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SOME INTEGRAL FORMULAS FOR CLOSED 
SUBMANIFOLDS IN A RIEMANN SPACE 

By 

Yoshie KATSURADA and Hidemaro KOJYO 

Introduction. Let F be an ovaloid in 3-dimensional Euclidean space E 3• 

If we denote by H and K the mean curvature and the Gauss curvature at 
a point P of F respectively, then as well-known formula of Minkowski we 
have 

H(Kp + H)dA = 0, 
[,' 

where p denotes the oriented distance from a fixed point O in E 3 to the 
tangent space of F at P and dA is the area element of Fat P. The generali­
zation of this formula for a closed orientable hypersurface in an n-dimensional 
Euclidean space E" was established by C. C. Hsiung [l] 1l. Recently, Y. 
Katsurada [2] generalized this problem in an n-dimensional Riemann space 
R" and gave the generalized Minkowski formulas for a closed orientable hyper­
surface in R". 

The purpose of the present paper is to investigate the analogous problem 
for an m-dimensional submanifold V"' in an n-dimensional Riemann space R". 
In § 1, the generalized Minkowski formulas for V"' in R" are expressed. The 
Minkowski formulas concerning some special transformations of R" are given 
in § 2. Making use of those integral formulas in § 1 and § 2, we shall show 
in § 3 some properties of closed orientable submanifolds in a Riemann space 
with constant Riemann curvature. 

§ 1. Generalized Minkowski formulas for a submanifold. We con­
sider an n-dimensional Riemann space R" (n~3) of class C' (r~3) which 
admits an one-parameter continuous group G of transformations generated by 
an infinitesimal transformation 

(1. 1) 

where :ri are local coordinates in R" and f;i are the components of a contra­
variant vector f;. If the vector f; is a Killing vector, a homothetic Killing, 
a conformal Killing etc. ([3], p. 32), then the group G is called isometric, 

·-·--~-------

1 ) Numbers in brackets refer to the references at the end of the paper. 
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homothetic, conformal etc. respectively. 
Let us denote by V'" an rn-dimensional closed orientable submanifold of 

class C 3 imbedded in R", locally given by 

xi= xi(u•)2). 

We suppose that the paths of transformations belonging to G cover R" 
simply and the submanifold Vm does not pass through any singular point of 
a tangent vector field of the paths. 

The first fundamental tensor g.p of V'" is given by 

axi axj 
g afi = gij au· a--;x 

and g•fi are defined by g•figfir = o;, where gij denotes the first fundamental tensor 

of R". 
We shall indicate by ni(P=rn+l,rn+2,···,n) the contravariant unit 

I' 

vectors normal to V"' and suppose that they are mutually orthogonal. 
Let us consider a differential form of rn-1 degree at a point of V'", 

defined by 
def. 

(( n, •··,n,~, dx, •··,dx)) = ,{g ( n, ···,n,~, dx,-··,dx) 
m•l n ....__,_ ml n 

(1. 2) m, 1 

= ,.j g ( n , •. •, n, ~' _ax - , · · · ,-··_?x. __ ) du•' I\··· /\du""'-' 
m,-r-1 n au«1 au«1n l 

h d i . d" 1 t 1 th b "f ld V"' · d i axi d • w ere x 1s a 1sp acemen a ong e su mam o , 1. e., x = ---- u 
au· 

and g denotes the determinant of the metric tensor gij of R". Then the 
exterior differential of the differential form ( l. 2) divided by rn ! becomes as 

follows: 

_l d(( n •·· n ~ dx •·· dx)) = 1- ((on n ··· n ~ dx ··· dx)) m! 'ln,il' 'n'' ' ' r,i! m+t'·,n+i 'n'' ' ' 

(1. 3) 
1 +-- (( n ,on, n, ···,n,~, dx, ··•,dx))+ ··· 

m ! m-: 1 '111, i 2 m, I 3 n 

+--1-((n •··non~ dx •·· dx))+J-((n ···no~ dx ··· dx)) 
m ! m 1-1' 'n- { n' ' , ' fll ! m,-t 1' 'n' ' ' ' ' 

where ov means v; • du" . Denoting by " ; " the operation of D-symbol due 
to van der Waerden-Bortolotti ([4] p. 254), we have 

2) Throughout the present paper the Latin indices run from 1 to II and the Greek 
indices from 1 to 111 (111~11-l). 
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= - L.J l j; k 11 l , 
;/;, ( · j 0Xk ) ·£ 

; I l I' OU" ; 
n 

where CJ= I: nini and i (ii= l, 2, .. ·, m) are mutually orthogonal unit tangent 
P mt lP P J 

vectors of V"'. Then we may put 

. axi 
n". = T'----
1' ,a pa aur 

Since we have 

we obtain 

axi n\. = -b/ 
p p au• (P=m+l, m+2, --·,n), 

( a i) where b,: = gP'ba,, and bap= -- X ni. 
I' E' E' au" ;p p 

Then we have 

(1. 4) (P=m+l, m+2, --·,n). 

By means of (1. 4), we get 

_l ((on ,n ,--·,n,(;,dx,--•,dx))=(-lt'-,n)(n !)HI n,(;idJl, 
nz ! tll t 1 lll,--C-2 n ut ·t·l ?n-,-1 

where dA is the area element of V"' and H 1 is the first mean curvature of 
1n · l 

V"' for the normal direction n; . Similarly, for every integer P satisfying 
,n-tl 

m+l~P~n we have 

(1. 5) -1 (( 11 ... on ... n (; dr ... dr)) = (-l)l" m)(n 1JH1 ni(;idA, 
nz ! m i' ' I'' ' ' ' ~ ' ' ~ p I' 

where H 1 is the first mean curvature of V"' for the normal direction n;. By 
p 

I' 

means of ( 1. 5) it follows that 

_ _!-_ ((an, --·,n,(;, dx, --·,dx))+ ... + _l_ (( n, --·,on,(;, dx, --·,dx)) 
nz ! ni-:-1 1l 1n ! 1/l 1 ?I (1. 6) 

=(-l/'''")(n-1)( f: H1n.;)f;idJ1. 
p 1fl•1 I' I' 
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Let ni be Euler-Schouten unit vector, that is, the unit vector of the same 

direction to the vector g"•'(ax: .. ) . Then we have 
OU ;,, 

,, 
(1. 7) ni = I: cos o • ni , 

h' p Ill 1 P [> 

where {} is the angle between 11 and n. Denoting by H 1 the mean curvature 
I' J..' [' 

of V"', we have 

(l. 8) Hl = 1 ap ( axi ) g " ll; . 
J}/ OU ;;l f. 

Since we have 

(l. 9) H1 = · 1 g"•' ( ~. ) . n; 
f' rn ou" ;,sf' 

(P=m+l, m+2,···,n) 

by means of (1.7), (1.8) and (1.9), it follows that 

(P~m+l, m.+2,···,n). 

Then (1.6) 1s rewritten as follows: 

1 ((on, ···,nJ;, cl:r., ···,dx))+ ··· + 1 (( 11, ···,on,f;, clx, ···,cl:r:)) 
(1. 10) m ! ,,, 1 m ! m 1 n 

=(-lf' ,n)(n l)H1n;f;idJl. 
R 

On the other hand, we have 

1 (( n, •··,n,of;, dx, ··•,dx)) 
nz ! m-' 1 n 

(1. 11) 
= ( _ 1 f' ,n)(n 1) 

2
1 (£gij) oxi __ axj g"~ d il 
m ' ou" ou" 

where £ g;j is the Lie derivative of gii with respect to the infinitesimal trans­, 
formation (1. 1) ([3], p. 5). 

By virtue of (1.3), (1.10) and (1.11), it follows that 

1 -d(( 11 , • .. , n, f;, cl:r., · .. , cl.r)) 
rn ! 111 1 n 

( l. 12) 

Integrating both sides of (1. 12) over the whole submanifold and applying 

Stokes' theorem, we obtain 
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1 I.·.[(( n , · · ·, n, ~, dx, · · ·, dx)) 
1ll ! J J ?IL -I 1 n 

ov·n 

= ( - l)(n ,n)(n-l) {)- · · )Hl~i~idA + 2~ )- · •) g*ijf gijdA} , 
vm vm 

where oV"' means the boundary of V"' and g*ii=g"P :::- -t; 
use of the fact that V"' is closed, we have 

Making 

( I' ) 

Now, we shall consider ni as one of the unit normal vectors of V'", that 
J,J 

1s, ni = ni and assume that at each point on V"' the contravariant vector ~; 
'lll-1-1 E 

a , 
is contained in the vector space spanned by m + l independent vectors :i:: __ 

ou" 
This assumption for ~ is evidently satisfied for the (a=l,2, ···,m) and ni. 

E 

case m=n-l, that 1s, v1/l, 1s a hypersurface in R". Then we may put 

(1. 13) t:i r iJxi + i .,=S(l~- pn. 
ou' g 

Now, we suppose that R" is a constant Riemann curvature space and 
consider the following differential form of m - l degree : 

(1. 14) 

((n, n, ···,n,~, on, ···,on, dx, ···,dx)) 
A' m-; 2 n J,,,' E 

def. 

~ ~ 
'JU i,--1 

= ,,/rT (n, n '···,n,~, on, ···,on, dx, ···,dx), 
J,.' m, 1-2 n .A' ./!.' 

for a fixed integer J.i satisfying 1 ;:;;; J.i;;;; m -1. 

As well-known, a submanifold V"' in R" has the following property: 

b •• ;p-b.p;o = -Riiktni _i)xi }~~- jxz_ ([4], p. 266), 
E E R au• au• auP 

where Riikl is the curvature tensor of R". Then for R" with constant 
Riemann curvature we have 

((n, n, ···, n, ~, o (on), on, ···, on, dx, ···, dx)) = o . 
./<.J 111,12 n A' A' l!,,' 

Accordingly, by exterior differentiation of the differential form (1.14) 
we have 
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d((n, n, ···,n,f;, 011, --·,on, d.r, --·,cLr)) 
F'm2 n .R J,: 

= ((on, n, --·,n,f;, uJI, --·,tm, d.r, ·--,d.r)) 
.f_' 111 · 2 11 f.' F 

(1. 15) +((n,un, --·,n,f;, 011, --·,on, d.r, ---,d.r)) 
/~' II/ 2 J,,' f_' 

+ ... +((11, 11, ·--,011,f;, 011, --·,011, d.r, ·--,ch)) 
f,' Ill 2 f,' },, 

+((n, n, --·,11,uf;, on, --·,r"Jn, d.r, ---,d.r)). 
f.' 'J/l 2 Jl f,,' ],_' 

a.r1 
On substituting c,n' = - b/ du" into the first term of the right-hand 

I.' J,.' aue 
member of (1. 15), we have 

((rm, n, --·,n,f;, uJI, --·,c"Jn, d.r, ---,d.r)) 
(L 16) 

E' 'Ill, 2 n .A' },,' 

= m!(-lf" m)(n l) "H, 1n1!;1 d11, 
1~' E 

where H, 1 denotes the (!) + 1)-th mean curvature of V"' for the normal direction 
f,,' 

ni and if we indicate by k1 ,/?2 , .. ·, k,,, the principal curvatures of V"' for the 
1~ /1_,' l!,' J,,' 

normal vector n', H, 1 is defined to be the (!) + 1)-th elementary symmetric 
L' 1~· 

function of k" (a= 1, 2, · · ·, rn) divided by the number of terms, that 1s, 
J,: 

Also, by virtue of ( 1. 4) we can see that the vectors 

and 

II X U Jl X Jl X · · · X 11 X Oil X · · · X ()Jl X d:r X · · · X d.r , 
1~· 1112 1113 h.' A' ----- ------­lit )J 1 

Jl X 1l X U Jl X · · · X 1l X UJl X · · · >< 011 X d.r X · · · X cl:r , 
J,,' }!/ 2 Ill 3 Jc' J,; 

n X n X ... X n X on X OJI >< •.• X on X cl:r X ... X d:r 
F 111 2 ll -1 11..: 

have the same direction to the covariant vectors n , n , .. ·, and n respectively. 
Ill 2 'Ill 3 

Then, by means of (1.13) we obtain 

((n,un, n, --·,n,f;, on, --·,on, d.r, --·,d.r))= 0, 
L' m2m3 n r,' J,; 

( 1. 1 7) 
((n, n , u n , ···,JI,!;, Dn, · · ·. [m, cl.r, · · ·, d.r)) = 0, 

f,.'m2 m3 n L' f,: 

((n, 11, ... , ll, (Ill,!;, on, ... , Ull, cl.r, --·,d.r)) = 0. 
J,, I!/ 2 ll l 71 J,: f,' 
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Since the vector 

11 x n x • • • x n x an x • • • x an x d:r x • • • x d.r 
J,_: }fl 2 H 1-.' 

rJ:ri 
1s orthogonal to the normal vectors n, n , · · ·, and 71 and rJJl1 = - b ;' du", 

.L' /JI 2 I!,' A' lj1,/ 

the last term of the right hand member of (1.15) becomes as follows: 

((n, ll '--·,Jl,()~, ()Jl, ---,an, d:r, ---,clx)) 
J,,'1112 II J.,' f,' 

(1. 18) 
m )(n 1) ' 1 H"~£ IA ).I 9asC , 

2m "-' , ' 

and 

and c"", ""' • denotes the c-symbol of the submanifold V"'. Accordingly, by 
means of (1.15), (1.16), (1.17) and (1.18) it follows that 

1 cl ( ( Jl' 71 ' ... , Jl' ~' ()II' ... ' () ll' d:r' ... ' d.r)) 
Jll ! Rm 2 u R R 

(1. 19) 

Integrating both sides of (1.19) over the whole submanifold V"' and 
applying Stokes' theorem, we have 

1 f...f((n, n, --·,11,~, an, ---,an, cLc, ---,cLc)) 
Ill ! J J L' 111 , 2 n F A' 

av"' 

=(-l)c" m11n 11 ,{f ... f H r:111+ 1 f .. .f H"fi£ 111} J J L')./ 1~;.I":) Cl 'JJJl J J 1-;i- ~ ga{JC il . 

v"i vrn 

Thus, for a closed orientable submanifolcl V"' we have 

( II' ) 

If m=n-1, that is, V"' is the hypersurface of R", the formulas (I') and 
(II') are coincide with the formulas given in the previous paper [2]. Then 
these formulas (I') and (II') are certain formulas of Minkowski-type generalized 
for the closed orientable submanifold V"' in R..". 
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§ 2. The Minkowski formulas concerning some special transfor­
mations. In this section, we shall discuss the formulas (I') and (II') for 
a special infinitesimal transformation. 

Let the group G be conformal. Then we have 

H:~£g", = 2m$H, . 
J..' ~ ' J,,' 

Therefore (I') and (II') are rewritten in the following forms : 

( I' )c 

( II' )c (l~l)~m-1). 

Let the group G be homothetic, that is, ([)=c ( = const.). Then we have 

If the group G 1s isometric, that is, ([)=0, then we have 

l .. .f H 1rzJ'd/l. = 0, J J /, 
v!n 

( II' )1 

( 1 ~ !) ~ m - l) 3>. 

Especially if our space Rn is an Euclidean space En and if the paths of 
the infinitesimal transformations are the straight lines which pass through 
a fixed point 0, x' being the coordinate system with the point 0 as its origin, 
let the position vector x' takes as the vector e, then we have 

£gij = 2g,j. 
i 

Accordingly, from (l')h and (II')h we have 

:-J) In this case, Rn becomes an Euclidean space En, because if Rn with constant 
Riemann curvature admits an one-parameter group (; of homothctic transformations, then 
either Rn is En or the group G is isometric. 
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where P= nixi. This means that the formulas (I') and (II') are generalization 
J; 

of those formulas given by C. C. Hsiung [l] for a closed orientable hyper-

surface in an n-dimensional Euclidean space E". 

§ 3. Some properties of a closed orientable submanifold. In this 

section we suppose that there exists a continuous one-parameter group G of 

conformal transformations generated by a vector ~i of R", where the vector 

~ is contained in the vector space spanned by rn + 1 vectors o.r' (a= 1, 2, • • •, oua 
m) and ni. Then we shall prove the following four theorems for a closed 

f,; 

orientable submanifold V"' in a Riemann space R" with constant Riemann 

curvature. 

Theorem 3. 1. If in R", there exists such a group G of conformal 

transformations as P is positi·ve (or negative) at each point of V"' and if 
H 1 is constant, then eve1y point of V"' is umhilic with respect to Euler­

Schouten vector n, where P denotes n 1~'. 

R R 

Proof Multiplying the formula (I'lc by H 1 = const., we have 

j"·J H/PdA + j'"j </JH1dA = 0. 
v1Jt vm 

On the other hand, for I)= 1 we have from (II')c 

J' "j ~2Pdil + j' "j </JH1dll = 0. 
vm vn 

Consequently it follows that 

j"·j(H/-~2)PdA = 0. 
v"' 

From our assumption about P, this holds if and only if H/-H 2 = 0, smce 
F 

H/-H2 = - -- l I: (k,,-k,g)2 ::C:: 0. 
le' rn2(rn- l) a<~ I, J,; 

Therefore at each point of V"' we obtain 

k1 = k2 = · · · = k,,, . 
Is' J,,,' J,,' 
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Accordingly every point of V'" is umbilic with respect to n. 
f,' 

Theorem 3. 2. If m R", there exists such a group G of conformal 
transformations as P is positive (or negative) at each point of V'", and if 
the principal curvatures k1 , k2 , • • ·, k,,, at each point of V"' are positive and 

l·.' l.' E 

H, is constant for any I) ( 1;;:;; !) ;;:;; m - l), then every point of Vm is umbilic 
J,: 

with respect to Euler-Schouten vector n, where P denotes nl;i. 
R E 

Proof. Multiplying the formula (11) 0 by H, = const., we obtain 
_F,' 

(3. 1) r··j H1~,PdA + r··j <I>fl,dA = 0. 
vm· v•n 

By means of (Il')c and (3.1), we have 

From our assumptions, this holds if and only if H 1H, - H, 1 = 0, since 
f; J,,' 

H 1H,-H, 
f,' 1~' 

- !)!(m-1)-1)! I;k ... k 
1 -~--rnrn! E"' E"' 

,(h,-h,,1)2--:;;;,o. 
f~' J,,' 

Then at each point of V"', we obtain 

lc1 = k2 = · · · = h,,, 
J-: f,,' F. 

Accordingly every point of Vm is umbilic with respect to n. 
E 

Theorem 3. 3. If zn R", there exists such a group G of conformal 
transformations as P is positive (or negative) at each point of V"', for which 
H 1P+ (f)':;;;_O (or ;;:;;o) at all points of V"', then eve,y point of V"' is umbilic 
with respect to Euler-Schouten vector n, where P denotes nl;i. 

F,' F,' 

Proof. If we express the formula (I')c as follows: 

j--·j(H1P+<l>)cLl = 0, 
v"' 

then from our assumption we must have 

( :-l. :! ) 

Substituting (3.2) into (II')., for !)= 1, we obtain 
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)°··)(H/-{:f2)PdA = 0. 
v"' 

Consequently we have the conclusion. 

Theorem 3. 4. If H 1 is positive (or negative) at all points of Vm and 
if in Rn there exists such a group G of conformal transformations as </J is 

positive (or negative), for which either P ~ ~;- or P~ h at all points 

of vm, then every point of V"' is umbilic with respect to Euler-Schouten 
vector n, where P denotes n//. 

F F 

Proof The formula (l')c is rewritten as follows 

Then, by virtue of our assumptions H 1>0 (or <O) and P+ </) ~ 0 (or ~O) 
H1 

at all points of V"', we must have 

(:-l. 3) P= 
</) 

H1 

Substituting (3.:-l) into (Il')c for t,= 1, we obtain 

From our assumptions, this holds if and only if H/-H 2 = 0. Thus we obtain 
F 

the conclusion. 
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