. large

∆t) is temporary, then financiers do not necessarily ask for more capital. This stands in sharp

contrast to the financial constraint considered in Attari and Mello (2006), which is based
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only on current prices. It also differs from the uninformed financier case in Brunnermeier

and Pedersen (2009), in which uncertainty about whether the mispricing will decrease or not

in the future can lead to procyclical, destabilizing margins.15

Remark: volatility, tail risk, and dispersion of the fundamental. I show in section

2.4 that the ratio ē
σ2 plays an important role for the equilibrium. Since the dispersion of

the fundamental ē and its volatility are related, it is useful to specify a simple distribution

of fundamental shocks. The following coarse four-point symmetric distribution is enough to

gain intuition:

Lemma 7 Let (µ, p) ∈ ]0,∞[× ]0, 1[, and εt ∼ E [−ē, ē], where the random variable E takes

the following values:

E =


−ē with probability 1

2
− p

− ē
µ

with probability p
ē
µ

with probability p

ē with probability 1
2
− p

Then E (E) = 0 and σ2 = V (E) = ē2
[
1 + 2p

(
1
µ2 − 1

)]
.

This example shows how the variance of fundamental shocks relates to the support boundary,

ē. Although this distribution is just meant to fix ideas, the relation between σ2 and ē2 is

more general. Further, this example can help us clarify how the volatility in a symmetric

distribution can relate to the shape of the tails. The parameter µ measures how far the

median values are from the mean 0, while p measures the weight of the tails: a small p

means that tail events in which εt takes the extreme values ē or −ē are likely. Clearly the

variance decreases with µ and with p (since 1
µ2 − 1 < 0). Hence, when extreme events are

likely (small p), the variance is large. More generally, this example shows that while an

increase in the boundaries of the distribution of fundamentals ē always increases volatility,

volatility may also increase because of a change in the shape of the distribution, without

changing the dispersion ē.

15Brunnermeier and Pedersen show that a margin spiral, in which low liquidity leads to higher margins,
which further limits the ability of arbitrageurs to provide liquidity, can result from the uninformed case.
This margin spiral complements and amplifies the loss spiral created by the financial constraint (“a decrease
in arbitrageurs’ capital impairs their ability to provide liquidity and eliminate the mispricing, which in turn
reduces their capital”). Under our assumptions, there can be a loss spiral, but no margin spiral.
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2.3 Competitive equilibrium benchmark

In this section, I briefly recall the competitive benchmark derived in Gromb and Vayanos

(2002). The model illustrates how liquidity (given by the spread between assets A and B)

depends on arbitrageurs’ capital.

Proposition 10 (Gromb and Vayanos, 2002) There exists a unique symmetric competitive

equilibrium given by:

• If W−1 ≥ ω∗ ≡ 2sē, the financial constraint never binds, the arbitrageurs absorb the

liquidity shock s, i.e. Xt = s at t = 0, 1, and the spread between assets A and B is

always 0: ∆0 = ∆1 = ∆2 = 0

• If 0 ≤ W−1 < ω∗, the financial constraint binds at t = 0 and t = 1 and the spread

between assets A and B narrows over time and is closed only at t = 2, i.e. ∆0 > ∆1 >

∆2 = 0. The arbitrageur position in asset A is given by:

x0 − x0
aσ2 (s− x0)

ē
=

W−1

2ē
(2.2)

X1 −X1
aσ2s−X1

ē
= x0 (2.3)

The equilibrium links liquidity (via the spread) to arbitrageurs’ initial capital and has a

simple form: if arbitrageurs’ capital is large enough, then the market is perfectly liquid,

as reflected by the absence of spread between assets A and B; if instead arbitrageurs start

with less capital, then the financial constraints are binding, and assets A and B trade at a

positive spread, which decreases over time. An increase in the liquidity shock s affecting local

investors or in the dispersion of the fundamental (increase in ē) tightens (proportionately)

the financial constraint: the financiers anticipate that the price divergence between assets A

and B is potentially larger and demand more collateral.

To facilitate comparison with the monopolistic case and gain further insight, I derive the

equilibrium positions and spread as a function of arbitrageurs’ capital:

Corollary 14 If 0 ≤ W−1 < ω∗, the arbitrageurs’ positions in asset A are:

x0 =
aσ2s− ē+

√
Q

2aσ2
; X1 =

aσ2s− ē+
√
U

2aσ2
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with Q = (ē− aσ2s)
2

+ 2aσ2W−1 and U = (ē− aσ2s)
2

+ 4aσ2x0ē.

In equilibrium, the spreads are:

∆0 = 2
(
aσ2s+ ē

)
−
√
Q−
√
U ; ∆1 = aσ2s+ ē−

√
U

This result shows how the positions and the spreads depend on arbitrageurs’ capital: clearly

the spread at time 0 and 1 decreases with capital W−1 (i.e. ∂∆t

∂W−1
< 0, and even more so if

capital is low, a non-linear effect (i.e. ∂2∆t

∂W 2
−1
< 0).16

2.4 Equilibrium with a monopolistic arbitrageur

In this section I derive the trading strategy of a monopolistic arbitrageur and compare it to

the competitive case. In the monopoly case, market power allows the arbitrageur to limit

liquidity but also to operate with a much lower level of initial capital thanks to rent capture.

However, the arbitrageur also faces a commitment problem as local investors recognize that,

even though the arbitrageur can limit liquidity at the current stage, she always has an interest

to provide further liquidity at a later stage. Liquidity provision by a single arbitrageur

thus resembles the provision of a durable good by a monopolist. In this context, financial

constraints can work as a commitment device to limit liquidity at a later stage. This device

is credible, however, only if capital is not too abundant. If instead the arbitrageur’s capital is

sufficiently large, this device does not work as local investors recognize that the arbitrageur

has an incentive to deviate at a later stage (time inconsistency).

2.4.1 Liquidity provision and time consistency

I start by introducing some useful notation and presenting the solution method. Since the

arbitrageur may be constrained (superscript c) or not (superscript u) at each date, there are

two payoffs associated with the different combinations at time 1: J c11 and Ju1
1 , and four at

time 0: Ju1,u0

0 , Ju1,c0
0 , J c1,u0

0 , J c1,c00 .

At time 1, the arbitrageur enters with a position x0 in the asset A (and the opposite in

asset B). The local investors’ first-order conditions and market-clearing imply that ∆1 (X1) =

16See also Brunnermeier and Pedersen (2008).
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2aσ2 (s−X1), where X1 = X0 + x1 = x0 + x1. The arbitrageur’s maximization problem is

thus:

J1 = max
x1

B0 + x1∆1 (X1)

s.t. W0 ≥ 2X1 [ē− (∆1 −∆2)]

Therefore, denoting xu1 = s−x0

2
the first-best solution, and xc1 the constrained solution (which

saturates the constraint: W0 = 2Xc
1 [ē− (∆1 −∆2)]), the two possible payoffs at time 1 are

given by:

Ju1
1 (x0) = B0 + 2aσ2xu1 (s−Xu

1 ) = B0 +
aσ2

2
(s− x0)2

J c11 (x0) = B0 + 2aσ2xc1 (s−Xc
1) , with Xk

1 = x0 + xk1, k = u, c

Of course, by construction J c11 (x0) ≤ Ju1
1 (x0). Similarly, the time-1 equilibrium spread

depends on the state and the arbitrageur’s beginning-of-period position x0: ∆1 = ∆u1
1 (x0)

if the constraint is slack, and ∆1 = ∆c1
1 (x0) otherwise.

At time 0, the relation between the four payoffs is more complicated: local investors being

forward-looking, the price schedule ∆0 (x0) depends on their beliefs about the state of the

market in the next period (constrained or unconstrained arbitrageur). In particular, their

first-order conditions and market-clearing always imply the following price schedule (shown

in the appendix):

∆0 (x0) = ∆1 (x0) + 2aσ2 (s− x0)

That is, we can define ∆u1
0 (x0), and ∆c1

0 (x0) the time-0 price schedule implied by the corre-

sponding beliefs about the state at time 1. Depending on the anticipated time-1 state, the

arbitrageur’s maximization problem is:

Ju1
0 = max

x0

W−1 + x0∆u1
0 (x0) + 2aσ2xu1 (s−Xu

1 )

s.t. W−1 ≥ 2x0 [ē− (∆0 −∆1)]

or J c10 = max
x0

W−1 + x0∆c1
0 (x0) + 2aσ2xc1 (s−Xc

1)

s.t. W−1 ≥ 2x0 [ē− (∆0 −∆1)]

Local investors have rational expectations and can anticipate the price path, and thus

whether the arbitrageur’s constraint will be binding or not. Hence a necessary condition
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for the maximization problems to make sense is that in equilibrium, the time-0 trade does

satisfy the time-1 constraint if local investors expect the arbitrageur’s constraint to be slack,

and vice-versa if they expect the constraint to be binding. The condition is:

Lemma 8 Suppose that in equilibrium the arbitrageur chooses to trade a quantity x0 at time

0. It is consistent with being unconstrained at time 1 if and only if

W−1 − sē+ aσ2 s
2

2
+
(
2aσ2s− ē

)
x0 −

5

2
aσ2x2

0 ≥ 0 (2.4)

Depending on whether the constraint binds or not at time 0, the arbitrageur can trade

the first-best quantity xu0 or the constrained quantity xc0 which “maxes out” her financial

constraint.17 The corresponding payoffs are Ju1,u0

0 , Ju1,c0
0 , J c1,u0

0 , J c1,c00 , which are functions

of the base parameters.

The arbitrageur chooses max (Ju1,u0

0 , Ju1,c0
0 , J c1,u0

0 , J c1,c00 ). By definition: Ju1,u0

0 ≥ Ju1,c0
0

and J c1,u0

0 ≥ J c1,c00 , i.e. conditional on the state at time 1, it is better to be unconstrained

at time 0. However, because the price schedule is different at time 0 depending on what

local investors believe about time 1, it is not guaranteed that Ju1,u0

0 or Ju1,c0
0 are greater

than J c1,u0

0 . In other words, from the point of view of time 0, being unconstrained at time

1 may not be more profitable than being constrained. In particular, when capital is large

enough, the first-best solution is likely to be feasible, and so are other trading strategies. In

the absence of competitive pressure, the arbitrageur can in principle deviate from, say, the

unconstrained strategy to a constrained strategy if this raises her profit. This yields a time

consistency issue. Suppose, for instance, that J c1,u0

0 ≥ Ju1,u0

0 for some parameter region.

Then it is in the arbitrageur’s interest to trade in a way that leaves her constrained at time

1. However, if the arbitrageur has abundant capital, she may have enough dry powder left

when time 1 comes to be unconstrained. She may therefore be able to re-optimize and trade

her first-best quantity, a time-inconsistent behaviour. This will be the case if inequality (2.4)

in Lemma 8 is not satisfied. This should not occur in equilibrium, however, because local

investors are rational: their expectations must therefore be correct in equilibrium.18 The

definition of the equilibrium in the monopoly case summarizes this discussion:

17This is optimal, since the arbitrage is riskfree.
18This rules out any exogenous commitment device that the arbitrageur could credibly use to “tie her

hands” in such cases.



102 CHAPTER 2. MARKET STRUCTURE AND THE LIMITS OF ARBITRAGE

Definition 1 An equilibrium is a collection of arbitrageur’s trades (xt)t=0,1 (or equivalently

positions x0, X1) in asset A and opposite trades (positions) in asset B, such that

• given prices, the local investors maximize their expected utility of final consumption,

• the arbitrageur maximizes her expected payoff subject to financial constraints, local

investors’ demands and market-clearing,

• local investors have rational expectations.

I now describe the strategies, under which conditions they are feasible and / or credible and

the equilibrium.

2.4.2 Equilibrium

Scarce capital

I start with the case where the arbitrageur’s capital is low. Then the arbitrageur has no

financial flexibility and there is only one feasible strategy, so that the equilibrium is easy to

determine:

Proposition 11 If W−1 < ωc ≡ 7
5
sē − 9

10
aσ2s2 − ē2

10aσ2 , then the financial constraint binds

at t = 0 and t = 1, and the arbitrageur’s trades and the equilibrium spreads are the same as

in Proposition 10 and Corollary 14.

If W−1 ≥ ωc, it is always possible for the arbitrageur to be unconstrained at time 1 and

trade xu1 = s−x0

2
. Other strategies in which the arbitrageur is constrained in one or two

periods are also feasible.

It is already clear from this result that the condition under which the arbitrageur is fully or

partially constrained is very different from the competitive case. In particular, the threshold

ωc is no longer linear in s and ē and also depends on volatility of the fundamental σ. I proceed

with the analysis of the more complicated abundant capital case and relegate comments and

intuitions to the end of this section.

Strategies with more abundant capital

If capital is more abundant (W−1 ≥ ωc), the arbitrageur has more financial flexibility and

can choose from a larger set of strategies. I first describe the strategies available to the

arbitrageur, starting with the case where she chooses to be unconstrained at time 1.
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Lemma 9 Denote ωm0 = 4
5
sē− 12

25
aσ2s2, ωm1 = 7

5
sē− 9

10
aσ2s2, and note that ωc = ωm1 − ē2

10aσ2 <

wm1 .

The following holds:

• If W−1 ≥ max (ωm0 , ω
m
1 ), the arbitrageur can be unconstrained at time 0 and time 1.

The unconstrained strategy (u1, u0) consists of the following trades

x0 =
2

5
s, x1 =

3

10
s

and yields a payoff Ju1,u0

0 = W−1 + 9
10
aσ2s2.

• If W−1 ∈ [ωc,max (ωm0 , ω
m
1 )[, then the arbitrageur must reduce her time-0 position in

order to remain unconstrained at time 1 (if ωm0 ≤ W−1 < ωm1 ) or to satisfy the time-

0 constraint (if ωm1 ≤ W−1 < ωm0 ), or to satisfy both constraints (if ωc ≤ W−1 <

min (ωm0 , ω
m
1 )). The arbitrageur’s constraints are:

at time 0: W−1 − 2
(
ē− aσ2s

)
x0 − 2aσ2x2

0 ≥ 0

at time 1: W−1 − sē+ aσ2 s
2

2
+
(
2aσ2s− ē

)
x0 −

5

2
aσ2x2

0 ≥ 0

The arbitrageur’s strategy to remain unconstrained at time 1, if feasible, is the maxi-

mum of four quantities, saturating the time-0 and time-1 constraints:

x0
0 =

aσ2s− ē+
√
Q

2aσ2
> 0, x0′

0 =
aσ2s− ē−

√
Q

2aσ2
< 0

x1
0 =

2aσ2s− ē−
√
R

5aσ2
, x1′

0 =
2aσ2s− ē+

√
R

5aσ2

where R = 10aσ2W−1 + ē2 − 14aσ2sē + 9a2σ4s2. The sign of x1
0 and x1′

0 depends on

the ratio ē
aσ2s

and the position of arbitrageur capital relative to the threshold ωp =

sē− 1
2
aσ2s2.

The payoff of this strategy, as a function of the time-0 trade, is Ju1,c0
0 (x0) = W−1 +

aσ2s2

2
+ 2aσ2sx0 − 5

2
aσ2x2

0.

The intuition for this result is straightforward. With abundant capital, W−1 ≥ max (ωm0 , ω
m
1 ),

the arbitrageur is unconstrained. With a somewhat lower level of capital, the arbitrageur
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must alter her trading strategy if she wants to remain unconstrained at time 1. Since capital

is relatively abundant (W−1 > ωc), other strategies in which the arbitrageur chooses to be

constrained at time 1 or at both time 0 and time 1 are feasible too, but may not be time

consistent. (I refer to a time consistent strategy as “credible”.)

Lemma 10 Suppose W−1 ≥ ωc. Then strategies (c1, u0) and (c1, c0) in which the arbitrageur

voluntarily chooses to be constrained at time 1, or at time 0 and time 1, are available under

the following conditions.

• The (c1, u0) strategy consists of the following positions:

x0 =
s

2
, X1 =

s

2
− ē−

√
Um

2aσ2
, with Um = (ē− aσ2s)

2
+ 2aσ2W−1 + a2σ4s2

It is feasible and credible (i.e. time consistent) if and only if W−1 ≥ ωp ≡ sē− 1
2
aσ2s2

and W−1 < ω̄p ≡ 3
2
sē−7

8
aσ2s2, with ωp > ωc. Its payoff is J c1,u0

0 = ē
aσ2

[√
Um − (ē− aσ2s)

]
.

• The (c1, c0) strategy is given in Corollary 14 and its payoff is

J c1,c00 =
ē

aσ2

[
aσ2s− ē+

√
a2σ4s2 − ē2 + 2ē

√
Q

]
It is credible if and only if h (W−1) < 0, with

h (W−1) = −1

4
W−1 +

1

4
a2σ4s2 − sē

4
+

ē2

2aσ2
+

3ē− aσ2s

4aσ2

√
Q (2.5)

Given the feasibility and credibility conditions, determining the equilibrium requires to com-

pare Ju1,u0

0 to J c1,u0

0 or J c1,c00 if the unconstrained strategy is feasible at time 1, and Ju1,c0
0 to

J c1,u0

0 or J c1,c00 if it is not. This is no easy task given that the order of the thresholds ωm0 , ωm1 ,

ωc, ωp and ω̄p changes with the ratio ē
aσ2s

. Further, note that the last credibility condition

is not explicit since Q depends on W−1. In spite of the large number of cases, it is possible

to derive some general results. There are three main regions for the equilibrium. I now state

the main results of this section:

Abundant capital: trading off efficiency and capital intensity

Proposition 12 The following holds:
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• If W−1 ≥ ωm = Λsē− Γaσ2s2, there exists a unique equilibrium in which the financial

constraint is slack at t = 0 and t = 1, the arbitrageur’s trades in asset A are x0 = 2
5
s

and x1 = 3
10
s and the equilibrium spreads are ∆m

0 = 9
5
aσ2s and ∆m

1 = 3
5
aσ2s.

• Λ and Γ are such that 0 < Λ < 2 and 0 < Γ < 1, and depend on the ratio ē
aσ2s

as

follows:
Λ = 4

5
and Γ = 12

25
if ē

aσ2s
∈
[
0, 21

10(1+
√

5)

[
Λ = 1 + 1√

5
and Γ = 9

10
if ē

aσ2s
≥ 21

10(1+
√

5)

• Relative to the benchmark competitive case, there is a trade-off between liquidity pro-

vision and capital intensity:

– For all ē, a, σ, s, ωm < ω∗, i.e. the monopolistic arbitrageur can remain uncon-

strained with a lower initial capital.

– However, the monopoly provides less liquidity: ∆m
t > ∆∗t , t = 0, 1.

This region is comparable to the first region of the competitive case (W−1 ≥ ω∗). There are

three noticeable differences. First, although the arbitrageur is unconstrained, assets A and

B trade at a spread, i.e. liquidity is imperfect in the economy. This is simply due to the

arbitrageur’s market power. Given the absence of competition, the arbitrageur limits the

amount she buys from local investors with low valuation for the asset and sells to those with

high valuation. This keeps the spread open in equilibrium, which allows the arbitrageur to

make a profit.19 Second, and consequently, the financial constraint is no longer linear in the

dispersion of the fundamental ē and the liquidity shock s. In fact, it is now quadratic in s20,

so that the following comparative statics obtains:

Corollary 15 The threshold ω̄m features the following comparative statics:

• If ē
aσ2s
∈
[
0, 21

10(1+
√

5)

[
, i.e. if volatility is high enough, then a small increase in the

liquidity shock s loosens the financial constraint,

• If ē
aσ2s

> 21

10(1+
√

5)
, i.e. if volatility is low enough, a small increase in s tightens the

financial constraint.

19Indeed in equilibrium the arbitrageur’s position is Xt < s. (note that x0 = X0)
20It is also quadratic in ē since σ2 is a function of ē2.
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The intuition for this result is simple. On one hand, an increase in the dispersion of

the fundamental ē increases its volatility σ, which in turn increases the magnitude of the

potential divergence from fundamental in the next period and makes a default by the arbi-

trageur more likely from the viewpoint of financiers. This tightens the financial constraint,

an effect akin to the competitive case. On the other hand, under our modeling assump-

tions, the financiers (implicitly) recognize that an increase in volatility is equivalent to an

increase in the willingness of local investors to share their risk and to accept large price con-

cessions. This increases the profitability of the arbitrage strategy and allows the arbitrageur

to capture larger rents. The arbitrageur reaps larger capital gains, which relaxes the finan-

cial constraint. This second effect relies on the assumption that financiers understand the

sources of illiquidity and the dynamics of liquidity provision, which generates countercyclical

(stabilizing) margins.21

Bearing this simple trade-off in mind, it is easy to interpret ω̄m as the sum of two terms:

the first term, Λsē, represents the maximum loss on the position caused by a change in the

fundamental and is therefore a multiple of ē, which measures the largest possible change in

the fundamental. Note that it depends on the arbitrageur’s position , which is less than 2s.

By contrast, in the competitive case, ω∗ = 2sē, because arbitrageurs fully absorb the liquidity

shock affecting market A and B, which is 2s in total (corresponding to a position of size s

in each leg of the arbitrage). The second term in ω̄m, −Γaσ2s2, is an adjustment measuring

how much past or future profits due to rent extraction lower the capital requirement. It is

thus specific to the monopoly case, as financiers anticipate that perfect competition drives

profits to zero.

The third noticeable difference is that there are two different regions for the threshold

ωm, while there is a unique threshold ω∗ in the competitive benchmark. These regions can be

expressed in terms of low or high volatility since by using the four-point distribution given

in Section 1.2, the ratio ē
aσ2s

becomes ē

aē2
(

1+2p
(

1
µ2−1

))
s

= 1

aē
(

1+2p
(

1
µ2−1

))
s
. For simplicity,

I will refer to a situation with large fundamental dispersion ē as high volatility and small

fundamental dispersion as low volatility.22 Note that ω̄m = ωm0 in the high volatility region,

i.e. the time-0 feasibility constraint is binding in this case. In the region of low volatility,

ω̄m = v1, where v1 is the threshold such that Ju1,u0

0 ≥ J c1,u0

0 . The interpretation is in terms

21Brunnermeier and Pedersen (2008)’s model nests both stabilizing and destabilizing margins. With
destabilizing margins, the second effect would remain but would bite less.

22Equivalently, low volatility can stem from low risk in the tail (large µ or low p), so that we could rephrase
the analysis in terms of large or small tail risk. Note that because the distribution is symmetric, tail risk
equally includes good and bad events.
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of which effects of the maximum position loss and the profit adjustment dominates. When

volatility is high, the profit adjustment is large and therefore v1 < ωm0 , because v1 takes into

account all expected profits, while ωm0 reflects only one period expected profits. It is the

opposite in the low volatility region, where the profit adjustment is small, meaning that the

feasibility constraint is not the binding constraint. The uniqueness of the threshold in the

competitive benchmark is due to the absence of profit adjustment, since competition drives

profit to zero.

Intermediate level of capital: voluntarily-constrained trading

When the arbitrageur has less capital, she may credibly choose to be constrained at time 1.

Proposition 13 If ē
aσ2s
∈
[

2
√

5
5
, 1
[

and W−1 ∈ [ωp, v1[ or if ē
aσ2s

> 1 and W−1 ∈ [ωm1 , v1[,

then the unconstrained strategy is feasible. However, in the unique equilibrium, the financial

constraint is slack at t = 0 and binding at t = 1, i.e. the arbitrageur’s positions are:

x0 = s
2

and X1 = s
2
− ē−

√
Um

2aσ2 . The equilibrium spreads are ∆c1,u0

0 = 2aσ2s + ē −
√
Um and

∆c1,u0

1 = aσ2s+ ē−
√
Um.

The result shows that the arbitrageur voluntarily chooses to be constrained when volatility

is low enough and her level of capital is intermediate. The reason why being constrained at

time 1 might be optimal is related to the Coasian dynamics of the model. Intuitively, the

arbitrageur chooses her trading strategy to keep the spread open as long as possible. Since

the asset matures only at time 2, local investors have some freedom to chose the date at

which they consume liquidity. They rationally anticipate that after providing liquidity (i.e.

tackling the arbitrage opportunity) at time 0, the arbitrageur will provide further liquidity

at time 1, further decreasing the spread. Hence providing liquidity early, at time 0, reduces

the profitability of later liquidity provision for the arbitrageur, unless she is able to credibly

commit to keep the spread large in the future. To this extent, the financial constraint works

as a commitment device for the arbitrageur, who can then extract larger rents at time 0.

Indeed, in equilibrium, local investors anticipate that the arbitrageur’s constraint binds time

1, which increases their willingness to accept large price concessions at time 0, increasing

the potential price gap and thus the arbitrageur’s capital gain.

When does this occur in equilibrium? The conditions on capital and volatility given

in Proposition 13 have an intuitive interpretation. First, the arbitrageur’s capital must be

below some threshold v1 < ω̄p, which guarantees that the arbitrageur cannot re-optimize
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(by Lemma 10). Intuitively, if the arbitrageur has a very abundant capital, local investors

anticipate that she will not be actually constrained at time 1, and the equilibrium unravels.

If capital is too low, however, the arbitrageur cannot serve the additional liquidity demand

at time 0 and cannot benefit from committing to be constrained. These conditions on

arbitrageur’s capital are combined with the requirement that the volatility be low enough,

i.e. that ē
aσ2s

is low enough. Intuitively, if this was not the case, the unconstrained strategy

would be so profitable that the arbitrageur would not be tempted to boost her trading profit

by organizing a liquidity shortage. In particular, I show in the appendix that for a high

enough volatility, the feasibility of the c1, u0 strategy always implies that it is dominated by

the unconstrained strategy.

At a deeper level, one may wonder how it is possible for the constraint to be binding

only at one date in equilibrium, while in the competitive case, either the constraint binds at

all dates or never. This point is related to the trade-off between position funding and profit

adjustment. The position funding effect depends on the size of the arbitrageur’s position.

The profit adjustment depends on expected profits. As time passes, the position increases,

and therefore the constraint should tighten. But at the same time, the profit adjustment also

increases, so that the constraint at time 1 may be less severe than the constraint at time 0.

When arbitrageurs are competitive, they collectively fully absorb the liquidity shock in each

period, so that their total position is always 2s. Further, perfect competition eliminates the

arbitrageurs’ profits, hence there is no profit adjustment, and the constraint either binds all

the time or never.

Similarly, one can wonder why the arbitrageur chooses to make her constraint binding at

time 1 and not at time 0. Intuitively, from the viewpoint of time 0, there are larger rents to

collect since local investors are aware that they will face two liquidity shocks and therefore

have a larger willingness to share risk. At time 1, only one shock remains and it is too late

to hedge the first one. Hence the arbitrageur prefers to be constrained at time 1.

When the arbitrageur chooses to be constrained at time 1, she has just enough wealth

to respond to the increased willingness of local investors to diversify risk at time 0. The

arbitrageur responds to this additional liquidity demand by tackling the arbitrage gap more

aggressively at time 0 than in the unconstrained case: she sets up a trade x0 = s
2

instead of
2
5
s. Conversely, her time-1 trade is lower than if she were unconstrained.

Corollary 16 In the (c1, u0) equilibrium given in Proposition 13, the arbitrageur trades a

larger quantity at time 0 and a smaller at time 1, than if she were using the (feasible)
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unconstrained strategy, i.e. in the relevant parameter space, xc1,u0

0 > xu1,u0

0 and xc1,u0

1 <

xu1,u0

1 .

The overall effect is that the arbitrageur builds a larger position in the (c1, u0) equilibrium

than if she chose to remain unconstrained if W−1 ∈ [ω, v1[, with ω ≡ 7
5
sē− 23

25
aσ2s2.

It is interesting to see that the arbitrageur’s increased trading aggressiveness at time 0

may be so strong that she may be able to build a larger position than if she was unconstrained,

even though she is financially constrained at time 1. The condition that the arbitrageur must

hold enough capital to build a large position is intuitive, since in this equilibrium trade size

is increasing in the arbitrageur’s capital.

Implications for market liquidity and empirical predictions. The arbitrageur trades

more aggressively in this equilibrium than when she is unconstrained. But her behaviour is

motivated by the fact that local investors shift liquidity demand towards the first period,

pushing the prices of assets A and B further apart. Given these conflicting effects, it is

natural to analyze the overall impact on the equilibrium spread. The following result shows

that the increased trading aggressiveness always dominates:

Corollary 17 The spread is lower at all dates when the arbitrageur chooses to be constrained

in equilibrium, i.e. ∆c1,u0
t < ∆m

t , t = 0, 1.

This improvement in liquidity means either that the arbitrageur more than compensates the

additional liquidity demand at time 0, or that her trades have a larger price impact than

in the unconstrained case. Even more surprising is the result that the liquidity improves

at all dates: this is related to the fact that trades have a permanent impact on the price.

Moreover, the arbitrageur may acquire a larger position than if she was unconstrained.

More generally, this result implies that a drop in arbitrageur’s capital may not have a

monotonically decreasing effect on market liquidity. If volatility is low enough, a reduction

in the arbitrageur’s capital may first leave market liquidity unchanged (if W−1 ≥ ωm), then

improve it and decrease it again later. This is in contrast to the competitive case.

NYSE specialists can be seen as real-world counterparts to our monopolistic arbitrageur,

and one can use effective spreads as proxy for market liquidity as in Comerton-Forde, Jones,

Hendershott, Moulton, Seasholes (2010).23 The model prediction is that for firms with

23To strengthen the analogy with market-making, consider that market A and B at time t may represent
two subperiods tA and tB of date t. Thus A-investors may come to the market at time tA to share the risk of
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low enough dividend volatility, effective spreads should increase in the amount of capital

available to the specialists running the stock, for capital large enough. For capital low

enough, effective spreads should be decreasing in the amount of specialists’ capital, and even

more so if specialist capital is low, for any level of dividend volatility. Comerton-Forde et al.

find evidence for the latter, but base their tests on the assumption that there are two regions

for market-maker capital (as in the competitive case), and not three as in the monopolistic

case. Instead of the cross-section, the test may be run in the time-series, i.e. by comparing

spreads in times where specialists appear to be more constrained than others.

Another interesting implication of Proposition 13 is that when the arbitrageur is con-

strained at time 1, the amount of capital she owns affects her price impact at time 0.24

Further, an increase in capital has an ambiguous effect on the arbitrageur’s price impact

(Kyle’s lambda):

Corollary 18 Under the conditions of Proposition 13 or if W−1 < ωc, then the arbitrageur’s

price impact at t=0 (Kyle’s lambda) depends on her initial capital and following an increase

in capital,

• the arbitrageur’s price impact increases for small trades (x0 <
s
2
)

• the arbitrageur’s price impact decreases for large trades (x0 ≥ s
2
)

This result is based on a substitution effect between the arbitrageur’s initial capital and her

intermediate capital gain. If the arbitrageur’s capital increases, it must be that her capital

gain between time 0 and time 1 decreases for her to remain constrained. The difference

between the effect of small and large trades on the price comes from whether the trade will

increase or decrease the capital gain between t = 0 and t = 1. If x0 ≤ s
2
, a small increase

in the trade following from an injection of capital would raise the intermediate capital gain,

which is equal to x02aσ2 (s− x0). Therefore, for the arbitrageur to remain constrained at

time 1, it must be that her capital gain is small, i.e. that her price impact increases. This

result has an interesting implication. Suppose capital is injected into the arbitrageur with the

view to improve market liquidity. If capital injections are too limited to push the arbitrageur

their liquidity shocks, while B-investors with whom there would be gains from trade arrive only later at time
tB . Arbitrageurs fill the gap between the two subperiods, providing immediacy as market-makers smoothing
out order imbalances. See Gromb and Vayanos (2010) for further details on this alternative interpretation
of the model.

24This point holds for the c1, u0 equilibrium, as well as the c1, c0 equilibrium. It also holds more generally
in the competitive case, if one think of the arbitrageurs’ collective price impact.
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out of the constrained region, using the spread and the arbitrageur’s price impact to assess

the effect of the policy on liquidity may produce conflicting results. The model predicts that

the spread will decrease, but the price impact may either increase or decrease.

Low capital: semi-constrained trading

When the arbitrageur’s capital is below max (ωp, ωm1 ) or if volatility is high enough, it is in

general not possible to determine the equilibrium analytically, because equilibrium conditions

are implicit. The following result summarizes the equilibrium conditions:

Proposition 14 Suppose that W−1 ∈ [ωc,min (ωm0 , ω
m
1 )[ ∪ [min (ωm0 , ω

m
1 ) ,max (ωm0 , ω

m
1 )[,

then at least one constraint is binding in equilibrium.

• If ē
aσ2s
∈
[
0, 7

10

[
, then remaining unconstrained at time 1 involves saturating the t = 0

constraint, which is the most tightly binding, i.e. the u1, c0 strategy involves trading x0
0

at time 0. Further, the c1, u0 strategy is never feasible / credible.

– If W−1 ≥ ωp, an equilibrium always exists. If h (W−1) ≥ 0, or if h (W−1) > 0 and

g̃c (W−1) ≥ 0 the equilibrium is u1, c0. If h (W−1) > 0 and g̃c (W−1) < 0, then the

equilibrium is c1, c0.

– If W−1 < ωp, then if h (W−1) ≥ 0, it is not possible to satisfy the financial

constraints and there is no equilibrium. Otherwise, the equilibrium is the same as

for W−1 ≥ ωp.

• If ē
aσ2s

> 7
10

, then remaining unconstrained at time 1 involves saturating the t = 1

constraint, which is the most tightly binding, i.e. the u1, c0 strategy involves trading x1
0

at time 0. There are two cases:

– If ωm1 ≥ ωp the equilibrium is as in Proposition 13,

– If ωm1 < ωp, the equilibrium is u1, c0 with x0 = x1
0 if h (W−1) ≥ 0. If h (W−1) < 0,

the equilibrium is u1, c0 if g (W−1) ≥ 0, and c1, c0 otherwise.

The functions g and g̃c are defined in Lemma 14 and Lemma 15 in the appendix.

Contrary to the previous case, the unconstrained strategy is not feasible anymore, so that it

is the lack of capital and not strategic considerations that dictates the arbitrageur’s trading

strategy in equilibrium. Even in this case, however, the arbitrageur may keep some financial

flexibility by reducing her time-0 trade in order to remain unconstrained at time 1.25 Note

25Consistent with the previous section, I have not been able to find numerical examples where this strategy
is an equilibrium.
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that the equilibrium may not exist if capital is low and volatility large enough. The reason

is that for such parameters, the thresholds, ωc, ωm0 , etc. may be negative. As a consequence,

the arbitrageur’s capital is in some cases negative as well, and this explains why trading may

not be feasible.

2.5 Market structure, liquidity provision and welfare

When the competitive economy is unconstrained, because capital is abundant, it is clear

that the market is more liquid than in the monopolistic economy. However, given that the

monopoly is less capital-intensive than a competitive market, it is natural to ask whether the

monopoly can provide more liquidity than a constrained competitive market when capital is

relatively scarce. In this section, I show that a monopoly - whether it is unconstrained or

voluntarily constrained - may provide more liquidity than a constrained competitive market

but only at time 1, just before the asset matures.

2.5.1 Constrained perfect competition vs unconstrained monopoly

Given that the thresholds ωm and ωm1 associated with the monopoly are lower than the

threshold ω∗ of the competitive market, there is a parameter region in which the competitive

market is constrained but the monopoly is unconstrained in equilibrium. I denote ∆∗t and

∆m
t the spreads at time t in the competitive and monopoly cases, respectively.

Proposition 15 At time 0: Suppose that W−1 ∈ [ωm, ω∗[. The constrained competitive

market features more liquidity than an unconstrained monopoly at time 0 if ē
aσ2s

< 21

10(1+
√

5)
or if ē

aσ2s
≥ 21

10(1+
√

5)
and W−1 ∈ [ω̃, ω∗[ with ω̃ > ωm.

At time 1: Suppose that W−1 ∈ [ωm1 , ω
∗[ and h (W−1) ≥ 0 or h (W−1) < 0 and f (W−1) ≥

0, then

• If ē
aσ2s
≥ 7+q, then if W−1 [ωm1 , ω̂[, the unconstrained monopoly provides more liquidity

than the constrained competitive market, and less if W−1 ∈ [ω̂, ω∗[,

• If ē
aσ2s

< 7 + q, then constrained competitive market always provide more liquidity than

the unconstrained monopoly.
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Since the ratio ē
aσ2s

can be rewritten as a function of ē, a and s only, we can discuss

the result in terms of high and low volatility regions (or dispersion of fundamental ē). To

understand the result, note that volatility has different effects in the constrained competitive

case and the unconstrained monopoly. For the unconstrained monopoly, volatility has an

unequivocal positive effect. It increases local investors’ demand for liquidity, making the

arbitrage opportunity more profitable. Thus the spread increases with volatility σ2 (and

thus with ē). For the constrained competitive market, volatility has two opposite effects:

first, it increases local investors’ demand for liquidity, as in the monopoly case, thus pushing

asset prices apart. Second, by making the arbitrage more profitable, it can increase the

intermediate capital gain and relax the financial constraint.

As a consequence, in the high volatility region (low ē
aσ2s

), the unconstrained monopoly is

less liquid than the constrained competitive economy. This is because the constrained com-

petitive economy benefits from the softening effect of volatility on the financial constraint.

In the low volatility region, this effect is reduced, and thus there is less liquidity in the

monopoly case only if arbitrageurs’ capital is large enough at time 0, and there can be more

liquidity in the monopoly case at time 1. Intuitively, the intermediate capital gain is small in

this case, thus the constrained competitive economy remains severely constrained at time 1.

The condition on capital is intuitive, since when competitive arbitrageurs are constrained,

the spread decreases in the amount of capital they hold. Note that this result obtains only

when considering ωm1 instead of v1 as a lower threshold for an unconstrained monopoly. This

requires that the conditions h (W−1) ≥ 0 or h (W−1) < 0 and f (W−1) ≥ 0 be satisfied. In

numerical examples, these conditions seem easy to meet.

My results do not rule out the possibility of having more liquidity in the monopoly case

also at time 0. However, even if I do not have an analytical proof, I have not been able

to generate this case numerically, suggesting that liquidity improvement may occur only at

time 1.

2.5.2 Constrained perfect competition vs voluntarily constrained

monopoly

When capital is relatively abundant but close to the constrained region, the monopolistic

arbitrageur may find it optimal to be constrained at time 1. I showed that this decreases

the spread relative to the unconstrained case in Section 2.4. Hence from Proposition 15, one



114 CHAPTER 2. MARKET STRUCTURE AND THE LIMITS OF ARBITRAGE

would expect that the monopoly provides more liquidity than the constrained competitive

market at least at time 1. The following result confirms this conjecture.

Proposition 16 If ē
aσ2s
∈
[

2
√

5
5
, 1
[

and W−1 ∈ [ωp, v1[ or ē
aσ2s

> 1 and W−1 ∈ [ωm1 , v1[ then

the voluntarily-constrained monopoly provides more liquidity at time 1 than the constrained

competitive market.

Given Corollary 17, it is not surprising to see that the condition for ∆∗1 ≥ ∆c1,u0

1 is easier

to satisfy than in the unconstrained monopoly case. In particular, there is no condition on

arbitrageurs’ capital, although we are looking at the same region with W−1 ≥ ωm1 . The

result, however, holds only at time 1. At time 0, I show in the proof that for the monopoly

to provide more liquidity at time 0, a non-trivial condition on parameters must be satisfied.

In numerical examples, I have always found a larger spread in the monopoly case than in

the constrained competitive case. This is confirmed by the following result:

Corollary 19 Under the conditions of Proposition 16, the voluntarily constrained monopoly

captures the largest possible intermediate capital gain, x0 (∆0 −∆1), by rationing liquidity

more than the constrained competitive market: xc1,u0

0 ≤ xc1,c00 .

This implies that under these conditions, ∆0−∆1 is larger in the voluntarily constrained

case than in the constrained competitive case, and thus ∆c1,u0

0 ≥ ∆c1,c0
0 .

It may be surprising that the competitive market yields a tighter spread at time 0 and a

larger one at time 1, all the more than the model features permanent price impact, implying

that a large spread at time 0 should translate into a large spread at time 1. However,

the intuition is simple. The monopoly improves liquidity at time 1 relative to competitive

arbitrageurs because she captures a larger intermediate capital gain. The larger capital

gain, x0 (∆0 −∆1) = 2aσ2x0 (s− x0), follows precisely from the fact that the monopoly

limits liquidity more at time 0 by buying a smaller amount, which causes the spread to

be larger at time 0 than in the competitive case. In particular, I show in the proof of the

Corollary that the intermediate capital gain in the monopoly case, Um, is greater than that

of the competitive case, U , and that this implies ∆∗1 ≥ ∆c1,u0

1 .

2.5.3 Welfare

Given that liquidity may improve at time 1 when the market is monopolistic, it is natural

to study whether investors’ welfare improves. As a first step, I calculate the expression of

local investors’ welfare as a function of the spreads.
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Lemma 11 Let χA0 denote A-local investors’ welfare, and let autarky (χA,a0 ) define a sit-

uation without arbitrageur (n = 0), i.e. where there is no trade across markets, and full

insurance (χA∗0 ) the situation where a continuum of unconstrained competitive arbitrageurs

trade across markets.

Then we have:

χA0 =
(∆0 −∆1)2 + ∆2

1

8aσ2
− s

2
∆0,

χA,a0 = −aσ2s2 < χA,m0 ≤ χA,∗0 = 0

The arbitrageur’s profit is larger in the monopoly case than in autarky or full insurance cases.

As expected, for local investors, autarky and full insurance form two polar cases, and the

monopolistic case is somewhere in the middle. In autarky, local investors have no options to

hedge, and their certainty equivalent is minimal. When there is a continuum of unconstrained

competitive arbitrageurs, local investors can trade the asset at its fair value, and can access

a perfect hedge thanks to arbitrageurs’ intermediation to market B, resulting in perfect

insurance. When there is a monopolistic arbitrageur (whether she is constrained or not),

local investors receive some imperfect insurance as the market is imperfectly liquid. To

understand how the investors’ welfare with an unconstrained monopolist (χA,m0 ) compares

to a constrained competitive market (χA,c0 ) when we place ourselves under the conditions of

Propositions 15 and 16, we could directly compare welfare. However, it is difficult to derive

analytical results. Thus I use an indirect approach based on comparative statics.

Corollary 20 The following holds:

• Local investors’ welfare decreases with ∆0,
∂χA0
∂∆0

< 0

• If ∆1 <
1
2
∆0, then local investors’ welfare decreases with the time-1 spread and with a

decrease in liquidity:
∂χA0
∂∆1

< 0,
∂χA0

∂(∆0−∆1)
< 0, and

∂χA0
∂(∆1−∆2)

< 0

An immediate implication of this result is that, if ∆1 is small enough relative to ∆0, the

improvement in liquidity at time 1 - because it is due to a larger difference ∆0−∆1 as numer-

ical results and analysis suggest - may not be Pareto improving. Put differently, switching

from a constrained competitive market to a monopolistic market unambiguously increases

arbitrageurs’ welfare but may decrease local investors’ if the improvement in liquidity at

time 1 does not offset the worsening at time 0:
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Corollary 21 If ∆1 <
1
2
∆0, and the conditions of Proposition 16 are satisfied, switching

from a competitive market to a monopolistic market increases the arbitrageur’s welfare but

can decrease local investors’ welfare. Aggregate welfare may rise.

Intuitively, the improvement in liquidity at time 1 is associated with a decrease in the

improvement of liquidity between time 0 and time 1, measured by ∆0 −∆1, and a quicker

improvement between time 1 and time 2, ∆1 −∆2.26 Under the conditions of Corollary 21,

the first effect can outweigh the second. There are two reasons why it can be the case. i)

Since local investors experience two shocks, they face higher risks at time 0 (conditionally),

thus receiving liquidity at time 0 matters more than receiving liquidity at time 1. ii) The

improvement in liquidity at time 1 may require a large worsening at time 0, implying that
dχA0
d∆

=
∂χA0
∂∆0

d∆0 +
∂χA0
∂∆1

d∆1 ≤ 0 (see numerical example below). The condition for the result of

Corollary 20 is that ∆1 <
1
2
∆0. In practice it seems verified. In many numerical examples,

including the one reported below, the spread at time 1 is somewhere between a third and a

half of the spread at time 0. I prove the result on aggregate welfare on a numerical example:

Aggregate welfare. It is interesting to study the aggregate effects of the change in mar-

ket structure. Although some redistribution effects may be negative, aggregate welfare may

increase with a change in market structure (This, of course, takes into account both A

and B local investors). For instance, assume that εt follows the example distribution de-

scribed in Section 1.2 and consider the following parameter values: a = 9, s = 0.1, ē = 1,

p = 0.48, µ = 150, and set the arbitrageur’s capital W−1 to ωm1 ≈ 0.1368. We are then under

the conditions of Proposition 16, and if the market is competitive, the arbitrageurs would

be constrained, since ω∗ = 0.2. The equilibrium spreads in the monopolistic (voluntarily-

constrained) structure are ∆c1,u0

0 ≈ 0.058, and ∆c1,u0

1 ≈ 0.0216. The spreads in the con-

strained competitive case are ∆c1,c0
0 ≈ 0.044 and ∆c1,c0

1 ≈ 0.0217, implying that the spread

at time 1 is less than a half of that of time 0. Comparing the market structure shows that

the improvement in liquidity at time 1 is moderate relative to the deterioration at time 0.

(observe that we assumed a value of the arbitrageur’s capital at the low end of the possible

range) This implies that local investors’ welfare decreases from -0.0019 to -0.0023. Instead

arbitrageur’s profit increases 0.1398 to 0.1401. The total effect (taking into account both

markets A and B) is positive: 0.013.

26Recall that ∆2 = 0 and that ∆0 > ∆1.
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2.6 Conclusion

In this chapter, I studied a model of financially constrained arbitrage and relaxed the as-

sumption that arbitrageurs are price-takers. I show that a monopolistic arbitrageur reduces

market efficiency but is less capital-intensive. I also emphasized the role of financial con-

straints as a commitment device for the monopolistic arbitrageur. Since the arbitrageurs’

trading counterparties understand that she will push prices further to their fundamental

value in the future, the arbitrageur loses market power today. Thus, in some cases, the arbi-

trageur may choose to be constrained in order to solve this commitment problem. Relative

to the competitive case, a monopolistic arbitrageur does necessarily provide less liquidity. If

capital is scarce in the economy, liquidity may improve relative to a constrained competitive

market when the asset is close to maturity, since the single arbitrageur’s superior financial

flexibility loosens her financial constraint.

I have studied a textbook situation in which the arbitrage is risk-free. In practice, ar-

bitrage strategies such as relative-value and convergence trading entail risk. Gromb and

Vayanos (2002) show that in this case competitive arbitrageurs may not take the efficient

level of risk, as they fail to internalize the effects of their strategies on others’ financial

constraints. With imperfect competition, one can expect that arbitrageurs would to some

extent internalize the impact of their decisions, even though this would also decrease effi-

ciency. Hence, extending the model to risky arbitrage is an interesting research avenue.

Similarly, considering the effects of entry is a promising topic and would help disentangle

the effects of an increase in capital for existing arbitrageurs from an increase in capital

resulting from the entry of new arbitrageurs.
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2.7 Proofs

2.7.1 Competitive equilibrium

Proposition 10

Proof. The result is a special case of Proposition 1 in Gromb and Vayanos (2002) with

T = 2, and f ′ (x) = aσ2x.

Corollary 14

Proof. I solve the system of equations (2.2)-(2.3). Rearranging terms in equation (2.2)

gives:

2aσ2x2
0 + 2

(
ē− aσ2s

)
x0 −W−1 = 0

Since 2aσ2s > 0 and −W−1 ≤ 0, the unique positive root is

x0 =
aσ2s− ē+

√
Q

2aσ2
, with Q = (ē− aσ2s)

2
+ 2aσ2W−1. (2.6)

Similarly, reshuffling terms in equation (2.3) gives:

aσ2X1 + ē− aσ2s− x0ē = 0 (2.7)

aσ2 and −x0ē have opposite signs and ē− aσ2s > 0, hence the unique positive root is

X1 =
aσ2s− ē+

√
U

2aσ2
, with U = (ē− aσ2s)

2
+ 4aσ2x0ē.

To derive equilibrium spreads, I use the first-order condition of local investors’ maximiza-

tion problems. At time 0, aσ2
(
xA0 + s

)
= E0

(
pA1
)
− pA0 = ∆0−∆1

2
. Similarly at time 1,

aσ2
(
XA

1 + s
)

= E1

(
pA2
)
−pA1 = ∆1−∆2

2
= ∆1

2
. Market-clearing for asset A requires xa0+x0 = 0,

and XA
1 +X1 = 0, hence

∆1 = 2aσ2 (s−X1)

∆0

2
= aσ2 (s− x0) + aσ2 (s−X1)
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I get the equilibrium spreads by plugging equations (2.6) and (2.7) into the above equations.

2.7.2 Monopoly equilibrium

Lemma 8

Proof. At time 1, local investors in market A solve the following problem:

χA1 = max
yA1

U1 = E1

(
WA

2

)
− a

2
V1

(
WA

2

)
= max

yA1

EA
0 + Y A

1 D1 − yA1 pA1 −
aσ2

2

(
Y A

1 + s1

)2

From the first-order condition, aσ2
(
Y A

1 + s1

)
= D1−pA1 , and market-clearing, Y A

t +Xt = 0,

I obtain the price schedule faced by the arbitrageur in market A:

pA1 (X1) = D1 − aσ2s1 + aσ2X1

By symmetry, in market B: pB1 (X1) = D1 + aσ2s1− aσ2X1. With ∆1 = pB1 − pA1 , this gives:

∆1 (X1) = 2aσ2 (s−X1) (2.8)

The arbitrageur takes the price schedule as given and solve the following maximization

problem:

J i1 = max
x1

E1

(
W i

2

)
− b

2
V
(
W i

2

)
s.t. W0 ≥ 2X1

[
ē− aσ2 (s−X1)

]
W2 = W1 = B0 − x1p

A
1 + x1p

B
1 = B0 + x1∆1∆1 (X1) = 2aσ2 (s−X1)

where x1 is the arbitrageur’s trade in asset A. Given that opposite positions in assets A and

B eliminate all fundamental risk, the problem can be rewritten as:

J i1 = max
x1

B0 + 2aσ2x1 (s−X1)

s.t. W0 ≥ 2X1

[
ē− aσ2 (s−X1)

]
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From the first-order condition, and using X1 = x0 + x1, the unconstrained solution is

x1 =
s− x0

2
(2.9)

This trade satisfies the t = 1 financial constraint if

W0 = B−1 + x0 (∆0 −∆1) ≥ 2X1

[
ē− aσ2 (s−X1)

]
(2.10)

To express this inequality as a function of the time-0 trade x0, it is necessary to derive the

price schedule ∆0, which is a function of x0. Coming back to the local investors’ problem,

plugging their demand into the value function χA1 , we get:

χA1 = EA
0 + Y A

0 p
A
1 +

(
D1 − pA1

)2

2aσ2
− s1

(
D1 − pA1

)
At time 0, the local investors choose their holdings (trades) in the risky asset yA0 . We can

rewrite their final wealth as

EA
−1 − yA0 pA0 + s0ε1 + Y a

0 p
A
1 +XA

1 (D2 − p1) + s1ε2

In equilibrium, the price pA1 is the sum of the expected conditional value of the asset, D1 and

the liquidity discount, -φA1 . Hence D1 − p1 is independent of ε1, which implies that D2 − p1

depends only on ε2. This means that at time 0,

E0

(
WA

2

)
= EA

−1 − yA0 pA0 + Y A
0 E0

(
pA1
)

+XA
1 (D1 − p1)

V0

(
WA

2

)
= σ2

(
Y A

0 + s0

)2
+ σ2

(
Y A

1 + s1

)2

Therefore the local investors’ time-0 problem is:27

χA0 = max
yA0

E0

(
WA

2

)
− a

2
V0

(
WA

2

)
= max

yA0

EA
−1 − yA0 pA0 + Y A

0 E0

(
pA1
)

+ Y A
1 (D1 − p1)− a

2
σ2
(
Y A

0 + s0

)2 − a

2
σ2
(
Y A

1 + s1

)2
(2.11)

The first-order condition is:

E0 (pa1)− pA0 = aσ2
(
Y A

0 + s0

)
27Note that following Basak and Chabakauri (2009) we could write a recursive representation for the local

investors’ problem, using the law of the conditional variance. This would yield of course the same solution.
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Using the symmetry of the B-market, and market-clearing in both markets, gives:

∆0 −∆1 = 2aσ2 (s− x0)

Using this result, equation (2.9), the fact that X1 = x0 + x1, the notation B−1 = W−1 and

the financial constraint (2.10), I can rewrite the condition under which the constraint is slack

as

W−1 ≥ ē (s+ x0)− aσ2 (s− x0)
s+ 5x0

2
,

which gives W−1 − sē+ aσ2 s
2

2
+
(
2aσ2 − ē

)
x0 −

5

2
aσ2x2

0 ≥ 0

Proposition 11

Proof. Building on Lemma 8, we know that the unconstrained trade x1 = s−x0

2
is feasible

as long as the left-hand side of inequality (2.4) has a solution, i.e. as long as the discriminant

is positive:

R =
(
2aσ2s− ē

)2
+ 10aσ2

(
W−1 − sē+ aσ2 s

2

2

)
Hence, rearranging terms, I get that R ≥ 0 if and only if

W−1 ≥
7

5
sē− 9

10
aσ2s2 − e2

aσ2
≡ ωc (2.12)

Let us assume that W−1 < ωc so that the arbitrageur is necessarily constrained at t = 1,

i.e. there is no position x0 such that x1 = s−x0

2
is feasible. The arbitrageur’s position must

therefore saturate the financial constraint, i.e.:

W0 = W−1 + 2aσ2x0 (s− x0) = 2X1

(
ē− aσ2s

)
+ 2aσ2X2

1

i.e. − 2aσ2X2
1 − 2

(
ē− aσ2s

)
X1 +W−1 + 2aσ2x0 (s− x0) = 0

At time 1, the arbitrageur’s position, x0, is given, and we can view this equation as a

second-order equation in X1 . The constant term, W−1 +2aσ2x0 (s− x0), is positive, since it

represents the wealth accumulated so far, which will be positive in equilibrium. Hence there
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is a unique solution:

Xc1
1 =

aσ2s− ē+
√
Um

2aσ2
, with Um = (ē− aσ2s)

2
+ 2aσ2 (W−1 + 2aσ2x0 (s− x0)) (2.13)

The time-1 payoff in this constrained case is 2aσ2X1 (s−X1). Plugging the quantity

(2.13) into this expression gives after some algebra:

2aσ2Xc1
1 (s−Xc1

1 ) =
ē

aσ2

[
aσ2s− ē+

√
Um
]
−
(
W−1 + 2aσ2x0 (s− x0)

)
(2.14)

At time 0, as we proved in the previous result, the local investors’ first-order condition

and market-clearing imply that

E0

(
pA1 − pA0

)
= aσ2 (s− x0)

Similarly, in market B, E0

(
pB1 − pB0

)
= aσ2 (−s+ x0)

⇒ ∆0 −∆1 = 2aσ2 (s− x0) (2.15)

As a consequence, ∆0 = ∆1+2aσ2 (s− x0). Plugging equation (2.13) into ∆c1
1 = 2aσ2 (s−Xc1

1 )

gives ∆c1
1 = aσ2s+ ē−

√
Um. Using (2.15), this implies that

∆c1
0 (x0) = aσ2s+ ē−

√
Um + 2aσ2 (s− x0) (2.16)

I can now solve the arbitrageur’s problem at time 0:

J c10 = max
x0

W−1 + x0∆c1
0 (x0) + 2aσ2Xc1

1 (s−Xc1
1 )

s.t. W−1 ≥ 2x0

(
ē− aσ2 (s− x0)

)
∆c1

0 (x0) = aσ2s+ ē−
√
Um + 2aσ2 (s− x0)

Using equation (2.14) and plugging the spread schedule into the maximand, the problem

boils down:

J c10 = max
x0

ē

aσ2

[√
Um − ē+ aσ2s

]
s.t. W−1 ≥ 2x0

(
ē− aσ2 (s− x0)

)
Since Um = (ē− aσ2s)

2
+ 2aσ2 (W−1 + 2aσ2x0 (s− x0)) is concave in x0, the maximiza-
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tion problem admits an interior solution (ignoring the constraint for now):

FOC:
ē

aσ2

∂
√
Um

∂x0

= 0

Since ∂
√
Um

∂x0
=

∂Um

∂x0√
Um

= 4a2σ4(s−2x0)√
Um

, the unconstrained optimum is

x0 =
s

2

Let us now check under which condition this strategy satisfies the time-0 financial constraint.

The constraint is satisfied if

W−1 ≥ 2x0

(
ē− aσ2 (s− x0)

)
= sē− 1

2
aσ2s2 ≡ ωp

To determine whether this condition is compatible with the initial assumption that W−1 <

ωc, I compare the two thresholds:

ωc ≥ ωp ⇔ 2

5
sē− 2

5
aσ2s2 − ē2

10aσ2
⇔ −(ē− 2aσ2s)

2

10aσ2
≥ 0

Since the last inequality is never satisfied, ωc ≤ ωp, implying that for any arbitrageur capital

W−1 strictly below ωc, the arbitrageur is constrained at both t = 0 and t = 1. The time-0

position and the equilibrium are thus the same as in Proposition 10.

Conversely, for W−1 ≥ ωc, not only the fully constrained strategy is financially feasible,

but for W−1 ≥ ωp, but also the c1, u0 strategy.

Lemma 9

Proof. Let’s assume that W−1 ≥ ωc, so that there is always a time-0 trade such that

x1 = s−x0

2
satisfies the financial constraint at t = 1.

The u1, u0 strategy. I first derive the conditions under which the unconstrained strategy

is feasible. Plugging x1 = s−x0

2
into the arbitrageur’s objective function yields her value

function in the unconstrained state of the world:

Ju1
1 = B0 +

aσ2

2
(s− x0)2 (2.17)
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From local investors’ first-order conditions and market-clearing, and the symmetry assump-

tion xA0 = −xB0 = x0, I get that

E0

(
pA1 − pA0

)
= aσ2 (s− x0)

E0

(
pB1 − pB0

)
= aσ2 (x0 − s)

Subtracting the first line from the second gives:

∆1 −∆0 = 2aσ2 (x0 − s)⇒ ∆u1
0 (x0) = 3aσ2 (s− x0) (2.18)

where the second equation follows from equations (2.8) and (2.9). Hence, using equation

(2.17), the arbitrageur’s problem at time 0 (if he is unconstrained at time 1) is:

Ju1
0 = max

x0

W−1 + x0∆u1
0 (x0) +

aσ2

2
(s− x0)2

s.t. ∆u1
0 (x0) = 3aσ2 (s− x0)

W−1 ≥ 2x0

[
ē− aσ2 (s− x0)

]
Taking the first-order condition and solving for its zero (ignoring the financial constraint),

the unconstrained optimal strategy is

xu1,u0

0 =
2

5
s (2.19)

This implies: xu1,u0

1 =
3

10
s (2.20)

Plugging this quantities into (2.8) and (2.18), this trades translates into the following equi-

librium spreads:

∆0 =
9

5
aσ2s; ∆1 =

3

5
aσ2s (2.21)

Further, from equations (2.19) and (2.20), I get the payoff

Ju1,u0

0 = W−1 +
9

10
aσ2s2 (2.22)

I now derive the conditions under which these trades are feasible. Plugging equations
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(2.19)-(2.20) into the financial constraints, I get:

At t = 0, W−1 ≥ 2x0

[
ē− aσ2 (s− x0)

]
⇔ W−1 ≥ ωm0 ≡

4

5
sē− 12

25
aσ2s2 (2.23)

At t = 1, W0 ≥ 2X1

[
ē− aσ2 (s−X1)

]
⇔ W−1 ≥ ωm1 ≡

7

5
sē− 9

10
aσ2s2 (2.24)

From the expressions of ωm0 and ωm1 , one can see that a slack constraint at t = 0 does

not necessarily imply the same at t = 1, in particular, ωm1 ≥ ωm0 ⇔ ē ≥ 7
10
aσ2s. Moreover,

by comparing ωm1 and ωc, one can see that ωc = ωm1 − ē
10aσ2 < ωm1 .

I show in Lemma 16 below that ωc ≥ ωm0 ⇔
[
3− 2

√
6
5
, 3 + 2

√
6
5

]
.

The u1, c0 strategy. Since there are two thresholds ωm0 , ωm1 , and given that their relative

order changes, one constraint may be saturated at a time. To remain unconstrained at time

1, the arbitrageur must trade a quantity that jointly satisfies the following inequalities:

t = 0: W−1 ≥ 2x0

[
ē− aσ2 (s− x0)

]
t = 1: W−1 ≥ ē (s+ x0)− aσ2 (s− x0)

s+ 5x0

2

I showed in the proof of Proposition 10 that the time-0 constraint has two roots, one positive

(denoted x0
0) and one negative (denoted x0′

0 ). The time-1 constraint has at least one root if

its discriminant R ≥ 0 (defined in the proof of Lemma 8). Let x1
0 and x1′

0 denote the roots

if R > 0. Since the arbitrageur’s problem and the constraints are second-order equations in

x0 and have an inverted U shape, if one constraint is binding, it means that its roots are

smaller than the peak of the arbitrageur’s the value function at xu1,u0

0 = 2
5
s, and at least

one root of the non-binding constraint is greater than 2
5
s. If both constraints are binding,

then all four roots are smaller than 2
5
s. Then to remain unconstrained, the arbitrageur must

trade the largest quantity such that both inequalities are weakly satisfied. This may not

always be feasible, for instance if x1
0 < x1′

0 < 0 and x0′
0 > x1′

0 . The time-1 constraint has two

negative roots if W−1 ≤ ωp = sē− 1
2
aσ2s2, and ē

aσ2s
> 2. Similarly, if W−1 < ωm1 < ωm0 , and

x1
0 > x1′

0 > x0
0 > 0.

Lemma 10

Proof.
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The c1, u0 strategy was derived, in part, in the proof of Proposition 11. I recall the main

equations here for convenience. The positions are:

xc1,u0

0 =
s

2

Xc1,u0

1 =
aσ2s− ē+

√
Um

2aσ2

where Um =
(
ē− aσ2s

)2
+ 2aσ2

[
W−1 + 2aσ2xc1,u0

0 (s− xc1,u0

0 )
]

= 2aσ2W−1 +
(
ē− aσ2s

)2
+ a2σ4s2 (2.25)

The payoff is:

J c1,u0

0 =
ē

aσ2

[√
Um − ē+ aσ2s

]
(2.26)

From Proposition 11, the time-0 trade is feasible if and only if W−1 ≥ ωp. I now check under

which condition the arbitrageur is indeed constrained at time 1 after trading x0 = s
2
. It must

be that if the arbitrageur re-optimizes at time 1 with a starting position s
2
, her financial

constraint binds. The unconstrained trade at time 1 is s−x0

2
= s

4
, resulting X1 = s

2
+ s

4
= 3

4
s.

Plugging this quantity into the time-1 financial constraint gives:

W−1 + 2aσ2x0 (s− x0) ≥ 2X1

[
ē− aσ2 (s−X1)

]
⇔ W−1 ≥

3

2
sē− 7

8
aσ2s2 ≡ ω̄p

To sum up: the c1, u0 strategy is

• feasible if and only if W−1 ≥ ωp,

• credible if and only if W−1 ≥ ω̄p.

The c1, c0 strategy is described in Corollary 14. Plugging the positions into the arbi-

trageur’s profit function, W−1 + 2aσ2x0 (s− x0) + 2aσ2X1 (s−X1) gives the payoff:

J c1,c00 =
ē

aσ2

[
aσ2s− ē+

√
(ē− aσ2s)2 + 2ē

(
aσ2s− ē+

√
Q
)]

As shown above, a necessary and sufficient condition for the arbitrageur to be constrained

at time 0 is W−1 < ωp, with ωp ≥ ωc. When W−1 ∈ [ωc, ωp[, one must therefore check under

which condition the strategy is credible. The arbitrage cannot re-optimize at time 1 if the
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time-1 constraint is binding when it is evaluated based on x1 = s−x0

2
and x0 = aσ2s−ē−

√
Q

2aσ2 .

From Lemma 8, the time-1 financial constraint based on x1 = s−x0

2
is W−1 − sē + aσ2 s2

2
+

(2aσ2s− ē)x0 − 5
2
aσ2x2

0 ≥ 0. Plugging x0 = aσ2s−ē+
√
Q

2aσ2 into this equation and rearranging

terms gives inequality (2.5).

The following result will be useful to determine the equilibrium:

Corollary 22 suppose that W−1 < ωp, then if W−1 ≥ ω̄p, the c1, u0 strategy is not credible

and it implies that the c1, c0 is not credible either.

Proof. This follows from the relative position of time-0 trades:

xc1,c00 ≤ xc1,u0

0 =
s

2
⇔ ē−

√
Q ≥ 0

⇒ e2 ≥ Q ⇔ W−1 ≤ sē− aσ2 s
2

2
= ωp

Then, note that the time-1 constraint, based on x1 = s−x0

2
is an inverted-U shaped parabola

in x0: g (x0) = W−1 − sē + aσ2 s2

2
+ (2aσ2s− ē)x0 − 5

2
aσ2x2

0. By Lemma 10, W−1 ≥ ω̄p

implies that g (xc1,u0

0 ) ≥ 0. Note that g is decreasing for all x0 < x1
0, where x1

0 is the largest

root of g (x0) = 0. Further, if W−1 ≥ ωp, xc1,c00 ≤ xc1,u0

0 ≤ x1
0. Thus on this interval,

g (xc1,u0

0 ) ≥ 0 ⇒ g (xc1,c00 ) ≥ 0, i.e. the fact that c1, u0 is not credible implies that c1, c0 is

not credible.

Equilibrium

Propositions 12 and 13 are based on a number of intermediate results that I present here.

I first compare the payoffs of the different strategies, then derive parameter conditions to

order the capital thresholds, and finally determine the equilibrium in each region.

Lemma 12 The u1, u0 strategy (weakly) dominates the c1, u0 strategy if and only if W−1 ≤ v2

or W−1 ≥ v1, with v2 =
(

1− 1√
5

)
sē− 9

10
aσ2s2 and v1 =

(
1 + 1√

5

)
sē− 9

10
aσ2s2.

Proof. I recall the expressions of the respective payoffs for convenience: Ju1,u0

0 = W−1 +
9
10
aσ2s2, and J c1,u0

0 = ē
aσ2

[√
Um − (ē− aσ2s)

]
. This gives:

Ju1,u0

0 ≥ J c1,u0

0 ⇔ aσ2W−1 + ē2 +
9

10
a2σ4s2 − aσ2sē ≥ ē

√
Um
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From Proposition 11, a necessary condition for consider the u1, u0 strategy is W−1 ≥ ωc,

which implies that aσ2W−1 + ē2 + 9
10
a2σ4s2− aσ2sē ≥ 0. Hence elevating to the square each

side will not change the order of the previous inequality. I get:

[
aσ2W−1 − aσ2ωl

]2 ≥ ē2Um, with ωl = sē− 9
10
aσ2s2 − ē2

aσ2

Using Um = (ē− aσ2s)
2

+ 2aσ2W−1 + a2σ4s2 and developing and regrouping terms gives :

a2σ4W−1 − 2aσ2
(
aσ2ωl + ē2

)
W−1 + a2σ4

(
ωl
)2 − ē2

(
ē2 − 2aσ2sē+ 2a2σ4s2

)
≥ 0

The left-hand side is a second-order equation in W−1. Its discriminant is:

δ = 4a2σ4
[
aσ2ωl + ē2

]2 − 4a2σ4
[
a2σ4

(
ωl
)2 − ē2

(
ē2 − 2aσ2sē+ 2a2σ4s2

)]
Using the definition of ωl and regrouping terms yields:

δ =
4

5
a4σ8s2ē2 > 0

This proves that there are always two roots v1 =
2aσ2(aσ2ωl+ē2)+

√
δ

2a2σ4 and v2 =
2aσ2(aσ2ωl−ē2)+

√
δ

2a2σ4 ,

with v2 ≤ v1, so that the inequality is satisfied for W−1 ≤ v2 or W−1 ≥ v1. v1 and v2 can be

simplified to the expressions given in the lemma by replacing δ and ωl by their expressions.

It is easy to check that the conditions are both necessary and sufficient.

Lemma 13 The u1, u0 strategy weakly dominates the c1, c0 strategy if

f (W−1) = −a2σ4W 2
−1 + 2a2σ4ω̄lW−1 − a2σ4

(
ω̄l
)2

+ 2ē3
√
Q+ ē4 − a2σ4s2ē2 ≤ 0 (2.27)

Proof. From the expressions of Ju1,u0

0 and J c1,c00 , I get:

Ju1,u0

0 ≥ J c1,c00 ⇔ aσ2W−1 − aσ2sē+
9

10
a2σ4s2 ≤ ē

√
a2σ4s2 − ē2 + 2ē

√
Q

The assumption that W−1 ≥ ωm1 implies that the left-hand side is positive. I take the square

on each side, which gives:

a2σ4
[
W−1 − ω̄l

]2 ≥ a2σ4s2ē2 − ē4 + 2ē3
√
Q, with ω̄l = sē− 9

10
aσ2s2
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Developing and rearranging terms yields condition (2.27).

Lemma 14 If ωm0 ≤ W−1 < ωm1 , or W−1 < ωm1 ≤ ωm0 , the u1, c0 strategy involves trading a

quantity x1
0, given in Lemma 9, at time 0. In this case,

• the u1, c0 strategy is always dominated by c1, u0,

• the u1, c0 strategy dominates c1, c0 if

g (W−1) =
2

5
aσ2W−1−

12

25
a2σ4s2+

42

25
e2+

2

25
aσ2sē+

4

25

(
aσ2s+ 2ē

)√
R ≥ 2ē

√
Q (2.28)

Proof. First, I plug the expression of x1
0 into Ju1,c0

0 (x0) to the payoff of the strategy

using the results of Lemma 9. This gives:

Ju1,c0
0

(
x1

0

)
= W−1 +

9a2σ4s2 −
(
ē−
√
R
)2

10aσ2
=

ē

aσ2

[
7

5
aσ2s+

√
R− ē

5

]

Then using the expression for J c1,u0

0 given in Lemma 10, I find that

Ju1,c0
0

(
x1

0

)
≥ J c1,u0

0 ⇔ 2

5

(
aσ2s+ 2ē

)
+

√
R

5
≥
√
Um > 0

Taking the square on each side yields, after developing and rearranging the terms,

(
aσ2s+ 2ē

)√
R ≥ 10aσ2 (W−1 − ωc) , with ωc = 13

10
sē− 23

20
aσ2s2 − e2

5aσ2

Given that W−1 ≥ ωc by assumption, and that ωc > ωc, the right-hand side is positive

and taking the square on each side does not change the sign. This yields the following

second-order equation in W−1:

−100a2σ4W 2
−1+10aσ2

[
20aσ2ωc +

(
aσ2s+ 2ē

)2
]
W−1−10aσ2

[(
aσ2s+ 2ē

)2
ωc + 10aσ2 (ωc)2

]
≥ 0

The discriminant of the equation is:

d = 100a2σ4
[
20aσ2ωc +

(
aσ2s+ 2ē

)2
]2

−400a2σ4
[
10aσ2

[(
aσ2s+ 2ē

)2
ωc + 10aσ2 (ωc)2

]]
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Developing and regrouping the terms gives

d = 100a2σ4
(
aσ2s+ 2ē

)2
[(
aσ2s+ 2ē

)2 − 40aσ2 (ωc − ωc)
]

Since ωc − ωc = 1
10
sē+ 1

4
aσ2s2 + ē2

10aσ2 , the discriminant boils down to

d = −900a4σ8s2
(
aσ2s+ 2ē

)2
< 0

Therefore, given that the coefficient of the second-order term is negative, the inequality is

never satisfied.

I now turn to the second point:

Ju1,c0
0 ≥ J c1,c00 ⇔ 2

5

(
aσ2s+ 2ē

)
+

√
R

5
≥
√
a2σ4s2 − ē2 + 2ē

√
Q

This yields condition (2.28), after elevating both sides to the square and rearranging terms.

Lemma 15 If ωm0 ≤ W−1 < ωm1 , or W−1 < ωm1 ≤ ωm0 , the u1, c0 strategy to trade x0
0, given

in Lemma 9. Then

• the u1, c0 strategy dominates c1, u0 if

g̃u (W−1) = −1

4
aσ2W−1 +

(5ē− aσ2s)
√
Q+ 2aσ2sē− ē2 + a2σ4s2

4
≥ ē
√
Um

• the u1, c0 strategy dominates c1, c0 if

g̃c (W−1) = −1

4
aσ2W−1+

(5ē− aσ2s)
√
Q+ 2aσ2sē− ē2 + a2σ4s2

4
≥ ē

√
a2σ4s2 − ē2 + 2ē

√
Q

Proof. By plugging x0
0 into Ju1,c0

0 (x0), both given in Lemma 9, I get the payoff of the

strategy

Ju1,c0
0

(
x0

0

)
= −1

4
W−1 +

a2σ4s2 + 6aσ2sē− 5ē2 + (5ē− aσ2s)
√
Q

4aσ2

Comparing this payoff to J c1,u0

0 and J c1,c00 and rearranging terms gives the conditions given

in the result.
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Lemma 16 The thresholds are ranked in the following order:

1. If ē
aσ2s
∈
[
0, 1

10

[
, then ωc ≤ ωm1 ≤ v1 ≤ ω̄p ≤ ωp ≤ ωm0 ,

2. If ē
aσ2s
∈
[

1
10
, 79

140

[
, then ωc ≤ ωm1 ≤ v1 ≤ ω̄p ≤ ωm0 ≤ ωp,

3. If ē
aσ2s
∈
[

79
140
, 21

10(1+
√

5)

[
, then ωc ≤ ωm1 ≤ v1 ≤ ωm0 ≤ ω̄p ≤ ωp,

4. If ē
aσ2s
∈
[

21

10(1+
√

5)
, 7

10

[
, then ωc ≤ ωm1 ≤ ωm0 ≤ v1 ≤ ω̄p ≤ ωp,

5. If ē
aσ2s
∈
[

7
10
, 3

4

[
, then ωc ≤ ωm0 ≤ ωm1 ≤ v1 ≤ ω̄p ≤ ωp,

6. If ē
aσ2s
∈
[

3
4
, 3− 2

√
6
5

[
, then ωc ≤ ωm0 ≤ ωm1 ≤ v1 ≤ ωp ≤ ω̄p,

7. If ē
aσ2s
∈
[
3− 2

√
6
5
, 2
√

5
5

[
, then ωm0 ≤ ωc ≤ ωm1 ≤ v1 ≤ ωp ≤ ω̄p,

8. If ē
aσ2s
∈
[

2
√

5
5
, 1
[
, then ωm0 ≤ ωc ≤ ωm1 ≤ ωp ≤ v1 ≤ ω̄p,

9. If ē
aσ2s
∈
[
1, 3 + 2

√
6
5

[
, then ωm0 ≤ ωc ≤ ωp ≤ ωm1 ≤ v1 ≤ ω̄p,

10. If ē
aσ2s

> 3 + 2
√

6
5
, then ωc ≤ ωm0 ≤ ωp ≤ ωm1 ≤ v1 ≤ ω̄p.

Proof. I start by recalling the expressions of the different thresholds:

ωc =
7

5
sē− 9

10
aσ2s2 − ē2

10aσ2

ωm0 =
4

5
sē− 12

25
aσ2s2

ωm1 =
7

5
sē− 9

10
aσ2s2

ωp = sē− 1

2
aσ2s2

ω̄p =
3

2
sē− 7

8
aσ2s2

v1 =

(
1 +

√
5

5

)
sē− 9

10
aσ2s2

v2 =

(
1−
√

5

5

)
sē− 9

10
aσ2s2

I now determine relative positions.
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ωm1 vs ωc: ωc = ωm1 − ē
10aσ2 < ωm1 .

ωm0 vs ωc:

ωc ≥ ωm0 ⇔ 7

5
sē− 9

10
aσ2s2 − ē2

10aσ2
≥ 4

5
sē− 12

25
aσ2s2

⇔ 6aσ2sē >
42

10
a2σ4s2 + ē2

⇔ − ē2 + 6aσ2sē− 42

10
a2σ4s2 > 0 (2.29)

One can view the left-hand side as a second-order equation in ē. The discriminant of the

left-hand side is D = 96
5
a2σ4s2, and given that the coefficient of the second-order term and

the constant have the same sign, and that the coefficient of the first-order term is positive,

there are two positive roots, given by
(

3− 2
√

6
5

)
aσ2s ≈ 0.81aσ2s and

(
3 + 2

√
6
5

)
aσ2s ≈

5.2aσ2s. Hence ωc ≥ ωm0 if and only if ē
aσ2s
∈
[
3− 2

√
6
5
, 3 + 2

√
6
5

]
.

ωp vs ωm1 and ωm0 :

ωp ≥ ωm0 ⇔ ē ≥ 1

10
aσ2s

ωp ≥ ωm1 ⇔ ē ≤ aσ2s

ωp vs ωc:

ωp ≤ ωc ⇔ 2

5
sē− 2

5
aσ2s2 − ē2

10aσ2
≥ 0

⇔ −(ē− 2aσ2s)
2

10aσ2
≥ 0

⇒ impossible, hence ωp > ωc

ωp vs ω̄p: ωp ≤ ω̄p ⇔ ē ≥ 3
4
aσ2s.

ω̄p vs ωm0 and ωm1 :

ω̄p ≥ ωm0 ⇔ ē ≥ 79

140
aσ2s

ω̄p ≥ ωm1 ⇔ ē ≥ −4aσ2s which always holds

ωm0 vs ωm1 : ωm0 ≤ ωm1 ⇔ ē ≥ 7
10
aσ2s.
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v1 vs ωm0 , ωm1 , ωp and ω̄p:

v1 > ωm1 since 1 +
√

5
5
> 7

5

v1 ≥ ωm0 ⇔ ē ≥ 21

10
(
1 +
√

5
)aσ2s

v1 ≥ ωp ⇔ ē ≥ 2
√

5

5
aσ2s

v1 < ω̄psince 3
2
> 1 +

√
5

5
and 9

10
> 7

8

Note that v2 < ωm1 hence the condition W−1 < v2 is not going to bind, and therefore it is

not useful to study the relative position of v2.

Overall, without condition on the parameters, we have: ω̄p ≥ ωm1 , ωc < ωm1 , ωc < ωp,

v1 > ωm1 , ω̄p > v1 and v2 < ωm1 . For the other relationships, there are 9 thresholds, in

ascending order: 1
10

, 79
140

, 21

10(1+
√

5)
, 7

10
, 3

4
, 3− 2

√
6
5
, 2
√

5
5

, 1, 3 + 2
√

6
5
.

Proposition 12 Proof. For u1, u0 to be an equilibrium, it must be i) feasible, ii) weakly

dominating c1, u0 and c1, c0. Note that if a strategy dominates c1, u0, it also dominates c1, c0

(whether c1, u0 and c1, c0 are credible or not), but the converse is not necessarily true. A

necessary and sufficient condition for i) to hold is that W−1 ≥ max (ωm0 , ω
m
1 ) by Lemma 9.

A necessary and sufficient condition for ii) to hold is that W−1 ≥ v1 or W−1 ≤ v2. Given

that v2 ≤ ωm1 and v1 > ωm1 for all parameter values, one can eliminate W−1 ≤ v2 from the

equilibrium conditions. Hence a necessary condition is W−1 ≥ max (v1, ω
m
0 ). Lemma 16

shows that v1 ≥ ωm0 if and only if ē
aσ2s
≥ 21

10(1+
√

5)
, hence the result.

Note that u1, u0 may be an equilibrium for a larger parameter interval, because the

previous points are based on the weak dominance versus c1, u0, which implies weak dominance

of c1, c0, and do not take into account credibility and feasibility conditions. There are cases

(see Lemmata 22-25 below) where c1, u0 dominates u1, u0 but is either not credible or not

feasible. This is the case in particular if v1 ≤ ωp and / or v1 ≥ ω̄p. If at the same time,

u1, u0 dominates c1, c0, and / or c1, c0 is not credible, then u1, u0 is an equilibrium, but these

cases are not accounted for by the proposition.

Corollary 15 Proof. Building on Proposition 12, if ē
aσ2s
≤ 9

10(1+
√

5)
≈ 0.65, the equilib-

rium condition is W−1 ≥ ωm0 = 4
5
sē− 12

25
aσ2s2. Since ωm0 is highest for ē ≥ 6

5
aσ2s > 21

10(1+
√

5)
,
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an increase in s decreases ωm0 if ē
aσ2s
≤ 21

10(1+
√

5)
. Conversely, if ē

aσ2s
> 21

10(1+
√

5)
, the threshold

is v1 =
(

1 + 1√
5

)
sē − 9

10
aσ2s2. Taking the first-order condition shows that v1 is increasing

in s if ē ≥ 9

10
(

1+ 1√
5

) ≈ 0.62. Given that 9

10
(

1+ 1√
5

) < 21

10(1+
√

5)
, an increase in s tightens the

constraint if ē
aσ2s
≥ 21

10(1+
√

5)
.

Proposition 13 Proof. The result requires that the u1, u0 and c1, u0 are both feasible

and that c1, u0 is the dominant strategy. The first point requires W−1 ≥ max (ωm0 , ω
m
1 ) and

W−1 ∈ [ωp, ω̄p[ (by Lemmata 9 and 10). The second point requires W−1 < v1 (Lemma 12).

Hence we must have W−1 ≥ max (ωm0 , ω
m
1 , ω

p) and W−1 < min (v1, ω̄
p). From Lemma 16,

this interval is non-empty only in the two instances stated in the result.

Corollary 17 Proof. Recall the expressions of xc1,u0

0 , xc1,u0

1 and Xc1,u0

1 from Lemma 10:

xc1,u0

0 =
s

2
; xc1,u0

1 =

√
Um − ē
2aσ2

; Xc1,u0

1 =
aσ2s− ē+

√
Um

2aσ2

Using the results of Lemma 9, it is immediate that xc1,u0

0 > xu1,u0

0 .

xc1,u0

1 − xu1,u0

1 =

√
Um − ē
2aσ2

− 3

10
s ≥ ⇔

√
Um ≥ ē+

3

5
aσ2s

Taking squares on both sides and rearranging terms yields:

W−1 ≥
8

5
sē− 41

5
aσ2s > ωm1

Further v1 ≥ 8
5
sē − 41

5
aσ2s ⇔

√
5−3
5
ē ≥ 2

25
aσ2s, which never holds since

√
5 − 3 < 0.

Thus the equilibrium condition W−1 < v1 can be satisfied at the same time as W−1 ≥ 8
5
sē−

41
5
aσ2s, which implies that for all parameter values satisfying the conditions of Proposition

13, xc1,u0

1 < xu1,u0

1 .

Turning to the total position:

Xc1,u0

1 −Xu1,u0

1 =
aσ2s− ē+

√
Um

2aσ2
− 7

10
s ⇒ W−1 ≥

7

5
sē− 23

25
aσ2s2

Since v1 =
(

1 + 1√
5

)
sē− 9

10
aσ2s2, 7

5
sē− 23

25
aσ2s2 < v1.
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Proposition 14 Proof. The result can be derived from Lemmata 18-27 below or directly

by using Lemmata 9, 10, 16, 14 and 15.

For the sake of exhaustiveness, I now derive the equilibrium for each of the parameter

regions of Lemma 16. Since the algorithm for the equilibrium determination is always the

same, I write the proof only in the first case. Note that:

Lemma 17 If ē
aσ2s

< 7− 2
√

10 or ē
aσ2s

> 7 + 2
√

10, ωc < 0. Thus some parameter regions

may imply a negative capital (i.e. debt) W−1 < 0.

Proof. Rewriting ωc as 14aσ2sē−9a2σ4s2−ē2
10aσ2 , one can view the numerator as a second-

order equation in ē and calculate its discriminant, δ = 160a2σ4s2. There are two roots,(
7− 2

√
10
)
aσ2s ≈ 0.67aσ2s and

(
7− 2

√
10
)
aσ2s ≈ 13.3aσ2s

This result matters as it can explain why in some regions the equilibrium with may not

exist. Capital may be so negative that no trade may be feasible. I recall some notation.

Notation 17 The following notation is used as a shorthand:

• Weakly dominant strategy:

– u1, u0 dominates c1, c0 if f (W−1) ≥ 0 where f is defined in Lemma 13,

– u1, c0, with the time-0 constraint most severely binding, dominates c1, c0 if g (W−1) ≥
0, with g defined in Lemma 14,

– u1, c0, with the time-1 constraint most severely binding, dominates c1, u0 if g̃u (W−1) ≥
0, with g̃u defined in Lemma 15,

– u1, c0, with the time-1 constraint most severely binding, dominates c1, c0 if g̃u (W−1) ≥
0, with g̃c defined in Lemma 15.

• Credibility and feasibility conditions:

– c1, c0 is credible if and only if h (W−1) < 0, where h is defined in Lemma 10.

I now present the equilibrium for each parameter region:

Lemma 18 Case A: If ē
aσ2s
∈
[
0, 1

10

[
, then ωc ≤ ωm1 ≤ v1 ≤ ω̄p ≤ ωp ≤ ωm0 ,
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1. If W−1 ≥ ωm0 , the equilibrium is u1, u0,

2. If W−1 ∈ [ωp, ωm0 [, then if W−1 is such that h (W−1) ≥ 0, the equilibrium is u1, c0 with

x0 = x0
0, otherwise, a necessary condition for this equilibrium to hold is g̃c (W−1) ≥ 0.

If g̃c (W−1) < 0, the equilibrium is c1, c0.

3. If W−1 ∈ [ω̄p, ωp[ then the equilibrium is c1, u0 with x0 = x0
0 if x0

0 > x1′
0 and may not

exist otherwise.

4. If W−1 ∈ [v1, ω̄
p[ or [ωm1 , v1[, or W−1 ∈ [ωc, ωm1 [, then the equilibrium is c1, u0 with

x0 = x0
0 if x0

0 > x1′
0 and h (W−1) ≥ 0. If h (W−1) < 0, the equilibrium is u1, c0 if

g̃c (W−1) ≥ 0 and x0
0 > x1′

0 . g̃c (W−1) < 0, then the equilibrium is c1, c0. If x0 < x1′
0 , it

is not possible to satisfy the financial constraints.

Proof. If W−1 ≥ ωm0 , u1, u0 is feasible, and u1, c0 is feasible but not credible since

W−1 ≥ ω̄p. Given that W−1 ≥ v1, u1, u0 would dominate c1, u0, hence dominates c1, c0.

Hence the equilibrium is u1, u0.

If W−1 ∈ [ωp, ωm0 [, then u1, u0 is not feasible, with the time-0 constraint binding, hence

one must compare u1, c0 with x0 = x0
0 to c1, u0 or c1, c0. c1, u0 is still not credible, hence

u1, c0 must be compared to c1, c0 if the latter is credible, i.e. if h (W−1) < 0 according to

Lemma 10. By Lemma 15, if c1, c0 is credible, it is dominated if g̃c (W−1) ≥ 0.

If W−1 ∈ [ω̄p, ωp[, then the time-0 constraint is still the most severely binding. However,

since W−1 < ωp, there are two positive roots to equation (2.4). One (x1
0) is greater than 2

5
s

since the time-1 constraint is not binding, and one is smaller (x1′
0 ). From Corollary 14, the

time-0 constraint has always a positive and a negative root: x0
0 > 0 and x0′

0 < 0. If x0
0 < x)1′

then the two constraints do not cross in the upper-quadrant, meaning that no trade ensures

that the time-0 constraint is feasible and x1 = s−x0

2
is feasible. Given that W−1 ∈ [ω̄p, ωp[,

the fact that c1, u0 is not credible implies that c1, c0 is not credible by Corollary 22. Hence

if x0
0 < x1′

0 , there may be no equilibrium. If x0
0 ≥ x1′

0 , there is always an equilibrium, and the

equilibrium is u1, c0 with x0 = x0
0.

If W−1 ∈ [v1, ω̄
p[ or [ωm1 , v1[, then the analysis is similar, with the exception that Corollary

22 cannot be used anymore. Hence if h (W−1) < 0, c1, c0 is a credible strategy and it is played

in equilibrium if g (W−1) < 0.
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If W−1 ∈ [ωc, ωm1 [, the analysis is similar: given that W−1 < ωm1 , the time-1 constraint is

also binding but since ωm0 > ωm1 , x0
0 < x1

0, the time-0 constraint remains the most severely

binding constraint.

Lemma 19 Case B: If ē
aσ2s
∈
[

1
10
, 79

140

[
, then ωc ≤ ωm1 ≤ v1 ≤ ω̄p ≤ ωm0 ≤ ωp,

1. If W−1 ≥ ωp or W−1 ∈ [ωm0 , ω
p[, the equilibrium is u1, u0,

2. If W−1 ∈ [ω̄p, ωm0 [, the equilibrium is u1, c0 with x0 = x0
0 if x0

0 > x1′
0 . Otherwise, it is

not possible to satisfy the financial constraints (A.3.).

3. If W−1 ∈ [v1, ω̄
p[ or [ωm1 , v1[, the equilibrium is the same as A.4.

Lemma 20 Case C: If ē
aσ2s
∈
[

79
140
, 21

10(1+
√

5)

[
, then ωc ≤ ωm1 ≤ v1 ≤ ωm0 ≤ ω̄p ≤ ωp,

1. If W−1 ≥ ωp or W−1 ∈ [ω̄p, ωp[, or [ωm0 , ω̄
p[, the equilibrium is u1, u0.

2. If W−1 ∈ [v1, ω
m
0 [ ∪ [ωm1 , v1[ ∪ [ωc, ωm1 [, the equilibrium is the same as A.4.

Lemma 21 Case D: ē
aσ2s
∈
[

21

10(1+
√

5)
, 7

10

[
, then ωc ≤ ωm1 ≤ ωm0 ≤ v1 ≤ ω̄p ≤ ωp,

1. If W−1 ≥ ωp, or W−1 ∈ [ω̄p, ωp[ or [v1, ω̄
p[, the equilibrium is u1, u0.

2. If W−1 ∈ [ωm0 , v1[, then the equilibrium is u1, u0 if h (W−1 ≥ 0). If h (W−1) < 0, then

the equilibrium is u1, u0 if f (W−1) ≥ 0 and c1, c0 otherwise.

3. If W−1 ∈ [ωm1 , ω
m
0 [ or [ωc, ωm1 [, then the equilibrium is as in A.4.

Proof. The first case is immediate: one must compare the strategies u1, u0 and c1, u0,

and the latter is either not feasible / credible, or dominated in these three intervals, since

W−1 ≥ v1. (this implies that c1, c0 is also dominated)

The second case is new and follows from Lemma 10 and Lemma 13. It differs from A.4.

because one mus compare u1, u0 to c1, c0, while in A.4. one compares u1, c0 to c1, c0. This

case arises because for ē
aσ2s
≥ 21

10(1+
√

5)
, wm0 < v1. The third case has already been analyzed.

Lemma 22 Case E: If ē
aσ2s
∈
[

7
10
, 3

4

[
, then ωc ≤ ωm0 ≤ ωm1 ≤ v1 ≤ ω̄p ≤ ωp,
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1. If W−1 ≥ ωp, or W−1 ∈ [ω̄p, ωp[ or [v1, ω̄
p[, the equilibrium is u1, u0.

2. If W−1 ∈ [ωm1 , v1[, the equilibrium is as D.2.

3. If W−1 ∈ [ωm0 , ω
m
1 [ or [ωc, ωm0 [, then the equilibrium is u1, c0 with x0 = x1

0 if h (W−1) ≥
0. If h (W−1) < 0, the equilibrium is u1, c0 if g (W−1) ≥ 0, and c1, c0 otherwise.

Lemma 23 Case F: If ē
aσ2s
∈
[

3
4
, 3− 2

√
6
5

[
, then ωc ≤ ωm0 ≤ ωm1 ≤ v1 ≤ ωp ≤ ω̄p,

1. If W−1 ≥ ω̄p or W−1 ∈ [ωp, ω̄p[ or [v1, ω
p[, then the equilibrium is u1, u0,

2. If W−1 ∈ [ωm1 , v1[, then the equilibrium is as D.2.

3. If W−1 ∈ [ωm0 , ω
m
1 [ or [ωc, ωm0 [, the equilibrium is as E.3.

Lemma 24 Case G: If ē
aσ2s
∈
[
3− 2

√
6
5
, 2
√

5
5

[
, then ωm0 ≤ ωc ≤ ωm1 ≤ v1 ≤ ωp ≤ ω̄p,

1. If W−1 ≥ ω̄p or W−1 ∈ [ωp, ω̄p[ or [v1, ω
p[, then the equilibrium is u1, u0,

2. If W−1 ∈ [ωm1 , v1[, then the equilibrium is as D.2.

3. If W−1 ∈ [ωc, ωm1 [, the equilibrium is as E.3.

Lemma 25 Case H: If ē
aσ2s
∈
[

2
√

5
5
, 1
[
, then ωm0 ≤ ωc ≤ ωm1 ≤ ωp ≤ v1 ≤ ω̄p,

1. If W−1 ≥ ω̄p or W−1 ∈ [v1, ω̄
p[, then the equilibrium is u1, u0,

2. If W−1 ∈ [ωp, v1[, then the equilibrium is c1, u0,

3. If W−1 ∈ [ωm1 , ω
p[, then the equilibrium is as D.2.

4. If W−1 ∈ [ωc, ωm1 [, the equilibrium is as E.3.

Lemma 26 Case I: If ē
aσ2s
∈
[
1, 3 + 2

√
6
5

[
, then ωm0 ≤ ωc ≤ ωp ≤ ωm1 ≤ v1 ≤ ω̄p,

1. If W−1 ≥ ω̄p or W−1 ∈ [v1, ω̄
p[, then the equilibrium is u1, u0,

2. If W−1 ∈ [ωm1 , v1[ or [ωp, ωm1 [, then the equilibrium is c1, u0,

3. If W−1 ∈ [ωc, ωm1 [, then the equilibrium is as E.3.
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Lemma 27 Case J: If ē
aσ2s

> 3 + 2
√

6
5
, then ωc ≤ ωm0 ≤ ωp ≤ ωm1 ≤ v1 ≤ ω̄p,

1. If W−1 ≥ ω̄p or W−1 ∈ [v1, ω̄
p[, then the equilibrium is u1, u0,

2. If W−1 ∈ [ωm1 , v1[ or [ωp, ωm1 [, then the equilibrium is c1, u0,

3. If W−1 ∈ [ωm0 , ω
p[ or [ωc, ωm0 [, then the equilibrium is as E.3.

2.7.3 Liquidity and welfare comparisons

Proposition 15

Proof. First I recall the expressions of the spread at time 0 in both cases:

∆m
0 =

9

5
aσ2s; ∆∗0 = 2

(
aσ2s+ ē

)
−
√
Q−
√
U

with Q = (ē− aσ2s)
2
+ 2aσ2W−1 and U = (ē− aσ2s)

2
+ 4aσ2x0ē. It is convenient to rewrite

U by plugging the expression for the time-0 constrained trade given in Corollary 14:

U =
(
ē− aσ2s

)2
+ 2ē

(
aσ2s− ē

)
+ 2ē

√
Q

= a2σ4s2 − ē2 + 2ē
√
Q

∆∗0 ≥ ∆m
0 ⇔

1

5
aσ2s+ 2ē ≥

√
Q+
√
U

This implies that

1

5
aσ2s+ 2ē ≥ Q+ U + 2

√
QU

Since Q+U = 2a2σ4s2−2aσ2sē+2ē
√
Q+2aσ2W−1, the condition becomes, after regrouping

terms:

−2aσ2W−1 +
14

5
aσ2sē− 49

25
a2σ4s2 + 4ē2 ≥ 2

√
Q
(
ē+
√
U
)

A necessary condition for this inequality to be satisfied is that the LHS is positive, i.e.

W−1 ≤ ω̃ =
7

5
sē− 49

50
aσ2s2 +

2ē2

aσ2
(2.30)
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The interval of interest to compare ω̃ to is [ωm0 , ω
∗[ if ē

aσ2s
< 21

10(1+
√

5)
, [v1, ω

∗[ if ē
aσ2s

≥
21

10(1+
√

5)
and [v1, ω

∗[ if ē
aσ2s
≥ 7

10
and h (W−1) ≥ 0 or h (W−1) < 0 and f (W−1) ≥ 0. Note

that the latter case is not given in Proposition 12, which gives only a necessary condition

and not a sufficient one. I compare ω̃ to the different thresholds:

v1 ≥ ω̃ ⇔
5
(√

5− 2
)
aσ2sē− 2a2σ4s2 − 50ē2

25aσ2
≥ 0

We can consider the numerator of the LHS as a second-order equation in ē. Calculating the

discriminant d =
(

25
(√

5− 2
)2 − 400

)
a2σ4s2 < 0 shows that the LHS is always negative

(since the second-order term has a negative coefficient), i.e. v1 < ω̃.

Next, I compare ω̃ and ωm0 :

ωm0 ≤ ω̃ ⇔ −6aσ2sē+ 5a2σ4s2 − 20ē2

10aσ2

The LHS in the numerator can be seen as a second-order equation in ē, I calculate its

discriminant: d = 436a2σ4s2 > 0. Since the constant and the second-order term have

opposite signs, there is a positive and a negative root. The positive root is equal to
3+
√

109
20

aσ2s ≈ 0.68aσ2s > 21

10(1+
√

5)
aσ2s ≈ 0.65aσ2s. Hence if ē

aσ2s
< 21

10(1+
√

5)
, (2.30) does

not hold. If

To complete the time-0 case, I assume that h (W−1) > 0 or h (W−1) ≤ 0 and f (W−1) ≥ 0.

The relevant threshold for the monopoly is then ωm1 :

ωm1 ≤ ω̃ ⇔ a2σ4s2

25
≤ ē2 ⇔ ē ≥ aσ2s

5
(ē > 0)

Next, I compare the time-1 spreads, ∆∗1 = aσ2s+ ē−
√
U and ∆m

1 = 3
5
aσ2s:

∆∗1 ≥ ∆m
1 ⇔

4

5
aσ2sē+ 2ē2 − 21

25
a2σ2s4 ≥ 2ē

√
Q (2.31)

I study the sign of the LHS, taking it as a second-order equation in ē. The discriminant is

d = 184
25
a2σ4s2 and given that the constant and the second-order term have opposite signs,

there is a positive and a negative root. The positive root is
√

46−2
10

aσ2s ≈ 0.48aσ2s. Hence

for ē
aσ2s
≤
√

46−2
10

, ∆∗1 ≤ ∆m
1 . Otherwise, one can take the square in each side of inequality
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(2.31), which gives, after a few lines of algebra:

∆∗1 ≥ ∆m
1 ⇒ W−1 ≤ ω̂ ≡ 7

5
sē− 21

25
aσ2s2 +

441

5000

a3σ6s4

ē2
− 21

125

a2σ4s3

ē

To assess the existence of this case, I compare ω̂ to the thresholds v1, ωm0 and ωm1 .

ω̂ ≥ v1 ⇔
2−
√

5

5
sē+

3

50
aσ2s2 +

21

125

a2σ4s2

ē

[
21

40

aσ2s

ē
− 1

]
≥ 0

It is not possible to derive the roots of this equation analytically. However, one can look at

sufficient conditions. There are two options and both are not satisfied. i) It is enough that:

{
21
40
aσ2s
ē
− 1 ≥ 0

2−
√

5
5
sē+ 3

50
aσ2s2 ≥ 0

⇔


ē

aσ2s
≤ 0.525

ē
aσ2s
≤ 3

10(
√

5−2)
≈ 1.27

⇔ ē

aσ2s
≤ 0.525

This is not compatible with the initial assumption that ē
aσ2s
≥ 21

10(1+
√

5)
≈ 0.65. ii) Another

sufficient condition is:{
3
50
aσ2s2 ≥ 21

125
a2σ4s3

ē
441

5000ē2
a3σ6s4 ≥

√
5−2
5
sē

⇔


ē

aσ2s
≥ 14

5

ē
aσ2s
≤ (441)

1
3

10(
√

5−2)
1
3
≈ 1.23

These two conditions are contradictory.

Now compare ω̂ and ωm0 :

ω̂ ≥ ωm0 ⇔ 3

5
sē− 9

25
aσ2s2 +

441

5000

a3σ6s3

ē2
− 21

125

a2σ4s3

ē
≥ 0

Again, there are two types of sufficient conditions and both are not satisfied. i) It is enough

that: {
3
5
sē ≥ 9

25
aσ2s2

441
5000

a3σ6s3

ē2
≥ 21

125
a2σ4s3

ē

⇔

{
ē

aσ2s
≥ 3

5
ē

aσ2s
≤ 21

40

These two conditions contradict each other. ii) Another sufficient set of sufficient conditions

is: {
3
5
sē ≥ 21

125
a2σ4s3

ē
441
5000

a3σ6s3

ē2
≥ 9

25
aσ2s2

⇔

{
ē

aσ2s
≥
√

7
5
≈ 0.53

ē
aσ2s
≤ 21

15
√

8≈0.49
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Again these two conditions contradict each other. Last I compare ωm1 and ω̂:

ω̂ ≥ ωm1 ⇔ 3

50
aσ2s2 +

441

5000

a3σ6s3

ē2
− 21

125

a2σ4s3

ē
≥ 0

We can rewrite the LHS as
aσ2s(300ē2+441a2σ4s2−4200aσ2sē)

5000ē2
, which can be seen as a second-

order equation in ē. The discriminant of the numerator is d = (42002 − 1200.441) a2σ4s2 ≡
q̄2a2σ4s2 > 0. The constant and the second-order term has the same sign, and the first-

order term is negative, thus there are two positive roots. The smallest root is equal to

(7− q) aσ2s ≈ 0.1aσ2s, with q = q̄
600

, which is lower than the threshold 21

10(1+
√

5)
aσ2s, and

the largest root is (7 + q) aσ2s ≈ 14aσ2s. Hence if ē
aσ2s
≥ 7 + q, ∆∗1 ≥ ∆m

1 if W−1 ∈ [ωm1 , ω̂].

Proposition 16

Proof. The equilibrium spreads in the constrained competitive and voluntarily con-

strained cases are given in Corollary 14 and Proposition 13. A time 0:

∆∗0 ≥ ∆c1,u0

0 ⇔
√
Um + ē ≤

√
Q+
√
U ≥ 0⇒ Um − (Q+ U) + ē2 ≥

√
QU − 2ē

√
Um

Since Um − (Q+ U) = 2ē2 − 2ē
√
Q, the previous condition rewrites as:

2ē2 ≥
√
QU − 2ē

[√
Um −

√
Q
]

I now show that the inequality is not trivially satisfied because the RHS is always positive.

To see this, note that Um = Q + a2σ2s2 > Q, hence
√
Um ≤

√
Q + aσ2s by Cauchy-

Schwartz inequality. Hence 0 ≤ 2ē
[√

Um −
√
Q
]
≤ 2aσ2sē. Further, we can write U

as U = (ē− aσ2s)
2

+ 4aσ2x0ē. Since the financial constraint is binding at time 0 in the

competitive case, W−1 = 2x0ē − 2aσ2x0 (s− x0). Hence U = Q + 4a2σ4x0 (s− x0) > Q,

because the second term represents the time-0 trading profit which is positive in equilibrium

given that the spread does not close. Since Q > 0, U > Q⇒ UQ > Q2. Taking the square

root on each side gives:
√
UQ ≥ Q. Then using the expression U = Q+4a2σ4x0 (s− x0), we

have QU = Q2 + Q4a2σ4x0 (s− x0). Then, applying Cauchy-Schwartz inequality to
√
QU ,

we obtain: Q ≤
√
UQ ≤ Q + 2aσ2

√
Qx0 (s− x0). This, combined with the inequalities

about Um, implies that√
UQ− ē

(√
Um −

√
Q
)
≥ Q− 2aσ2sē = ē2 + a2σ4s2

2aσ
2W−1 ≥ 0
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Next, I consider the time-1 spreads:

∆∗1 ≥ ∆c1,u0

1 ⇔ Um ≥ U ⇔ 2ē2 + a2σ4s2 − 2aσ2sē+ 2aσ2W−1 ≥ 2ē
√
Q

I first check the sign of the LHS. It is positive if and only ifW−1 ≥ sē− 1
2
aσ2s2− ē2

aσ2 = ωp− ē2

aσ2 .

This inequality is always satisfied since by definition W−1 ≥ ωp in the c1, u0 equilibrium. I

rewrite the LHS as 2aσ2
(
W−1 −

(
ωp − ē2

aσ2

))
. The above inequality gives:

4a2σ4

(
W−1 −

(
ωp − ē2

aσ2

))2

≥ 4ē2Q = 4ē2
(
ē− aσ2s

)2
+ 8aσ2ē2W−1

Developing each side and skipping some lines of algebra, I find that the previous inequality

is equivalent to:

W 2
−1 − 2ωpW−1 + s2

(
ē− 1

2
aσ2s

)2

≥ 0

Since s2
(
ē− 1

2
aσ2s

)2
=
(
sē− 1

2
aσ2s2

)2
= (ωp)2, the LHS is equal to (W−1 − ωp)2 which is

always positive. This proves the result about time-1 spreads.

Finally, the result about the time-0 spread follows from the facts that under the assump-

tions of Proposition 16, i) xc1,c00 ≥ xc1,u0

0 and ii) ∆∗1 ≥ ∆c1,u0

1 .

Corollary 19

Proof. I showed in the proof of Proposition 16 that the capital gain is larger in the

monopoly case by showing that Um ≥ U . Further, recalling that xc1,c00 = s
2
− ē−

√
Q

2aσ2 and

xc1,u0

0 = s
2
, I get:

xc1,u0

0 ≤ xc1,c00 ⇔
√
Q ≥ ē⇒ W−1 ≥ sē− 1

2
aσ2s2 = ωp

This is always true for the c1, u0 equilibrium under consideration.

Lemma 11

Proof. Starting from equation (2.11), and using the expression of local investors’ de-
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mand, E0 (pa1)− pA0 = aσ2
(
Y A

0 + s0

)
, we can rewrite local investors’ equilibrium utility as

χA0 =

(
E0

(
pA1
)
− pA0

)2
+ (D1 − p1)2

aσ2
− s

(
E0

(
pA1
)
− pA0 +D1 − p1

)
− aσ2

2

[(
Y A

0 + s
)2

+
(
Y A

1 + s1

)2
]

=

(
E0

(
pA1
)
− pA0

)2
+ (D1 − p1)2

2aσ2
− s

(
E0

(
pA1
)
− pA0 +D1 − p1

)
(2.32)

Given that risk premia are symmetric, we have: φA0 = D − pA0 = ∆0

2
and E0

(
−φA1

)
=

E0

(
pA1 −D1

)
= −∆1

2
. Further, E0 (∆1) = ∆1 since the spread, unlike the individual price,

does not depend on ε1. Hence local investors’ welfare is

χA0 =
(∆0 −∆1)2 + ∆2

1

8aσ2
− s

2
∆0 (2.33)

When unconstrained competitive arbitrageurs are present, all spreads are 0, as shown in

Proposition 10, hence χA,∗0 = 0. In the autarky situation, local investors are constrained

to hold their local asset in equilibrium. Hence using market-clearing and investors’ demand

functions, we have Y A
1 = 0, hence Y A

1 + s = s, which implies from investors’ demand that

pA1 = D1−aσ2s. At time 0, by market-clearing, Y A
0 = 0, hence Y A

0 +s =
E0(pA1 )−pA0

aσ2 = s. Hence

pA0 = E0

(
pA1
)
− aσ2s = D − 2aσ2s. The prices in market B are opposite, by construction.

Plugging this prices into the local investors’s welfare function gives χA,a0 = −aσ2s.

To rank χA,m0 relative to χA,∗0 and χA,a0 , note that{
0 ≤ E0

(
pA1
)
− pA0 ≤ 2aσ2s

0 ≤ D1 − pA1 ≤ 2aσ2s

Using these four inequalities and equation (2.32) yields the result.

Finally, it is clear that in the full insurance and autarky cases, arbitrageurs do not make

any profit, while they do in any of the monopolistic cases.

Corollaries 20 and 21 Proof. The comparative statics in Corollary 20 obtain by

differentiation from equation (2.33). The first part of Corollary 21 follows immediately. The

second part about aggregate welfare is proved on an example in the text.



Chapter 3

Runs, Asymmetric Price Impact and

Predatory Trading

Abstract: Predatory trading is a strategy whereby some traders (predators) amplify or induce

adverse price movements of an asset to trigger a margin call on a rival trader’s (the prey) position

and gain from her subsequent firesales. Given that predation involves a temporary and artificial

mis-valuation of the asset, shouldn’t smart investors step in and take advantage of predators’ price

pressure? I show that when they anticipate the prey’s firesales, smart investors may actually run on

the asset, strengthening, and to some extent substituting to, the predators’ price pressure. Further,

their reaction leads to a reduction in the prey’s price impact, which decreases her already limited

ability to support the price and avoid a margin call. This negative feedback loop reduces the

cost of predatory trading for predators. The key driver of these results is smart investors’ limited

risk-bearing capacity. Consequently, I find that predatory trading is likely to occur when smart

investors are sufficiently risk-averse or the asset sufficiently risky.

3.1 Introduction

Asset prices can at times exhibit sharp fluctuations. During these episodes, traders marking-

to-market or relying on short-term funding (e.g. hedge funds, broker-dealers, investment

banks) may become distressed and forced to sell assets at firesale prices. In some cases,

it seems that the price movements causing these firesales can be exacerbated by deliberate

strategies from traders seeking to profit from a rival’s financial difficulties. There is evidence

that such predatory trading occurred against LTCM in 1998 (Cai, 2009), and against several

hedge funds during the recent financial crisis, in particular in the aftermath of Bear Stearns’

145
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and Lehmann Brothers’ collapses1.

Predatory trading strategies consist of two stages. First, some traders (predators) seek

to cause or exacerbate price movements decreasing the marked-to-market value of a rival’s

portfolio. This tightens the prey’s financial constraint, eventually leading to firesales. In

a second stage, the predators gain by exploiting the firesale prices. Hence, on one hand,

predatory trading relies critically on the market being imperfectly liquid: the predators

must be able to move asset prices against the prey, and the prey’s firesales must also affect

prices. On the other hand, market liquidity should also depend on the possibility of predatory

trading. Indeed, smart investors should anticipate that liquidity may temporarily dry up if

a large trader liquidates her positions.2 While predators manipulate the price to push their

rival into distress, do smart investors absorb the predators’ trades, thereby countering the

predators’ impact, or instead run for the exits, thus magnifying the liquidity dry-up?

Existing theories of predatory trading (e.g. Brunnermeier and Pedersen, 2005, Attari,

Mello and Ruckes, 2005) are largely silent on this issue, because they assume that the

predators and the prey trade with a competitive fringe of long-term value investors, whose

demand is fixed.3 This implies that these investors are less-than-fully rational in that they

disregard future price movements. Without this assumption, it is not clear to which extent

the results of these papers would remain or be qualified. In this paper, I show that predatory

trading may occur even in the presence of smart investors who understand that the asset can

be artificially and temporarily undervalued due to predatory trading-induced price pressure.

Since holding the asset is risky, smart investors’ willingness to “lean against the wind” and

absorb predators’ price pressure is limited by their risk-bearing capacity. Hence even if the

1For instance, in March 2008, Focus Capital, a New York-based hedge fund specialized in mid-caps, was
forced to close in the aftermath of Bear Stearns’ collapse. The Financial Times wrote: “In a letter to
investors, the founders of Focus, Tim OBrien and Philippe Bubb, said it had been hit by ’violent short-
selling by other market participants’, which accelerated when rumours that it was in trouble circulated.” (J.
Mackintosh, FT, 4 March 2008). Similarly, in October 2008, the Financial Times wrote: “Hedge funds prey
on rivals (...) the increasingly cannibalistic activity stems from a wave of redemptions hitting hedge funds ”
(H. Sender, FT, Oct 2008). See Brunnermeier and Pedersen (2005) for additional anecdotal evidence. Cai’s
(2009) paper documents dealers’ predatory behaviour against LTCM in 1998, using a unique dataset of audit
trail transactions.

2The financial constraints of a large trader may be known to other market participants. For instance,
broker-dealers or lenders have information about the positions and balance sheet of large traders. Regulatory
constraints sometimes impose to reveal positions, and although traders’ identities may be concealed, market
participants can often infer the positions of others from this information. For instance, Amaranth’s positions
in the natural gas market became known to other traders, who observed from the exchanges data that a
single market participant had accumulated very large positions in the futures market (Levin and Coleman,
2007).

3That is, long-term value investors in these papers have exogenous downward-sloping demand curves.
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mis-valuation is expected to disappear in the future, smart investors are unwilling to take

unbounded positions ex-ante because it would expose them to too much risk. In fact, I

show that smart investors’ reactions to predatory trading may actually reduce the cost of

predation for predators.4

When the competitive fringe of the market is made of smart, rational investors, the

predators’ and the prey’s price impacts, and more generally market liquidity, not only affect,

but also are affected by the possibility of predatory trading. This two-way relationship can

generate self-fulfilling liquidity dry-ups and make predatory trading cheaper. I show that

when smart investors expect the prey to fail in the future, current prices adjust to reflect the

fact that the prey’s firesales will lower the willingness of other market participants to hold

the asset. Further, if investors believe that the prey will fail, she loses price impact and her

trades move prices less than opposite trades by predators. That is, price impact becomes

trader-specific and becomes an increasing function of a large trader’s financial strength -

or at least the smart investors’ perception of it. This reduces the prey’s ability to resist

predatory trading by supporting prices to avoid reporting a low marked-to-market wealth.

Hence the mere anticipation of the prey’s firesale can generate a vicious circle in which

predatory trading causes smart investors to “rush for the exits”, which in turn facilitates

predatory trading.

This negative feedback loop materializes in equilibrium when smart investors are suffi-

ciently risk-averse (or equivalently, if the asset is sufficiently risky). A novel prediction of the

model is thus that the link between market liquidity and a trader ’s funding liquidity depends

on risk-aversion in the market: in times of high risk-aversion, a trader’s price impact becomes

an increasing function of her (perceived) funding liquidity, while with low risk-aversion, a

trader’s price impact is independent of her funding liquidity. This trader-specific prediction

complements the results of the limits of arbitrage literature, which predicts a positive link

between market liquidity (defined as the spread between two identical assets) and aggregate

funding liquidity (Gromb and Vayanos, 2002, Brunnermeier and Pedersen, 2009). Another

key driver of the equilibrium is the distribution of initial asset ownership. When smart in-

vestors start with a small position in the risky asset, an increase in their position increases

the probability of predation, and decreases it otherwise.

4Note that there are theories of front-running with rational market participants (e.g. Pritsker, 2009),
whereby strategic traders exploit their advanced knowledge of a rival trader’s future liquidation. In this
paper, strategic traders engage in predatory trading, i.e. they induce the need for another trader to liquidate
his positions.
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The model has three periods, with a risky asset and a risk-free asset. There are three

types of market participants: a finite number of predators (e.g. hedge funds, dealers) and

one prey (e.g. another hedge fund), the rest of the market being made of a continuum of

smart competitive investors. The prey faces a financial constraint: She must liquidate her

entire portfolio if her marked-to-market wealth falls below some threshold, e.g. because this

triggers margin calls or redemptions. The prey is initially long the asset, so that her financial

constraint is likely to bind if the asset price falls below a certain threshold. Finally, I assume

that the prey cannot hold more than a certain quantity of the risky asset, i.e. her ability to

lever up is limited.5

Smart investors are risk-averse and seek to offload a long position in the risky asset in the

market, i.e. they demand liquidity. For brevity, I will therefore refer to them as hedgers.6

The predators and the prey are risk-neutral. Hence, in the absence of financial constraints,

they would provide hedgers with liquidity by buying the asset. However, being finite in

number, they have market power and thus ration liquidity by buying only limited quantities

over time. As a result, the asset trades at a discount relative to its fundamental value, i.e.

it is imperfectly liquid.

Now consider the effect of the prey’s financial constraint. The predators may be tempted

to buy less or even short the risky asset in order to ensure that its price is low enough and

force the prey to liquidate. Such a strategy involves an opportunity cost: since the asset

trades at a discount, the predators would prefer to buy the risky asset by spreading trades

over time. However, there is also a benefit from predatory trading. Indeed, eliminating

the prey reduces the competition in the provision of liquidity, allowing predators to capture

larger rents. Further, the prey’s liquidation itself increases the demand for liquidity, which

benefits the remaining liquidity providers.

I first study the prey’s ability to resist predatory trading by buying the asset in a bid to

support its price. This ability may be limited, first, by her leverage constraint, and second

- and more interestingly - by the hedgers’ anticipations about predatory trading. There are

two effects. First, when hedgers expect the prey to liquidate, price impact becomes trader-

specific (even though all information is symmetric). If the prey buys the asset to support

its price, her trades move the price less than opposite orders by predators. Indeed, hedgers

5Both the limited borrowing capacity and the marked-to-market wealth constraint may stem from agency
frictions arising in the process of delegation of funds by outside investors (Shleifer and Vishny, 1997).

6Hedgers may stand for market-makers trying to reduce their inventory, or insurance companies seeking
to sell assets following or in anticipation of downgrades or other regulatory constraints.
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anticipate that for each share they sell to the prey, with some probability, that share will

have to be liquidated in a firesale, reducing future liquidity. Hence selling a share to the

prey provides them with only partial, temporary insurance. This reduces the gains from

trading with the prey. In this sense, the reactions of rational hedgers to the possibility of

predatory trading can be “destabilizing”: the mere anticipation of the prey’s distress reduces

her ability to resist predatory trading.

The second effect is akin to a financial market run: the hedgers are more reluctant to

holding the risky asset when they believe that the prey will be distressed. As a result, they

are ready to sell their endowment at a lower price. This selling pressure can thus turn into

a financial market run, as the hedgers attempt to reduce their asset holdings ahead of the

prey’s firesale.7 If the hedgers are sufficiently risk-averse, their run may even be such that

predators need not sell the asset: it may be enough for them to reduce the quantity of the

asset they buy, i.e. “hoard” liquidity, and let the hedgers’ trading push the prey into distress.

This implies that short-selling bans may be ineffective to prevent predatory trading, and that

there is no direct link between selling an asset and predatory trading.

The hedgers’ risk appetite plays a key role in both effects. Their risk appetite depends

on the size of their initial position, and the slope of their demand curve (i.e. the product of

their risk-aversion and the asset volatility). The change in price impact and the run effect

depend primarily on hedgers’ risk-aversion. If the hedgers hold no initial positions in the

asset, the effects are still present, and is stronger with long positions.

The size of the hedgers’ initial position has a non-monotonic effect on the likelihood of

predatory trading: the likelihood first increases and then decreases with hedgers’ initial

position. This results from two conflicting effects. On the one hand, the hedgers’ behaviour

can decrease the cost (to the predators) of predatory trading, because the hedgers’ run

is stronger. This is especially true if they start with a long position in the risky asset.

On the other hand, the hedgers’ initial position also affects predators’ outside option, which

consists in providing rather than withdrawing liquidity: if hedgers generate significant selling

pressure (if they have a large enough initial position), liquidity provision is very profitable.

As a result, an increase in hedgers’ selling pressure (via an increase in their initial position

in the risky asset) does not necessarily generate more predatory trading.

7The difference between the traditional models of market run (e.g. Bernardo and Welch (2004)) and this
one is that the probability of the liquidity shock is endogenous. The liquidity shock (the prey’s firesale)
depends on the first-period price, which is determined in equilibrium.
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The analysis has implications for regulation and risk-management. The model predicts

that a destabilizing feedback loop can occur when hedgers are sufficiently risk-averse. This

prediction is in line with anecdotal evidence that predatory trading occurs during flights-

to-liquidity episodes (e.g. LTCM in 1998, predatory activity among hedge funds in 2008).

The analysis shows, more precisely, that flight-to-liquidity and predatory trading phenomena

feed each others when hedgers are sufficiently risk-averse. If hedgers’ risk-aversion in utility

proxies for risk-aversion stemming from various constraints limiting the market’s risk-bearing

capacity, the model suggests that to avoid predatory trading, one should attempt to relax

these constraints or provide additional risk-bearing capacity. Since hedgers’ risk-aversion

translates into high permanent price impact, and assuming that it is possible to classify

assets by their coefficient of permanent price impact, another interpretation of the results

is that financially-constrained strategic traders are more exposed to predatory trading risk

when they hold assets with high permanent price impact.

Finally, the model has also implications for the relation between turnover, liquidity and

welfare. The analysis shows that proxying for liquidity by turnover or price impact can

be misleading. In a special case of the model where it is socially optimal not to trade

because initial endowments are Pareto-efficient, I show that the mere presence of the prey’s

financial constraint can induce (predatory) trading and thus a positive turnover. Further,

although liquidity worsens - the asset trades at a larger discount -, the prey’s price impact

decreases. Hence in the presence of large investors, traditional measures of market depth

can be misleading to assess liquidity and welfare.

This paper departs from the recent literature on predatory trading (Brunnemeier and

Pedersen (2005), Attari, Mello and Ruckes (2005), Parida and Venter (2009), Laó (2010))

and front-running (Pritsker (2009), Carlin et al. (2007)) by combining the assumption that

all market participants are rational and that the prey’s liquidation depends on her marked-

to-market wealth.8 My analysis shows that rational hedgers’ optimal behaviour can make

predatory trading more likely. My model is close to Pritsker’s, who also considers rational

market participants, but in a setting with exogenous distress, i.e. in which the prey is forced

to liquidate at a given time, independently of her marked-to-market wealth. Considering

endogenous distress allows me to link the hedgers’ optimal behaviour to the probability of

predatory trading. It also generates the novel state-dependent link between market liquidity

and a trader ’s funding liquidity.

8Note that some of these papers include front-running under the umbrella of predatory trading.
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Endogenous distress is also the main difference between this paper and Carlin et al.

(2007) and explains why our findings differ. I find that predatory trading is likely to occur

when the slope of hedgers’ demand curve is steep, while Carlin et al.’s model predicts the

opposite. In my setting, high price impact allows predators to move prices to induce the

prey’s distress. In Carlin et al. (2007), a high price impact allows the prey to retaliate

against predators in a repeated interaction.

Modeling all market participants as rational also allows me to connect the literature

on predatory trading to that on runs in financial markets and more generally destablizing

speculation. The economic force triggering what I call run here is not a sequentiality issue

as in Bernardo and Welch (2004), but the prospect of the prey’s firesale (i.e. a supply

shock) and of the predators’ increased market power. A feature common to our models is

the market’s limited risk-bearing capacity. While Bernardo and Welch assume that hedgers

are myopic, in my setting all market participants are rational and forward-looking. DeLong

et al. (1990)’s model relies on the presence of positive feedback traders. In my model, the

positive feedback stems from the fact that low marked-to-market wealth is followed by the

prey’s liquidation.

The chapter proceeds as follows. Section 3.2 presents the model. Section 3.3 studies the

special case where the hedgers have no endowment in the risky asset. Section 3.4 studies the

case with positive endowments. Section 3.5 concludes. The appendix contains the proofs.

3.2 Model

The model has three periods: t = 0, 1, 2, and a risky asset, in finite supply S ≥ 0. It pays off

a dividend D̃2 at t = 2, with D̃2 = D + ε̃1 + ε̃2, D > 0. The innovations ε1 and ε2, revealed

at t = 1 and t = 2 respectively, are independent and identically distributed normal variables

with mean 0 and variance σ2. I denote pt the price of the risky asset. There is a risk-free

asset in perfectly elastic supply with return rf normalised to 0.

There are n+1 market participants, divided in two classes: hedgers and strategic traders.

The hedgers are treated as a representative competitive trader (with subscript 0) with ex-

ponential utility over final consumption. Their coefficient of absolute risk-aversion is α. The

hedgers start with an endowment X0
−1 ≥ 0 in the risky asset.9. Since they have CARA

9Hedgers may stand for a competitive market-making sector. Their endowment, in this case, represent
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preferences, their initial wealth is irrelevant for the problem, hence I assume without loss of

generality that they start with cash B0
−1 = 0.

The hedgers trade with n ≥ 2 risk-neutral strategic traders, who start with endowments

X i
−1, i = 1, ..., n, in the risky asset and Bi

−1 in cash. For trader i = 0, 1, ..., n, xit denotes the

time t risky asset trade and X i
t the end-of-time t position. Strategic traders and the hedgers

face the same dynamic budget constraint:

∀i = 0, 1, ..., n, W i
2 = Ci

2 = Bi
−1 − xi0p0 − xi1p1 +X i

1D2 (3.1)

Strategic traders account for the impact of their trades on the price. At time 0 and 1,

the hedgers set their demand for the risky asset as a function of its price, and strategic

traders compete in quantities (à la Cournot) for the risky asset, taking this demand as

given. Strategic traders can be seen as sophisticated investors such as prop trading desks,

dealers or hedge funds, who have a superior understanding of the trading environment and

the “order-flow”, and therefore internalize the impact of their own trades on the price.10 For

simplicity, strategic traders’ identities are observable, i.e. trading is not anonymous.11

The group of the strategic traders consists of one prey (trader 1, “she”) and n − 1

predators. The prey faces financial constraints, while predators do not. In particular, the

prey is distressed and must liquidate her position in the risky asset when her marked-to-

market wealth is lower than a threshold V:

Assumption 1 If B1
0 +X1

0p0 ≤ V , then X1
1 = 0.

The prey’s liquidation consecutive to a low wealth may follow from large capital outflows as

a response to a poor performance. A number of financial constraints are based on prices,

e.g. VaR constraints, stop-loss thresholds or high-water marks. The relation between past

market-makers’ aggregate inventory, which can result from a temporary order imbalance, in the spirt of
Grossman and Miller (1988). Hedgers may also stand for the demand of two groups of local traders subject
to endowment shocks in segmented markets, as in Gromb and Vayanos (2002).

10For instance, investment banks often have a good understanding of the order-flow. Similarly, Perold
reports that LTCM “believed that most of its trading opportunities arose as a result of dislocations in the
financial markets caused by institutional demands”. The hedge fund “would build models to find mispricings
created by such demands, but would also identify the reason for the mispricing before initiating a trade”
(Perod (1999)).

11See Foucault et al. (2003) and references therein for a description of non-anonymous trading environ-
ments . I discuss further the role of this assumption in the model in Section 3.3.3.
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performance and fund flows has been documented for both equity and debt financing.12

Agency concerns resulting from the delegation of funds from investors to strategic traders

can rationalize this behaviour: Bolton and Scharfstein (1990) show that a termination threat

can arise as a disciplining device in an optimal contract, even if it exposes the agent to

predation risk.

In addition to the marked-to-market wealth constraint, the prey faces a leverage con-

straint. She cannot take a position X1
0 larger than X̄.13

Assumption 2 X1
0 ≤ X̄

For simplicity, I assume that predators are cash-rich or able to secure better funding condi-

tions and do not face any financial constraints.14

Given that all market participants are informed about the prey’s constraints, they take

into account the possibility of her being distressed in their maximization problems. The

hedgers choose trades x0
0 and x0

1 to maximize their utility subject to their dynamic budget

constraint, while taking prices and the prey’s constraints as given. Their problem is given

by:

max
x0

0,x
0
1

−E0 exp
[
−αC0

2

]
s.t. C0

2 = B0
−1 − x0

0p0 − x0
1p1 +X0

1D2

B1
0 +X1

0p0 ≤ V ⇒ X1
1 = 0

X1
0 ≤ X̄

Strategic traders maximize their expected wealth by choosing trades xit (t = 0, 1 and

i = 1, ..., n), subject to their dynamic budget constraint, the price schedule which results

from the hedgers’ demand and market-clearing, and the prey’s financial constraints. The

12For instance, open-end mutual funds experiencing large outflows after a string of poor returns exert
significant price pressure in equity markets (Shleifer and Vishny (1997), Coval and Stafford (2007)). The
repo market is also prone to runs (see, e.g. Gorton and Metrick (2010)).

13X̄ may depend on the prey’s initial cash, the first period price, and be correlated with the severity of
the wealth constraint.

14Strategic traders such as hedge funds may have some leeway in chosing their capital structure. For
instance, some hedge funds are able to impose better lock-up periods or gates to their investors than their
rivalsand is optimal differentiation in strategic traders’ capital structure can arise in equilibrium in an optimal
contract setting (Hombert and Thesmar (2009)).
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optimization problem of a strategic trader is given by

∀i = 1, ..., n, max
xi0,x

i
1

E0

[
W i

2

]
s.t. Ci

2 = Bi
−1 − xi0p0 − xi1p1 +X i

1D2

hedgers demand at t = 0, 1

market− clearing at t = 0, 1

B1
0 +X1

0p0 ≤ V ⇒ X1
1 = 0

X1
0 ≤ X̄

Since each strategic trader has price impact and is informed about the prey’s financial

constraints, these constraints enter not only the prey’s optimisation problem, but also that

of her rival strategic traders.

Strategic traders have a higher apetite for risk than hedgers. Hence, absent financial

constraints, trading is motivated by the hedgers being (strictly) long the risky asset. In

that case, the hedgers would offload some of the risk of this position onto the risk-neutral

strategic traders. To isolate the effect of the financial constraint in the model, and show

how it leads to predatory trading, I start with a special case, in which the hedgers do not

initially hold the risky asset.

3.3 Predatory trading vs no trading

In this section, I solve the model in the case where the hedgers have no initial position in the

risky asset (i.e. X0
−1 = 0), which implies that the strategic traders initially hold all the asset

supply. With no risks to hedge, there should be no trading. However, the presence of the

financial constraint may generate predatory trading, in particular if the hedgers have a low

risk-bearing capacity. In the predatory trading equilibrium, the traders’ financial strength

(or at least the hedgers’ perception of it) affects their price impact. In particular, I show

that the prey’s price impact decreases, while the predators’ increases, which reduces the

probability of survival of the prey.

3.3.1 Liquidity rationing during firesales

Since she is initially long the asset, the prey becomes distressed when the price of the asset

at time 0 is low. In particular, by rearranging the terms in the marked-to-market wealth
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constraint, one can see that the prey is in distress when the price falls below p̄0, where p̄0,

the prey’s distress threshold, is given by

p̄0 ≡
V −B1

−1

X1
−1

(3.2)

Note that the higher the distress threshold is, the more exposed the prey is to a forced

liquidation. The threshold is increasing in V, which measures the severity of the constraint,

and decreasing in the amount of cash the prey initially holds, B1
−1. I assume that parameters

are such that 0 < p̄0 < D, i.e.

Assumption 3 0 < X1
−1D < V −B1

−1

This assumption implies that the prey remains solvent if the asset trades at its expected

value. At time 1, all market participants are aware of whether the prey is in distress or not.

The following lemma summarizes the equilibrium at time 1, depending on whether the prey

is distressed or not.

Lemma 28 When the prey is solvent, there is a unique symmetric equilibrium at time 1,

given by:

∀i = 1, ..., n, xi1 =
−
∑n

j=1 x
j
0

n+ 1
(3.3)

When the prey is distressed, the unique equilibrium at time 1 is given by:

x1
1 = −X1

0

∀i = 2, ..., n, xi1 =

(
X1
−1 + x1

0

)
−
∑n

j=1 x
j
0

n
(3.4)

Equation (3.3) shows that when the prey is solvent, strategic traders trade in the opposite

direction to the time 0 aggregate order flow,
∑n

j=1 x
j
0. Note that because of imperfect

competition, the total order nx1 does not completely offset the time-0 aggregate order-flow:

|
∑n

j=1 x
j
1| ≤ | −

∑n
j=1 x

j
0|. If the prey is distressed, she no longer behaves strategically and

liquidates her position by submitting an order x1
1 = −X1

0 at the prevailing market price. In

other words, the prey behaves as a liquidity trader. Equation (3.4) shows that the predators

take the opposite side of her trade and of the previous aggregate order flow,
∑n

j=1 x
j
0. They
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do so, however, only to a certain extent. Indeed, the predators gain market power and can

thus limit further the quantity they trade. This can be seen by comparing equations (3.3)

and (3.4): for a given supply, strategic traders’ aggregate order at time 1 is a fraction n
n+1

of the supply in the no-distress case and n−1
n

of the supply in the distress case, with for all

n ≥ 2, n
n+1

> n−1
n

. I denote this effect the rationing of liquidity provision. It implies that,

during a firesale, the predators do not completely offset the selling/ buying pressure of the

distressed prey. Hence, in equilibrium, the hedgers will have to absorb some of the prey’s

asset firesale. Because there is still uncertainty at time 1 about the fundamental value of the

asset, the hedgers are unwilling to hold large quantities. Therefore, at time 0, the hedgers

take into account the possibility of the prey’s distress when setting their demand.

3.3.2 Run and asymmetric (trader-specific) price impact

Since hedgers understand that predators will ration liquidity further during firesales, their

demand changes depending on whether they expect a firesale or not at time 1. This affects the

properties of the price schedule (i.e. the inverted demand schedule combined with market-

clearing) faced by the predators and the prey at time 0.

Lemma 29 Let pnd0 and pd0 denote the price schedule when hedgers expect no-distress and

distress, respectively. The price schedule depends on the hedgers’ beliefs about future distress

as follows:

pnd0 = D + β
n+ 2

n+ 1

n∑
i=1

xi0 (3.5)

pd0 = D + β

n∑
j=1

xj0 + β
1

n

(
n∑
j=1

xj0 −X1
0

)
(3.6)

Strategic traders’ identities are public information, hence, using the dynamics of asset hold-

ings, X1
0 = X1

−1 + x1
0, equation (3.6) can be rewritten as:

pd0 = D − β 1

n
X1
−1 + β

n+ 1

n

n∑
j=2

xi0 + βx1
0 (3.7)

Comparing equations (3.5) and (3.7) shows that when the hedgers believe that the prey

will be distressed, price impact becomes trader-specific. In particular, the prey’s trades now
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move the price less than predators’, while all traders have the same price impact when the

hedgers expect no distress.

The intuition for this result is that the price impact coefficients reflect the differential

marginal gains from trading across different types of strategic traders. If the hedgers think

that the prey will have to liquidate and anticipate that they will have to hold some of the

prey’s position in equilibrium (equation (3.4)), they believe that they will gain marginally

less from, say, selling to the prey than to predators at time 0. Indeed, selling to predators

has some advantage in terms of hedging: predators will keep this asset until time 2, i.e. until

the asset pays off and returns to perfect liquidity. This is not the case when selling to the

prey: if the hedgers are right, the asset sold at time 0 to the prey will return to the market

at time 1, while the predators will ration liquidity.

Further, equation (3.6) shows that hedgers are now ready to sell the risky asset at a lower

price than when they believe that the prey will stay in the market. For instance, consider

the following thought experiment: suppose that all strategic traders buy x̂ ≥ 0 in both cases.

The overal impact of the trades is β n
2+n−1
n

x̂ in the (anticipated) distress case, and β n
2+2n
n+1

x̂

in the no-distress case. Since n2+2n
n+1

> n2+n−1
n

, and given that the constant is lower in the

bad scenario, the same purchase translates into a lower price in the distress case than in

the no-distress case. The intuition is simply that, in anticipation of the firesale, hedgers are

unwilling to hold a long position in the risky asset.

Another way to gain intuition in this effect is to assume that predators and the prey do

not trade at time 0, ∀i = 1, .., n, xi0 = 0. Then if the hedgers believe that the prey will be

solvent, the price is pnd0 = D. Since all the asset supply is initially the hands of the predators

and the prey, who are risk-neutral, the price must coincide with the expected value of the

asset. If the hedgers anticipate the prey to be distressed, the price is pd0 = D−βX−1

n
. That is,

the hedgers, anticipate that the prey will have to liquidate her position, X1
−1 > 0, and that

because of the predators’ liquidity rationing, they will have to hold some of this additional

supply. Hence the price adjusts downwards at time 0 in anticipation of this supply shock.

In particular, the more concentrated the market is (i.e. the smaller n), and / or the more

risk-averse the hedgers are, the larger the discount the price will exhibit at time 0. More

concentration means that a tighter rationing of liquidity in the future, which will force the

hedgers to absorb more of the supply. Of course, their valuation for holding the additional

supply of risky asset decreases with their risk-aversion.I summarize these results as follows:

Lemma 30 When the hedgers expect the prey to be in distress at t = 1,
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• they are ready to sell at a lower price than when they expect no distress [run] :

pnd0 (x̂) > pd0 (x̂) , x1
0 = xj0 = x̂ ≥ 0, j = 2, ..., n

• the prey has less price impact than predators [asymmetric price impact] :

∀j = 2, ..., n,
∂pnd0 /∂x

j
0

∂pnd0 /∂x
1
0

<
∂pd0/∂x

j
0

∂pd0/∂x
1
0

Note that the run effect is stronger when the prey has a large initial position in the risky

asset, since all else equal, its liquidation will hurt the hedgers more in case of distress. The

fact that price schedules depend on the hedgers’ expectations about the prey’s distress has

important consequences for the equilibrium determination: the predators’ ability to move

the price (and the prey’s ability to counter them) vary depending on the hedgers’ beliefs

about future distress.

3.3.3 Equilibria

Taking hedgers’ beliefs as given, I determine conditions under which no trading and predatory

trading arise in equilibrium.

No trading

Suppose that hedgers anticipate no trading, and thus no distress.15 It is never in the interest

of the prey, who is risk-neutral, to exit the market. The predators, however, may have

an incentive to deviate from the no-trading situation to push the prey into distress. This is

costly, because it requires to manipulate the price and tighten the prey’s financial constraint.

But a deviating predator may benefit from the increase in the asset supply resulting from

the prey’s firesale, and the decrease in competition among the remaining strategic traders.

Predators’ trade-off. Since all predators have price impact, each of them recognizes he

is pivotal for the outcome of the game. Deviating from the no-trading strategy can be

profitable, however, only if this leads to the prey’s distress, which require to push the price

15From equation (3.5), if all strategic traders do not trade (i.e. submit orders xi0 = 0), the asset will trade
at the fundamental value - and therefore the prey will not be distressed.
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to p̄0. A predator thus faces a trade-off between manipulating the price and gaining from

the prey’s firesale. The predator’s problem is:

∀i = 2, ..., n, maxxi0 E0

(
Bi
−1 − xi0p0 + CT i1

)
s.t. pnd0 = D + β

n+ 2

n+ 1

n∑
i=1

xi0

∀j 6= i, xj0 = 0

p0 ≤ p̄0 ⇒ x1
1 = −X1

−1

CT i1 denotes the continuation payoff of the predator, which is contingent on the prey’s

distress. From equations (3.3) and (3.4), I get:

CT i1 =

 X i
0D +

(−
∑
j 6=i x

j
0−xi0)

2

(n+1)2 if p0 > p̄0

X i
0D +

(X1
−1−

∑n
j=2,j 6=i x

j
0−xi0)

2

n2 if p0 ≤ p̄0

Using the price schedule and the conjectured strategy for the other strategic traders, the

predator’s problem can be rewritten as follows:

∀i = 2, ..., n, max
xi0

Ei
−1 + β

−n+ 2

n+ 1

(
xi0
)2︸ ︷︷ ︸

t = 0 cost

+
(−xi0)

2

(n+ 1)2 Ip0>p̄0︸ ︷︷ ︸
profit if solvent

+

(
X1
−1 − xi0

)2

n2
Ip0≤p̄0︸ ︷︷ ︸

profit if distressed

 ,

with Ei
−1 = Bi

−1 +X i
−1D, the expected value of the predator’s endowment, and Ic a dummy

variable that equals one when the condition c is satisfied. This maximization problem illus-

trates the predator’s trade-off. If the predator chooses xi0 = 0, the price will be above the

prey’s distress threshold p̄0, and the predator’s profit is thus 016. If the predator chooses to

push the price down to p̄0, he can benefit at time 1 from the decreased competition and the

prey’s firesale - the numerator of the profit in the distressed case is n2 instead of (n+ 1)2,

and the numerator increases by X1
−1 > 0, the prey’s initial position in the asset. However,

to trigger the prey’s distress, he must short the asset, and this involves a quadratic cost at

time 0, n+2
n+1

(xi0)
2
.

16Note that since ∀n ≥ 2, n+2
n+1 >

1
(n+1)2

, all other strategies leading to p0 > p̄0 are dominated by xi0 = 0.
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Ruling out “self-fulfilling” distress. By inspecting the maximization problem, one can

also see that the prey’s distress can be “self-fulfilling”. Namely, ex-ante, it is optimal to take

a short position in the asset if one expects a negative supply shock in the future (i.e. the

prey’s firesale).17 Since the predators’ trades affect prices, the anticipation by a predator

that the prey will be distressed at time 1 may indeed lead to a price below p̄0 and trigger

the prey’s distress. The self-fulfilling distress can be defined more formally as follows:

Definition 2 Suppose that strategic traders −i choose x−i0 = 0. The prey’s distress is self-

fulfilling if p0 (x̂i0) ≤ p̄0, where

x̂i0 = arg max
xi0

Ei
−1 + β

[
−n+ 2

n+ 1

(
xi0
)2

+

(
X1
−1 − xi0

)2

n2

]

To focus on predatory trading as a strategy aiming at eliminating a rival trader, I rule out

self-fulfilling distress by imposing the following condition throughout:

Lemma 31 There is no self-fulfilling distress if and only if β < β̄nd, where

β̄nd =
D − p̄0

hnX1
−1

, with hn =
n+ 2

n3 − 2n2 − n+ 1

On this parameter interval, inducing distress requires a predator to trade

xi0 =
n+ 1

n+ 2

p̄0 −D
β

< 0 (3.8)

To rule out self-fulfilling distress, one must focus on situations in which the hedgers’ demand

curve has a flat enough slope, i.e. if β < β̄nd. Intuitively, in this case, the price is not

responsive enough to trades, such that a short position taken by a trader anticipating distress

does not automatically lead to the prey’s firesale. The predator’s order, given by equation

(3.8) is just enough to push the price to p̄0.

17More specifically, if the predator “anticipates” the prey’s distress, he expects an increase in the asset
supply and less competition in the future. Therefore the marginal cost of buying one more unit at time 1
decreases. Hence it is optimal for the predator to buy less at time 0 (i.e. here, short the asset) and exploit
the negative price pressure exerted by the prey’s firesale at time 1.
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Proposition 18 There exists a no-trading equilibrium in which the prey remains solvent if

and only if β < β
nd

, with 0 < β
nd
< β̄nd. Equilibrium prices are:

p0 = D (3.9)

p1 = D + ε1 (3.10)

This result shows that the no-trading equilibrium holds in the presence of financial con-

straints only if the slope of the hedgers’ demand curve is flat enough. Intuitively, if the slope

is steep, a predator can easily move the price against the prey - see equation (3.5) - and this

reduces the cost of predation - equation (3.8). Further, a steep slope means that hedgers are

reluctant to bear risk (or equivalently that the asset is very risky), implying that the firesale

exerts a strong negative pressure on the price at time 1.

Predatory trading

I now assume that the hedgers believe at time 0 that the prey will be distressed in the future.

As shown above, the price schedule in this case is:

pd0 = D + β
n∑
j=1

xj0 + β
1

n

(
n∑
j=1

xj0 −X1
0

)
(3.11)

I conjecture that there exists an equilibrium with predatory trading in which the prey’s and

the predators’ strategies are given by:

x1
0 = X̄ −X1

−1 (3.12)

∀i = 2, ..., n, xi0 =
1

n− 1

[
X1
−1 +

n

n+ 1

(
R

β
− X̄

)]
with R = p̄0 −D (3.13)

These strategies are constructed in a way that, in equilibrium, (i) it is too costly for the

prey to stay in the market (i.e. keep the price above p̄0); (ii) in particular, the prey’ leverage

constraint is binding, and (iii) the predators push the price to the distress threshold p̄0.

Further, I continue to assume that the prey’s distress is not self-fulfilling. Since the price

schedule is different, the condition under which one can rule out self-fulfilling distress are

also slightly different:

Lemma 32 Denote a = X̄
X1
−1

the prey’s leverage capacity (i.e. a ≥ 1). Predatory trading is
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• never self-fulfilling if a > ān, where ∀n ≥ 2, ān > 1.

• not self-fulfilling if and only if β < β̄d, if a ≤ ān, where

β̄d =
D − p̄0

ρ0,n−1X1
−1 − dnX̄

,with ān = (n+1)2

n2−n+2

The lemma shows that the prey’s distress can not stem from a self-fulfilling predatory trading

strategy if her leverage capacity, a, is large enough. If the prey has enough dry powder, she

does not “automatically” fall into distress, because her trades support the price sufficiently.

If the prey has little dry powder, i.e. a low, the prey’s distress is not self-fulfilling as long as

the hedgers’ demand curve is not too steep, i.e. if the price is not too responsive to trades.

The prey’s problem. The predators’ strategy implies that it is too costly for the prey

to stay in the market: holding more that X̄ in a bid to push the price above p̄0 and avoid

distress is infinitely costly for the prey. As a result, the prey’s problem is to maximize the

proceeds of liquidating her holdings. Taking predators’ strategy as given, the prey’s problem

is:

max
x1

0

B1
−1 − x1

0

[
p̄0 − β

(
X̄ −X1

−1 − x1
0

)]
+X1

0

[
D − β 1

n+ 1

(
X̄ − R

β

)]
The prey’s liquidation problem involves a simple trade-off between liquidating at time 0 at

p̄0−β
(
X̄ −X1

−1 − x1
0

)
, or at time 1 at (on average) D−β 1

n+1

(
X̄ − R

β

)
. Of course, the prey’s

trade moves the price. If she starts selling from time 0, she will push the price below her

distress threshold p̄0. At time 1, however, the average price depends on the prey’s position

only through predators’ strategy, i.e. X̄ in this case. This is because trades impact the price

permanently.18 Since the prey exactly offsets her time 0 position, X1
0 = X1

−1 + x1
0, at t = 1,

her time 0 trade has no effect on the equilibrium price at time 1. It is optimal for the prey

to be fully leveraged under the following condition:

Lemma 33 (prey’s optimal liquidation strategy) The prey’s best response to predators’ con-

jectured strategy is x1
0 = X̄ −X1

−1 if β < βF , with βF = D−p̄0
n+2
n
X̄−n+1

n
X1
−1

.

When β ≥ βF , the prey’s trade is n
n+1

D−p̄0

β
+ n

2(n+1)
X̄− 1

2
X1
−1, i.e. the prey either buys a small

amount (if n
n+1

D−p̄0

β
+ n

2(n+1)
X̄ ≥ 1

2
X1
−1) or starts liquidating her position. It is easy to see

18This can be seen from equation (3.28) in the appendix.
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that this leads to a price below p̄0. This strategy, combined with the predators’ conjectured

strategy, cannot form an equilibrium: the predators would have an incentive to deviate and

sell a bit less while keeping the price below p̄0, because their benefit would be unchanged.19

Similarly, there cannot be an equilibrium in which the strategies are such that the prey holds

less than X̄, the predators more than equation (3.13), and the price is less than or equal to

p̄0. In this case, the prey would have an incentive, and enough financial slack, to deviate

and outbid predators in order to stay in the market. Hence, the only possible predatory

equilibrium strategies are those given by equations (3.12)-(3.13). From Lemma 32 and 33,

the relevant parameter space for these strategies is β ∈
]
0, β̄d ∧ βF

[
. I show in the appendix

that in the special case where X0
−1 = 0, βF < β̄d, so that the relevant interval is β ∈ ]0, βF [.

Equilibrium. In the conjectured equilibrium strategy, the prey is fully leveraged and has

no interest in holding less than X̄ (since β < βF ). Hence it is enough to analyze predators’

trade-off to determine the equilibrium conditions. Using the same notations as before, and

the results of the preliminary analysis, I get the trade-off faced by a predator:

∀i = 2, ..., n, max
xi0

E1
−1 + β

[
x0
n+ 1

n

(
X1
−1 −

n∑
j=2,j 6=i

xj0 − xi0

)]

+β

(
−
∑n

j=2,j 6=i x
j
0 − xi0

)2

(n+ 1)2 Ip0>p̄0

+β

(
X1
−1 −

∑n
j=2,j 6=i x

j
0 − xi0

)2

n2
Ip0≤p̄0 (3.14)

s.t. ∀j 6= i, xj0 =
1

n− 1

[
X1
−1 +

n

n+ 1

(
R

β
− X̄

)]
The first line of the maximand shows that, at time 0, the predator faces a quadratic cost,

β n+1
n

(xi0)
2
. The second line represents the benefit from deviating from the predatory attack.

Since other predators’ trades exert negative pressure on the price,
∑n

j=2,j 6=i x
j
0 is different

from zero. If the predator joins the attack, he will, however, benefit from the firesale and

the reduced competition in liquidity provision at time 1. Thus a predator “trades-off” the

negative price pressure exerted by other predators at time 0,
∑n

j=2,j 6=i x
j
0, against the future

price pressure exerted by the prey in the following period. If the predator decides to buy

while other predators attack the prey, he will rescue the prey, and therefore loses the benefit

19Hence, a more “continuous” constraint, in which the amount of selling would depend on the severity of
the price drop, may lead to some early liquidation for the prey.
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of the firesale.20 The equilibrium is as follows:

Proposition 19 There exists a predatory trading equilibrium characterized by equations

(3.12)-(3.13) iff β ∈
[
β
d
∧ βF , βF

[
, with β

d
> 0.

The intuition for this result is simple. If the hedgers’ demand curve is steep enough, inducing

the prey’s distress is not too costly, hence predators engage in predatory trading against the

prey. Further, in this case, the prey’s firesale is likely to exert strongly negative price pressure,

since the hedgers have a limited risk-bearing capacity.

The following comparative static obtains:

Corollary 23 The equilibrium threshold β
d

is lower when the prey is more exposed to the

risk of forced liquidation (high V) or has less cash (low B1
−1).

If the prey is more constrained, the cost of the predatory trading strategy is lower, hence

the condition on β is less strict.

Since the interval
[
β
d
∧ βF , βF

[
is potentially empty, there can be a concern about the

existence of this equilibrium. More generally, given that equilibria depend on the hedgers’

beliefs, both types of equilibria may coexist, reducing the predictive ability of the model. To

illustrate the results and address these concerns, I study a numerical example.

Coexistence of no-trading and predatory trading equilibria

From Proposition 18 and 19, I get:

Proposition 20 When X0
−1 = 0,

• The no-trading equilibrium is the only equilibrium for β ∈
]
0,min

(
βF , βd, βnd

)]
.

• It coexists with the predatory trading equilibrium on
]
min

(
βF , βd, βnd

)
,min

(
βF , βd, βnd

)[
.

• Predatory trading is the only equilibrium on
[
min

(
βF , βd, βnd

)
, βF

[
.

20I show this point formally in the proof of Proposition 19. Observe also, that since each predator
is pivotal, there is no possibility of free-riding on the attack of other predators, especially because the
conjectured predatory trading strategies are such that the first-period price reaches exactly p̄0. Predatory
trading requires full coordination of the predators in the model.
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To understand further in which circumstances equilibria may coexist and when predatory

trading is the only equilibrium, I consider:

β̄d − βF =
D − p̄0

X̄
f (n, a)

where the function f is given by equation (3.86) in the appendix. The predatory trading

equilibrium is the only equilibrium on a non-empty interval if f (n, a) > 0. Since f is

monotonically increasing in a, the function implicitly defines a cutoff a∗ (n) such that:

f (n, a∗ (n)) = 0

Hence the predatory trading equilibrium exists if a ≤ a∗ (n). Panel (a) of Figure 1 plots the

cutoff a∗ (red dotted line), and shows that the predatory trading equilibrium exists when

both the number of predators and the prey’s leverage capacity are small. Intuitively, if

there are many predators, fierce competition during the prey’s firesale will quickly erode

the benefit of predatory trading - and more quickly than it decreases the cost per predator.

Hence coordination on the predatory trading equilibria is more difficult to obtain. When

the prey has a high leverage capacity, the cost of inducing distress is high, hence predatory

trading is less likely.

The panel (a) of Figure 1 also features a second cutoff â∗ (n) defined as

g (n, â∗ (n)) = 0,where β
nd
− β

d
= D−p̄0

X̄
g (n, a)

Since g is monotonically decreasing in a, the no-trading and predatory trading equilibria

coexist (that is, β
nd

> β̄d) when a ≥ â∗ (n), i.e. in the region above the full dark blue

line. Hence, it is only when the prey is very constrained in terms of leverage, and the group

of predators very concentrated that predatory trading is the only equilibrium. The model

therefore delivers a clear prediction in this case, in spite of the self-fulfilling nature of the

equilibria.

In the region defined by a ≤ â∗ (n), the model produces the “net” probability of predatory

trading (i.e. excluding the region where both equilibria coexist). The following comparative

obtains:

Corollary 24 Suppose that a ≤ â∗ (n) and denote q (n, a) = 1− β
nd

βF
. q decreases linearly in

a, the prey’s leverage capacity.
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It is costly to engage in predatory trading against the prey if she has a lot of dry powder.

Hence the probability of predatory trading q decreases in a. To understand the effect of the

number of predators, I plot q in Panel (b) of Figure 1. The graph shows that the probability

decreases with n, the number of predators, and decreases faster when n is small, a non-linear

effect. This is because the benefit of predatory trading decreases as 1
n2 .

3.3.4 Changing liquidity and the cost of predatory trading

The cost of predatory trading is to push the asset price to the prey’s liquidation threshold

p̄0, while there are no other motives to trade, if only to short the asset, which has a positive

expected payoff. Hence we can define the cost of predation as the distance between the

predators’ aggregate trade Q =
∑n

i=2 x
i
0 and zero. To understand how the change in price

schedule affects the cost of predatory trading, it is interesting to compare the cost that

prevails when the hedgers (correctly) anticipate distress, and the cost that predators would

have to bear if the hedgers mistakenly believed that the prey will not liquidate. To make

this comparison, I fix the prey’s strategy and assume that she is fully leveraged, as it is a

feature of any predatory equilibrium.21

Lemma 34 Suppose X1
0 = X̄, and let Qd denote the cost of trading when hedgers anticipate

distress and Qnd when they do not. For all parameter values, predators must short less when

the hedgers anticipate distress, Qd ≥ Qnd, with Qnd < 0.

This result shows that it becomes cheaper for predators to push the prey into distress when

hedgers anticipate that the prey will eventually be forced to liquidate her positions. Each

unit bought by the prey pushes up the price less than an opposite order by a predator. The

asymmetric price impact reflects the hedgers’ perceptions of the different traders’ financial

strength. It depends on the prey’s financial condition being known by other traders. Al-

though this effect has not been tested yet, there is some incidental evidence in Cai (2009),

who finds that LTCM’ price impact was on average lower in the months before receiving

margin calls in September 1998 than during the crisis itself.

Another interesting implication of the change in liquidity is that the size of the prey’s

initial position has an ambiguous effect on predators’ time 0 trade, i.e. on the cost of

21The condition for this strategy to be optimal given that predators engage in predation would be different.
In particular the interval on which this strategy is optimal would decrease. Denoting β̃F the threshold under

the incorrect beliefs, I show in the proof of Lemma 34 that β̃F < βF . I also show that β̄d > ˜̄βd, i.e. there is
a larger interval under which distress is not self-fulfilling. Because equilibrium conditions change, my result
is about the cost of predatory trading, and not the probability of predatory trading.
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predatory trading:

Corollary 25 Denote X̄ = aX1
−1, with a ≥ 1. Then from equation (3.13), the effect of a

change in the prey’s initial size on predators’ aggregate order Qd is:

∂Qd

∂X1
−1

= 1︸︷︷︸
run effect >0

+
n

n+ 1︸ ︷︷ ︸
diff. price impact “multiplier” < 1

[
−a+

1

β

∂R

∂X1
−1

]
︸ ︷︷ ︸
collateral effect <0

where R = p̄0 −D.

Corollary 25 describes the impact of a small change in the prey’s position on the amount

predators must trade to push her into distress. The corollary shows that holding a large

position in the risky asset may either decrease or increase the cost of predatory trading.

Holding a large position strengthens the run effect, because the hedgers anticipate a larger

firesale in the following period, and the price has to adjust further downwards ex-ante. This

makes it easier for predators to trigger financial distress. At the same time, a larger position

means that the prey is richer and that her distress threshold is lower - see equation (3.2),

which makes predatory trading more costly. Interestingly, the run effect is 1, while the

collateral effect is multiplied by n
n+1

< 1. This is a consequence of the decrease in price

impact the prey experiences in this regime. Hence the decrease in price impact reduces the

benefit of holding a large position.

3.3.5 Implications for liquidity measures

Our analysis has interesting implications for liquidity measures and liquidity proxies. First,

from the example above, it is clear that turnover cannot be used as a proxy for liquidity.

In the absence of the prey’s financial constraints, it is optimal not to trade since the more

risk-tolerant investors (the prey and the predators) initially hold the entire asset supply.

In that sense, the mere presence of the financial constraint generates “excessive” trading

volume. There is a large literature on trading volume and excess trading volume. Hetero-

geneous information (e.g. Karpoff, 1986) or career concerns (Dasgupta and Prat, 2006) can

increase trading volume, among other mechanisms. Here it is the financial constraint and

the possibility of default that leads to an increase in trading volume. Interestingly, it is

precisely when risk-aversion is high, that is when hedgers are the most unwilling to hold the

asset that they end up with some in their hands.

As shown in Lemma 29, predators’ price impact increases and the prey’s decreases in the
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predatory trading equilibrium relative to the no-trading equilibrium. Further, the aggregate

price impact decreases in the sense that if all traders submit the same order, it pushes up

the price less when the hedgers expect a firesale than when they do not. In spite of this, one

cannot conclude that the market is more liquid. In our context, trading volume and market

depth can thus be misleading indicators of market liquidity. The only consistent measure is

the deviation of the transaction price from the risk-neutral value of the asset E (D2).

3.4 Predatory trading vs liquidity provision

I now move on to the case where the hedgers start with a long position in the risky asset,

i.e. X0
−1 > 0. Strategic traders hold the remainder of the supply, and the prey has a

long initial position X1
−1 > 0. The main effect of strictly positive endowments for the

hedgers is to introduce a trading motive between strategic traders and hedgers based on

risk-sharing. Thus the no-trading equilibrium is replaced by an equilibrium with imperfect

liquidity provision but no distress. In addition, I show that (i) the run effect increases with

the hedgers’ endowment, decreasing the cost of pushing the prey into distress for predators.

At the same time, an increase in the hedgers’ endowment increases the benefit of providing

liquidity to the hedgers. Because of these conflicting effects, an increase in the hedgers’

endowment has an ambiguous impact on the probability of predatory trading. (ii) Run and

predatory trading can be so mutually-reinforcing that predators may not have to sell in

order to induce the prey’s distress: it may be enough for them to hoard liquidity and let the

hedgers’ run decrease the price.

3.4.1 Equilibria

Liquidity provision

I conjecture that there exists an equilibrium in which all strategic traders buy the asset from

the hedgers, thereby providing them with liquidity (that is allowing them to swap the risky,

illiquid asset for the safe, liquid asset).

Proposition 21 Suppose 0 < β < β̄nd. On this interval, there exists a unique (symmetric)

no-distress equilibrium given by

∀i = 1, ..., n, xi0 = c0,nX
0
−1 (3.15)

xi1 = c1,nX
0
−1 (3.16)
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iff β < β
nd
∧ β̄nd and c0,nX

0
−1 ≤ X̄ −X1

−1.

Equilibrium prices are:

p0 = D − βρ0,nX
0
−1 > p̄0 (3.17)

p1 = D + ε1 − βρ1,nX
0
−1 (3.18)

with, ∀n ≥ 1, c0,n > c1,n, ρ0,n > ρ1,n, n (c0,n + c1,n) < 1.

The coefficients c0,n, c1,n, ρ0,n and ρ1,n are given by equations (3.42)-(1.51), and the

thresholds β
nd

and β̄nd by equations (3.56) and (3.47) in the appendix.

The equilibrium conditions on β given in Proposition 21 are similar to those of Proposition

18, except that the thresholds β
nd

and β̄nd are now evaluated for X0
−1 > 0.22 The condition

c0,nX
0
−1 ≤ X̄ −X1

−1 ensures that the equilibrium strategy is feasible for the prey, in spite of

her leverage constraint.

The equilibrium has two main features. First, strategic traders ration liquidity in the

market. In total, they buy an amount n (c0,n + c1,n)X0
−1, which is lower than the hedgers

endowment (n (c0,n + c1,n) < 1, ∀n ≥ 2). This follows from the oligopolistic nature of the

liquidity supply side of the market. Nevertheless, the liquidity rationing is not such that

the prey is distressed: the equilibrium price is above p̄0. Second, strategic traders buy the

asset slowly, i.e. they spread their trades over both periods. Since trades move prices in

a permanent manner, a strategic trader lowers his average purchase price by splitting up

trades. However, even with limited competition, there is some pressure to buy ahead of

other strategic traders while the price is low. As a consequence, the first period trade is

higher than the second period trade: c0,n > c1,n for all n ≥ 2, and even more so as n

increase, as shown by Figure 1.4.

While strategic traders do not engage in predatory trading for β ≤ β̄nd, the market is

not perfectly liquid on this parameter interval. The risky asset trades at a discount because

of imperfect competition and the ensuing rationing of liquidity provision. This discount

decreases over time because of the gradual purchases of the strategic traders, and varies as

follows:

Corollary 26 The illiquidity discount in period t is Γt = Et (D2) − pt = βρt,nX
0
−1 > 0

(t = 0, 1).

22I should have written β̄0
ND in the zero-endowment case of the previous section. I use the same notations

in this section, by a slight abuse of notation.
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• At each period, the discount is larger for a higher risk-aversion coefficient α, a higher

riskiness of the asset σ2, a larger hedging need X0
−1, a smaller number n of strategic

traders.

• The discount decreases faster when n is small.

The effect of the number of strategic traders on the speed at which the discount decreases

is illustrated by Figure 1.4. The slow adjustment of the price is typical of a “gradual

arbitrage”, as in Oehmke (2010), except that the illiquidity of the market is endogenous in

the present setting. The main driver of this phenomenon is imperfect competition. The

perfect competition case, which obtains in the limit case n → ∞, offers an interesting

benchmark:

Corollary 27 When n → ∞, the strategic traders’ total first period purchase converges to

X0
−1, the hedgers endowment. Their second period total purchases converges to 0. As a

consequence, the illiquidity discount goes to 0, strategic traders’ trading profits go to 0 and

the hedgers certainty equivalent converges to the expected value of his endowment.

Hence when perfect competition among strategic traders obtains, the market becomes per-

fectly liquid.

Predatory trading

Price schedule. Suppose that the hedgers believe that the prey will be in distress at time

1, then the price schedule is:

pd0 = D − βn+ 1

n
X0
−1 − β

1

n
X1
−1 + β

n+ 1

n

n∑
i=2

xi0 + βx1
0 (3.19)

Equation (3.19) shows that the constant of the price schedule decreases when hedgers have

positive endowment. Hence I obtain the following comparative static:

Corollary 28 The run effect is stronger when hedgers have a positive endowment in the

risky asset.

The intuition is that the hedgers now have a lower marginal valuation for the asset and are

thus more eager to offload their risk ahead of the prey’s firesale.
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Equilibrium. The conjectured predatory trading equilibrium strategy is:

x1
0 = X̄ −X1

−1 (3.20)

∀i = 2, ..., n, xi0 =
1

n− 1

[
X0
−1 +X1

−1 +
n

n+ 1

(
R

β
− X̄

)]
(3.21)

The only difference with the no-endowment case is for predators’ trade. It needs not be as

low, as can see by comparing equations (3.21) and (3.13). This is because the hedgers’ run

is stronger, pushing the price down further.

I now study the trade-off faced by predators. The predator’s maximization problem is

the same as 3.14 except that the hedgers’ endowment affect the cost, as well as the relative

benefit of predatory trading.

∀i = 2, ..., n, max
xi0

Ei
−1 + β

[
xi0
n+ 1

n

(
X0
−1 +X1

−1 −
n∑

j=2,j 6=i

xj0 − xi0

)]

+β

(
X0
−1 −

∑n
j=2,j 6=i x

j
0 − xi0

)2

(n+ 1)2 Ip0>p̄0

+β

(
X0
−1 +X1

−1 −
∑n

j=2,j 6=i x
j
0 − xi0

)2

n2
Ip0≤p̄0 (3.22)

s.t. ∀j 6= i, xj0 =
1

n− 1

[
X0
−1 +X1

−1 +
n

n+ 1

(
R

β
− X̄

)]
By comparing the maximization problems 3.22 and 3.14, one can see that the cost of preda-

tory trading will be lower (first line). This is caused by the fact that the hedgers run more

strongly when they have positive endowments. The benefit from resucing the prey (second

line) is higher, and the benefit from predatory trading too. I show in the appendix that the

trade-off faced by predators has a simple quadratic form. A predator joins the predatory

trading attack if and only if

adβ
2 + bdβ + cd ≥ 0 (3.23)

where the coefficients are given by equations (3.71)-(3.73) in the appendix. I obtain the

following result.

Proposition 22 Denote θ =
X0
−1

X1
−1

and a = X̄
X1
−1

, the prey’s leverage capacity. There exists an

equilibrium with distress given by equations (3.21)-(3.20) iff β ∈ IP , where IP is as follows:
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• If a ≥ max
(

1
κ2
θ + 1

κ2
,m1θ +m2

)
, then IP =

[
β
d
∧ βF , βF

[
• If a ≤ min

(
1
κ2
θ + 1

κ2
,m1θ +m2

)
, then IP =

[
β
d
, β̄D

[
• If min

(
1
κ2
θ + 1

κ2
,m1θ +m2

)
< a < max

(
1
κ2
θ + 1

κ2
,m1θ +m2

)
, then

– If θ > θ∗, then IP =
[
β
d
∧ βF , βd,2 ∧ βF

[
,

– If θ ≤ θ∗, then IP =
[
β
d
∧ β̄d, β̄d

[
.

with β
d

and β
d,2

the positive roots of equation (3.23).

The equilibrium price is:

p0 = p̄0 (3.24)

p1 = D + ε1 − β
X̄

n+ 1
− |R|
n+ 1

(3.25)

Proposition 22 shows that the equilibrium is driven by three factors: the prey’s leverage

capacity, a, the ratio θ =
X0
−1

X1
−1

, and the number of predators (since the coefficients m1, m2,

κ2 are functions of n)23 . Intuitively, θ measures the selling pressure caused by the hedgers

willingness to share risk relative to that caused by the prey’s firesale. The result suggests

that predatory trading can occur in equilibrium whether θ is large relative to a or not, i.e.

θ plays an ambiguous role. The following comparative statics confirm this observation.

3.4.2 Implications

Hedgers’ endowment and probability of predatory trading

Using the results of Proposition 22, I can calculate the probability of predation. The “gross”

probability is unadjusted for the fact that the liquidity provision equilibrium can coexist

with the predatory trading equilibrium. The “net” probability does take into account the

possible coexistence of equilibria. I obtain the following comparative statics with respect to

θ.

23Note that ∀n ≥ 2, 1
κ2
≤ 1, and max

(
m2,

1
κ2

)
= m2. Hence, given that a ≥ 1, in the special case

X0
−1 = 0, i.e. θ = 0, the equilibrium condition is β ∈

[
β
d
∧ βF , βF

[
, as in Proposition 18.
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Corollary 29 The gross and net probabilities of predation vary as follows.

• If a ≤ min
(

1
κ2
θ + 1

κ2
,m1θ +m2

)
, denote κ = θ+1

a
and define the gross probability of

predatory trading q̂ as

q̂ (κ, n) =
β̄d − βd
β̄d

q̂ decreases in κ, i.e. q̂ decreases with θ on this interval.

• If θ is small, such that a ≥ max
(

1
κ2
θ + 1

κ2
,m1θ +m2

)
, the equilibrium thresholds are

ordered as follows: β
nd
< βF < β̄d ∧ β̄d. Hence the net probability of predation q is

given by

q (θ, n, a) = 1−
β
nd

βF

Then for θ small, q increases with θ.

The effect of θ on the probability of predation is non-monotonic24. If the hedgers’ initial

positions relative to the prey’s are sufficiently large, then increasing θ decreases the likeli-

hood of predatory trading. However, if θ is initial small, then increasing it may increase

the probability of predatory trading. There are two conflicting effects at work here. First,

the hedgers’ initial position determines the equilibrium illiquidity discount. A high discount

makes it easier to push the prey into distress. Second, a large endowment raises the op-

portunity cost of pushing the prey into distress. This is because predatory trading aims at

decreasing the price at which strategic traders can buy the asset. However, if the price is

already low because the hedgers have large positions to offload, there is a low incentive to

engage in predatory trading.

Runs, predatory trading, and short-selling

In Corollary 28, I showed that when X0
1 is large, hedgers run more. Interestingly, the run

can be so strong that the predators may not have to short the asset to trigger the prey’s

distress.

24I checked numerically the “net” probability of predation, i.e. taking into account equilibrium overlap,
has typically the same properties as the “gross” probability.
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Corollary 30 (liquidity hoarding) The predators’ aggregate order at t = 0 is Qd =
∑n

i=2 x
i
0 =

X0
−1 +X1

−1 + n
n+1

(
R
β
− X̄

)
.

• If θ = 0, then ∀β < βF , Qd < 0, i.e. predators must short the asset to push the prey

into distress.

• If θ > 0, then if the prey has a small enough leverage capacity (a small enough), there

exists βh > 0 such that for β ≥ βh, Qd ≥ 0, i.e., it is enough for predators to hoard

liquidity to push the prey into distress.

The second part of the corollary does not state whether βh satisfies the conditions required on

β for predatory trading to occur in equilibrium. However, it is easy to calculate the various

thresholds numerically. For instance, when θ = 0.3 and a = 1.05, parameters are such that

predatory trading is the only equilibrium for β ∈
[
β
nd
, β̄d ∧ βF

[
as long as the number of

predators is between 2 and 8. Further, for these parameters, βh < β̄d ∧ βF , implying that it

is sufficient for predators to restrict liquidity provision, and that they do not have to short

the asset. Therefore, when the hedgers are sufficiently risk-averse, they behave as predators’

(involuntary) accomplices. More precisely, the possibility of predatory trading induces the

hedgers to run, which in turn facilitates predatory trading. Therefore the model provides a

natural link between predatory trading and financial market runs. Contrary to models of

financial market runs (e.g. Bernardo and Welch (2004), the liquidity shock triggering the

run, i.e. the prey’s firesale, is endogenous in the model.

An interesting empirical implication of the model is that it may be misleading too look

at the trade direction (i.e. buy or sell) in order to identify predators. This implication is

in contrast to Brunnermeier and Pedersen’s model, in which predators always sell during

the predatory phase (time 0 here). Another interesting implication is that short-selling bans

may not always be effective in curbing predatory trading. In particular, when the hedgers

are sufficiently risk-averse (β ≥ βh), what pushes the prey into distress is that they quickly

offload their endowment and predators restrict the quantity they buy.

Price effects

Predatory trading involves a price manipulation in the first period in order to push the prey

into distress. Therefore the illiquidity discount is larger than in the no-distress case at time

0 when predators engage in predatory trading. The price effects of predatory trading at time

1 are as follows:



3.5. CONCLUSION 175

Corollary 31 In the equilibrium with distress,

• The illiquidity discount at t = 1 is larger when the prey has a larger capacity, ∂Γ1

∂X̄
< 0,

and when the prey has more cash or a less severe constraint V, ∂Γ1

∂|R| < 0.

• The price rebounds on average at t = 1 and the average rebound is stronger when the

prey is less exposed to forced liquidations (e.g. has more cash, or a looser constraint

V), E0(p1−p0)
∂|R| > 0, and stronger if the prey has a smaller capacity, E0(p1−p0)

∂X̄
< 0.

If the prey has a large capacity constraint, there is a large firesale at time 1, hence a large

discount and a low price rebound, on average. When the prey is not very exposed to forced

liquidation, inducing distress requires to push the time 0 price to a very low level. Since

price impact is permanent, the time 1 price is also lower in this case. Nevertheless, the

average rebound is larger. This is because decreasing the price involves to take low or short

positions at time 0, therefore predators must buy more aggressively at time 1, leading to a

higher rebound on average.

3.5 Conclusion

I study predatory trading in a model where smart competitive investors (hedgers) under-

stand that capital-rich strategic traders may prey upon a financially constrained competitor.

I show that the hedgers’ reactions to the possibility of predatory trading can make predation

cheaper. This reaction manifests itself through a change in market liquidity, which allows

predators to move prices more easily than the prey and increases downward pressure on the

price. An important determinant of predatory trading is the hedgers’ risk-bearing capacity,

because it determines their ability to take the other side of predatory trades and eventu-

ally to absorb firesales without causing large market disruptions, and this determines the

profitability of predatory trading.

An interesting research avenue is to study the systemic risk created by predatory trading

between traders with different levels of capital. Given the mechanisms at work with one prey,

one can imagine that the mere prospect of a cascade of failures could trigger a liquidity dry-

up which in turn would facilitate predatory trading on multiple preys. At the same time,

the possibility of becoming a prey as a result of future market disruptions may limit the

willingness of traders with intermediate capital to engage in predation. Hence introducing

spillovers from one prey to the other in the analysis should lead to interesting coordination

problems. This is left for future research.
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3.6 Proofs

The following proofs are given in the case where the hedgers’ endowment is X0
−1 ≥ 0. Section

3.6.4 of this appendix contains additional derivations related to the special case where the

hedgers have no endowment (X0
−1 = 0). In my derivations of the equilibrium, I use Lemma

2 in Fardeau (2011). (chapter 1 of this dissertation)

3.6.1 Time-1 subgame equilibrium and price schedules

Lemma 28

Proof. I solve the model backwards. Given the CARA-normal framework of the model,

it is convenient to work with certainty equivalents to solve the hedgers’ problem.

Date 1. From the viewpoint of date 1, the first innovation ε1 is known, hence E1

(
D̃2

)
=

D + ε1 and the hedgers’ maximisation problem is

CE1 = max
xC1

BC
0 − xC1 p1 +XC

1 (D + ε1)− 1

2
β
(
XC

1

)2
,with β = ασ2 (3.26)

The hedgers’ demand at t = 1 is thus XC
1 = D+ε1−p1

β
. Inverting the demand curve and

imposing market-clearing,

∀t = 0, 1, S = XC
t +

n∑
j=1

Xj
t (3.27)

yields the price schedule faced by strategic traders:

p1 = D + ε1 − β

(
S −

n∑
j=1

Xj
1

)

Using Xj
t = Xj

t−1 + xjt gives:

p1 = D + ε1 − β

(
S −

n∑
j=1

Xj
0

)
+ β

n∑
j=1

xj1 (3.28)

There are two states of the world at t = 1, with and without distress. If there is distress, the

prey must liquidate her entire portfolio, i.e. X1
1 = 0, which implies x1

1 = −X1
0 . Otherwise,

the prey is free to choose her position.



3.6. PROOFS 177

- First case: no distress (nd). A strategic trader’s value function is defined as

∀i = 1, ..., n, J i,nd1 = max
xi1

E1

[
Bi

0 − xi1p1 +X i
1D̃2

]
s.t. p1 = D + ε1 − β

(
S −

n∑
j=1

Xj
0

)
+ β

n∑
j=1

xj1

Plugging the constraint in the maximand gives:

∀i = 1, ...n, J i,nd1 = max
xi1

Bi
0 +X i

0 (D + ε1) + xi1

[
S −

n∑
j=1

Xj
0 −

n∑
j 6=i

xj1 − xi1

]
,

where, ∀j = 1, ..., n, Xj
0 has been determined in the previous period. Taking the first-order

condition, solving for its zero and rearranging terms, we get:

∀i = 1, ..., n, xi1 +
n∑
j=1

xj1 = S −
n∑
j=1

Xj
0 (3.29)

Collecting the n equations and using matrix notation gives

(I + 1) .x1 =

(
S −

n∑
j=1

Xj
0

)
.1,

where 1 is a (n, n) matrix of 1’s, x1 = (x1
1, ..., x

n
1 ) and 1 is a vector of 1’s. The lines and

columns of the matrix A = I+1 are linearly independent. Thus the matrix is invertible with

inverse A−1 and multiplying on both sides from the left by A−1 gives the unique equilibrium

in the subgame:

∀i = 1, ..., n, xi1 =
S −

∑n
j=1 X

j
0

n+ 1
(3.30)

Plugging this quantity into the strategic trader’s value function J i,nd1 gives

J i,nd1 = Bi
0 +X i

0 (D + ε1) + β

(
S −

∑n
j=1 X

j
0

)2

(n+ 1)2 (3.31)

The strategic trader’s value function is the expected payoff on his date 0 positions in the

riskfree and risky assets, plus the continuation payoff β
(S−

∑n
j=1X

j
0)

2

(n+1)2 . Using equations (3.26)
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and (3.30), the hedgers’ certainty equivalent is:

CEnd
1 = BC

0 +XC
0

(
D + ε1 − β

S −
∑n

j=1X
j
0

n+ 1

)
+ β

(
S −

∑n
j=1 X

j
0

)2

2 (n+ 1)2 (3.32)

- Second case: prey is in distress (d).

In this case, X1
1 = 0, hence x1

1 = −X1
0 . Given that X1

1 = 0, the problem of a predator is

∀i = 2, ..., n, J i,d1 = max
xi1

E1

(
Bi

0 − xi1p1 +X i
1D̃2

)
s.t. p1 = D + ε1 − β

(
S −

n∑
i=2

X i
1

)

Repeating the same steps as above, I get the unique equilibrium in the subgame:

x1
1 = −X1

0 (3.33)

∀i = 2, ..., n, xi1 =
S −

∑n
j=2 X

j
0

n
(3.34)

Strategic trader’s value function and the hedgers’ certainty equivalent are given by:

∀i = 2, ..., n, J i,d1 = Bi
0 +X i

0 (D + ε1) + β

(
S −

∑n
j=2 X

j
0

)2

n2
(3.35)

CEd
1 = BC

0 +XC
0

(
D + ε1 − β

S −
∑n

j=2 X
j
0

n

)
+ β

(
S −

∑n
j=2 X

j
0

)2

2n2
(3.36)

Lemma 30

Proof. Date 0. I now solve for the hedgers’ demand at date 0, depending on the

hedgers’ beliefs about the state at t = 1.

- First case: The hedgers believe that the prey will be solvent at t = 0. The hedgers’

maximisation problem at t = 0, using BC
0 = BC

−1 − xC0 p0 and equation (3.32), is

max
xC0

E0 − exp−α

−xC0 p0 +XC
0

(
D + ε̃1 − β

S −
∑n

j=1X
j
0

n+ 1

)
+ β

(
S −

∑n
j=1X

j
0

)2

2 (n+ 1)2

 ,
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where ε̃1 is random. Using the projection theorem for normals, the problem simplifies to

maximising the hedgers’ date-0 certainty equivalent:

CE0 = max
xC0

−xC0 p0 +XC
0

(
D − β

S −
∑n

j=1 X
j
0

n+ 1

)
+β

(
S −

∑n
j=1X

j
0

)2

2 (n+ 1)2 − 1

2

β

2

(
XC

0

)2
(3.37)

From the first-order condition I get the hedgers’ demand function at t = 0:

XC
0 =

D − β S−
∑n
j=1X

j
0

n+1
− p0

β

Inverting the demand, imposing market-clearing (equation (3.27)):

pnd0 = D − βn+ 2

n+ 1

[
S −

n∑
j=1

Xj
0

]

Using the accounting identity:

S = X0
−1 +

n∑
j=1

Xj
−1 (3.38)

gives the date-0 price functional when the hedgers anticipate no distress:

pnd0 = D − βn+ 2

n+ 1
X0
−1 + β

n+ 2

n+ 1

n∑
j=1

xj0 (3.39)

With X0
−1 = 0, equation (3.39) corresponds to equation (3.5) given in the text.

- Second case: Suppose that the hedgers believe the prey will be in distress at t = 1. Using

equation (3.36), solving for the hedgers’ date 0-maximisation problem and using equation

(3.38), I get:

pd0 = D − βn+ 1

n
X0
−1 + β

n∑
j=1

xj0 + β
1

n

(
n∑
j=1

xj0 −X1
0

)

Strategic traders’ identities are public information, hence, using the dynamics of asset hold-
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ings, X1
0 = X1

−1 + x1
0, this equation can be rewritten as:

pd0 = D − βn+ 1

n
X0
−1 − β

1

n
X1
−1 + β

n+ 1

n

n∑
j=2

xi0 + βx1
0 (3.40)

Setting X0
−1 = 0 gives equation (3.6) in the text. Lemma 30 follows immediately from

equations (3.39) and (3.40) and arguments given in the text.

3.6.2 Liquidity provision equilibrium

Lemma 31

Proof. Suppose that the hedgers believe that the prey will not be distressed. Since the

hegders are rational, their beliefs must be correct in equilibrium. I now determine under

which condition strategic traders’ actions are consistent with the hedgers’ beliefs.

At date 0, a strategic trader’s problem is:

∀i = 1, ..., n, J i,nd0 = max
xi0

E0

Bi
−1 − xi0p0 +X i

0 (D + ε̃1) + β

(
S −

∑n
j=1X

j
0

)2

(n+ 1)2


s.t. pnd0 = D − βn+ 2

n+ 1
X0
−1 + β

n+ 2

n+ 1

n∑
j=2

xj0 + β
n+ 2

n+ 1
x1

0

B1
0 +X1

0p0 ≤ V ⇒ X1
1 = 0

X1
0 ≤ X̄

The second constraint corresponds to Assumption 1 (marked-to-market wealth constraint),

the third constraint to Assumption 2 (leverage constraint). I first derive the equilibrium

that would prevail in the absence of these two financial constraints, and then derive under

which conditions this equilibrium holds in the presence of the constraints.

Ignoring the second and third constraints, plugging the first constraint into the maximand

and using equation (3.38) gives

J i,nd0 = max
xi0

Ei
−1 + β

n+ 2

n+ 1
xi0

(
X0
−1 −

n∑
j 6=i

xj0 − xi0

)
+

(
X0
−1 −

∑n
j 6=i x

j
0 − xi0

)2

(n+ 1)2
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with Ei
−1 = Bi

−1 +X i
−1D. From the first-order condition, I get:

∀i ∈ {1, ..., n}, xi0 +
n2 + 3n

(n+ 1)2

n∑
j=1

xj0 =
n2 + 3n

(n+ 1)2X
0
−1 (3.41)

Solving this system of n equations with n unknowns, I get the unique equilibrium in this

subgame (in absence of constraints)

∀i = 1, ..., n, xi0 =
n2 + 3n

n3 + 4n2 + 3n+ 2
X0
−1 = c0,nX

0
−1 (3.42)

From equation (3.30), I find the date 1 equilibrium trade:

∀i = 1, ..., n, xi1 =
n+ 2

n3 + 4n2 + 3n+ 2
X0
−1 = c1,nX

0
−1 (3.43)

After some simple algebra, I obtain the equilibrium prices:

p0 = D − β (n+ 2)2

n3 + 4n2 + 3n+ 2
X0
−1 = D − βρ0,nX

0
−1 (3.44)

p1 = D + ε1 − β
n+ 2

n3 + 4n2 + 3n+ 2
X0
−1 = D + ε1 − βρ1,nX

0
−1 (3.45)

Further, using (3.42) and (3.43), I compute the payoff (skipping two lines of algebra):

Jnd0 = Ei
−1 + βπ0,n

(
X0
−1

)2
(3.46)

with π0,n =
(n2 + 3n+ 1) (n+ 2)2

(n3 + 4n2 + 3n+ 2)2

Let us now consider the problem with the financial constraints. I conjecture that the

equilibrium trade is given by equation (3.42). An obvious condition on parameters is that

X1
−1 + c0,nX

0
−1 ≤ X̄.

In the presence of the financial constraints, one must check for two types of deviations.

First, the prey may opt for a voluntary liquidation. The prey being risk-neutral, it is easy

to show that she will never voluntarily liquidate, therefore I skip the proof.

Second, a strategic trader may turn predator and exploit the prey’s constraints to trigger

a forced liquidation25. Doing so affects strategic traders’ continuation payoff, which becomes

25Note that since the equilibrium is unique in the absence of financial constraints, this is the only deviation
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(S−
∑n
j=2X

j
0)

2

n2 .

Let’s compute the payoff from exploiting the prey’s financial constraints for predator i:

J i,nd,dev0 = max
xi0

Ei
−1 + β

n+ 2

n+ 1
xi0

(
S −

n∑
j=1

Xj
0

)
+

(
S −

∑n
j=2X

j
0

)2

n2


s.t. ∀j 6= i, xj0 = c0,nX

0
−1

p0 ≤ p̄0

where i ∈ {2, ..., n}. Using (3.38), this problem can be rewritten as

maxxi0 β
n+ 2

n+ 1
xi0

[
X0
−1 −

n∑
j=1,j 6=i

xj0 − xi0

]
+ β

[
X0
−1 +X1

−1 −
∑n

j=2,j 6=i x
j
0 − xi0

]2

n2

s.t. ∀j 6= i, xj0 = c0,nX
0
−1

p0 ≤ p̄0

Note that in the second constraint, p0 depends on the strategy of predator i and on the

postulated strategy of other strategic traders, ∀j 6= i, xj0 = c0,nX
0
−1. I first determine under

which condition a predatory deviation is costly, i.e. under which condition the Lagrangian

of the second (price) constraint is strictly positive.

Let’s first ignore the constraint p0 ≤ p̄0 and solve for the zero of the first-order condition.

I get:

xi,dev0 =
n5 + 5n4 + 4n3 − 10n2 − 11n− 2

(n3 + 2n2 − n− 1) (n3 + 4n2 + 3n+ 2)
X0
−1 −

n+ 1

n3 + 2n2 − n− 1
X1
−1

As a consequence,

n+ 2

n+ 1

[
X0
−1 −

n∑
j=1

xj0

]
= H1X

0
−1 +H2X

1
−1

with H1 =
n(n+2)(n4+5n3+8n2+6n+3)

(n+1)(n3+2n2−n−1)(n3+4n2+3n+2)
and H2 = n+2

n3+2n2−n−1
. This, in turn, implies that

one must check for.
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p0 ≤ p̄0 iff

β ≥ β̄nd =
|R|

H1X0
−1 +H2X1

−1

,with R = p̄0 −D (3.47)

Therefore, I will now focus on the parameter space β < β̄nd.

On this interval, pushing the prey into distress requires for a predator to set:

pnd0 = p̄0

That is, predator i must choose xi,dev0 such that

D − βn+ 2

n+ 1
X0
−1 + β

n+ 2

n+ 1

n∑
j=1,j 6=i

xj0 + β
n+ 2

n+ 1
xi,dev0 = p̄0

where ∀j 6= i, xj0 = c0,nX
0
−1. Rearranging the terms, I get:

xi,dev0 =
n+ 1

n+ 2

R

β
+

2 (n2 + 3n+ 1)

n3 + 4n2 + 3n+ 2
X0
−1 (3.48)

This achieves the proof of Lemma 31

Proposition 21

Proof. Building on Lemma 31, I calculate the new continuation payoff of the strategic

traders.

X0
−1 +X1

−1 −
n∑
j=2

xj0 = X1
−1 +

n2 + 3n

n3 + 4n2 + 3n+ 2
X0
−1 −

n+ 1

n+ 2

R

β
(3.49)

Therefore, using equations (3.48) and (3.49), and developping and rearranging terms, preda-
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tor i gets the following payoff from pushing the prey into distress:

J i,nd,dev0 = Ei
−1 + β

(n+ 3)2

(n3 + 4n2 + 3n+ 2)2

(
X0
−1

)2

+β

[
1

n2

(
X1
−1

)2
+

2 (n+ 3)

n (n3 + 4n2 + 3n+ 2)
X1
−1X

0
−1

]
−R

[
2 (n4 + 5n3 + 8n2 + 6n+ 3)

n (n+ 2) (n3 + 4n2 + 3n+ 2)
X0
−1 +

2 (n+ 1)

n2 (n+ 2)
X1
−1

]
−(n+ 1) (n3 + 2n2 − n− 1)

n2 (n+ 2)2

R2

β
(3.50)

Hence, predator i prefers buying over preying iff J i,nd0 ≥ J i,nd,dev0 . Using equations (3.46)

and (3.50), it is equivalent to:

andβ
2 + bndβ + cnd ≥ 0 (3.51)

where and = λ1

(
X0
−1

)2 − λ2

(
X1
−1

)2 − λ3X
1
−1X

0
−1 (3.52)

bnd = R
[
λ4X

0
−1 + λ5X

1
−1

]
< 0 (3.53)

cnd = λ6R
2 > 0 (3.54)

with λ1 = n4+7n3+16n2+10n−5
(n3+4n2+3n+2)2 , λ2 = 1

n2 , λ3 = 2(n+3)
n(n3+4n2+3n+2)

, λ4 =
2(n4+5n3+8n2+6n+3)
n(n+2)(n3+4n2+3n+2)

, λ5 =

2(n+1)
n2(n+2)

, λ6 =
(n+1)(n3+2n2−n−1)

n2(n+2)2 . Note that for all k = 1, ..., 6,, for all n ≥ 2, λk > 0.

The discriminant of the LHS of inequality (3.51) is

∆nd = R2
[
A1

(
X0
−1

)2
+ A2

(
X1
−1

)2
+ A3X

1
−1X

0
−1

]
(3.55)

with A1 = λ2
4 − 4λ1λ6 =

4(3n6+39n5+104n4+170n3+125n2+36n+4)
n2(n+2)2(n3+4n2+3n+2)2 > 0, A2 = λ5 + 4λ6λ2 > 0,

A3 = 2λ4λ5 + 4λ6λ3 > 0. Hence for all n ≥ 2, ∆nd > 0, which guarantees that there are

always two real roots, β1, β2. Since the sign of bnd and cnd is known, the sign of equation

(3.51) depends on the sign of and.

Using θ =
X0
−1

X1
−1

, I rewrite equation (3.52) as

and =
(
X1
−1

)2
[λ1θ − λ3θ − λ2]

The discriminant of the equation in parenthesis is ∆a = λ2
3 + 4λ1λ2 > 0. Since λ1 > 0 and
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−λ2 < 0, there is a positive and a negative root. The positive root is given by

θ̄ =
λ3 +

√
∆a

2λ1

and since θ ≥ 0, the sign of and is striclty negative iff θ ∈
[
0, θ̄
[

and positive iff θ > θ̄.

I can now determine the equilibrium:

• If 0 ≤ θ < θ̄, the no distress equilibrium exists iff β < β1 ∧ β̄nd, with β1 = − bnd+
√

∆nd

2and
.

• If θ > θ̄, the no distress equilibrium exists iff β < β1 ∧ β̄nd or β > β2 ∧ β̄nd, with

β2 = −bnd+
√

∆nd

2and
.

Using equations (3.52)-(3.54), equation (3.55), and the change of variable θ =
X0
−1

X1
−1

, the

roots are given by

β1 =
|R|
X1
−1

(λ4θ + λ5)− [A1θ
2 + A3θ + A2]

1
2

2 (λ1θ2 − λ3θ − λ2)
≡ β

nd
(3.56)

β2 =
|R|
X1
−1

(λ4θ + λ5) + [A1θ
2 + A3θ + A2]

1
2

2 (λ1θ2 − λ3θ − λ2)
(3.57)

I now show that in the second case (θ > θ̄), the second root, β2, does not satisfy the

parameter restriction β < β̄nd, where β̄nd is given by equation (3.47).

Since the denominator of β2 is strictly positive when θ > θ̄, β2 − β̄nd < 0 is, after

rearranging terms, equivalent to:

(λ4H1 − 2λ1) θ2 + (λ5H1 + λ4H2 + 2λ3) θ + (λ5H2 + 2λ2) + (H1θ +H2)U
1
2
θ < 0

where Uθ = A1θ
2 + A3θ + A2. Since for all n ≥ 2, λ4H1 − 2λ1 > 0 and since all other

coefficients are also positive, this condition is never satisfied for any θ ≥ 0, hence for any

θ > θ̄. Hence β2 > β̄nd.

As a result, the necessary and sufficient condition for the existence of the no distress

equilibrium is β < β
nd
∧ β̄nd.

Corollaries 26 and 27

Proof. The results follow directly from calculations in the proof of Proposition 21.
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3.6.3 Predatory trading equilibrium and comparative statics

I conjecture that the predators’ equilibrium predatory trade is

∀j = 2, ..., n, xj0 =
1

n− 1

[
X0
−1 +X1

−1 +
n

n+ 1

(
R

β
− X̄

)]
(3.58)

Using equation (3.34), this implies that their date-1 trade is

∀j = 2, ..., n, xj1 =
1

n+ 1

(
X̄ − R

β

)
(3.59)

which leads to the following price:

p1 = D + ε1 −
β

n+ 1

(
X̄ − R

β

)
I assume that the hedgers believe that the prey will be distressed. I first determine condi-

tions under which the prey’s conjectured strategy is optimal given the predators’ conjectured

strategy.

Lemma 33

Proof. The prey’s problem. The predators’ conjectured strategy implies the following

first-period price (as a function of the prey’s trade):

p0 = p̄0 − β
[
X̄ −X1

−1 − x1
0

]
(3.60)

Since the predators’ strategy is constructed so that the prey can not outbid predators,

the prey’s problem given predators’ trade is to maximise the proceeds of liquidation. Hence

the prey’s maximisation problem is:

max
x1

0

E0

[
B1
−1 − x1

0p0 − x1
1p1 +X1D2

]
(3.61)

s.t. X1
1 = 0

x1
0 ≤ X̄ −X1

−1

p0 = p̄0 = D − β
[
X̄ −X1

−1 − x1
0

]
p1 = D + ε1 −

β

n+ 1

(
X̄ − R

β

)
Plugging the first and last two constraints into the maximand, this problem can be rewritten
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as:

maxx1
0
B1
−1 − x1

0

[
p̄0 − β

[
X̄ −X1

−1 − x1
0

]]
+X1

0

[
D − β 1

n+ 1

[
X̄ − R

β

]]
s.t. x1

0 ≤ X̄ −X1
−1

Writing the Lagrangian of the problem and solving for the zero of the first-order condition

gives:

x1
0 =

{
n

2(n+1)
|R|
β

+ 1
2

[
n
n+1

X̄ −X1
−1

]
if β < βF

X̄ otherwise,

where βF =
|R|

n+2
n
X̄ − n+1

n
X1
−1

(3.62)

⇒ A necessary condition for the conjectured strategy to be a Nash equilibrium is β < βF .

Lemma 32

Proof. The predators’ problem. The predators’ conjectured strategy (3.58) is con-

structed assuming that predation is costly and that predators behave symmetrically. I.e.,

the conjectured strategy is such that predators choose a quantity leading to pd0 = p̄0, with

x1
0 = X̄ −X1

−1.

A necessary condition for this conjectured strategy to be a Nash equilibrium is that the

Lagrangian of the first constraint in the following problem is zero.

maxxi0 βxi0

[
n+ 1

n

(
S −

n∑
j=2

Xj
0

)
−X1

0

]
+ β

(
S −

∑n
j=2X

j
0

)2

n2

s.t. p0 ≤ p̄0 (3.63)

X1
0 = X̄

The problem can be rewritten as

max
xi0

βxi0

[
n+ 1

n

(
X0
−1 +X1

−1 −
n∑
j=2

xj0

)
− X̄

]
+ β

(
X0
−1 +X1

−1 −
∑n

j=2 x
j
0

)2

n2

s.t. p0 ≤ p̄0
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After writing the Lagrangian of the problem and solving for the equilibrium, I get:

xi0 =

{
1

n−1

[
X0
−1 +X1

−1 + n
n+1

(
R
β
− X̄

)]
if a > ρ0,n−1

dn
or if β < β̄d when a ≤ ρ0,n−1

dn

n2+n−2
n3+n2−2n+2

(
X0
−1 +X1

−1

)
− n2

n3+n2−2n+2
X̄ otherwise,

with β̄d =
|R|

ρ0,n−1

(
X0
−1 +X1

−1

)
− dnX̄

(3.64)

where ρ0,n−1 = (n+1)2

n3+n2−2n+2
, dn = n2−n+2

n3+n2−2n+2
, and a = X̄

X1
−1

is the prey’s spare leverage

capacity. Note that symmetry is imposed when the Lagrangian of the constraint is zero,

while it is the unique outcome when the constraint is not binding.

⇒ A necessary condition for the conjectured strategy to be a Nash equilibrium is β < βd

if a ≤ ρ0,n−1

dn
.

Propositions 19 and 22

Proof. The payoff of the conjectured strategy for predators is, using equations (3.58)

and (3.59):

J i,D0 = Ei
−1+β

X̄2

(n+ 1)2−R
[

1

n− 1

(
X0
−1 +X1

−1

)
− n2 − n+ 2

(n− 1) (n+ 1)2 X̄

]
− n2 + 1

(n− 1) (n+ 1)2

R2

β

(3.65)

Payoff from deviating: “rescuing” the prey. Predator i may not join the predatory

attack and “rescue” the prey. All predators are pivotal, hence this rescue implies a change

in the continuation payoff from
S−
∑n
j=2 X

j
0

n2 to
S−
∑n
j=1 X

j
0

(n+1)2 .

The strategy of a deviating predator solves the following problem:

J i,d,dev0 = maxxi0 βxi0

[
n+ 1

n

(
S −

∑
j=2

Xj
0

)
−X1

0

]
+ β

(
S −

∑n
j=2X

j
0

)2

(n+ 1)2

s.t. ∀j 6= i, xj0 =
1

n− 1

[
X0
−1 +X1

−1 +
n

n+ 1

(
R

β
− X̄

)]
X1

0 = X̄

p0 > p̄0
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Using equation (3.38), and plugging the first and second constraints into the maximand, the

maximisation problem boils down to

J i,d,dev0 = maxxi0 βxi0

[
n+ 1

n (n− 1)

(
X0
−1 +X1

−1

)
− n− 2

n− 1

R

β
− n+ 1

n
xi0 −

1

n− 1
X̄

]
+

β

(n+ 1)2

[
1

n− 1

(
X0
−1 +X1

−1

)
− n (n− 2)

n2 − 1

R

β
− 2n− 1

n2 − 1
X̄ − xi0

]2

s.t. p0 > p̄0

Writing the Lagrangian and solving for the first-order condition (ignoring the price constraint

for now), I get the strategy of a deviating (“rescuing”) predator:

xi,dev0 =
n3 + 3n2 + n+ 1

2 (n− 1) (n3 + 3n2 + 2n+ 1)

(
X0
−1 +X1

−1

)
− n (n3 + 3n2 − n+ 3)

2 (n2 − 1) (n3 + 3n2 + 2n+ 1)
X̄ − n (n− 2) (n3 + 3n2 + n+ 1)

2 (n2 − 1) (n3 + 3n2 + 2n+ 1)

R

β
(3.66)

It is easy albeit algebraically tedious to check that β < β̄d implies that p0 > p̄0, so that the

Lagrangian of the price constraint is always zero.

To compute the payoff of the rescue for predator i, it is convenient to calculate the

following quantities:

n+ 1

n

(
X0
−1 +X1

−1 −
n∑
j=2

xj0

)
− X̄ = z1

(
X0
−1 +X1

−1

)
− z2X̄ − z3

R

β
(3.67)

where z1 =
(n+1)(n3+3n2+3n+1)

2n(n−1)(n3+3n2+2n+1)
, z2 = n3+3n2+5n−1

2(n−1)(n3+3n2+2n+1)
, z3 =

(n−2)(n3+3n2+3n+1)
2(n−1)(n3+3n2+2n+1)

. and

X0
−1 −

∑
j=1 x

j
0

n+ 1
= z′1

(
X0
−1 +X1

−1

)
− z′2X̄ − z′3

R

β
(3.68)

with z′1 = n3+3n2+3n+1
2(n2−1)(n3+3n2+2n+1)

, z′2 = 3n4+7n3+3n2−3n−2
2(n−1)(n+1)2(n3+3n2+2n+1)

, z′3 =
n(n−2)(n3+3n2+3n+1)

2(n−1)(n+1)2(n3+3n2+2n+1)
.

From equations (3.66)-(3.68), skipping some algebra, the payoff of rescuing the prey is:

J i,d,dev0 = β
[
w1X̄

2 + w2

(
X0
−1 +X1

−1

)
− w3

(
X0
−1 +X1

−1

)
X̄
]

−R
[
w4

(
X0
−1 +X1

−1

)
− w5X̄

]
+ w6

R2

β
(3.69)
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with w1 = n10+9n9+43n8+114n7+155n6+98n5+41n4+50n3+28n2−15n+4
4(n−1)2(n+1)4(n3+3n2+2n+1)2 , w2 = (n+1)4

4n(n1)2(n3+3n2+2n+1)
, w3 =

n6+9n5+23n4+24n3+7n2+n−1
2(n−1)2(n3+3n2+2n+1)2 , w4 = (n−2)(n+1)3

2(n−1)2(n3+3n2+2n+1)
, w5 =

n2(n−2)(n5+9n4+23n3+25n2+10n+4)
2(n+1)(n−1)2(n3+3n2+2n+1)2 ,

w6 =
n(n−2)2(n+1)2(n4+4n3+4n2+3n+1)

4(n−1)2(n3+3n2+2n+1)2 .

The conjectured predatory trades form a Nash equilibrium iff ∀i = 2, ..., n, J i,d0 ≥ J i,d,dev0 .

From equations (3.65) and (3.69), this is equivalent to

adβ
2 + bdβ + cd ≥ 0 (3.70)

with ad = e1X̄
2 − e2

(
X0
−1 +X1

−1

)2
+ e3X̄

(
X0
−1 +X1

−1

)
(3.71)

bd = −R
[
e4

(
X0
−1 +X1

−1

)
− e5X̄

]
(3.72)

cd = −e6R
2 (3.73)

and e1 = 1
(n+1)2 − w1, e2 = w2, e3 = w3, e4 = 1

n−1
− w4, e5 = n2−n+2

(n−1)(n+1)2 − w5, e6 =
n2+1

(n−1)(n+1)2 + w6

e4 =
n4 + 3n3 + n2 + 3n

2 (n− 1)2 (n3 + 3n2 + 2n+ 1)
(3.74)

e5 =
n9 − 4n7 + 24n6 + 79n5 + 56n4 + 14n3 − 12n2 − 10n− 4

2 (n− 1)2 (n+ 1)2 (n3 + 3n2 + 2n+ 1)2 (3.75)

It is clear that cd < 0. Let us now study the signs of bd and ad.

Sign of bd

bd ≥ 0⇔ κ ≥ e5

e4

, where κ =
X0
−1 +X1

−1

X̄
(3.76)

Further, from equations (3.74)-(3.75), ∀n ≥ 2, e5
e4

= n9−4n7+24n6+79n5+56n4+14n3−12n2−10n−4
(n+1)2(n3+3n2+2n+1)(n4+3n3+n2+3n)

and
e5
e4
≤ 1.

Sign of ad

Using the variable κ =
X0
−1+X1

−1

X̄
, I rewrite equation (3.71) as:

ad = X̄2
[
e1 − e2κ

2 + e3κ
]

For n = 2, e1 < 0, e2 > 0, e3 > 0. When n > 2, all coefficients are strictly positive. Thus,
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• If n = 2, there are two positive roots, κ1 = e3−
√
δ

2e2
and κ2 = e3+

√
δ

2e2
, where δ = e2

3 +4e2e1.

• If n > 2, there is a positive and a negative roots, with κ1 < 0 and κ2 > 0.

Hence, ad > 0 ⇔

• κ ∈ ]κ1, κ2[, if n = 2

• κ ∈ ]0, κ2[, if n > 2.

Discriminant

The discriminant of equation (3.70) is:

∆d = R2
[
r1

(
X0
−1 +X1

−1

)2
+ r2X̄

(
X0
−1 +X1

−1

)
+ r3X̄

2
]

i.e., ∆d = R2X̄2
[
r1κ

2 + r2κ+ r3

]
(3.77)

with r1 = e2
4 − 4e6e2, r2 = 4e6e3 − 2e5e4, r3 = e2

5 + 4e6e1. ∀n ≥ 2, r1 > 0, and r2 > 0.

Further, r3 < 0 for n = 2 and r3 > 0 for n > 2.26

Hence if n = 2, the equation r1κ
2 + r2κ+ r3 has two solutions:

κd1 =
−r2 +

√
∆d

2r1

≈ 0.1

κd2 =
−r2 −

√
∆d

2r1

< 0,where ∆d = r2
2 − 4r1r3

If n > 2, then all coefficients ri being strictly positive, ∆D > 0 for any κ. Hence,

• If n = 2, then ∆d < 0 for κ ∈
[
0, κd1

[
. If κ > κd1 ≈ 0.1, then ∆d > 0.

• If n > 2, then ∆d > 0.

Equilibrium

The equilibrium is determined by the sign of equation (3.70) and the parameter restric-

tions βF and β̄d, given by equations (3.62) and (3.64), respectively.

26For the sake of brevity, I did not reproduce the analytical expression of the coefficients ri. I check the
signs numerically for n = 2 to n = 150.
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When ∆d > 0, equation (3.70) has two real roots given by

β
d

=

√
∆d − bd
2ad

(3.78)

β
d,2

= −bd +
√

∆d

2ad
(3.79)

It is easy to see that if ad > 0, β2 < 0, and if ad < 0, β2 > β
d
> 0. Using κ =

X0
−1+X1

−1

X̄
,

equations (3.78) and (3.79) and (3.71)-(3.73), the roots can be rewritten as:

β
d

=
|R|
X̄

Z
1
2
κ − (e4κ− e5)

2 (e1 − e2κ2 + e3κ)
(3.80)

β2 = −|R|
X̄

Z
1
2
κ + (e4κ− e5)

2 (e1 − e2κ2 + e3κ)
(3.81)

where Zκ = r1κ
2 + r2κ+ r3.

I first study the sign of equation (3.70) independently of the parameter restrictions.

If n > 2, ∆d > 0, hence the equation has two real roots. From the signs of ad and bd,

there are two thresholds for κ in this case: κ2 and e5
e4

. Since for all n ≥ 2, κ2 ≥ 1 and e5
e4
< 1,

it is clear that κ2 >
e5
e4

. Then the sign of equation (3.70) is as follows:

• If κ ∈
[
0, e5

e4

[
, ad > 0, bd < 0, cd < 0, hence β2 < 0, β

d
> 0 and adβ

2 + bdβ + cd ≥ 0⇔
β > β

d

• If
[
e5
e4
, κ2

[
, ad > 0, bd > 0, cd < 0, then β2 < 0, β

d
> 0 and adβ

2+bdβ+cd ≥ 0⇔ β > β
d
.

• If κ > κ2, then ad < 0, bd < 0, and cd < 0 and adβ
2 + bdβ + cd ≥ 0⇔ β ∈

[
β
d
, β

d,2

[
When n = 2, there are four thresholds κd1, κ1, e5

e4
and κ2, in increasing order. For κ ≥ e5

e4
,

the analysis is similar to the case where n > 2. For κ < e5
e4

, the intervals are as follows:

• If κ ∈
[
0, κd1

[
, ad < 0, bd < 0, cd < 0, and ∆d < 0, hence adβ

2 + bdβ + cd < 0 and there

is no predatory trading equilibrium.

• If κ ∈
[
κd1, κ1

[
, then ∆d > 0, but since ad < 0, bd < 0, cd < 0, there are two negative

roots, and therefore, there is no predatory trading equilibrium. This case can be

grouped with the previous one.
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• If κ ∈
[
κ1,

e5
e4

[
, then ad > 0, bd < 0, cd < 0 and ∆d > 0. Then β2 < 0, β

d
> 0 and

adβ
2 + bdβ + cd ≥ 0 ⇔ β > β

d
. Thus this case can be grouped with the one in which

κ > e5
e4

.

⇒ The n = 2 case is thus the same as the n > 2 case, except for κ < κ1.

I now determine the intervals of the predatory trading equilibrium, taking into account

the parameter restrictions βF and β̄d, given by equations (3.62) and (3.78), respectively.

Position of βF relative to β̄d

From equations (3.62) and (3.78):

β̄d > βF ⇔ a ≥ m1θ +m2 (3.82)

with m1 = n(n+1)2

n4+4n3−n2+4
and m2 = n4+3n3+n2+n+2

n4+4n3−n2+4

Note that m2 = 1 when n = 2 and m2 < 1 when n > 2.

⇒ If θ = 0 (i.e. X0
−1 = 0), β̄d > βF ⇔ a ≥ m2, which is always true since a ≥ 1.

⇒ Proposition 19 follows from this remark and the analysis below.

Intervals of the predatory trading equilibrium

The analysis of equation (3.70) gives necessary and sufficient conditions in terms of the

variable κ, whereas the parameter restrictions for βF and β̄d are expressed in terms of θ.

Noting that27:

κ =
θ + 1

a
(3.83)

I rewrite all the conditions in terms of a and θ.

The thresholds in terms of κ are κ1 (for n = 2 only), e5
e4

and κ2. Hence using equation

(3.83), the corresponding thresholds in terms of a are, in increasing order, 1
κ1
θ+ 1

κ1
, e4
e5
θ+ e4

e5

and 1
κ2
θ + 1

κ2
.

27Using the definition of κ (3.76) and the following notations: θ =
X0
−1

X1
−1

, a = X̄
X1
−1
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I now compare these thresholds to the condition (3.82). For all n ≥ 2, e4
e5
> m2 > m1,

1
κ1
> m2 > m1. Therefore, ∀n ≥ 2,{

e4
e5
θ + e4

e5
> m1θ +m2

1
κ1
θ + 1

κ1
> m1θ +m2

Further, 1
κ2
θ + 1

κ2
> m1θ +m2 is equivalent to

θ > θ∗ =
m2 − 1

κ2

1
κ2
−m1

Since ∀n ≥ 2, m2 >
1
κ2
> m1, θ∗ > 0. Hence, combining the equilibrium conditions and the

parameter restrictions yields, ∀n > 2

• If a ≥ max
(

1
κ2
θ + 1

κ2
,m1θ +m2

)
, then IP =

[
β
d
∧ βF , βF

[
• If a ≤ min

(
1
κ2
θ + 1

κ2
,m1θ +m2

)
, then IP =

[
β
d
∧ β̄d, βd,2 ∧ β̄d

[
• If min

(
1
κ2
θ + 1

κ2
,m1θ +m2

)
< a < max

(
1
κ2
θ + 1

κ2
,m1θ +m2

)
, then

– If θ > θ∗, then IP =
[
β
d
∧ βF , βd,2 ∧ βF

[
,

– If θ ≤ θ∗, then IP =
[
β
d
∧ β̄d, β̄d

[
.

If n = 2, there is an additional case: if a ≥ 1
κ1
θ + 1

κ1
, there is no predatory trading

equilibrium.

In the second case, a ≤ min
(

1
κ2
θ + 1

κ2
,m1θ +m2

)
, it is possible to refine the bound-

aries of the interval IP and show that it is non-empty, thereby proving the existence of the

equilibrium in this case.

Existence conditions

I first show that β
d
< β̄d. This case is interesting for a ≤ min

(
1
κ2
θ + 1

κ2
,m1θ +m2

)
,

hence the interval I consider is κ > κ2. Using (3.80) and (3.64), and rearranging terms, I get

β
d
− β̄d =

|R|
X̄

g2 (κ)

(ρ0,n−1κ− dn) (e1 − e2κ2 + e3κ)
(3.84)

with g2 (κ) = (ρ0,n−1κ− dn)Z
1
2
κ +B1κ

2 +B2κ−B3 (3.85)
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where ∀n ≥ 2, B1 = 2e2−ρ0,n−1e4 < 0, B2 = e5ρ0,n−1 +dne4−2e3 < 0, B3 = 2e1 +dne5 > 0.28

The denominator of equation (3.84) is negative when κ > κ2, thus β
d
− β̄d < 0 iff

g2 (κ) ≥ 0. To determine the sign of g2, I first study its first derivative:

g′2 (κ) = ρ0,n−1Z
1
2
κ + (ρ0,n−1κ− dn)

Z
′
κ

Z
1
2
κ

+ 2B1κ+B2

The first term of the derivative is positive for any κ > 0. The second term is also positive,

because ∀n ≥ 2, dn
ρ0,n−1

< κ2 and Z
′
κ = 2r1κ + r2 > 0 for any κ > κ2 > 0 (r1 and r2

being positive for any n ≥ 2). The third term, however, is negative, because B1 and B2 are

negative. I will show that ∀κ > κ2, g′2 (κ) > 0. To show this, it is enough to show that

ρ0,n−1Z
1
2
κ + 2B1κ+B2 ≥ 0.

Since Zκ = r1κ
2 + r2κ+ r3 (see equation (3.80)), the following holds for any κ > κ2:

Zκ ≥ r1κ
2 + r2κ2 + r3

and therefore ρ0,n−1

√
Zκ ≥ ρ0,n−1

√
r1κ+ r2κ2 + r3, which implies that

ρ0,n−1

√
Zκ + 2B1κ+B2 ≥ ρ0,n−1

√
r1κ2 + r2κ2 + r3 + 2B1κ+B2

Given that ∀n ≥ 2, ρ0,n−1
√
r1 ≥ −2B1, the function on the RHS of the inequality is increasing

in κ. Hence for κ > κ2, ρ0,n−1

√
Zκ+2B1κ+B2 > ρ0,n−1

√
r1κ2

2 + r2κ2 + r3 +2B1κ2 +B2. The

right-hand side of the inequality is positive for all n ≥ 2, hence ∀κ > κ2, ∀n ≥ 2, g′2 (κ) > 0

and g2 is increasing on this interval. As a result, one can minor this function by g2 (κ2), with

∀n ≥ 2, g2 (κ2) > 0.

Hence ∀κ > κ2, β
d
< β̄d.

Using a similar reasoning, one can show that β
d,2

> β̄d when κ > κ2. From equations

(3.81) and (3.64), β
d,2
< β̄d is equivalent to h2 (κ) > 0, with

h2 (κ) = − (ρ0,n−1 − dn)
√
Zκ +B1κ

2 +B2κ−B3

The function − (ρ0,n−1 − dn)
√
Zκ is always negative, as well as B1κ

2 + B2κ − B3. Thus

∀κ > κ2, β
d,2
> β̄d.

28For the remainder of the proof, I rely again on calculations for the coefficients which are functions of n.
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Corollary 29

Proof. Suppose that a ≤ min
(

1
κ2
θ + 1

κ2
,m1θ +m2

)
, and consider p (κ) = 1−q̂ (κ) =

β
d

β̄d
.

From equations (3.80) and (3.64), we can write

p (κ) =
(ρ0,n−1κ− dn)

(
Z

1
2
κ − (e4κ− e5)

)
2 (e1 − e2κ2 + e3κ)

Hence the first derivative w.r.t. κ, after regrouping terms, is

p
′
(κ) =

(e1 − e2κ
2 + e3κ) (ρ0Zκ + (ρ0 − dn) (2r1κ+ r2))− (e3 − 2e2κ) (ρ0κ− dn) 2Zκ

2Z
1
2
κ

+ (e5ρ0 + e4dn − 2e4ρ0κ)
(
e1 − e2κ

2 + e3κ
)

+ (2e2κ− e3)
(
−e4ρ0κ

2 (e5ρ0 + e4dn)κ− dne5

)
It is enough to show that p is increasing when κ ≥ κ2. I start by developing and rearranging

terms of the numerator in the first line. Using that Zκ = r1κ
2 + r2κ + r3, I get after a few

calculations that the numerator is equal to H1κ
4 +H2κ

3 +H3κ
2 +H4κ+H5, with

H1 = e2r1ρ0; H2 = 2e2ρ0r2 − 2r1d2e2 + r1e3ρ0

H3 = 3r3e2ρ0 − 2r2dne2 + 3r1ρ0e1 + e3ρ0r2; H4 = 2r2ρ0e1 − r3e3ρ0 − 4r3dne2 − e1r1dn

H5 = 2r1e3dn − e1r2dn

Now consider the second line in p
′

and rearrange terms. This gives: H6κ
2 −H7κ+H8, with

H6 = e2 (e5ρ0 + e4dn) + e3e4ρ0; H7 = 2e4e1ρ0 + 2e2dne5; H8 = e1 (e5ρ0 + e4dn) + dne5e3

Hence the sign of p
′

is the same as the sign of

φκ = H1κ
4 +H2κ

3 +H3κ
2 +H4κ+H5 + 2Z

1
2
κ

(
H6κ

2 −H7κ+H8

)
Calculating the coefficients Hi, which are functions of n, we find that H1, H2, H3, H6 and

H8 are positive for any n ≥ 2. However, for n ≥ 2, H4 is negative, H7 is positive and H5

becomes negative for n ≥ 4. Given the signs of the coefficients, to show that p
′

is positive

for κ ≥ κ2, it is enough to show H3κ
2 +H4κ+H5 ≥ 0 and H6κ

2−H7κ+H8 on this interval.

First, consider H3κ
2 +H4κ+H5 ≥ 0. Since H3 > 0, it is increasing for κ ≥ − H4

2H3
, which

calculations show is smaller than κ2. Further, I find that for any n ≥ 2, H3 (κ2)2 + H4κ2 +

H5 > 0. Next, consider H6κ
2 − H7κ + H8 and apply the same steps. H6 is positive and

the function peaks in H7

2H6
, which I find is smaller than κ2 for n ≥ 2. Further, I find that
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H6κ
2 − H7κ + H8 > 0. As a result, p

′
is positive for κ ≥ κ2, hence q̂ is decreasing on its

interval.

Corollary 30

Proof. I start with θ > 0:

Qd ≥ 0 ⇔ X0
−1 +X1

−1 +
n

n+ 1

(
R

β
− X̄

)
≥ 0

⇔ X0
−1 +X1

−1 −
n

n+ 1
aX1
−1 ≥

n

n+ 1

|R|
β
, using X̄ = aX1

−1

With a small enough, X0
−1 +

(
1− n

n+1
a
)
X1
−1 > 0. Hence,

Qd ≥ 0 ⇔ β ≥ βh ≡ n

n+ 1

|R|
X0
−1 +

(
1− n

n+1
a
)
X1
−1

If θ = 0, we need to prove that βh ≥ βF . Using the expression for βF from Lemma 33, we

get:

βh ≥ βF ⇔
n+ 1

n
− a ≤ n+ 2

n
a− n+ 1

n
⇔ 2 (n+ 1)

n
≤ 2 (n+ 1)

n
a

Since a ≥ 1, this inequality is always satisfied.

Corollary 31

Proof. Using Proposition 22, we get:

E0 (p1 − p0) = D − p̄0 −
β

n+ 1
X̄ − |R|

n+ 1
=

n|R|
n+ 1

− β

n+ 1
X̄

Thus E0 (p1 − p0) ≥ 0⇔ n|R|−βX̄ > 0 ⇔ β < n|R|
X̄

. Sinceβ < βF = n|R|
(n+2)X̄−(n+1)X1

−1
, and

βF ≤ n|R|
X̄
⇔ X1

−1 ≤ X̄, we have E0 (p1) ≥ p0. Clearly, E0 (p1 − p0) increases with —R—

and decreases with X1
−1.

The illiquidity discount at time 1, Γ1 = −βX̄+|R|
n+1

. Hence Γ1 is decreasing in X̄ and |R|.
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3.6.4 Additional derivations for the no trading case

Proposition 18

Proof. From Proposition 22, the driver of the equilibrium is the position of a relative

to max
(
m2,

1
κ2

)
and min

(
m2,

1
κ2

)
.

If X0
−1 = 0, then θ = 0, and the equilibrium condition simplifies as follows:

• Since ∀n ≥ 2, m2 >
1
κ2

and since 1
κ2
≤ 1 ≤ a, the case a < min

(
m2,

1
κ2

)
does not

exist.

• Further, ∀n ≥ 2,m2 ≥ 1, hence the case min
(
m2,

1
κ2

)
< a < max

(
m2,

1
κ2

)
does not

exist either.

The only remaining case is thus a ≥ max
(
m2,

1
κ2

)
= m2. Since 1

κ2
< m2 ≤ 1 for all

n ≥ 2, the condition on a is always satisfied. Hence if θ = 0, the equilibrium condition for

the equilibrium with predatory trading is β ∈
[
β
d
∧ βF , βF

[
.

Proposition 20

Proof. The equilibrium with distress occurs on a non-empty interval iff β
d
< βF . Using

equations (3.80) and (3.62):

β
d
− βF =

|R|
X̄
f (n, a)

with f (n, a) =
(u1 − u2a)

(√
γ3a − γ5a

)
− 2γ6a

2γ6a (u1 − u2a)
(3.86)

Similarly, using equations (3.80) and (3.56), I get:

β
d
− β

nd
=
|R|
X̄
g (n, a)

with g (n, a) =
λ2

(√
γ3a − γ5a

)
− aγ6a

(√
A2 − λ5

)
2γ6aλ2

(3.87)

The no-trading and predatory trading equilibria coexist iff g (n, a) > 0.

Lemma 34

Proof. We can recover Qd from equation (3.13): Qd = n
n+1

R
β
− n

n+1
X̄ +X1

−1. Using pnd0

from Lemma 29, pnd0

(
Qnd, X̄

)
= p̄0 ⇔ Qnd = n+1

n+2
R
β
− X̄ +X1

−1. Thus

Qnd ≥ Qd ⇔ 1

(n+ 1) (n+ 2)

R

β
≥ 1

n+ 1
X̄
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The left-hand side is strictly negative, while the right-hand side is strictly positive. Hence

Qnd < Qd. Further, note that since X̄ > X1
−1, Qnd < 0.

To understand this impact of the change in price schedule on the equilibrium conditions,

I redo the analysis of Lemma 33 based on the no-distress price schedule, following identical

steps. The prey’s problem is

max
x1

0,x
1
0≤X̄−X1

−1

B1
−1 − x1

0

[
p̄0 − β

n+ 2

n+ 1

(
X̄ −X1

−1 − x1
0

)]
+X1

0

[
D − β

n+ 1

(
X̄ − R

β

)]
I write the Lagrangian of the problem and solve for the zero of the first-order condition

(assuming the Lagrangian multiplier is 0). I get:

x1
0 =

n

2 (n+ 2)

|R|
β

+
1

2

(
n+ 1

n+ 2
X̄ −X1

−1

)
Hence the constraint on the prey’s position is not binding if n

2(n+2)
|R|
β

+ 1
2

(
n+1
n+2

X̄ −X1
−1

)
≤

X̄ −X1
−1, which is equivalent to β < β̃F ≡ |R|

n+3
n
X̄−n+2

n
X1
−1

. In the proof of Lemma 33, I show

that βF = |R|
n+2
n
X̄−n+1

n
X1
−1

, hence βF > β̃F .

Similarly, one can predict how the condition for ruling out self-fulfilling distress would

change. Since predators have less price impact when the price schedule is pnd0 , it will harder,

conditional on distress, to trigger it, thus there should be a larger interval on which predatory

trading is not self-fulfilling. In other words, ˜̄βd > β̄d.
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Figure 3.1: Coexistence of equilibria and “net” probability of predatory trading as a function
of the number of predators n, and the prey’s leverage capacity, a = X̄

X1
−1

. In Panel (b), a

varies from 1 (S1) to 1.07 (S7). The calculations assume that β is uniformly distributed
between 0 and βF .
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