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SOME INTEGRAL FORMULAS FOR CLOSED
SUBMANIFOLDS IN A RIEMANN SPACE

By

Yoshie KATSURADA and Hidemaro KOJYO

Introduction. Let F be an ovaloid in 3-dimensional Euclidean space E®.
If we denote by H and K the mean curvature and the Gauss curvature at
a point P of F respectively, then as well-known formula of Minkowski we
have

ﬂm¢+HwA=m

o
where p denotes the oriented distance from a fixed point O in E* to the
tangent space of I at P and dA is the area element of F at P. The generali-
zation of this formula for a closed orientable hypersurface in an 7-dimensional
Euclidean space E* was established by C. C. Hsiung [1]". Recently, Y.
Katsurada [2] generalized this problem in an n-dimensional Riemann space
R* and gave the generalized Minkowski formulas for a closed orientable hyper-
surface in R™.

The purpose of the present paper is to investigate the analogous problem
for an m-dimensional submanifold V™ in an #n-dimensional Riemann space R™.
In §1, the generalized Minkowski formulas for V” in R* are expressed. The
Minkowski formulas concerning some special transformations of R* are given
in §2. Making use of those integral formulas in §1 and §2, we shall show
in §3 some properties of closed orientable submanifolds in a Riemann space
with constant Riemann curvature.

§ 1. Generalized Minkowski formulas for a submanifold. We con-
sider an n-dimensional Riemann space R* (n=3) of class C" (r=3) which
admits an one-parameter continuous group G of transformations generated by
an infinitesimal transformation

(1.1) &= o+ & (2)dr

where z° are local coordinates in R” and & are the components of a contra-
variant vector £. If the vector & is a Killing vector, a homothetic Killing,
a conformal Killing etc. ([3], p. 32), then the group G is called isometric,

1) Numbers in brackets refer to the references at the end of the paper.
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homothetic, conformal etc. respectively.
Let us denote by V" an m-dimensional closed orientable submanifold of

class C?* imbedded in R*, locally given by
xt= 2 (u")?

We suppose that the paths of transformations belonging to G cover R
simply and the submanifold V™ does not pass through any singular point of
a tangent vector field of the paths.

The first fundamental tensor g¢,; of V™ is given by

ox’ o0x?

Jos = Gij -
: T out ot

and ¢ are defined by g%g; =47, where g,; denotes the first fundamental tensor
of R™.
We shall indicate by »n’ (P=m+1, m+2,---,n) the contravariant unit
fs

vectors normal to V” and suppose that they are mutually orthogonal.
Let us consider a differential form of m—1 degree at a point of V™,

defined by

m

def.
(2,06 dr, -, dv)=4 g (n,---,né& dr, - dr)

m -1 n S———— m -1

(12) m 1

:‘/g<,.1" ", &, ox

au"' " Qum

)dll A ANdutror,

where dx’ is a displacement along the submanifold V™, i.e, dxi:,at{dua
u“

and ¢ denotes the determinant of the metric tensor g¢,; of R*. Then the
exterior differential of the differential form (1.2) divided by ! becomes as
follows :

1

—1' d(n,--n¢ dr,-,dx))= ~ (62, n . o, g, dx, -, dx))

m . m 1 n 7)1! m+1 m+2

(1. 3) —|——f—lm (n,6n,n, - né& dx,---,dx)+ -

nl! m+1 m:2mi3

1 N o
o (n,,n,oné& dz, ...,dx))_(_,,l,.’, (n,-,n, o, dz, -,dx),
m ! m+1 n-1 =n n ! m -1 n

@, »

where dv means v, ,du”. Denoting by the operation of D-symbol due
to van der Waerden-Bortolotti ([4] p. 254), we have

2) Throughout the present paper the Latin indices run from 1 to »n and the Greek
indices from 1 to m (m=n—1).
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A
nl,=C%n? ox
r ou®
m a & 'i
- _Z (zMn] ou" ); ’
where Ci= Z n'n; and z (2 1,2, -+, m) are mutually orthogonal unit tangent

P-m+1P P
vectors of V™. Then we may put

P , 0x°
n,, =122
r “ ou’

Since we have

9 o0zt n’'=—g i n
N ou Jiar T ow v
we obtain
nh,=—b7 ot (P=m+1, m+2,--,n),
r rou

where b 7—g'5‘fb s and 1),,,9— (81’) n;. Then we have
e

du
(1. 4) on'=—b] _ox* du” (P=m+1, m+2,---,n).
r rou

By means of (1.4), we get

,_1,, <(571 L1, €, dx, ’dx)) — (_1)(71*7'0(71 l)I_I1 n, &dA

m‘ mil m+2 n m+1 m 1

where dA is the area element of V” and H, is the first mean curvature of

mil

V™ for the normal direction n°. Similarly, for every integer P satisfying

mt 1

m+1=<P=<n we have

(1 5) 'L (( n, -, na : ,77,5, dx dx)) = (—1)("’7")("’”HlnifidA 5
r r

m! ma P

where Hl is the first mean curvature of V” for the normal direction n By
means of (1.5) it follows that

1 ((on , --,n,& dx, -+, dx))+ - + 1 (n,--,0n¢& dx, -, dx))
<1 6) 77[‘ mot 1 n m‘ ml n

— (_ 1)(7L m)(n —1)( i H171¢>$idA .

P-m:1 P P

O
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Let 7 be Euler-Schouten unit vector, that is, the unit vector of the same
o

direction to the vector ¢* 9z . Then we have
auﬂ 38
(1.7) ni= > cosb-n,
£ P m-1 rr

where @ is the angle between n and n. Denoting by H, the mean curvature
> " r

r
of V”, we have

(1.8) H,= ! g"ﬂ< o ) -
m ou" J.;n
Since we have
1 e 0t B . ;
(1.9) H =" g% ==\ n (P=m+1,m+2,---,n)
r m ou" J.zv

by means of (1.7), (1.8) and (1.9), it follows that
H,= H, cos ¥ (P=m+1, m+2,---,n).
Iid I&

Then (1.6) is rewritten as follows:

= ((6n , -+, n,& dx, -, dx)+ -+~ 1' (n, -, 0n& dx, -, dx))
<1 10> m i m o1 n ! m o1 ”
=(—1) ™ VH n,EdA .
w
On the other hand, we have

1 (n, -, n,08 dx, -, dx))

m ‘ m-1 n
(1.11) . b 0w

— () D2 (fa 0L 0T w3 g A ,
(=1 2m <6 903 ou*  0u’ I

where £¢,; is the Lie derivative of g¢,; with respect to the infinitesimal trans-

formation (1.1) ([3], p. 5).
By virtue of (1.3), (1.10) and (1.11), it follows that

1——(1’(( n, -, né dx, --,dx))
ne . mo: 1 n
(1. 12)

=(=1)" my(n 1) {HlméidAjL 71 <£g;j) axj an g”ﬂclA} .
£ &

2m ou*  out

Integrating both sides of (1.12) over the whole submanifold and applying
Stokes’ theorem, we obtain
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m! mil

1 SS(( n, - n € dr, - dx))

ay™

2m

= (— 1) oD {s-'~SHl7ngidA . mlgmgg*“cf‘f:gud/l} :
pm ’

Vm,

o 02 02’

where V™ means the boundary of V™ and g*7=yg¢ o Making
u® ou’
use of the fact that V* is closed, we have
(1) S-..SHl;zigfdA + —fLS-~~Sg*“£gUdA —0.
£ 2m ¢
pm pm

Now, we shall consider »’ as one of the unit normal vectors of V™, that
v
is, 7n°=n" and assume that at each point on V" the contravariant vector &

m-+1 o
ox’

a

is contained in the vector space spanned by m+1 independent vectors 5
u

(@=1,2,---,m) and »n’. This assumption for & is evidently satisfied for the

£
case m=n—1, that is, V" is a hypersurface in R*. Then we may put
(1. 13) g=g T 4 ont.

Now, we suppose that R* is a constant Riemann curvature space and
consider the following differential form of m—1 degree :

£ om2
(1, 14) Y mov 1

(n,n,---,n¢ on, -, on, dz, -, dr))
n £ £

def.
=g (n,n,-- n¢ én, -, on, dr,---,dx),
£ om 2 n o £

for a fixed integer v satisfying 1<v<m —1.
As well-known, a submanifold V” in R has the following property :

; rj A - g «
‘ Buss—buss = —Rogein® 0 0T 0T (1411 ogp),
| & z £ Qut ou® Ou

‘ where R,;, is the curvature tensor of R*. Then for R* with constant
Riemann curvature we have

(n, n, -, m, & 6 (on), on, ---, on, dx, ---, dx)) = 0.
n £ o o

Eoom: 2

Accordingly, by exterior differentiation of the differential form (1.14)
we have
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d(n,n, -, né& on, -, on, dr, -, dx))
ol "

Fomi 2 n

=(6n,n -, n& on, -, on, dx, -, dx))
n F s

Eome 2

(1.15) +((n,0n -+, n,& on,-,on, dr, -, dx))
” z n r I

m o2

Ak, on & on, e 0n, day - d )
FEom o2 n I 2

+((n, n -, 0,08, on, -, on, dx,-,dx)) .
r )

Bom o2 7 o
On substituting on‘= — b} grﬂ du® into the first term of the right-hand
" ® u

member of (1.15), we have

((on, n -, n,& on, -, on, dx, -, dr))

~ E 12 s o

<1 16) m n pi ‘

=m!(—=1) WV 8 dA
v o)

where H, | denotes the (v+ 1)-th mean curvature of V” for the normal direction
"

n’ and if we indicate by ki, k,, -, %, the principal curvatures of V™ for the
I £ ”®

normal vector n’, H, ; is defined to be the (v+1)-th elementary symmetric
£ o

function of %, (a=1,2,---,m) divided by the number of terms, that is,
r

m H
= kokeke
<”+1> " O <ag<a,

1

Also, by virtue of (1.4) we can see that the vectors

NXON X N X XnXonxX -xonxdrx - xdx,

A m -2 m: 3 n 1 &

v m- v 1
NX N XON X XnXonX xonxdrx --xdx,
v m -2 m 3 n I £’

and

NX N XX N XONXONX - Xonxdrx - xdx
o r

" m 2 n -1 n

have the same direction to the covariant vectors 7 , n ,---, and n respectively.

m 2 mi3 n

Then, by means of (1.13) we obtain
(nyon, n,-,nég on,--,on, dr,,dr)=0,
£oom2 m 3 n Yol I

n,n,on . né& on, - .on dr,,dx)=0
(1.17) «/u’m-z’ m-3s n,E » ) ’ )) ’

(nym, -, mn,on, & on, -, on, dr, -, dx)=0.
"

foomo 2 no1 n 1’
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Since the vector

NX N X XuXonx --xonxdrx---xdr
ol m o2 7 & o

ox’

du”,
ou’

is orthogonal to the normal vectors 7, n ,---, and n and én’= —b;
& omo- 2 n v £

the last term of the right hand member of (1.15) becomes as follows:

((n, n,--,n,0¢, on, -, on, dx, -, dx))
n o A

Eom -2
(1. 18) 1
— "11(_1)(71 m)(n 1) v H“'B£g CZA
! v ap >
2m e s
oxt ox’
where £¢.,=(£0g,;) and
s . au« auﬁ
e — ”1” B N L I S e
2 ’ (nl_ 1) ' 1,;(‘\’31 /g'avﬁ»g"p By P

m

and ¢*“m « denotes the e-symbol of the submanifold V™. Accordingly, by
means of (1.15), (1.16), (1.17) and (1.18) it follows that

1 d{(n, n -, n¢ on, -, on, dx,--,dx))
( 9) m ! £om o2 n o ol
1.1
=(—1) w0V {H nEdA + 1 Hv"‘3£gﬂﬁdﬂ} .
£ K Om 3

Integrating both sides of (1.19) over the whole submanifold V* and
applying Stokes’ theorem, we have

1 S---S((n, n, -, nE on, -, on, dr, -, dr))
n y o

m! Eomi2

= (=1 D {SS H, ngdA + 1 SS H»“ﬂ£gnﬁd/l} .
! 1'.' 2”1 o §

pm pm

Thus, for a closed orientable submanifold V" we have

(11" SS o ongdd+ L SS Ho8g.,dA=0.
r K 2m B¢

pm

If m=n—1, that is, V" is the hypersurface of R", the formulas (I') and
(Il') are coincide with the formulas given in the previous paper [2]. Then
these formulas (I') and (II') are certain formulas of Minkowski-type generalized
for the closed orientable submanifold V* in R*.
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§2. The Minkowski formulas concerning some special transfor-
mations. In this section, we shall discuss the formulas (I') and (II') for
a special infinitesimal transformation.

Let the group G be conformal. Then we have

9" &g, =2m0, H"Lq,.=2mOH, .
$ £ 5 o

Therefore (I') and (I') are rewritten in the following forms:

(1), o[ Hngan+ ffoaa o,

7ad %

(IT"), SS H, nsgdA +S--~S$H,d/l =0 (1=zvsE=m—1).
E "

m B Sm
v b

Let the group G be homothetic, that is, @®=¢ (=const.). Then we have

(I ) g---SHlniffa’A +cS~-SdA =0,
pm # pm

(1), SS H nedA + CS$ H.dA — (1<v<m—1)".
V" E * l,m v

If the group G is isometric, that is, ®=0, then we have

(U, 5---SH1ni§fdA —0,
pm £
(I1"); SS H, ng&dA=0 1=Zvsm—1).
ol r

pm

Especially if our space R* is an Euclidean space E* and if the paths of
the infinitesimal transformations are the straight lines which pass through
a fixed point 0, 2’ being the coordinate system with the point 0 as its origin,
let the position vector x’ takes as the vector £, then we have

£g,= 29,5 -
§
Accordingly, from (I'), and (II'), we have

S”SH"”M +S-~S(M ~0,

pm pm

3) In this case, R* becomes an Euclidean space [E», because if R» with constant
Riemann curvature admits an one-parameter group ( of homothetic transformations. then
either R* is [ or the group G is isometric.
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SS . ‘PdA+S"'S HdA=0,

pm pm

where p=n,x". This means that the formulas (I') and (I') are generalization

¥
of those formulas given by C. C. Hsiung [1] for a closed orientable hyper-
surface in an n-dimensional Euclidean space E”.

§ 3. Some properties of a closed orientable submanifold. In this |
section we suppose that there exists a continuous one-parameter group G of
conformal transformations generated by a vector & of R*, where the vector |
o’ (=1,2, -,
ou”

m) and n". Then we shall prove the following four theorems for a closed

& is contained in the vector space spanned by m +1 vectors

v
orientable submanifold V* in a Riemann space R™ with constant Riemann

curvature.

Theorem 3.1. If in R", there exists such a group G of conformal
transformations as @ is positive (or negative) at each point of V™ and if
H, is constant, then every point of V™ is umbilic with respect to Fuler-
Schouten vector ](z, where O denotes n £

Proof. Multiplying the formula (I'). by H,=const., we have

S--SHdeA +S~~-S(DH1dA —0.

) 77
pm | 7t

On the other hand, for v=1 we have from (II'),

Sg H2PdA+S-~s OH.dA—0.
pm o

pn

Consequently it follows that

S---S(HE—IZIZ)PdA ~0.

pm

From our assumption about @, this holds if and only if H?—H,=0, since
E

L sir—ky=o0.

7n2(nL—l) a<p kK ”

le_Hz =
"

Therefore at each point of V™ we obtain

kl = k2= = km .
kK v
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Accordingly every point of V™ is umbilic with respect to 7.
E

Theorem 3.2. If in R, there exists such a group G of conformal
transformations as 0 is positive (or negative) at each point of V™, and if
the principal curvatures ki, k,, -, k, at each point of V™ are positive and

o Vol

H, is constant for any v(1Z<v<m—1), then every point of V™ is umbilic
yol
with respect to Euler-Schouten wvector n, where @ denotes ,& .
ol E
Proof. Multiplying the formula (I'), by H,=const., we obtain
FE
(3.1) S-~-SH1HDPdA+S‘-S(DH,dA:O.
ol o
p pm

By means of (II'), and (3.1), we have

S-nS(HIHy—Hy JOdA=0.

; ol ol

Vn

From our assumptions, this holds if and only if H,H,—H, =0, since
E £

(ky- J, 1)220 .

E E

! —y—1)!
HH~H, = >m=>=U s g
E E B

mm! !

Then at each point of V™, we obtain

Accordingly every point of V™ is umbilic with respect to 7.
4

Theorem 3.3. [If in R, there exists such a group G of conformal
transformations as 0 is positive (or negative) at each point of V™, for which
HP+0=0 (or <0) at all points of V", then every point of V™ is umbilic
with respect to Fuler-Schouten vector n, where @ denotes n,& .

) F

Proof. If we express the formula (I'), as follows:

g...S(H,pHD)a’A:O,

V?n
then from our assumption we must have

Substituting (3.2) into (II'), for v=1, we obtain
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|+furi—mypan-o.

Vm
Consequently we have the conclusion.

Theorem 3.4. If H, is positive (or negative) at all points of V™ and
if in R" there exists such a group G of conformal transformations as @ is

positive (or negative), for which either P:_)_—%;z or P= =2 at all points
1 1
of V™, then every point of V™ is umbilic with respect to Euler-Schouten :
vector n, where P denotes 7n,&".
F F
Proof. The formula (I). is rewritten as follows
S-~-SH1<P+ 2 )dA ~0.
H,
Vm
]

Then, by virtue of our assumptions /,>0 (or <0) and 2+ ~~ =0 (or Z0)

1
at all points of V™, we must have

(3. 3) p=— "

Substituting (3.3) into (II'), for v=1, we obtain

S ® (Hi—HydA=0.
H, E

pr

From our assumptions, this holds if and only if H?—H,=0. Thus we obtain
F

the conclusion.
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