Title	SOME INTEGRAL FORMULAS FOR CLOSED SUBMANIFOLDS IN A RIEMANN SPACE
Author(s)	Katsurada, Yoshie; Kôjyô, Hidemaro
Citation	Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 20(3), 90-100
Issue Date	1968
Doc URL	http://hdl.handle.net/2115/58090
Туре	bulletin (article)
File Information	JFS_HU_v20n3-90.pdf

SOME INTEGRAL FORMULAS FOR CLOSED SUBMANIFOLDS IN A RIEMANN SPACE

By

Yoshie KATSURADA and Hidemaro KÔJYÔ

Introduction. Let F be an ovaloid in 3-dimensional Euclidean space E^3 . If we denote by H and K the mean curvature and the Gauss curvature at a point P of F respectively, then as well-known formula of Minkowski we have

$$\iint_{K} (Kp + H) dA = 0,$$

where p denotes the oriented distance from a fixed point O in E^3 to the tangent space of F at P and dA is the area element of F at P. The generalization of this formula for a closed orientable hypersurface in an n-dimensional Euclidean space E^n was established by C. C. Hsiung [1]¹⁾. Recently, Y. Katsurada [2] generalized this problem in an n-dimensional Riemann space R^n and gave the generalized Minkowski formulas for a closed orientable hypersurface in R^n .

The purpose of the present paper is to investigate the analogous problem for an m-dimensional submanifold V^m in an n-dimensional Riemann space R^n . In §1, the generalized Minkowski formulas for V^m in R^n are expressed. The Minkowski formulas concerning some special transformations of R^n are given in §2. Making use of those integral formulas in §1 and §2, we shall show in §3 some properties of closed orientable submanifolds in a Riemann space with constant Riemann curvature.

§ 1. Generalized Minkowski formulas for a submanifold. We consider an n-dimensional Riemann space R^n $(n \ge 3)$ of class C^r $(r \ge 3)$ which admits an one-parameter continuous group G of transformations generated by an infinitesimal transformation

$$(1.1) \bar{x}^i = x^i + \xi^i(x)\delta\tau,$$

where x^i are local coordinates in R^n and ξ^i are the components of a contravariant vector ξ . If the vector ξ is a Killing vector, a homothetic Killing, a conformal Killing etc. ([3], p. 32), then the group G is called isometric,

¹⁾ Numbers in brackets refer to the references at the end of the paper.

homothetic, conformal etc. respectively.

Let us denote by V^m an m-dimensional closed orientable submanifold of class C^3 imbedded in R^n , locally given by

$$x^i = x^i (u^{\alpha})^{2)}.$$

We suppose that the paths of transformations belonging to G cover R^n simply and the submanifold V^m does not pass through any singular point of a tangent vector field of the paths.

The first fundamental tensor $g_{\alpha\beta}$ of V^m is given by

$$g_{\alpha\beta} = g_{ij} \frac{\partial x^i}{\partial u^\alpha} \frac{\partial x^j}{\partial u^\beta}$$

and $g^{\alpha\beta}$ are defined by $g^{\alpha\beta}g_{\beta\gamma} = \delta^{\alpha}_{\gamma}$, where g_{ij} denotes the first fundamental tensor of R^n .

We shall indicate by $n^i (P=m+1, m+2, \dots, n)$ the contravariant unit vectors normal to V^m and suppose that they are mutually orthogonal.

Let us consider a differential form of m-1 degree at a point of V^m , defined by

$$(1.2) \qquad ((\underbrace{n}_{m+1}, \cdots, n, \xi, \underbrace{dx, \cdots, dx}_{n})) \stackrel{\text{def.}}{=} \sqrt{g} (\underbrace{n}_{m+1}, \cdots, n, \xi, dx, \cdots, dx) \\ = \sqrt{g} (\underbrace{n}_{m+1}, \cdots, n, \xi, \underbrace{\partial x}_{\partial u^{\alpha_{1}}}, \cdots, \underbrace{\partial x}_{\partial u^{\alpha_{m-1}}}) du^{\alpha_{1}} \wedge \cdots \wedge du^{\alpha_{m-1}},$$

where dx^i is a displacement along the submanifold V^m , i.e., $dx^i = \frac{\partial x^i}{\partial u^a} du^a$ and g denotes the determinant of the metric tensor g_{ij} of R^n . Then the exterior differential of the differential form (1.2) divided by m! becomes as follows:

$$\frac{1}{m!} d((\underbrace{n}_{m+1}, \dots, \underbrace{n}_{n}, \xi, dx, \dots, dx)) = \frac{1}{m!} ((\underbrace{\delta n}_{m+1}, \underbrace{n}_{m+2}, \dots, \underbrace{n}_{n}, \xi, dx, \dots, dx))$$

$$(1.3) + \frac{1}{m!} ((\underbrace{n}_{m+1}, \underbrace{\delta n}_{m+2}, \underbrace{n}_{m+3}, \dots, \underbrace{n}_{n}, \xi, dx, \dots, dx)) + \dots$$

$$+ \frac{1}{m!} ((\underbrace{n}_{m+1}, \dots, \underbrace{n}_{m+2}, \underbrace{n}_{m+3}, \xi, dx, \dots, dx)) + \frac{1}{m!} ((\underbrace{n}_{m+1}, \dots, \underbrace{n}_{n}, \delta \xi, dx, \dots, dx)),$$

where δv means $v_{;\alpha} du^{\alpha}$. Denoting by ";" the operation of *D*-symbol due to van der Waerden-Bortolotti ([4] p. 254), we have

²⁾ Throughout the present paper the Latin indices run from 1 to n and the Greek indices from 1 to m ($m \le n-1$).

$$egin{aligned} n_{j;lpha}^i &= C_{j;lpha}^i n_{P}^j rac{\partial x^k}{\partial u^lpha} \ &= -\sum\limits_{k=1}^m \left(i_{j;k} n_{P}^j rac{\partial x^k}{\partial u^lpha}
ight)_{i}^{i} \,, \end{aligned}$$

where $C_j^i = \sum_{P=m+1}^n n^i n_j$ and $i \ (\lambda = 1, 2, \dots, m)$ are mutually orthogonal unit tangent vectors of V^m . Then we may put

$$n_{P}^{i}_{;\alpha} = \gamma_{P}^{\gamma} \frac{\partial x^{i}}{\partial u^{\gamma}}$$
.

Since we have

$$g_{ij} \left(\frac{\partial x^i}{\partial u^{\delta}} \right)_{;a} n^j = -g_{ij} \frac{\partial x^i}{\partial u^{\delta}} n^j_{P;a}$$

we obtain

$$n_{P;\alpha}^{i} = -b_{\alpha}^{r} \frac{\partial x^{i}}{\partial u^{r}}$$
 $(P=m+1, m+2, \dots, n),$

where $b_{\alpha}^{\ r} = g^{\beta \tau} b_{\alpha \beta}$ and $b_{\alpha \beta} = \left(\frac{\partial x^i}{\partial u^{\alpha}}\right)_{i\beta} n_i$. Then we have

(1.4)
$$\delta n^{i} = -b_{n}^{T} \frac{\partial x^{i}}{\partial u^{T}} du^{a} (P=m+1, m+2, \dots, n).$$

By means of (1.4), we get

$$\frac{1}{m!} \underbrace{((\delta n, n, \dots, n, \xi, dx, \dots, dx))}_{m+1} = (-1)^{(n-m)(n-1)} H_1 \underset{m+1}{n_i} \xi^i dA,$$

where dA is the area element of V^m and H_1 is the first mean curvature of V^m for the normal direction n^i . Similarly, for every integer P satisfying $m+1 \le P \le n$ we have

$$(1.5) \qquad \frac{1}{m!} ((n, \dots, \delta n, \dots, n, \xi, dx, \dots, dx)) = (-1)^{(n-m)(n-1)} H_1 n_i \xi^i dA,$$

where H_1 is the first mean curvature of V^m for the normal direction n^i . By means of (1.5) it follows that

$$(1. 6) \quad \frac{1}{m\,!} \underbrace{((\delta n, \cdots, n, \xi, \, dx, \cdots, dx)) + \cdots + \frac{1}{m\,!} \, ((n, \cdots, \delta n, \xi, \, dx, \cdots, dx))}_{n} \\ = (-1)^{(n-m)(n-1)} \Big(\sum_{P=m+1}^{n} H_1 n_i \Big) \xi^i dA \; .$$

Let n^i be Euler-Schouten unit vector, that is, the unit vector of the same direction to the vector $g^{\alpha\beta} \left(\frac{\partial x^i}{\partial u^{\alpha}} \right)_{:\beta}$. Then we have

(1.7)
$$n^i = \sum_{P=m+1}^n \cos \theta \cdot n^i,$$

where θ is the angle between n and n. Denoting by H_1 the mean curvature of V^m , we have

(1.8)
$$H_{1} = \frac{1}{m} g^{\alpha\beta} \left(\frac{\partial x^{i}}{\partial u^{\alpha}} \right)_{;\beta} n_{i}.$$

Since we have

(1.9)
$$H_1 = \frac{1}{m} g^{\alpha\beta} \left(\frac{\partial x^i}{\partial u^\alpha} \right)_{i\beta P} n_i \qquad (P = m+1, m+2, \dots, n)$$

by means of (1.7), (1.8) and (1.9), it follows that

$$H_1 = H_1 \cos \theta$$
 $(P = m + 1, m + 2, \dots, n).$

Then (1.6) is rewritten as follows:

$$(1. 10) \quad \frac{1}{m!} ((\delta n, \dots, n, \xi, dx, \dots, dx)) + \dots + \frac{1}{m!} ((n, \dots, \delta n, \xi, dx, \dots, dx)) \\ = (-1)^{(n-m)(n-1)} H_1 n_i \xi^i dA.$$

On the other hand, we have

$$\begin{split} &(1.\,11) & \frac{1}{m\,!} \underbrace{((\underset{\scriptscriptstyle{m+1}}{n}, \cdots, \underset{\scriptscriptstyle{n}}{n}, \delta \xi, \, dx, \cdots, dx))}_{n} \\ &= (-1)^{(n-m)(n-1)} \frac{1}{2m} (\pounds g_{ij}) \frac{\partial x^{i}}{\partial u^{a}} \frac{\partial x^{j}}{\partial u^{\beta}} \; g^{a\beta} dA \; , \end{split}$$

where $\underset{\varepsilon}{\mathfrak{L}} g_{ij}$ is the Lie derivative of g_{ij} with respect to the infinitesimal transformation (1,1) ([3], p. 5).

By virtue of (1.3), (1.10) and (1.11), it follows that

$$(1.12) \frac{\frac{1}{m!}d((\underset{m+1}{n}, \dots, \underset{n}{n}, \xi, dx, \dots, dx))}{= (-1)^{(n-m)(n-1)} \left\{ H_{1}n_{i}\xi^{i}dA + \frac{1}{2m} (\mathfrak{L}g_{ij}) \frac{\partial x^{i}}{\partial u^{\alpha}} \frac{\partial x^{j}}{\partial u^{\beta}} g^{\alpha\beta}dA \right\}.$$

Integrating both sides of (1.12) over the whole submanifold and applying Stokes' theorem, we obtain

$$\begin{split} &\frac{1}{m!} \int_{\frac{\partial V^n}{\partial X^n}} &((\underbrace{n}_{m+1}, \cdots, \underbrace{n}_{n}, \xi, \, dx, \cdots, dx)) \\ &= (-1)^{(n-m)(n-1)} \left\{ \int_{v^m} & \int_{E} H_! n_i \xi^i dA + \frac{1}{2m} \int_{v^m} & \int_{\xi} g_{ij} dA \right\} \,, \end{split}$$

where ∂V^m means the boundary of V^m and $g^{*ij} = g^{\alpha\beta} \frac{\partial x^i}{\partial u^{\alpha}} \frac{\partial x^j}{\partial u^{\beta}}$. Making use of the fact that V^m is closed, we have

$$(I') \qquad \int \cdots \int_{im} H_{1} n_{i} \xi^{i} dA + \frac{1}{2m} \int \cdots \int_{im} g^{*ij} \mathfrak{L} g_{ij} dA = 0.$$

Now, we shall consider n^i_E as one of the unit normal vectors of V^m , that is, $n^i_{m+1} = n^i_E$ and assume that at each point on V^m the contravariant vector ξ^i is contained in the vector space spanned by m+1 independent vectors $\frac{\partial x^i}{\partial u^n}$ ($\alpha=1,2,\cdots,m$) and n^i . This assumption for ξ is evidently satisfied for the case m=n-1, that is, V^m is a hypersurface in R^n . Then we may put

(1.13)
$$\xi^{i} = \varphi^{r} \frac{\partial x^{i}}{\partial u^{r}} + \rho n^{i}.$$

Now, we suppose that R^n is a constant Riemann curvature space and consider the following differential form of m-1 degree:

$$(1. 14) \qquad \underbrace{((n, n, \dots, n, \xi, \underbrace{\delta n, \dots, \delta n}_{E}, \underbrace{dx, \dots, dx}))}_{\text{def.}} = \sqrt{g} \underbrace{(n, n, \dots, n, \xi, \underbrace{\delta n, \dots, \delta n}_{E}, \underbrace{dx, \dots, dx})}_{n}, \underbrace{dx, \dots, dx}_{E}),$$

for a fixed integer ν satisfying $1 \le \nu \le m-1$.

As well-known, a submanifold V^m in \mathbb{R}^n has the following property:

$$b_{\alpha\delta;\beta} - b_{\alpha\beta;\delta} = -R_{ijkl} n^i_E \frac{\partial x^j}{\partial u^a} \frac{\partial x^k}{\partial u^\delta} \frac{\partial x^l}{\partial u^\beta} \quad ([4], p. 266),$$

where R_{ijkl} is the curvature tensor of R^n . Then for R^n with constant Riemann curvature we have

$$((n, n, \dots, n, \xi, \delta(\delta n), \delta n, \dots, \delta n, dx, \dots, dx)) = 0.$$

Accordingly, by exterior differentiation of the differential form (1.14) we have

$$d\left((n, \underset{E \text{ } m+2}{n}, \cdots, n, \xi, \ \delta_{n}, \cdots, \delta_{n}, \ dx, \cdots, dx)\right)$$

$$= ((\delta_{n}, \underset{E \text{ } m+2}{n}, \cdots, \underset{n}{n}, \xi, \ \delta_{n}, \cdots, \delta_{n}, \ dx, \cdots, dx))$$

$$+ ((n, \delta_{n}, \underset{E \text{ } m+2}{n}, \cdots, \underset{n}{n}, \xi, \ \delta_{n}, \cdots, \delta_{n}, \ dx, \cdots, dx))$$

$$+ \cdots + ((n, \underset{E \text{ } m+2}{n}, \cdots, \underset{n}{n}, \xi, \ \delta_{n}, \cdots, \delta_{n}, \ dx, \cdots, dx))$$

$$+ ((n, \underset{E \text{ } m+2}{n}, \cdots, \underset{n}{n}, \xi, \ \delta_{n}, \cdots, \delta_{n}, \ dx, \cdots, dx))$$

$$+ ((n, \underset{E \text{ } m+2}{n}, \cdots, \underset{n}{n}, \delta_{\xi}, \ \delta_{n}, \cdots, \delta_{n}, \ dx, \cdots, dx)).$$

On substituting $\partial n^i = -b_a^{\ \beta} \frac{\partial x^i}{\partial u^{\beta}} du^{\alpha}$ into the first term of the right-hand member of (1.15), we have

(1. 16)
$$((\underbrace{\delta n, n, \cdots, n, \xi, \delta n, \cdots, \delta n, dx, \cdots, dx}_{E \ m+2}))$$

$$= m! (-1)^{(n-m)(n-1)} {}^{\nu}H_{\nu+1} n_{i} \xi^{i} dA,$$

where $H_{\nu-1}$ denotes the $(\nu+1)$ -th mean curvature of V^m for the normal direction n^i and if we indicate by k_1,k_2,\cdots,k_m the principal curvatures of V^m for the normal vector n^i , $H_{\nu-1}$ is defined to be the $(\nu+1)$ -th elementary symmetric function of k_{α} $(\alpha=1,2,\cdots,m)$ divided by the number of terms, that is,

$$\binom{m}{\nu+1} H_{\nu+1} = \sum_{\alpha_1 < \alpha_2 < \dots < \alpha_{\nu+1}} k_{\alpha_1} k_{\alpha_2} \cdots k_{\alpha_{\nu+1}}.$$

Also, by virtue of (1.4) we can see that the vectors

$$\begin{array}{c}
 n \times \delta \underset{m+2}{n} \times \underset{m+3}{\overset{\times}{n}} \times \cdots \times \underset{n}{\overset{\times}{n}} \times \underbrace{\delta \underset{E}{\overset{\times}{n}} \times \cdots \times \delta \underset{E}{\overset{\times}{n}}} \times \underbrace{dx \times \cdots \times dx}_{m+\nu-1}, \\
 n \times \underset{E}{\overset{\times}{n}} \times \delta \underset{m+2}{\overset{\times}{n}} \times \cdots \times \underset{n}{\overset{\times}{n}} \times \delta \underset{E}{\overset{\times}{n}} \times \cdots \times \delta \underset{E}{\overset{\times}{n}} \times \underbrace{dx \times \cdots \times dx}_{m+\nu-1}, \\
 \vdots$$

and

$$\underset{E}{n \times n} \times \cdots \times \underset{n-1}{n \times \delta n} \times \delta n \times \delta n \times \cdots \times \delta n \times dx \times \cdots \times dx$$

have the same direction to the covariant vectors n, n, \dots, n , \dots , and n respectively. Then, by means of (1.13) we obtain

$$\begin{split} &((\underset{E}{n},\underset{m-2}{\delta}\underset{m+3}{n},\underset{m+3}{n},\cdots,\underset{n}{n},\xi,\,\delta n,\cdots,\delta n,\,dx,\cdots,dx))=0\,,\\ (1.\,17) &((\underset{E}{n},\underset{m-2}{n},\underset{m+3}{\delta}\underset{m+3}{n},\cdots,\underset{n}{n},\xi,\,\delta n,\cdots,\delta n,\,dx,\cdots,dx))=0\,,\\ &\vdots\\ ((\underset{E}{n},\underset{m-2}{n},\underset{m+3}{n},\underset{n}{\delta}\underset{n}{n},\xi,\,\delta n,\cdots,\delta n,\,dx,\cdots,dx))=0\,. \end{split}$$

Since the vector

$$n \times n \times \cdots \times n \times \delta n \times \cdots \times \delta n \times dx \times \cdots \times dx$$

is orthogonal to the normal vectors n, n, n, \dots , and n and $\partial n^i = -b_{E}^{\ \beta} \frac{\partial x^i}{\partial u^{\beta}} du^{\alpha}$, the last term of the right hand member of (1.15) becomes as follows:

$$(1. 18) \qquad (n, n, \dots, n, \delta \xi, \delta n, \dots, \delta n, dx, \dots, dx))$$

$$= m! (-1)^{(n-m)(n-1) + \nu} \frac{1}{2m} H_{\nu}^{\alpha\beta} \pounds g_{\alpha\beta} dA,$$

where $\underset{\varepsilon}{\pounds} g_{\alpha\beta} = (\underset{\varepsilon}{\pounds} g_{ij}) \frac{\partial x^{i}}{\partial u^{\alpha}} \frac{\partial x^{j}}{\partial u^{\beta}}$ and

$$H_{\nu}^{aeta} = rac{1}{(m-1)\,!}\, arepsilon^{alpha_1\cdotslpha_{m-1}} arepsilon^{etaeta_1\cdotseta_{m-1}} b_{lpha_1eta_1}\cdots b_{lpha_
ueta_
u} g_{lpha_{
u+1}eta_{
u+1}}\cdots g_{lpha_{m-1}eta_{m-1}}\,,$$

and $\varepsilon^{\alpha_1\cdots\alpha_m}$ denotes the ε -symbol of the submanifold V^m . Accordingly, by means of (1.15), (1.16), (1.17) and (1.18) it follows that

$$(1.19) \qquad \frac{1}{m!} \frac{d((n, n, \dots, n, \xi, \delta n, \dots, \delta n, dx, \dots, dx))}{\sum_{E = m+2} (-1)^{(n-m)(n-1)-\nu} \left\{ H_{\nu+1} n_{\nu} \xi^{i} dA + \frac{1}{2m} H_{\nu}^{\alpha\beta} \mathbf{\mathcal{E}} g_{\alpha\beta} dA \right\}}.$$

Integrating both sides of (1.19) over the whole submanifold V^m and applying Stokes' theorem, we have

Thus, for a closed orientable submanifold V^m we have

$$(\mathrm{II}') \qquad \int \cdots \int_{m} H_{\nu+1} n_{i} \xi^{i} dA + \frac{1}{2m} \int \cdots \int_{\nu m} H_{\nu}^{\alpha\beta} \mathfrak{L} g_{\alpha\beta} dA = 0.$$

If m=n-1, that is, V^m is the hypersurface of R^n , the formulas (I') and (II') are coincide with the formulas given in the previous paper [2]. Then these formulas (I') and (II') are certain formulas of Minkowski-type generalized for the closed orientable submanifold V^m in R^n .

§ 2. The Minkowski formulas concerning some special transformations. In this section, we shall discuss the formulas (I') and (II') for a special infinitesimal transformation.

Let the group G be conformal. Then we have

$$g^{*ij} \mathcal{L} g_{ij} = 2m\Phi$$
, $H_{E}^{\alpha\beta} \mathcal{L} g_{\alpha\beta} = 2m\Phi H_{E}$.

Therefore (I') and (II') are rewritten in the following forms:

$$\begin{split} (\text{ I' })_{\text{c}} & \qquad \int_{\nu^{m}} \int H_{1} n_{i} \xi^{i} dA + \int_{\nu^{m}} \int \varPhi dA = 0 \;, \\ (\text{ II' })_{\text{c}} & \qquad \int_{\nu^{m}} \int H_{\nu+1} n_{i} \xi^{i} dA + \int_{\nu^{m}} \int \varPhi H_{\nu} dA = 0 \qquad (1 \leqq \nu \leqq m-1) \;. \end{split}$$

Let the group G be homothetic, that is, $\Phi \equiv c$ (=const.). Then we have

$$\begin{split} (\text{ I' })_{\text{h}} & \int \cdots \int_{\nu^m} H_1 n_i \xi^i dA + c \int \cdots \int_{\nu^m} dA = 0 \;, \\ (\text{ II'})_{\text{h}} & \int \cdots \int_{\nu^m} H_{\nu+1} n_i \xi^i dA + c \int \cdots \int_{\nu^m} H_{\nu} dA = 0 \qquad (1 \leq \nu \leq m-1)^{3)} . \end{split}$$

If the group G is isometric, that is, $\phi \equiv 0$, then we have

$$\begin{array}{ll} (\text{ I' })_{\mathbf{i}} & \int \cdots \int_{\nu^m} H_{\mathbf{i}n} \xi^i dA = 0 \; , \\ \\ (\text{ II' })_{\mathbf{i}} & \int \cdots \int \prod_{\substack{k'=1 \\ E}} H_{\mathbf{i}k} \xi^i dA = 0 \qquad (1 \leqq \nu \leqq m-1) \; . \end{array}$$

Especially if our space R^n is an Euclidean space E^n and if the paths of the infinitesimal transformations are the straight lines which pass through a fixed point 0, x^i being the coordinate system with the point 0 as its origin, let the position vector x^i takes as the vector ξ^i , then we have

$$\mathop{\mathbf{\pounds}}_{\xi} g_{ij} = 2g_{ij} .$$

Accordingly, from $(I')_h$ and $(II')_h$ we have

$$\int_{\nu^m} \dots \int H_1 p \, dA + \int_{\nu^m} \int dA = 0 ,$$

³⁾ In this case, \mathbb{R}^n becomes an Euclidean space \mathbb{E}^n , because if \mathbb{R}^n with constant Riemann curvature admits an one-parameter group G of homothetic transformations, then either \mathbb{R}^n is \mathbb{E}^n or the group G is isometric.

$$\int \cdots \int_{vm} H_{v+1} p dA + \int \cdots \int_{vm} H_{v} dA = 0,$$

where $p = n_i x^i$. This means that the formulas (I') and (II') are generalization of those formulas given by C. C. Hsiung [1] for a closed orientable hypersurface in an n-dimensional Euclidean space E^n .

§ 3. Some properties of a closed orientable submanifold. In this section we suppose that there exists a continuous one-parameter group G of conformal transformations generated by a vector ξ^i of R^n , where the vector ξ is contained in the vector space spanned by m+1 vectors $\frac{\partial x^i}{\partial u^a}$ ($\alpha=1,2,\cdots$, m) and n^i . Then we shall prove the following four theorems for a closed orientable submanifold V^m in a Riemann space R^n with constant Riemann curvature.

Theorem 3.1. If in \mathbb{R}^n , there exists such a group G of conformal transformations as P is positive (or negative) at each point of V^m and if H_1 is constant, then every point of V^m is umbilic with respect to Euler-Schouten vector n, where P denotes $n_i \xi^i$.

Proof. Multiplying the formula $(I')_c$ by $H_1 = \text{const.}$, we have

$$\int_{v^m} \int H_1^2 \rho dA + \int_{v^m} \int \Phi H_1 dA = 0.$$

On the other hand, for $\nu = 1$ we have from $(II')_c$

$$\int_{\nu^m} \int_{E} H_2 \rho dA + \int_{\nu^m} \int \Phi H_1 dA = 0.$$

Consequently it follows that

$$\int \cdots \int (H_1^2 - H_2) \rho \, dA = 0.$$

From our assumption about ρ , this holds if and only if $H_1^2 - H_2 = 0$, since

$$H_1^2 - H_2 = \frac{1}{m^2(m-1)} \sum_{\alpha < \beta} (k_\alpha - k_\beta)^2 \ge 0$$
.

Therefore at each point of V^m we obtain

$$k_1 = k_2 = \cdots = k_m.$$

Accordingly every point of V^m is umbilic with respect to n.

Theorem 3.2. If in \mathbb{R}^n , there exists such a group G of conformal transformations as θ is positive (or negative) at each point of V^m , and if the principal curvatures k_1, k_2, \dots, k_m at each point of V^m are positive and H_{ε} is constant for any $\nu(1 \leq \nu \leq m-1)$, then every point of V^m is umbilic with respect to Euler-Schouten vector n, where θ denotes $n_{\varepsilon}\xi^i$.

Proof. Multiplying the formula $(I')_c$ by $H_{\nu} = \text{const.}$, we obtain

(3.1)
$$\int_{\nu^m} \dots \int_{E} H_1 H_{\nu} \rho dA + \int_{\nu^m} \int_{E} \Phi H_{\nu} dA = 0.$$

By means of $(II')_c$ and (3.1), we have

$$\int_{\nu^n} \int (H_1 H_{\nu} - H_{\nu+1}) \rho \, dA = 0.$$

From our assumptions, this holds if and only if $H_1H_{\nu}-H_{\nu-1}=0$, since

$$H_1 H_{\nu} - H_{\nu+1} = \frac{\nu! (m - \nu - 1)!}{mm!} \sum_{E} k_{\alpha_1} \cdots k_{\alpha_{\nu-1}} (k_{\nu} - k_{\nu+1})^2 \ge 0.$$

Then at each point of V^m , we obtain

$$\underset{E}{k_1} = \underset{E}{k_2} = \dots = \underset{E}{k_m}$$

Accordingly every point of V^m is umbilic with respect to n.

Theorem 3.3. If in \mathbb{R}^n , there exists such a group G of conformal transformations as ρ is positive (or negative) at each point of V^m , for which $H_1\rho + \Phi \geq 0$ (or ≤ 0) at all points of V^m , then every point of V^m is umbilic with respect to Euler-Schouten vector n, where ρ denotes $n_i \xi^i$.

Proof. If we express the formula (I')_c as follows:

$$\int_{v^m} \int (H_1 \rho + \Phi) dA = 0 ,$$

then from our assumption we must have

$$\mathbf{\Phi} = -H_1 \mathbf{\rho} .$$

Substituting (3.2) into (II')_c for $\nu = 1$, we obtain

$$\int \cdots \int (H_1^2 - H_2) \rho dA = 0.$$

Consequently we have the conclusion.

Theorem 3.4. If H_1 is positive (or negative) at all points of V^m and if in R^n there exists such a group G of conformal transformations as Φ is positive (or negative), for which either $\rho \geq \frac{-\Phi}{H_1}$ or $\rho \leq \frac{-\Phi}{H_1}$ at all points of V^m , then every point of V^m is umbilic with respect to Euler-Schouten vector n, where ρ denotes $n_i \xi^i$.

Proof. The formula (I')_c is rewritten as follows

$$\int_{v^m} \int H_1 \left(\rho + \frac{\Phi}{H_1} \right) dA = 0.$$

Then, by virtue of our assumptions $H_1>0$ (or <0) and $\rho+\frac{\Phi}{H_1}\geq 0$ (or ≤ 0) at all points of V^m , we must have

$$(3.3) \theta = -\frac{\Phi}{H_1}.$$

Substituting (3.3) into (II')_c for $\nu = 1$, we obtain

$$\int_{\mathbb{R}^{2}} \int \frac{\Phi}{H_{1}} (H_{1}^{2} - H_{2}) dA = 0.$$

From our assumptions, this holds if and only if $H_1^2 - H_2 = 0$. Thus we obtain the conclusion.

References

- C. C. HSIUNG: Some integral formulas for closed hypersurface, Math. Scand. 2 (1954), 286–294.
- [2] Y. KATSURADA: Generalized Minkowski formulas for closed hypersurfaces in Riemann space, Ann. di Mat., Serie IV, 57 (1962), 283–294.
- [3] K. YANO: The theory of Lie derivatives and its applications (Amsterdam, 1957).
- [4] J. A. Schouten: Ricci-Calculus (Springer, Berlin, 1954).

Department of Mathematics, Hokkaido University

(Received April 10, 1968)