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Abstract

The dissertation examines several policy-related implications of relaxing the assumption
that economic agents are guided by rational expectations. A first, introductory chapter
presents the main technical issues related to adaptive learning. The second chapter studies
the implications for monetary policy of positing that both the private sector and the
central bank form their expectations through adaptive learning and that the central bank
has private information on shocks to the economy but cannot credibly commit. The main
finding of this chapter is that when agents learn adaptively a bias against activist policy
arises. The following chapter focuses on large, non-linear models, where no unambiguous
linear approximation eligible as perceived law of motion exists. Accordingly, there are
heterogeneous expectations and the system converges to a misspecification equilibrium,
affected by the communication strategies of the central bank. The main results are:
(1) the heterogeneity of expectations persists even when a large number of observations
are available; (2) the monetary policymaker has no incentive to be an inflation hawk; (3)
partial transparency enhances welfare somewhat but full transparency does not. The final
chapter adopts a model in which agents are fully informed and use Bayesian techniques to
estimate the hidden states of the economy. The monetary policy stance is unobservable
and state-independent, generating uncertainty among agents, who try to gauge it from
inflation: a change in consumer prices that confirms beliefs reduces stock risk premia,
while a change that contradicts beliefs drives the risk premia upward. This may generate
a negative correlation between returns and inflation that explains the Fisher puzzle. The
model is tested on US data. The econometric evidence suggests: (1) that a mimicking-
portfolio proxying for monetary policy uncertainty is a risk factor priced by financial
markets; and (2) that conditioning on monetary uncertainty and fundamentals eliminates
the Fisher puzzle.
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Chapter 1

Three essays on learning and monetary
policy

The concept of rational expectations (RE) rests on two pillars: individual
rationality and mutual consistency of perceptions about the environment.
The true stochastic process of the economy is assumed known, with unpre-
dictable random shocks as the only source of uncertainty. RE are regarded by
most researchers as the most appropriate hypothesis for economic analysis,
since one necessary condition for optimisation is that individuals eliminate
any systematically erroneous component of their behaviour, including in the
formation of expectations; further, from a policy perspective, this assump-
tion rules out policies designed to exploit patterns of suboptimal expecta-
tions.1 In other respects, however, the RE hypothesis is unappealing, since
it clashes with the principle of cognitive consistency, as it implies that agents
within the model are much smarter and have much more knowledge than
economists/econometricians, faced with problems of estimation and infer-
ence.2 Besides, in most situations, there is no sufficient incentive to upgrade
from bounded to unbounded rationality, since the costs may be consider-

1See McCallum (2008) on this point.
2According to the definition in Evans and Honkapohja (2008), the principle of cognitive consistency

is the requirement that private agents and policymakers in the economy behave like applied economists
and econometricians.
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able, even astronomical, while the benefits tend to be small. Finally, the
RE assumption begs a crucial question that becomes vital in the presence
of structural or policy changes: how is it that economic players can have
rational expectations, if they do not initially know the exact nature of the
equilibrium in which they find themselves?
For these reasons, macroeconomic theorists have been gradually moving be-
yond the strict RE framework to develop models in which agents have im-
perfect information and use simple and misspecified forecasting equations
to form expectations. Though people’s rationality is bounded, they learn
gradually through practice; in their efforts to improve their knowledge of the
stochastic process of the economy, agents adjust their model in the course of
time, as new information becomes available, in the end acting as if they were
unboundedly rational.
Three main approaches have been taken to modelling learning: the eductive
learning approach assumes that agents engage in a process of reasoning –
taking place in logical time – about the possible outcomes, knowing that other
agents engage in the same process; the rational learning approach replaces full
knowledge of economic parameters with priors and Bayesian updating under a
correctly specified model, including common knowledge that all agents share
this knowledge; and the adaptive learning approach, the most common, views
agents as econometricians, who adjust their model over time as information
becomes available, re-estimating the parameters of their perceived law of
motion.

1.1 Determinacy and stability under learning

A model with adaptive learning has two main ingredients: (i) an equation
describing agents’ beliefs on the dynamics of economic variables and (ii) a
temporary equilibrium of the system generated by the interaction between
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expectations and the structure of the economy.
Let us assume that the economy is described by the following linear system:

yt = A1yt−1 + A2Et−1yt+1 +Bxt−1 + ut

xt = Fxt−1 + vt
(1.1)

where yt and xt are the vectors of endogenous and exogenous variables re-
spectively. Agents’ beliefs are described by a forecasting model, the so-called
perceived law of motion (PLM), which usually has the same functional form
as the (minimum state variable) solution of the RE equilibrium:

Êt−1yt = a1,t−1yt−1 + bt−1xt−1 (1.2)

The operator Ê refers to subjective beliefs, which may vary across individ-
uals, and does not coincide with conditional expectations. The coefficients
of the forecasting model are re-estimated in every period by recursive least
squares (RLS).3 The learning process is described by the following set of
recursive equations:

θt = θt−1 + γtR
−1
t zt−1

(
yt − θTt−1zt−1

)
Rt = Rt−1 + γt

(
zt−1z

T
t−1 −Rt−1

) (1.3)

where the gain sequence {γt}∞t=k is equal to
{
t−1
}∞
t=k

, and θt = (a1,t, bt)
T

and zt =
(
yTt , x

T
t

)T . Given the forecasts, the economy attains a temporary
equilibrium, the so-called actual law of motion (ALM), which is equal to:

yt = A1yt−1 + A2

(
a1,t−1Êt−1yt + bt−1Êt−1xt

)
+Bxt−1 + ut

=
(
A1 + A2a

2
1,t−1

)
yt−1 + (B + A2a1,t−1bt−1 + A2bt−1F )xt−1 + ut

= T (θt−1)
T zt−1 + ut

(1.4)
3Econometric learning can be alternatively modelled using a (generalised) stochastic gradient (SG)

updating rule. Equation (3) modifies to θt = θt−1 + 1
tΓzt−1

(
yt − θTt−1zt−1

)
, where the time-invariant

matrix Γ is usually set equal to either the identity matrix or E
(
ztz

T
t

)−1.
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where T (θt−1)
T = T (a1,t−1, bt−1) =

(
A1 + A2a

2
1,t−1, B + A2a1,t−1bt−1 + A2bt−1F

)
is the mapping that describes the evolution of the RLS estimator θt. Once
the ALM is substituted for yt in (3), the dynamics of the system is fully
described by the recursive least squares equations:

θt = θt−1 + 1
tR
−1
t zt−1z

T
t−1 (T (θt−1) + ut − θt−1)

Rt = Rt−1 + 1
t

(
zt−1z

T
t−1 −Rt−1

) (1.5)

With the shift St−1 = Rt, (5) becomes a stochastic recursive algorithm
(SRA), whose behaviour is well approximated by an ordinary differential
equation (ODE)

dφ
dτ = h (φ) = T (φ)− φ (1.6)

where φt ≡ vec (θt, St) and h (φ) is obtained by computing the asymptotic
limit of the expectation of the 2nd term (the updating function) on the right-
hand side of (5): the zeros of the ODE represent the only possible limit points
of the SRA and the corresponding equilibria are stable if the (real part of the)
eigenvalues of the Jacobian of h (φ) are negative. When (a1,t, bt)→ (A1, B),
i.e. when the PLM comes to coincide with the ALM, an RE equilibrium is
attained and agents have learnt the rational expectations equilibrium.
Two features of the model stand out: it is self-referential and the agents
are not fully rational. “Self-referential” means that when individuals learn
adaptively, the dependency between outcomes and beliefs is bidirectional,
since the expectations that drive the temporary equilibrium change as new
observations become available. This property affects the law of motion of
the variables, which becomes non-stationary and keeps on changing until
agents’ subjective beliefs eventually converge to the objective distribution
of the variables. The absence of full rationality follows from the assumption
that in estimating their forecasting model agents treat the economy as having
constant parameters. But this is true only in the RE equilibrium; outside it,
the PLM is misspecified, though the bias may eventually vanish, when the
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PLM nests the RE solution and the estimates converge asymptotically.

1.2 Learnability as a pre-requisite for full rationality

Academic interest in learning was originally prompted by the idea that it
might justify the RE hypothesis. An equilibrium cannot be produced out of
thin air; there must be forces at work that propel the economy toward it.
How is an RE equilibrium achieved? How can agents eventually become fully
rational, when at first they are not? The early answers to these questions
were hardly encouraging. Frydman (1982) proposed a proof of the impossi-
bility of rational learning when individuals cannot determine the average of
other agents’ forecasts; DeCanio (1979) claimed that “. . . direct computa-
tion of rational expectations by flesh and blood agents in an actual market
situation is impossible in practice”: he acknowledged that an evolutionary
learning procedure could lead to rationality, but was sceptical about its prac-
tical relevance. However, the tide was slowly turning. First, an influential
paper by Bray (1982) showed how to prove stability under learning of the
RE equilibrium in an asset market model; then Evans (1985) introduced the
notional time concept of expectational stability. Finally, Marcet and Sargent
(1989a,b) proposed to adopt, as a plausible learning concept, recursive least
squares, and showed how stochastic approximation theory could be applied to
prove the learnability of the RE equilibria. Their findings were subsequently
revised and extended by Evans and Honkapohja, who present an exhaustive
survey of the work on recursive learning in their 2001 book. The main mes-
sage of the literature today is that many macroeconomic models posit that
the RE equilibrium is learnable, provided that (i) all agents use the same
mechanical learning rule to form expectations and (ii) the forecasting model
is well-specified. However, as Bullard (1997) noted, pre-coordination on the
learning rule simply pushes the issue of how agents can ultimately share the
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same expectations-formation mechanism one step further back. McCallum
(2007) makes the same point, reaffirming the opinion voiced by Lucas (1980):4

after a structural change, reliable analysis should pertain to the economy’s
behaviour after it has settled into a new dynamic stochastic equilibrium.

1.3 Learnability as an equilibrium selection device

In addition to assessing the plausibility of RE equilibrium, learning can serve
as a selection criterion when models have multiple solutions. As an ex-
ample, Evans and Honkapohja (2001) considered the non-stochastic Cagan
model with government spending financed by seignorage; the model has two
steady-state solutions, one with low inflation and one with high, and only
the first equilibrium is learnable. In more general models, learning does not
necessarily select a unique RE equilibrium, but the set of plausible solutions
is usually significantly smaller than the set of all solutions.
A more complex problem is faced when an infinite number of solution paths
converge on a single steady-state equilibrium, i.e. when there is indeter-
minacy. Unfortunately, there is no strict relation between learnability and
determinacy of RE equilibria. McCallum (2007, 2008) showed that determi-
nacy is a sufficient – but not a necessary – condition for learnability if agents
can use current endogenous variables in their forecasting equations; if there
are information lags, then the connection is severed and learnability can be
achieved only under special assumptions. The same findings are presented
in Bullard and Eusepi (2008).
Since E-stability does not imply determinacy, there must exist models where
agents with bounded rationality can learn an indeterminate RE equilibrium.
Indeed, in Evans and Honkapohja (2001) it is shown that the Taylor real-
balance model can be at once indeterminate and E-stable. However, indeter-

4McCallum uses the expression “startup problem” to indicate this theoretical ambiguity.
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minacy can imply the existence not only of multiple fundamental equilibria
but also of non-fundamental sunspot solutions; for these latter to be learn-
able, agents would need to coordinate on a PLM that includes a variable
that has no direct effect on the economy but becomes a driving force of the
equilibrium outcome solely because agents believe it matters. The practical
importance of this issue was suggested by Clarida et al. (2000), who claimed
that the volatile inflation and output of the 1970s may have been due to
sunspot phenomena.
On theoretical grounds, Woodford (1990) found that, in an overlapping-
generations model, finite-state Markov sunspots may be stable under learn-
ing. Subsequent analyses, however, failed to find supporting evidence for
Woodford’s results. Honkapohja and Mitra (2004) studied learnability of
sunspot equilibria in New-Keynesian models, where the prime source of in-
determinacy is violation of the Taylor principle. They found that the private
sector cannot coordinate on any of the non-fundamental equilibria induced by
a passive monetary policy. At first sight, the non-repeatability of Woodford’s
results appeared to be due to the ad-hoc nature of the stochastic process
assumed for the sunspot variable, suggesting that a sunspot solution with
continuous support would never be stable under learning. Yet this notion
does not correctly characterise the situation: Evans and McGough (2005)
showed for a model with sunspots that a given equilibrium may have several
consistent representations and that stability under learning is representation-
dependent. In a later paper,5they demonstrated that Woodford’s findings are
more general than is normally thought and apply to a large set of models,
provided that the forecasting equations are expressed in terms of a com-
mon factor representation: whenever finite-state Markov sunspots are stable
under learning, all sunspot equilibria will be stable.

5See Evans and McGough (2008).
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1.4 Learning in misspecified models

What if the PLM is not correctly specified?6 Adaptive learning may be a more
realistic way of modelling expectations than RE, but to posit that everyone
selects the correct specification is quite far removed from reality: econome-
tricians cannot include all lags and exogenous variables in their models, due
to lack of degrees of freedom, informational uncertainty, limited computing
skills or processing costs. Accordingly, it may be useful in modelling learning
to move further away from rationality by assuming that agents may choose
to form expectations using possibly misspecified forecasting models. If the
PLM does not include variables that are relevant for the dynamics of the
system, then the learning process cannot possibly converge on the RE solu-
tion, but it may nevertheless achieve a different equilibrium, which may be
called a restricted perceptions equilibrium (RPE).7 In an RPE the ALM does
not belong to the same class of function as the PLM and for the ODE to
be properly defined, the ALM must be projected onto the space spanned by
the PLM. The conditions for E-stability are therefore different, but as Guse
(2008) showed for the case of the New Keynesian IS-AS model, they are not
in general more restrictive.
In an RPE agents are permitted to fall short of rationality in failing to recog-
nise certain patterns or correlations in the data. Hommes and Sorger (1998)
proposed a variant of the RPE, called a consistent expectations equilibrium

6Here misspecified means that the PLM is underparameterised and does not nest the RE solution,
which precludes the convergence of the model on the RE equilibrium. An overparameterised forecasting
rule involves additional complexities, since the steady-state equilibrium is unaffected and the conditions
for E-stability, though usually different, are not necessarily more restrictive than those prevailing under
correct specification. An RE equilibrium is said to be strongly E-stable if it is locally E-stable even for a
specified class of overparameterised PLMs.

7Not only may the RPE be different from the RE equilibrium, but the number of equilibria too may
change. Evans and Honkapohja (2001, chapter 13) present a model featuring two equilibria when the PLM
is correctly specified and only one when the forecasting equation does not include the lagged endogenous
variable among the regressors.
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(CEE), which requires that the sample average and the sample autocorrela-
tions of the realisations of the ALM and of the PLM be equal.

1.5 Heterogeneous learning

Allowing for PLMs that differ from the MSV solution is the preliminary
step to study heterogeneous expectations. It turns out that whether or not
the presence of heterogeneous expectations matters depends on whether the
model exhibits structural heterogeneity.8 Giannitsarou (2003) studied three
types of heterogeneity. Agents may (i) have different priors (initial percep-
tions), (ii) have different degrees of inertia in updating or (iii) follow differ-
ent learning rules.9 She found that the conditions for local convergence of
heterogeneous and homogeneous learning are always identical when individ-
uals have different priors, but the conditions for general convergence differ.
However, it turns out that the representative learner may well be a good
approximation of the population of the economy. Giannitsarou’s results were
confirmed by Honkapohja and Mitra (2006), who also found that when per-
manent divergences in expectations formation are combined with structural
heterogeneity, the conditions for convergence of learning become significantly
more stringent and instability can arise. Another natural way to introduce
heterogeneity in the learning process is to assume that different agents have
different types of forecasting models. Berardi (2007) considered two groups
of individuals, one with the correct PLM and the other with an underparam-
eterised model. He showed that the second group cannot possibly learn the

8Structural heterogeneity is present when the expectations of different groups affect the economy
in different ways. It occurs for instance in the New Keynesian model: private expectations affect the
economy through the parameters of the IS equation and the Phillips curve, while the central bank affects
the equilibrium outcome through the policy rule.

9In terms of equation (3), (i) implies that θ0 is different across (classes of) agents, (ii) implies that the
gain sequence is δit−1, with δi varying across individuals and (iii) implies that some people use RLS as
a learning algorithm, while others adopt a (generalised) SG updating rule.
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true process that drives the endogenous variables, so the RE equilibrium can
never be achieved. Nevertheless, the system can still converge on an equilib-
rium in which all beliefs are confirmed by the data: the E-stability conditions
are different, but not necessarily more restrictive than under homogeneous
expectations.

1.6 Learning and evolutionary dynamics

A limitation of Berardi’s analysis is that he does not allow for time variation
in the share of people adopting the correct forecasting equation or for model
switching. By contrast, Brock and Hommes (1997) consider dynamic predic-
tor selection: in their model, agents adapt their beliefs over time by choosing
from a finite set of different expectation functions on the basis of costs and
of a measure of fit that is publicly available. The proportion of agents using
predictor j is given by the multinomial logit ratio

nj,t =
exp (βπj,t)∑
k exp (βπk,t)

where β measures the intensity with which agents choose predictors with bet-
ter fit and πj,t represents model-j goodness of fit. Brock and Hommes found
that high values of β can lead to high-order cycles and chaotic dynamics.
The rationale is straightforward: when agents use cheaper and less accurate
predictors, the steady-state equilibrium is unstable, whereas the costly, so-
phisticated forecasting models are stabilising. Near the steady state it pays
to use the cheap predictors, but this pushes the economy away from the
steady state. For high enough intensity of choice, this tension leads to local
instability and complex overall dynamics. Branch and Evans (2006), working
on a similar model, found very different results. Assuming that agents use
predictive performance to choose from a set of costless, misspecified econo-
metric models, they obtained conditions under which there is an equilibrium
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with agents heterogeneously split among the misspecified models even as the
intensity of choice becomes arbitrarily large. This finding must be treated
with caution, however, since it depends heavily on the criterion function used
to discriminate across models: as is shown in Waters (2007), when is finite
the multinomial logit never excludes predictors that have uniformly inferior
performances.

1.7 Speed of convergence, transitional dynamics and
perpetual learning

Unlike the asymptotic properties, the transitional dynamics of learning pro-
cesses has not attracted much interest. Among the few analytical studies of
the transition to the RE equilibrium is that of Benveniste et al. (1990), who
related the speed of learning convergence to the eigenvalues of the Jacobian of
the associated ODE and derived the conditions for root-t convergence of the
parameters of the forecasting equation.10 Marcet and Sargent (1995) subse-
quently suggested a simple numerical procedure, based on model simulations,
to estimate the rate at which the PLM approaches the ALM. As stressed by
Bullard (2006), under RE, once a determinate equilibrium is shown to exist
nothing else really matters, whereas with learning anything that affects how
fast the private sector learns the RE equilibrium may affect social welfare.
This issue was studied by Ferrero (2007), who showed that learning times
depend upon the Taylor rule parameters.
In addition to a few regularity conditions on the exogenous processes and
on the updating function, asymptotic convergence of the learning algorithm
depends on the (positive and non-stochastic) gain sequence {γt}∞t=k being

10Root-t is the speed at which, in classical econometrics, the mean of the distribution of the least square
estimator approaches the asymptotic value; under root-t convergence, the effects of initial conditions die
out at an exponential rate.
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such that
∞∑
t=k

γt = ∞ and
∞∑
t=k

γ2
t < ∞. These assumptions are necessary

to avoid convergence of φt to a non-equilibrium point and to ensure the
asymptotic elimination of all residual fluctuations.
Some authors have departed from this framework, studying the implications
for the equilibrium outcomes of a constant gain sequence, i.e. of setting
γt = γ for all values of t. In theory constant gain learning precludes the
convergence on the RE equilibrium: as long as the solution is stable, agents’
expectations are correct on average but keeps on fluctuating around rather
than at the equilibrium. This happens because observations are not assigned
equal weight: those far in the past are discounted at an exponential rate, so
that information does not accumulate fast enough to completely remove the
randomness in the data.11 A constant γ is justified when agents suspect that
the economy is undergoing structural changes. Although in principle they
might attempt to model structural change, this would call for an amount
of knowledge comparable to that needed for RE; a reasonable alternative
is to recognise, in adjusting the parameter estimates, that the more recent
observations convey more accurate information on the economy’s laws of
motion.
Most of the studies that assume permanent learning relate to monetary pol-
icy. Orphanides and Williams (2005) analysed the impact of constant-gain
learning on the effectiveness of central bank strategies. They worked with
a two-equation system consisting of a modified Lucas supply curve and an
aggregate demand relation, supplemented by a loss function describing the
policymaker’s preferences. Their analysis produced four main conclusions:
first, the “naïve” choice, i.e. the policy that assumes RE on the part of
agents, can be highly inefficient, generating higher volatility of both infla-
tion and output; second, learning leads to a bias towards more “hawkish”

11Orphanides and Williams refer to constant gain learning as perpetual learning, to stress the fact that
full information about the structure of the economy is never achieved.
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policies; third, persistent deviations of inflation expectations from target can
arise following a sequence of unfavourable shocks; and fourth, if the infla-
tion target is credibly announced to the public, the policy frontier is more
favourable. According to these authors, what alters the policy response is
the non-linear nature of the learning process. Since the forecasting model is
estimated recursively, a positive price shock passes through to the intercept
of the PLM, raising both expected and hence actual inflation in the next
period. Unless the policy response is prompt and forceful, the persistence
and volatility of inflation increase and the monetary authority fails to main-
tain a firm grip on the value of money. In Orphanides and Williams (2007),
the authors considered the case of uncertainty about the natural rates of
interest and unemployment and assessed not only the efficiency but also the
robustness of alternative Taylor-type monetary rules. They confirmed their
previous findings and further showed that the best policies are characterised
by two features: aggressive response to inflation and a high degree of inertia.
Indeed, difference rules, which disregard natural rates, appear to be robust to
misspecification of private sector learning and to the magnitude of variation
in the natural rates of interest and unemployment.

1.8 Escape dynamics

Closely related to permanent learning is the notion of “escape” dynamics,
popularised in Thomas Sargent’s book on American inflation (1999), which
constructed a model designed to study the implications for the equilibrium
outcome of positing that the government believes that there is a non-vertical
Phillips curve, when the real economy is actually governed by neo-classical
natural rates. In Sargent’s model, policymakers estimate the unemployment-
inflation trade-off using a constant-gain RLS algorithm, which eventually
drives the economy to a particular kind of imperfect RE solution, called
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the self-confirming equilibrium (SCE), where misspecified beliefs and realisa-
tions are mutually consistent. Notably, Sargent found that periodically the
economy would escape from the SCE, settling for a prolonged period on a
low-inflation equilibrium path. The escape dynamics would be triggered by
a sequence of unusual shocks that changes the correlation between output
and inflation. McGough (2006) extended Sargent’s results, showing that an
escape-like path can be produced by even a small exogenous shock to the
natural rate of unemployment. Bullard and Cho (2005) found that large
deviations, generating a non-equilibrium outcome characterised by near-zero
interest rates and persistently low inflation, can also arise in a microfounded
New Keynesian model.

1.9 Learning as an alternative to rational expectations

If interest in the theoretical foundations of adaptive learning has mounted
steadily over the past three decades, there has been an absolute boom in
studies on its economic applications, covering such diverse topics as hyper-
inflation episodes, liquidity traps, currency crises, the forward premium puz-
zle, supply-side reforms, macroeconomic persistence and the fiscal theory of
the price level. The bulk of this applied research, though, is in monetary
economics.12 The initial focus was on the uniqueness and learnability of
equilibria, but scholars’ attention gradually moved to other subjects, such as
the design of robust and optimal policy, the role of fundamentals in Taylor-
type rules, the benefits from transparency, and the coordination of fiscal and
monetary policies.
Notwithstanding its successes, the theory of econometric learning is not yet a
viable alternative to rational expectations by any means. The enhancements

12Evans and Honkapohja (2008) give a comprehensive survey of recent studies on the monetary policy
implications of assuming that agents are not fully rational and perfectly informed.
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scored in terms of cognitive consistency are more than offset by the continuing
indeterminacy of the choice of the learning algorithm, the specification of the
PLM, the adoption of a specific gain sequence, and the selection criteria for
the competing forecasting equations. Dropping the RE hypothesis eliminates
jointly the assumption of individual rationality – which solves the problem
of choosing the forecasting equation – and that of consistency of beliefs –
which ensures that expectations are homogeneous. As stressed by Sargent
(1993), economists embraced the hypothesis of rational expectations because
if perceptions about the environment and other people’s behaviour are left
unrestricted, and behaviours depend on perceptions, models can produce so
many possible outcomes that they are useless as instruments for generating
predictions: it is unfortunately undeniable that learning is not yet capable
of providing the required restrictions on expectations.

1.10 A summary review of the dissertation

The essays included in this dissertation are mostly in applied and not theo-
retical economics, and all deal with learning and monetary policy; the first
two assume that agents learn adaptively, whereas the third, which is based
on Bayesian learning, treats monetary policy not as the subject matter, but
as an input to study the real return on equities.
The first chapter (“Imperfect knowledge, adaptive learning and the bias
against activist monetary policies”) studies the implications that abandoning
the assumption of rational expectations has for the effectiveness of monetary
policymaking. Effective policymaking requires that the monetary authori-
ties commit to a systematic approach to policy. However, for policymakers
to succeed in steering expectations and reaping the benefits of commitment,
agents must be able to fully anticipate the future impact of monetary deci-
sions, which is feasible only if the economic environment is stationary and
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expectations are rational. When, on the contrary, the economy is subject
to recurrent structural shifts and knowledge is imperfect, agents must rely
on other methods for anticipating future events, which may alter the pol-
icy trade-offs dramatically. When knowledge is incomplete, an additional
complication arises from the fact that committing to a systematic policy be-
comes problematic if not impossible (because the private sector cannot verify
whether the central bank is delivering on its promises) and the gains from
commitment are severely reduced (because expectations, being backward-
rather than forward-looking, cannot be manipulated to increase policy effec-
tiveness).
The economy is described by a Lucas-type equation, relating output to in-
flation surprises and supply shocks; the central bank controls price dynamics
and the output-inflation trade-off is an exogenous time-varying stochastic
process. In order to improve the discretionary equilibrium, society - the
principal - assigns a loss function to the central bank - the agent - that may
differ from society’s preferences, if this is effective in increasing welfare. The
assumption underlying this principal-agent approach is that it is possible to
commit the monetary authority to a particular loss function, whereas the
minimisation of the loss function occurs under discretion. Society has stan-
dard quadratic preferences on output and inflation and the central banker is
endowed with either a quadratic or a lexicographic preference ordering. The
literature on monetary policy almost always posits quadratic preferences, but
this type of loss function does not reflect the task assigned to the monetary
authority of most developed countries and is unable to account for the various
aspects of actual policymaking. The assumption of lexicographic preferences
overcomes a few of these shortcomings: it captures a hierarchical ordering
of alternatives, which is typical of the mandate of virtually every inflation-
targeting central bank, and allows the policymaker to focus on different policy
objectives under different circumstances.
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In this model both the private sector and the monetary policymaker have
incomplete knowledge of the working of the economy and rely upon adaptive
learning to form expectations (the private sector) or to estimate unknown
parameters (the central bank) that form part of the optimal policy rule. The
economy is subject to recurrent unobserved shifts and the monetary author-
ity, which has private information on the shocks, cannot credibly commit.
The original contribution of this work is to extend the findings of Orphanides
and Williams (2002) in three different ways. First, I assume that not only
private agents but also the policymaker has imperfect knowledge; under this
framework, policy effectiveness ends up depending both on inflation and out-
put variability, so that the existence of a bias towards conservatism, if con-
firmed, cannot be attributed to the limited role of output volatility in the
model. Second, I test whether society can increase welfare by appointing a
policymaker whose preference ordering is lexicographic, which is rare in the
literature and introduces non-linearities. Third, I test the claim that imper-
fect knowledge has a negative impact on economic stabilisation under a set
of alternative learning mechanisms.
The research reaches three main findings. First, it is confirmed that when
agents do not possess complete knowledge of the structure of the economy and
rely on an adaptive learning technology, a bias towards conservatism arises,
suggesting that society is better off designating a policymaker whose degree
of inflation aversion is greater than its own: the rationale is that agents’
and policymakers’ attempts to learn how the economy works introduce iner-
tia into the system and induce prolonged deviations of output and inflation
from target, thereby raising the costs for the central bank of not responding
promptly and forcefully to shocks. Second, what matters for society’s welfare
is that the inflation aversion of the monetary authority is strong enough to
prevent expectations from fluctuating too much: the specific form of the loss
function of the central bank is of second-order importance, so that it makes
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little difference whether monetary authority is delegated to a central banker
with lexicographic or quadratic preferences, though the former ordering tends
to be associated with slightly better outcomes. Third, the bias against sta-
bilisation policies and towards conservatism, and the relative efficiency of
alternative monetary strategies, do not depend on whether the memory of
the learning process is finite or infinite.
The second chapter (“Monetary policy in a model with misspecified, het-
erogeneous and ever-changing expectations”) studies the interaction between
imperfect knowledge and monetary policy when the economy is complex and
macroeconomic relations are described by a large system of non-linear equa-
tions. The vast literature on adaptive learning is overwhelmingly focused on
small linear models, where the perceived law of motion (PLM) coincides with
the minimum state variable (MSV) solution of the corresponding rational
expectations equilibrium (REE). This is a convenient simplification, which
allows straightforward analysis of the asymptotic properties of the learn-
ing algorithm and avoids the complexities of agents’ having heterogeneous
information sets and possibly facing a multitude of alternative forecasting
equations. With non-linear models these simplifications disappear, since a
closed-form MSV solution does not exist; and if the model is medium-sized
or large, no univocal linear approximation is available either, given the large
number of state variables that in principle could be included in the PLM.
If agents act like econometricians, who look at the data to choose the cor-
rect specification of a regression equation, the larger the model economy, the
larger the set of options among which to select a PLM: different agents end
up picking different forecasting models and no one sticks to the same PLM
indefinitely, preferring to switch from one to another on the basis of observed
predictive performance.
In a self-referential model, the lack of a univocal PLM implies that the equi-
librium is not unique. Finally, since the PLM is misspecified and underpa-
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rameterised it no longer nests the REE, and the learning algorithm converges
to a limit point that is indeterminate and depends on the specific form of the
expectations equations. With an unknown limit point, the issue of the con-
vergence of the learning algorithm becomes somewhat vague and ill-defined.
If one drops the simplifying assumptions of linearity and small size, most of
the findings of the recent literature on adaptive learning become doubtful
and their validity needs to be proven within a more general framework. Not
only analytic issues but also policy prescriptions get intricate. For monetary
policymaking, Orphanides and Williams (2007) have shown that when agents
learn adaptively, the incentives and constraints facing monetary authorities
are different and hence their strategies should change as well: compared with
rational expectations, imperfect knowledge (i) reduces the scope for stabil-
isation of the real economy, (ii) demands more inflation-averse policies and
(iii) increases the inertia in interest rate setting. The problems are com-
pounded by unobserved structural changes (e.g. in natural rates), which call
for quasi-difference rules in a quest for policy robustness. According to Or-
phanides and Williams, it is the non-linear nature of the learning process that
dictates the policy response: upon re-estimation of the inflation forecasting
model, a positive price shock passes through to the intercept of the forecast-
ing equation, raising next-period expected and hence actual inflation; unless
the policy response is prompt and firm, the persistence and the volatility of
price changes increase and the monetary authority fails to keep a firm grip
on the value of money.
While introducing learning in an otherwise linear system as in Orphanides
and Williams changes the model’s nature and equilibrium properties, it is
not clear what happens when the model is intrinsically non-linear. Expecta-
tions heterogeneity introduces additional uncertainties, as stabilisation poli-
cies may interact with agents’ choice among forecasting models. Several
questions arise. Does the switch from full rationality to imperfect knowledge
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amplify the impact of learning or does it just bring in an additional source
of inertia, whose effects on the working of the economy and on monetary
strategies are negligible? How does the speed of learning change because of
the more complex structure of the economic environment? Does monetary
policy affect the degree of heterogeneity of expectations, or vice versa? Can
the central bank enhance welfare by providing information to households
and firms, or should it exploit its private information to generate inflation
surprises?
As this last question suggests, another relevant policy issue is whether the
central bank can benefit from being transparent when private agents are
not fully rational. The answer is not trivial, because when expectations are
backward-looking, as in the case of adaptive learning, the monetary author-
ity’s influence on agents’ beliefs is severely reduced. In a large-size model,
where non-linearities abound, the flow of information from the monetary au-
thority to the private sector is potentially very rich and the role of central
bank communication highly relevant: agents do not know which variables are
factored into the policy rule, whether the monetary authority targets lagged,
current or future variables, or what the degree of policy inertia is. Since
each of these aspects of the policy strategy affects the system’s transitional
dynamics and steady state growth path, to a large extent the monetary au-
thority can decide the amount of information to make public so as to steer
agents’ choice of forecasting models and in so doing affect expectations and
equilibrium outcomes.
The chapter is concerned with these issues. The first objective is to vali-
date the findings of Orphanides and Williams on the influence of imperfect
knowledge on the features of the monetary policy rule; in this respect, it is
certainly a valuable asset to have a large and detailed model that identifies
the channels through which monetary impulses are transmitted and the way
expectation errors affect the persistence and the volatility of output and in-
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flation, because this helps in understanding the interaction between policy
measures, expectations and economic outcomes. Its second purpose is to
measure the benefits associated with more transparent policies, comparing
the impact on social welfare of alternative communication strategies.
This work is original in several respects. First, it analyses learning in an
economy where expectations have a pervasive role that is unmatched in the
literature. The very few papers that study bounded rationality in large non-
linear models introduce learning only in the exchange rate equation;13 here,
by contrast, learning affects not only the value of the domestic currency but
also the term structure of interest rates, the conduct of monetary policy and
the wage setting behaviour of unions and firms. Second, drawing from the
literature on evolutionary game theory, it models the process through which
agents switch from one forecasting model to another in order to form expecta-
tions. Third, it studies the consequences on social welfare of varying degrees
of monetary policy transparency. When the REE cannot be achieved, due to
the complexity of the economic environment, the disclosure of information
from the central bank affects the selection of market participants’ PLMs and
determines the restricted perceptions equilibrium to which the economy con-
verges. The description of the channels of monetary policy transmission helps
to see whether the effect of central bank communication is mainly to reduce
the noise or instead to provide distorted incentives to market participants,
forcing them to attach too much weight to central bank communication and
too little to their own information.
Three main results emerge. First, expectations heterogeneity is an intrinsic
feature of the economy: regardless of the monetary policy in place, no PLM
succeeds in ruling out all the other forecasting models, though the most inac-
curate ones are eventually dismissed. Second, it is no longer true that when
agents are boundedly rational, the monetary policymaker has an incentive to

13An exception is Dieppe et al. (2011).
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adopt more inflation-averse policies; on the contrary, too strong a reaction to
price shocks increases both inflation and output volatility and tends to make
the model unstable and non-learnable. At first sight, this outcome may seem
quite counterintuitive: a central bank that is more strongly committed to
taming inflationary pressures should be more credible and more effective in
anchoring long-run inflation expectations and bond yields. However, this con-
nection is not present in the model and credibility depends on outcomes, not
intentions: agents learn from the data and what matters is whether monetary
policy makes the economy more or less stable. Third, more transparent (but
not fully transparent) policies seem to be welfare-enhancing, though mildly
so, mostly because they twist the slope of the yield curve and diminish the
variability of short-term interest rates; besides, the degree of transparency
alters the form of the optimal policy rule, by increasing inflation aversion.
But the benefits of transparency are not monotonic: under full transparency,
social welfare is marginally less than under opaqueness.
The final chapter (“Learning monetary policy regimes and asset pricing”) is
somewhat different from the previous two. Agents are no longer modelled
as econometricians but behave as fully-informed economists, using Bayesian
techniques to filter unobserved variables and updating their estimates of the
hidden state of the economy whenever new observations are available. More-
over, monetary policy is no longer the focus of the analysis but an exogenous
input to the model that generates uncertainty among agents and is respon-
sible for the negative correlation between stock returns and inflation, i.e.
inducing the violation of the so-called Fisher effect, the one-to-one relation-
ship between nominal returns and inflation.
This issue has originated a vast literature, both empirical and theoretical.
The Fisher effect is usually viewed as a minimum requirement for market
efficiency and agents’ rationality. Yet various studies have shown that com-
mon stocks, contrary to the conventional wisdom, do not insure investors
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against inflation but tend to move in the wrong direction in the face of price
shocks. The evidence on unconditional correlation is anything but convinc-
ing, however: it is generally spurious and suffers from omitted-variable bias.
A number of explanations have been put forward for the negative correla-
tion between stock returns and inflation, citing such factors as fiscal policy,
wealth effects, central bank objectives, and beliefs about future output. None
is entirely convincing, however, and my co-author Massimo Massa and I have
sought to shift the focus to the information role of inflation, which is the most
reliable signal of the intentions of the monetary policymaker when policy is
opaque and investors are uncertain about the real objectives of the central
bank.
The way stock returns react to inflation is strictly connected with the stance
and the long-run targets of monetary policy. When the policymaker focuses
almost exclusively on price stability, a rise in inflation engenders a monetary
squeeze, which impinges on future growth and hence on expected dividends.
That is, high inflation today foreshadows low cash flows tomorrow implying
low stock prices today. On the contrary, when the central banker is a “dove”,
aiming at moderating fluctuations in output and unemployment, inflation
signals a cyclical upturn and anticipates favourable growth prospects. Ac-
cordingly, an acceleration in consumer prices is associated with higher future
cash flows and stock prices.
The fact that investors cannot directly observe the monetary policy stance
generates uncertainty. Any information that may help them infer the pre-
vailing monetary policy regime reduces uncertainty and affects risk premia.
Inflation, by offering the investors an opportunity to study the central bank’s
reaction, provides such information. In particular, it may either reinforce or
challenge established beliefs in a particular type of monetary policy. In the
former case, by reinforcing investors’ assessment inflation reduces informa-
tional uncertainty, hence the risk premium and the required rate of return.
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If this reduction in returns is large enough, it may induce a "puzzlingly"
negative correlation between inflation and stock returns.
Some original contributions of the work are worth mentioning. Besides pro-
viding a link between asset pricing and monetary economics, it suggests a new
channel, not yet properly explored, through which the central bank affects
financial markets. Second, it sheds new light on the “rules versus discretion”
debate, quantifying the cost in terms of risk premia of the lack of trans-
parency and discretional behaviour of the monetary policymaker. It would
be interesting to extend this analysis to the international dimension to see
whether countries characterized by different degrees of disclosure of the cen-
tral bank’s operating procedures and targets also display different impacts of
monetary policy uncertainty on prices.
The research provides both an analytical and an empirical basis for the role
of uncertainty in driving the equity risk premium and the correlation between
stock returns and inflation. The empirical section includes an estimate - via a
Markov-switching VAR model - of an index of monetary policy stance. This
is then used to construct a tracking portfolio mimicking monetary policy
uncertainty. The final step is a direct test of whether such a portfolio is
in fact priced: monetary uncertainty is used in addition to the three Fama-
French factors to explain stock returns in two types of investment portfolio
(i.e. (i) industry and (ii) size and book-to-market portfolios). The results
strongly support our working hypothesis: the coefficient of monetary policy
uncertainty is positive and strongly significant. The coefficient remains highly
significant even after the application of the White correction to control for
the problem of generated regressors. In particular, the tracking portfolio is
positive and strongly significant in 24 out of 25 cases for the size and book-
to-market portfolios and in 13 out of 17 cases for the industry portfolios.
The significance of the additional regressors survives a number of robustness
checks.
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The work points to the neglected role of learning as a potential source of un-
certainty. Since inflation is a signal used by imperfectly informed investors
to infer the stance of monetary policy, the learning process may raise the
level of uncertainty and so increase the risk premium. The puzzling rela-
tionship between inflation and stock returns depends on the way in which
the information conveyed by changes in the inflation rate modifies investors’
uncertainty. If the signal embedded in inflation is consistent with investors’
beliefs on the degree of “hawkishness” of the policymaker, an increase in infla-
tion may reduce uncertainty and therefore the equity premium, thus leading
to a negative correlation between inflation and returns.
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Chapter 2

Adaptive learning and the bias against
activist monetary policies

2.1 Introduction

Effective policymaking requires that the monetary authority commit to a
systematic policy approach. As long as price setting depends on expectations,
a credible central bank may benefit from a better short-run trade-off between
inflation and output and accordingly it may reduce inflation at less cost. For
policymakers to succeed in steering expectations and reaping the benefits
of commitment, however, agents must be able to fully anticipate the future
impact of monetary decisions on the economy, which is feasible only if the
economic environment is stationary and expectations are rational. When
instead the structure of the economy is subject to shifts and knowledge is
imperfect, agents must find other methods for anticipating future events,
which may alter the policy trade-offs dramatically.
A recent stream of literature, most notably Orphanides and Williams (2002),
has shown that imperfect knowledge makes stabilisation policies more diffi-
cult. This happens when central banks ascribe too much importance to out-
put stabilisation, because overly activist policies are prone to create situations
in which the public’s inflation expectations become uncoupled from the policy
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objective. An additional complication arises from the fact that if knowledge
is incomplete, then committing to a systematic policy becomes problematic
because the private sector cannot easily verify whether the central bank is
delivering on its promises, while the benefits of such commitment are severely
reduced, because expectations, being backward- rather than forward-looking,
cannot be manipulated to increase policy effectiveness.
This chapter examines how relaxing the rational expectations hypothesis
changes the way monetary policy is set, taking a principal-agent approach:
in order to improve the discretionary equilibrium, society (the principal) as-
signs a loss function to the central bank (the agent) that may differ from
society’s preferences. The assumption underlying this approach is that it
is possible to commit the monetary authority to a particular loss function
but that its minimisation is discretionary. Society has standard quadratic
preferences on output and inflation and the central banker may have either
quadratic or a lexicographic preference ordering. The literature on mone-
tary policy almost always posits quadratic preferences, but this type of loss
function does not reflect the task that most developed countries assign to
the monetary authority and cannot account for the role of factors that are
vital in actual policymaking.1 Lexicographic preferences overcome some of
these shortcomings: they capture the hierarchical ordering of alternatives
that is typical of the mandate of virtually every inflation-targeting central
bank 2 and allow the policymaker to focus on different policy objectives under
different circumstances.
The main findings are the following. First, it is confirmed that when agents
do not possess complete knowledge on the structure of the economy and rely

1To mention just a few: (i) uncertainty (see Al-Nowaihi and Stracca (2002)); (ii) imperfect observability
of the state variables (see Svensson and Woodford (2000)); (iii) path dependence and differential valuation
of deviations from the inflation and output targets (see Orphanides and Wilcox (1996)).

2Buiter (2006) presents a list of the central banks whose mandate reflects a lexicographic preference
ordering, with price stability ranking first and all other desiderata coming after.
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on an adaptive learning technology, a bias towards conservatism arises, sug-
gesting that social welfare is improved by designating a policymaker who is
more inflation-averse than society itself. Even if the economy has no intrin-
sic dynamics, the attempts of agents and policymakers to learn adaptively
introduce inertia, which makes it costly for the central bank not to respond
promptly and forcefully to shocks. Second, what matters for social welfare is
that the monetary authority’s inflation aversion be strong enough to prevent
expectations fluctuating too much. The specific form the loss function of the
central bank takes is of second-order importance. Third, the bias against
stabilisation policies and towards conservatism and the relative efficiency of
alternative monetary strategies do not depend on whether the memory of the
learning process is finite or infinite.
This chapter relates to the literature in several ways. It parallels, under
more general conditions, the work of Terlizzese (1999) and Driffill and Ro-
tondi (2003) in deriving the properties of a monetary strategy whose prime
objective is price stability, with an inflation cap; it models two-sided learning
in the vein of Evans and Honkapohja (2002); it uses the study of Orphanides
and Williams (2002) as a benchmark for the quantitative analysis. The most
closely related of these contributions is Orphanides and Williams: model sim-
ulations are designed so as to replicate their experiments, and the objective
here is largely the same as theirs, namely to understand how the economy
responds to alternative monetary strategies when agents have bounded ra-
tionality and imperfect knowledge.
My original contribution consists in extending the findings of Orphanides and
Williams (2002) in three different ways. First, the work assumes that both
private agents and the monetary policymaker have imperfect knowledge; un-
der this framework, policy effectiveness ultimately depends both on inflation
and on output variability, so that the bias towards conservatism, if confirmed,
cannot be attributed to the limited role of output volatility in the reference
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model. Second, it tests whether society can increase welfare by appointing
a policymaker whose preference ordering is lexicographic. Third, it tests
the claim that imperfect knowledge affects economic stabilisation adversely
under a set of alternative learning mechanisms.
The chapter is organised as follows. Section 2 outlines the model and con-
trasts the implications of assuming quadratic and lexicographic preferences.
Section 3 introduces econometric learning and studies how different poli-
cies affect the speed at which learning algorithms converge on the rational
expectations equilibrium. Section 4 presents some evidence, produced by
simulations, on the distortions of monetary policymaking that are generated
by postulating agents’ bounded rationality; the issues are whether adaptive
leaning induces a bias toward conservatism and whether appointing a cen-
tral banker with lexicographic preferences is welfare-improving. Section 5
concludes.

2.2 The model

The model has two basic components: (i) the non-observability of the supply
shock; (ii) an unknown and time-varying output-inflation trade-off. I solve
it first under rational expectations, then under adaptive learning.

2.2.1 The structure of the economy and the delegation problem

The economy is characterised by an expectations-augmented Phillips curve
relationship, linking inflation surprises π − πe to (detrended) output y.

y = α (π − πe) + ε (2.1)

Inflation is the policy instrument and is controlled without error by the mon-
etary authority; the natural level of output is normalised to zero. Output
also responds to a zero-mean supply shock ε, unobservable to the central
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bank and the private sector and uniformly distributed on the closed inter-
val [−µ, µ]. A signal z, conveying noisy information on ε, is observed by
the policymaker after expectations have been determined; it is assumed that
z = ε+ ξ, with ξ following a uniform distribution with the same support as
ε, i.e. ξ ∼ U [−µ, µ].3

The final component of the model is the assumption that α, the output-
inflation trade-off, is a random variable. Since α is time-varying, the effects
of monetary policy on output depend on the value of the trade-off. It is
assumed that α = α + α̃ ∼ IID

(
α, σ2

α

)
and that it is independent of all

the other shocks in the economy.4 Notice that the model is entirely static,
so that no issue of strategic interaction between the monetary authority and
the private sector arises.

Figure 1 - Timing of the model

πe z π y

-

agents form inflation

expectations
output signal observed

central bank chooses

inflation
output realised

The timeline of the model is shown in Fig. 1. The signal z materialises before
the central bank chooses the inflation rate but after private agents have set

3The assumption that both ε and ξ follow a uniform distribution ensures that in the rational expec-
tations equilibrium a closed form solution exists. The additional hypothesis that both shocks share the
same support helps to keep the distribution of z simple.

4The stochastic variable α can be interpreted as an index of monetary policy effectiveness. It can be
either discrete or continuous. What is relevant is the IID assumption, which avoids introducing dynamic
elements and strategic interactions into the central bank’s opimisation problem. Ellison and Valla (2001)
show that strategic interactions create a connection between the activism of the central bank and the
volatility of inflation expectations: the latter reacts to the former because an activist policy produces
more information, helping private agents to learn. The value of experimentation in policymaking is also
studied in Wieland (2003).
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their inflation expectations for the period. The information advantage of the
central bank creates a role for stabilisation policies and takes into account
the fact that policy decisions can be made more frequently than most wage
and price decisions.
Society is assumed to have quadratic utility and to dislike both inflation and
output variability. Its welfare function is

W S = −E
[
(y − k)2 + βSπ2

]
(2.2)

where k is the target level of output; the expectation operator is due to the
non-observability of the output-inflation trade-off α and output shock ε. The
assumption that k > 0 is usually justified on the grounds that the presence
of labour and goods market distortions leads to an inefficiently low level of
output in equilibrium; alternatively, k > 0 is interpreted as arising from po-
litical pressures on the central bank. In the principal-agent approach, society,
whose preferences are quadratic, can designate a central banker whose loss
function may differ from its own. It is assumed that the choice is restricted
to policymakers with quadratic or lexicographic preferences; in the case of
quadratic preferences, the inflation aversion parameter β can be different
from βS.

2.2.2 The central bank’s loss function

Though in general a lexicographic preference ordering cannot be represented
by a function, in the simplified case in which the monetary authority has only
two objectives, such an ordering can be described by a loss function involving
only the secondary objective, subject to a constraint involving the primary
target. I accordingly assume that the central bank seeks to stabilise output at
a non-zero level, provided that inflation is kept below a known upper bound.5

5The existence of a lower bound on inflation is not considered. In a model where the output shock is
observable and the trade-off between output and inflation is time-invariant, Terlizzese (1999) shows that
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Though there is some dispute on the correctness of formulations depicting
central bankers as affected by an inflation bias, the assumption is retained
because otherwise the only rational expectation for inflation would be the
zero target itself and the inflation constraint would never be binding.
In formal terms, the problem solved by the central bank is

minπ
1
2E (y − k)2

s.t.

{
π ≤ π

y = α (π − πe) + ε

(2.3)

Notice that k cannot exceed µ, the upper bound of the output shock: in
what follows, it will be assumed that k is not too high. Under the standard
hypothesis of time-separability of preferences, the problem is static and in-
volves no trade-off between current and future utility, so that the optimal
policy does not have to rely on the strategic interactions described by Ellison
and Valla (2001), Bertocchi and Spagat (1993) and Wieland (2003).6

To highlight the implications of endowing the monetary authority with lexico-
graphic preferences, the policy problem is also analysed under the standard
assumption that the loss function is quadratic. In this case, the problem
solved by the central bank can be formulated as

minπ
1
2E
[
(y − k)2 + βπ2

]
s.t. y = α (π − πe) + ε

(2.4)

where β measures the weight attached to the inflation objective relative to
output stabilisation.
the main features of the monetary policy problem are largely unaffected by the inclusion of a lower bound
on inflation. Intuitively, what explains this result is the asymmetric nature of the inflation bias that is
assumed to characterise the monetary authority’s preferences: if the central bank tries to push output
above the natural level, it will tend to inflate, so that while the upper bound will often be binding, the
lower one will not.

6Buiter (2006) provides an alternative, more restrictive, representation of a lexicographic preference
ordering.
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Regardless of the specific form of the loss function, be it (2.3) or (2.4), the
model features an inflation bias, arising from the policymaker’s incentive to
create surprise inflation in order to keep output above the natural level. Many
economists think that this feature makes the model irrelevant for monetary
policy analysis, as central bankers are not in the business of fooling people.7

Jensen (2003) however shows that a variant of the same model can generate
an inflation bias even without attributing any role to inflation surprises.

2.2.3 Signal extraction and the rational expectations equilibrium

Given the structure of the problem, the issue of estimating the unobserved
output shock and that of setting the optimal inflation rate can be kept sepa-
rate and solved sequentially. Before deciding the optimal policy, the central
bank has to solve a signal extraction problem. The first step is therefore to
derive the probability distribution of z = ε + ξ and the conditional mean
E (ε|z). In Lemma 1 the density function of the signal z is derived, while
in Proposition 1 the first moment of the distribution of the output shock ε
conditional on z is calculated.

Lemma 1 If z = ε + ξ and ε and ξ are independent uniform random vari-
ables, with support on the interval [−µ, µ], then the density function of
z is equal to f (z) = 1

2µ + 1
4µ2 [min (z, 0)−max (0, z)] = 1

2µ −
1

4µ2 |z|.

Proof See the appendix.

Proposition 1 If ε and ξ are uniform random variables, defined on the
same close interval [−µ, µ], and z = ε+ ξ, then the optimal estimate of
ε conditional on z is E (ε|z) = z

2

Proof See the appendix.
7See, for instance, the quotations from Blinder, Vickers and Issing listed in Jensen (2003).
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Given the assumption that governs the flow of information, the central bank
sets the inflation rate on the basis of the observed signal and the private sec-
tor’s inflation expectations. Under lexicographic preferences, it will choose
the inflation rate that solves the first order conditionE [α (α (π − πe) + ε− k) | z] =

0 - provided that the inflation constraint is satisfied - and will choose π = π

otherwise, i.e.

π =

{
πe − α

α2+σ2
α

(
z
2 − k

)
= πe − z

φ + 2k
φ

π

if z ≥ 2k + φ (πe − π) = Λ

otherwise
(2.5)

where φ−1 ≡ α
α2+σ2

α

1
2 and Λ = 2k + φ (πe − π). The optimal policy can

be written also in a more compact - but somewhat less transparent - form,
namely

π = πe − 1

φ
[max (z, 2k + φ (πe − π))− 2k] = πe − 1

φ
[max (z,Λ)− 2k]

The optimal policy depends, in a non-linear way, on the value of z: when
output shocks are strongly negative and the primary objective is at risk, the
central bank acts like an inflation nutter; when the signal indicates more
favourable disturbances, it displays greater activism, favouring output sta-
bilisation. Notice that the optimal policy depends on the parameters of the
distribution of the output-inflation trade-off α. Two cases are considered,
one corresponding to the rational expectations equilibrium (REE), and the
other assuming bounded rationality and least-square learning. In the first
case, it is assumed that α is not observed but α and σ2

α are known by both
the central bank and the private sector;8 in the second case, α and σ2

α are
unknown and must be estimated.
It is worthwhile noting a few points that illustrate the main properties of
the optimal policy. First, the optimal policy is not altered by the non-

8This assumption could be justified if ε, though unobserved at the time when expectations and the
inflation rate were set, was observed with a one-period lag.
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observability of the output shock, except that the policymaker responds to
an efficient estimate rather than the actual value of the state variable. It is
well known that a linear model with a quadratic loss function and a partially
observable state of the economy is characterised by certainty-equivalence;
since the assumed preference ordering is not quadratic, the result applies
only when inflation is within the admissible range. Second, uncertainty about
the multiplier of the policy instrument makes it optimal to react less than
fully to the output shock. There is nothing to be gained by more activist
policy in order to learn from experimentation, since the model is static and
the current welfare loss incurred by overreacting will not be offset by future
gains. The reduction in policy activism caused by parameter uncertainty,
originally shown by Brainard (1967), reflects the direct impact of the policy
instrument on the variability of the target variable.
For the equilibrium to be fully characterised, one must provide the solution
for expected inflation. Under rational expectations, agents understand the
incentives driving the actions of the central bank and on average their ex-
pectations coincide with realisations. Accordingly πe =

∫
πdF (z), where

F (z) is the distribution function of the signal z. Proposition 2 gives the full
characterisation of the rational expectations equilibrium and provides the
closed-form solution for expected inflation under the simplifying assumption
that k = µ

6 , the value used henceforth.9

Proposition 2 If the central bank has lexicographic preferences and output
is determined as in (2.1), there is a unique RE equilibrium, where π =

min
[
πe − 1

φ (z − 2k) , π
]
, or, more compactly, π = πe− 1

φ (max (z,Λ)− 2k),
where Λ = 2k + φ (πe − π). Expected inflation is found by solving
the equilibrium condition 2k = E [max (z,Λ)]. In the simplifying case
where k = µ

6 , the closed-form solution for expected inflation is known
9Setting k = µ

6 amounts to assuming that 2k + φ (πe − π) = 0 and implies that the central bank
chooses its best static response when z > 0, while it has no discretion for negative values of the signal.
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and is equal to πe = π − 2k
φ = π − µ

3φ .

Proof See the appendix.

Equilibrium is non-cooperative Nash: the central bank and the private sector
try to maximise their respective objective functions taking the other player’s
actions as given. The assumption of rational expectations implicitly defines
the loss function of the private sector as E (π − πe)2: given the public’s
understanding of the central bank’s decision problem, its choice of πe is the
one that minimises disutility.
From the expression for πe, it is apparent that the existence of an upper
bound on inflation helps to stabilise expected inflation: for any value of k,
the lower π, the lower expected inflation. Another feature of the policy
is that the larger the support of the output shock, the closer to zero πe.
The reason for this result is straightforward: positive (and larger than k)
output shocks trigger a reaction from the central bank, which creates negative
inflation surprises to stabilise output; large negative disturbances, on the
other hand, cannot be neutralised, because excessively high inflation rates
are not admissible. Widening the support of ε has an asymmetric effect on
the actions of the monetary authority: it extends the range of cases in which
the central bank finds it optimal to deflate but does not affect its incentives
to inflate.
Two features of the optimal monetary policy are worth stressing. First, for
values of the signal in the non-empty interval [−2µ, 0), inflation is constant
and equal to π, which is higher than πe: the central bank keeps price dynam-
ics above inflation expectations and thus sustains output, though it cannot
cushion it against shocks. Second, even in the face of favourable output
shocks, the policymaker cannot fully stabilise output at the desired level.
Two factors contribute to attenuate the policymaker’s response: uncertainty
about the output-inflation trade-off and non-observability of ε; the former
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reduces the response of the central bank by a factor of 2α
φ , while the latter

leaves part of the output shock, namely ε− z
2 , unchecked. Since

z
2 is an un-

biased estimate of ε, unobservability of the output shock increases volatility,
but does not affect the degree of activism of the policy response; on the con-
trary, unobservability of the output-inflation trade-off has a bearing on the
policy strategy, since it favours more cautious policies. It turns out that out-
put volatility is therefore smaller than µ2

3 , the variance of the output shock,
implying some degree of stabilisation on the side of monetary policy.
To assess the distinguishing traits of a lexicographic-preference policy, let us
contrast it with the optimal policy arising under the standard assumption
of quadratic loss function. If (2.4) describes the central bank’s problem, the
policy instrument is set according to the rule

π = α2+σ2
α

α2+σ2
α+β

πe + α
α2+σ2

α+β

(
k − z

2

)
= ρπe + ρ

φ (2k − z)

= πe − ρ
φz

(2.6)

where ρ ≡ α2+σ2
α

α2+σ2
α+β

, with 0 < ρ ≤ 1, and φ−1 ≡ 1
2

α
α2+σ2

α
, as in (2.5). Expected

inflation is equal to α
βk.

Several differences are apparent. When output shocks are not too strongly
negative, rule (2.5) ensures greater output stabilisation, as the increase in the
inflation rate required to counteract the supply disturbance does not have a
negative impact on welfare and hence does not bring a trade-off between the
output and the inflation objectives. The contrary holds when ε is large and
negative, because in that case output stabilisation is sacrificed to the primary
objective of price stability. More activist policies are possible at the cost of
greater inflation variability: in general10 there exists a value β such that,
for β ∈

(
β,∞

)
, output variability under lexicographic preferences (strategy

LEX) is lower than under quadratic utility (strategy QUA), and there exists
a value β such that, for β ∈

[
0, β
)
, E (π − πe)2 is smaller under strategy

10For a formal proof, see Locarno (2006), proposition 4.
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LEX. Since β < β, strategy LEX apparently cannot outperform strategy
QUA in terms of both objectives, but in reality this is not necessarily the
case, since what is important for social welfare is not E (π − πe)2 but Eπ2.
Under strategy LEX the central bank can use an additional instrument - the
upper bound on inflation π - to seek both lower output volatility and lower
mean square inflation: the reason why strategy LEX is appealing compared
with the Rogoff’s solution11 is that the reduction of the inflation bias does
not come at the cost of the output stabilisation objective;12 the drawback is
that it tends to stabilise output too much when π < π.

2.3 Adaptive learning and monetary policy regimes

In the real world, where shifts in policies and in the economic structure are
by no means rare, people must often determine how the environment has
changed and the least costly way of adapting decision rules to suit the new
framework. In such a context, strict application of the rational expectations
hypothesis (REH) is not a convincing theoretical solution. Alternatives have
long been suggested. Herbert Simon (1957), for instance, supported some
kind of bounded rationality and proposed to create a theory with behavioural
foundations where agents learn in the same way as econometricians. An
increasingly important literature building on the pioneering work of Bray
(1982) and Marcet and Sargent (1989), recently revived in particular by
Evans and Honkapohja, has introduced a specific form of bounded rationality
– adaptive learning – in which agents adjust their forecast rule as new data
becomes available. This approach provides an asymptotic justification for
the REH and allows us to ignore non-learnable solutions in models with

11See Rogoff (1985).
12This is easily seen by noting that the choice of π has no effect on the set of values of z corresponding

to inactive policies. This implies that it is always optimal for the policymaker to set π so that πe is equal
to zero.
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multiple equilibria. Convergence of the adaptive learning process may be
studied by checking the E-stability conditions, but the speed of convergence
is in general unknown. Benveniste, Metiver and Priouret (1990) show that
root-t convergence13 of the learning process holds when the real part of the
largest eigenvalue of the Jacobian of the ordinary differential equation (ODE)
is less than −1

2 . When this condition on the eigenvalues is not met, no
analytic results on the asymptotic distribution are known, since the influence
of the initial conditions fails to die out quickly enough. Marcet and Sargent
(1992) suggest a numerical procedure to obtain an estimate of the rate of
convergence. The starting point is the assumption that there is a δ for which

tδ (θt − θ)
D−→ F (2.7)

where θt is the vector of parameters of the perceived law of motion (PLM), θ
is its asymptotic limit and F is some non-degenerate, well-defined mean-zero
distribution. Marcet and Sargent show that, for large t, a good approximation
of the rate of convergence δ is given by the expression

δ =
1

log l
log

√
E (θt − θ)2

E (θtl − θ)2 (2.8)

The expectations can be approximated by simulating a large number of in-
dependent realisations of length t and tl (i.e. l times t), and calculating the
mean square across realisations.
In this section, adaptive learning is introduced to analyse the implications of
imperfect knowledge on policy outcomes. The question is how the interaction
between learning and central bank preferences affects aggregate welfare. For
the sake of clarity, first I consider the case in which only the private sector
learns; the model is then expanded to incorporate central bank learning.

13Root-t convergence means convergence at a rate of the same order as the root square of the sample
size.
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2.3.1 Private sector learning

Suppose that private agents have non-rational expectations, which they try to
correct through adaptive learning. Assume further that the policymaker does
not explicitly take agents’ learning into account and continues to set policy
according to either (2.5) or (2.6). The evolution of output and inflation is
therefore described by the system

y = α
(
π − ÊPπ

)
+ ε

π =

{
min

[
ÊCBπ − z

φ + 2k
φ , π

]
ρÊCBπ − ρ

φz + ρ
φ2k

(2.9)

where the inflation rate depends on the monetary authority’s preferences.
ÊPπ represents the current estimate of the inflation rate of the private sec-
tor, while ÊCBπ is the value of inflation expectations used in the central
bank’s control rule. It is assumed that private agents run regressions to set
ÊPπ, while the monetary authority, which observes ÊPπ before moving, has
rational expectations and therefore sets ÊCBπ = ÊPπ.
In each period t, private agents have a PLM for inflation, which they use to
make forecasts; it takes the form ÊPπt = πeP t,

14 where

πeP t = πeP t−1 +
1

t
(πt−1 − πeP t−1) (2.10)

As inflation fluctuates around its mean depending on the value of the signal z,
which is observed only by the central bank, private agents form expectations
about inflation assuming that it is a constant and equals the arithmetic mean
of past inflation rates.15

The estimate πeP t is updated over time using least squares; 1
t represents the

gain parameter, which is a decreasing function of the sample size. Equation
14A time index is used only when strictly necessary, for instance when tracking the evolution over time

of least squares learning.
15If agents knew π and prob (π = π ), they could also use the following PLM: prob (π < π )πePt +

prob (π = π )π, where πePt is defined as in (2.10) and prob (π < π ) + prob (π = π ) = 1. This choice
however would not affect the E-stability conditions.
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(2.10), in line with the literature, is in recursive form, uses data up to period
t − 1, and requires a starting value at time t = 0. The PLM has the same
form as the RE solution for expected inflation: private agents estimate the
parameter of the reduced form and set ÊPπt = πeP t.
Consider first the case in which the central bank acts as if it had a lexico-
graphic ordering of preferences. The actual law of motion (ALM) turns out
to be

πt =

{
πeP t −

zt
φ + 2k

φ

π

if zt ≥ 0

otherwise
(2.11)

The mapping between the PLM and the ALM generates the stochastic re-
cursive algorithm

πeP t =

{
πeP t−1 + 1

t

(
−zt−1

φ + 2k
φ

)
πeP t−1 + 1

t

(
π − πeP t−1

) if zt−1 ≥ 0

otherwise
(2.12)

which is approximated by the following ODE

d
dτπ

e
P = h (πeP ) = lim

t→∞
E (πt−1 − πeP ) (2.13)

where

lim
t→∞

E (πt−1 − πeP ) = (π − πeP )
0∫
−2µ

(
1

2µ + z
4µ2

)
dz +

2µ∫
0

(
− z
φ + 2k

φ

)(
1

2µ −
z

4µ2

)
dz

= 1
2 (π − πeP ) + k−µ/3

φ

= 1
2 (π − πeP )− µ

6φ

Notice that the fixed point of the ODE, namely πeP = h−1 (0) = π − 2k
φ =

π − µ
3φ , coincides with the unique RE equilibrium for expected inflation.

The theorems on the convergence of stochastic recursive algorithms can be
applied so that convergence is governed by the stability of the associated
ODE.16 Since d

dπeP
h (πeP ) = −1

2 < 0, the ODE is (globally) stable, and hence
adaptive learning converges asymptotically to the RE equilibrium. Notice

16Chapter 6 of Evans and Honkapohja (2001) studies the conditions under which the convergence of
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that the eigenvalue of h (πeP ) depends on the share of the support of z that
corresponds to an active policy: in general, root-t convergence does not hold.
Consider now the situation in which the central bank has quadratic pref-
erences. The optimal policy for the monetary authority is to set πt =

ρπeP t −
ρ
φzt + ρ

φ2k. Differently from the RE case, here the central bank does
not completely offset inflation expectations and the parameter k explicitly
enters the control rule: both features disappear asymptotically, provided that
πeP → πe = α

βk.
If agents use recursive least squares, then expectations evolve according to
the equation

πeP t = πeP t−1 + 1
t

(
πt−1 − πeP t−1

)
= πeP t−1 + 1

t

[
(ρ− 1)πeP t−1 −

ρ
φzt−1 + ρ

φ2k
]

(2.14)
and

h (πeP ) = lim
t→∞

E
[
(ρ− 1) πeP t −

ρ
φzt−1 + ρ

φ2k
]

= (ρ− 1)πeP + ρ
φ2k

(2.15)
Also in this case, the fixed point of the ODE, namely πeP = h−1 (0) =

ρ
(1−ρ)φ2k = α

βk, coincides with the unique RE equilibrium and the system
is (globally) stable. In fact, d

dπeP
h (πeP ) = ρ − 1 < 0, since ρ is positive and

smaller than one. Whether or not root-t convergence holds depends on the
size of β: the greater the weight the central bank attaches to the inflation
objective, the faster agents learn. The explanation of this result is easily
grasped. In order to offset output shocks the central bank must generate in-
flation surprises, i.e. move the inflation rate away from expectations, so that
stochastic recursive algorithms is guaranteed. In the case of interest, this is equivalent to a demonstration
that the process π, which is a linear function of z, is bounded and stationary and that the function driving
the updating of the projection parameter, namely πt−1 − πePt−1, is bounded and is twice countinuously
differentiable (with respect to both πt−1 and πePt−1), with bounded second derivatives. Whether stability
holds locally or globally depends on whether the regularity conditions hold on an open set around the
equilibrium or for all admissible values of πeP . These regularity conditions, in the present case, are clearly
met.
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in every period agents have to revise their estimate with values of π that
may differ substantially from the unconditional mean: the larger inflation
surprises (i.e. the lower β), the slower the learning process.
With lexicographic preferences, a similar result obtains: by reducing the sup-
port of the signal corresponding to an active policy (i.e. to a policy that aims
at avoiding excessive output fluctuations), expectations adjust more quickly
to the long-term equilibrium. Notice that for reasonable parameterization of
the model the value of β must be high in order for d

dπeP
h (πeP ) to be less than

−1
2 , meaning that only in the case of a highly inflation-averse central bank

will root-t convergence hold.
The previous result is interestingly similar to that of Orphanides andWilliams
(2002), who use a dynamic model based on aggregate supply and demand
equations. They find that, with imperfect knowledge, the ability of private
agents to forecast inflation depends on the monetary policy in place, with
forecast errors smaller on average when the central bank responds more ag-
gressively to inflationary pressures. Significantly improved economic perfor-
mance can be achieved by stronger emphasis on controlling inflation: more
aggressive policies reduce the persistence of inflation and facilitate the forma-
tion of expectations, which in turn enhances economic stability and mitigates
the effect of imperfect knowledge. Their conclusion turns out to be quite
similar to the Rogoff solution to the central bank’s credibility problem under
discretion: to improve welfare, the responsibility of the conduct of monetary
policy must be delegated to a policymaker who is more inflation-averse than
the society.

2.3.2 Private sector and central bank learning

I now consider the case in which α and σ2
α (or, alternatively, φ) are not

known to the policymaker. The central bank needs to estimate them, since
both parameters affect the policy rule via the degree of responsiveness to
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the signal z. As usual, I assume that they are gauged by least squares and
that the estimate is updated every time new realisations of y and π become
available. This form of bounded rationality corresponds to the case in which
ε is never observed, so that α and σ2

α cannot be estimated directly on the
basis of past realisations of the output shock.
To account for central bank learning, the previous model must be augmented
with a new set of recursive equations, which are the same irrespective of
the monetary authority’s preferences, as learning involves parameters rather
than variables so that the values to be estimated are not related to agents’
behaviour.
The system of recursive least squares equations is now the following

πeP t = πeP t−1 + 1
t

(
πt−1 − πeP t−1

)
α̂t = α̂t−1 + 1

tR
−1
π,t−1

(
πt−1 − πeP t−1

) [(
yt−1 − zt−1

2

)
− α̂t−1

(
πt−1 − πeP t−1

)]
Ry,t = Ry,t−1 + 1

t

[(
yt−1 − zt−1

2

)2 −Ry,t−1

]
Rπ,t = Rπ,t−1 + 1

t

[(
πt−1 − πeP t−1

)2 −Rπ,t−1

]
(2.16)

or, more compactly,

θt = θt−1 + 1
tQ (θt−1, Xt)

where θt =
(
πeP t, α̂t, Ry,t, Rπ,t

)′
and Xt = (1, αt, zt, εt)

′
. The first equation is

the same as in the previous section and captures private sector learning, while
the others refer to the central bank’s inference problem: α̂t is an estimate
of the mean value of the output-inflation trade-off; Ry,t measures the sample
variance of y− z

2 , the policy-driven component of the output gap;17 Rπ,t is the
second moment of the inflation surprise. As shown below, the central bank
calculates the statistics Ry,t and Rπ,t as an intermediate step in estimating
the optimal response coefficient to the signal z in the policy rule.

17Since E (ε|z) = z
2 , the difference y − z

2 represents an unbiased estimate of the share of the output
gap that depends on the inflation surprise only.
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While the recursion for Rπ,t is obvious, as it is simply the estimate of the
variance of the inflation surprise, the other two equations require some expla-
nation. To understand the recursion for α̂t, notice that the output equation
can be rearranged as

y − z
2 = α (π − πeP ) +

[
ε− z

2 + α̃ (π − πeP )
]

(2.17)

The central bank observes the signal z and can efficiently estimate α by
regressing y − z

2 on the inflation surprise (π − πeP ). Using y − z
2 as the

regressand allows for the elimination of the simultaneity bias: the inflation
surprise, being a linear function of the signal z only, is uncorrelated with
ε− z

2 – the residual of the regression of ε on z – and with α̃, by assumption
orthogonal to all other shocks in the model.
The justification for the recursion for Ry,t is somewhat more complicated.
A biased estimator of E

(
α2
)
can be obtained from the sample average of

the square of the policy-driven component of the output gap, scaled by the
second moment of the inflation surprise

E
(
y − z

2

)2

E (π − πeP )2 =
E
(
α2
)
E (π − πeP )2 + E

(
ε− z

2

)2

E (π − πeP )2 = α2 + σ2
α +

1
2
µ2

3

E (π − πeP )2

The bias is easily calculated, since it depends on E (π − πeP )2 and on known
parameters. The sample estimate of α2 + σ2

α is therefore obtained by using

the expression ψt ≡
Ry,t− 1

2
µ2

3

Rπ,t
.18

Whether the stochastic recursive algorithm converges or not depends on the
associated ODE, i.e. on the Jacobian of the matrix h (θ) = lim

t→∞
EQ (θ,Xt).

18An alternative could have been to regress
(
y − z

2

)2 on (π − πeP )
2. The drawback to this approach is

that the bias is a more convoluted function of the model parameters than in the case considered here.
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In the case of lexicographic preferences, it can be shown that the ODE is
d
dτπ

e
P

d
dτ α̂
d
dτRy

d
dτRπ

 = h (θ) =



1
2 (π − πeP )− α̂

2
Ry− 1

2
µ2

3
Rπ

µ
6

R−1
π E (π − πeP )2

(
α− α̂

)
E
(
y − z

2

)2 −Ry

E (π − πeP )2 −Rπ

 (2.18)

while for the standard quadratic case it is equal to
d
dτπ

e
P

d
dτ α̂
d
dτRy

d
dτRπ

 = h (θ) =


− β

Ry− 1
2
µ2

3
Rπ

+β

πeP + α̂

Ry− 1
2
µ2

3
Rπ

+β

µ
6

R−1
π E (π − πeP )2

(
α− α̂

)
E
(
y − z

2

)2 −Ry

E (π − πeP )2 −Rπ

 (2.19)

It is apparent that while the specific form of the loss function does not affect
the inference problem of the central bank, it does have a bearing on private
sector learning.
Both systems are recursive. Rπ → E (π − πeP )2 from any starting point,
which implies that R−1

π E (π − πeP )2 → I, provided that Rπ is invertible along
the path. The same goes for Ry. Hence, the stability of the differential equa-
tion for α̂ may be assessed regardless of the rest of the system. Conditional
on α̂, Ry and Rπ approaching the true parameter values, convergence to the
REE of private sector expectations is determined on the basis of the eigenval-
ues of the ODE for πeP . Note that the probability limit of the latter does not
depend on the information set of the central bank and is the same whether
or not the monetary authority knows the full structure of the economy. The
conditions for learnability of the REE under both lexicographic and quadratic
preferences are stated in the next proposition.

Proposition 3 Assume that the economy has agents that rely on adaptive
learning to form expectations; further assume that the central bank has
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only incomplete information about the structure of the economy and
uses recursive least squares (RLS) to estimate the unknown parameters.
Then the asymptotic behaviour of the system is described by (2.18)
and (2.19) and, regardless of whether the policymaker has quadratic
or lexicographic preferences, the discretionary REE is unique and E-
stable: the estimates

(
α̂t, ψt

)
converge locally to

(
α, α2 + σ2

α

)
and the

expectations of private agents tend in the limit to the RE values.

Proof See the appendix.

As in the case in which only the private sector learns, the effect of pref-
erences on the speed of convergence is not clear. For small values of β, a
central bank setting policy so as to minimise a quadratic loss function seems
to be less effective in driving the economy towards the REE; when β is high,
the opposite is true. However, positing imperfect knowledge for the cen-
tral bank adds a layer of interaction between monetary policy and economic
outcomes, and the dynamics of the model cannot be properly analysed by
focusing only on asymptotic distributions. In particular, when the learning
process is disturbed by shocks from several sources, the ODE becomes an
acceptable approximation to the stochastic recursive algorithm only for large
values of t, and the asymptotic distribution is of little help in understanding
the properties of the system. The problem is even more serious in models
where there are multiple equilibria, since in such cases, in early time periods,
when estimates are based on very few degrees of freedom, large shocks can
displace θt outside the domain of attraction of the ODE and the system can
therefore converge to any of the equilibrium points.19 It follows then that

19When there is a unique equilibrium and the ODE is stable, it can be shown that θt → θ∗ with
probability 1 from any starting point. When there are multiple equilibria, however, such a strong result
does not apply, unless one artificially constrains θt to an appropriate neighbourhood of the locally stable
equilibrium θ∗. In the earlier literature, local convergence was obtained by making an additional assump-
tion about the algorithm, known as the projection facility. As a reference, see Evans and Honkapohja
(2001), section 6.4.
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when the agents’ information set is severely constrained, both the asymptotic
and the finite sample behaviour of the system are relevant. Theoretical re-
sults are therefore no longer sufficient, necessitating simulation experiments
and numerical results.

2.4 Imperfect knowledge and policy effectiveness

Model simulations are used to show how learning affects the dynamic prop-
erties of inflation, inflation expectations and output. First the performance
of the forecasting rules is assessed; then the issue of the relative speed of
convergence is considered. The output-inflation variability trade-off under
alternative monetary regimes is also assessed: society, whose preferences are
quadratic, can appoint a central banker whose loss function is lexicographic
(strategy LEX) or quadratic (strategy QUA), depending on which monetary
regime is more welfare-enhancing. To account for the finding of Orphanides
and Williams (2002), that excessive stress on output stabilisation can pro-
duce episodes in which the public’s inflation expectations are uncoupled from
the policy objective, additional simulations mimic the impact of a string of
negative supply shocks on the economy. Finally, as a further check on the
extent to which the results depend on the learning mechanism selected, the
assumption of infinite memory is dropped and perpetual learning is consid-
ered.20

Each experiment runs 500 replications; all simulations cover an interval of
2000 periods; subsamples of 500 observations are also considered in order to
estimate the speed of convergence, as measured by the parameter δ, defined
in (2.8). Initial conditions for the lagged variables in the RLS algorithm are

20Perpetual learning is sometimes used as a synonym of constant-gain learning. A constant gain
algorithm is preferable when the agents believe that the economic environment is subject to frequent
structural changes. In such cases, observations from the distant past are no longer informative and can
be a source of distortion.
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drawn randomly from the distribution corresponding to the RE equilibrium.
The results reported in the tables are calculated excluding the first 150 peri-
ods, so as to minimise the impact of initial observations, which could be too
far away from the equilibrium solution. The model is calibrated according to
the estimates in Ellison and Valla (2001); the parameter values selected are
reported in Table 1. Concerning β, the relative weight of the inflation objec-
tive in the loss function, I consider three values, namely β = {.1765, 1, 5.666}.
Under lexicographic preferences, it is assumed that π is chosen so as to drive
inflation expectations to zero.

Table1: Baseline calibrated parameters
Parameter Value
α 1.75

σα 0.5

µ 0.0175

k 0.0029

Tables 2a and 3a report the simulation results. Table 2a describes the “plain”
RLS learning rule (unconstrained estimator, UE for short), while Table 3a
shows the results for constrained estimation (CE for short). The latter is
tantamount to imposing some minimal restriction on the admissible regions
of the estimates of α and α2 + σ2

α: in the first case it is assumed that only
positive values of α̂t are admissible, since positive inflation surprises cannot
have a negative impact on output; in the second, it is assumed that only
values of ψt greater than α̂t

2
are sensible, since variances cannot be negative.

The constraints act as substitutes for a projection facility :21 though they
21Convergence of the learning process to the REE almost surely holds when there is a unique solution

and the ODE is globally stable; in general, convergence with probability 1 is not guaranteed, since
the ODE is not a reliable approximation of the stochastic recursive algorithm for small values of t.
Almost sure convergence holds only when the algorithm is supplemented with a projection facility, i.e.
when θt is artificially constrained to remain in an appropriate neighbourhood of θ (see section 6.4 and
Corollary 6.8 in Evans and Honkapohja (2001)). The hypothesis of a projection facility however is often
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cannot guarantee almost sure convergence of the learning algorithm, they
can in principle reduce the number of non-convergent replications.
Expected inflation, the estimate of the policy rule coefficient, the standard
deviation of output and inflation and the performance index (PI) are re-
ported in the tables, as is the speed of convergence for πeP , α̂t and ψt. The
performance index is defined as

Ey2
LEX+βSEπ2

LEX

Ey2
QUA(βS)

+βSEπ2
QUA(βS)

or alternatively
Ey2

QUA(β)+β
SEπ2

QUA(β)

Ey2
QUA(βS)

+βSEπ2
QUA(βS)

depending on which strategy is evaluated. Ey2
LEX is the second moment of

output under strategy LEX and the other terms have a similar meaning; β
(i.e. the degree of inflation aversion in the central banker’s loss function) is
in general different from βS (i.e. the degree of inflation aversion for society),
though the case β = βS is also considered. The index is equal to the ratio
between the social loss function under the delegated policymaker and the loss
that would be obtained by appointing a central banker with the same pref-
erences as society’s: when PI < 1 it is efficient to delegate to a policymaker
with a utility function different from society’s. For ease of comparison, the
values of the performance index are also shown for the REE.
Regardless of central bank type, the estimates of expected inflation are pre-
cise but biased downward: the higher the values of β, the greater the accuracy
of the estimate of πeP . Imposing constraints on the support of α and α2 + σ2

α

diminishes the bias in the case of lexicographic preferences, but increases it in
the case of quadratic utility. One of the most striking findings is the modest
effect on the variability of output and inflation of assuming imperfect central
bank knowledge: the increase in volatility with respect to REE is surprisingly
small, in most cases just a few percentage points. This is remarkable, since
the estimation problem faced by the monetary authority is quite convoluted,
criticized, however, because it is not easily justified on economic grounds and is clearly inappropriate for
decentralised markets.
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involving non-linearities and the computing of higher order moments. In the
vast majority of cases, the increase in the volatility of output and inflation is
well below 10% regardless of the preferences of the central bank, suggesting
that the cost for the policymaker of having only partial knowledge of the
working of the economy is not disproportionately large. It is worth remem-
bering, though, that the model lacks intrinsic dynamics, which explains why
deviations from the REE tend to be short-lived.
The analysis of the performance index provides several insights into the rela-
tive efficiency of the two strategies. The first finding is that with decreasing
gain learning strategy LEX performs well regardless of the exact value of βS:
under UE it is at least as good as strategy QUA unless the degree of infla-
tion aversion is extremely great; under CE it is uniformly better. The second
finding is that the shorter the memory of the learning process, the poorer
the performance of strategy LEX, possibly because of the non-linearity of
the policy rule: when the policymaker has no discretion, the inflation sur-
prises do not yield information about the output-inflation trade-off and the
recursive estimates are less accurate, in particular when the sample is small.
The third finding is that the relative ranking of the two strategies is the
same regardless of the way expectations are formed, which suggests that the
learning process converges quite quickly to the REE. Closer inspection of the
simulation evidence shows that for low values of β, a central bank with lexico-
graphic preferences is more effective in keeping inflation expectations under
control and is also successful in stabilising output fluctuations, even when
bounds are not imposed on the RLS algorithm. When β is high the situation
is reversed. A downward bias is evident in the estimate of the parameter
that measures the response to the signal z, but it mostly disappears in the
CE case; the imprecision in guessing the value of 1

φ is responsible for some
undesired fluctuations in output, while the excessive volatility of inflation
is not attributable to the surprise component, but rather to movements in
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private sector inflation expectations, which under adaptive learning are not
constant as in the REE. Since the bounds imposed on the RLS algorithm
mimic the working of a projection facility, the rejection rate in the CE case
turns out to be substantially lower.22 Indeed, because of the complexity of
the filtering problem that the monetary authority faces, in a large number
of replications shocks displace the recursive algorithm outside of the domain
of attraction of the ODE and the estimate of the optimal response coeffi-
cient in the policy rule remains far off the true value. If the estimate of φ
is very large at time t, the monetary authority has no incentive to respond
aggressively to the signal z and changes in y mostly reflect output shocks ε:
the data become uninformative about the output-inflation trade-off and the
estimate of φ gets larger and larger. Expectations become self-fulfilling and
the economy gets stuck indefinitely on a suboptimal path, characterised by
excessively passive monetary policy, as if the policymaker’s degree of inflation
aversion were enormously higher than society’s.
Except for high βs, strategy QUA is outperformed by strategy LEX, but it is
more effective in enhancing agents’ learning process, as we can see from the
more precise estimate of the policy rule coefficient, which guarantees that
the equilibrium under imperfect knowledge matches the REE very closely.
There is no clear evidence that excessively low or high inflation aversion has
repercussions on the accuracy of the estimate of ρ

φ . As to the speed of con-
22The rejection rate is calculated on the basis of the estimated value of the second moment of the

output-inflation trade-off. Replications are considered as diverging if the estimate of α2 + σ2
α is at

least three times the true value. The first 150 observations are not used. In the case of lexicographic
preferences, absent constraints, the rejection rate turns out to be quite high (some 20%); it falls by a
factor of 4 if the RLS algorithm is augmented with lower bounds. In the case of quadratic preferences,
the number of diverging replications is on average much smaller and so is the gain obtained by imposing
constraints on the learning process; for high βs, however, the rejection rate rises towards that observed
under lexicographic preferences. The estimated number of diverging replications decreases significantly if
less restrictive criteria are used. Notice that divergence pertains to central bank learning and is defined
in terms of the estimates of the policy parameters 1

φ and ρ
φ , which become very close to zero: neither the

output gap nor the inflation rate actually deviates boundlessly from equilibrium.
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vergence, the two rules are roughly equivalent, although under CE strategy
LEX seems to be preferable; δ is very close to one half, so that convergence
to a Gaussian distribution of both sequences {θt}LEX and {θt}QUA cannot be
ruled out. As expected, strategy QUA reduces output variability more than
strategy LEX when β is low, while the opposite holds when inflation aversion
is very high. The simulation results confirm that when learning is posited in
lieu of rational expectations, a bias against activist policies arises. Hawkish
policies are welfare-enhancing because they offset the negative impact of two
distortions: (i) the policymaker’s desire to push output above the natural
level and (ii) the uncoupling of expectations from policy objectives. Whereas
the latter distortion is considered in Orphanides and Williams (2002), the
former is not.
Tables 2b and 3b present evidence for the case of perpetual learning; the
statistics for speed of convergence are not shown, of course, since under
constant-gain learning θt may converge at most to a probability distribution,
not to a non-stochastic point. No meaningful differences from the previous
case are apparent. Given the structure of the model, there is no benefit in
discarding observations, so it is no surprise that in most cases RLS estimates
are less accurate and policies are less successful in stabilising both output
and inflation; the deterioration in policy effectiveness seems to be relatively
greater for strategy LEX.
The evidence suggests that a benevolent government may be better off ap-
pointing a central banker whose preferences are lexicographic if the degree
of inflation aversion is not known with certainty or if it changes over time,
since strategy LEX can very nearly maximise welfare for a large set of val-
ues of βS. Strategy LEX can be implemented by giving the central bank a
mandate specifying an upper (and possibly a lower) bound on inflation and
not requiring the government to find the perfect policymaker with the right

61



preferences.23

An additional set of simulations were run to analyse the dynamic response of
output and inflation to a sequence of unanticipated shocks. The experiment
postulates that the economy is hit by a string of negative output shocks that
decline gradually in magnitude and vanish after 12 periods. With rational
expectations, the impact of the shocks is short-lived and causes only a tem-
porary fall in output and a rise in inflation, while under imperfect knowledge
the response of the economy is prolonged and amplified by agents’ learning.
The experiment tests whether the finding of Orphanides and Williams (2002)
that activist policies ultimately cause the perceived process for inflation to
be uncoupled from the policymaker’s objectives, is generally applicable and
extends also to the theoretical framework adopted here.
Tables 4a and 4b report the outcome of the experiment. Regardless of the
central bank’s preferences, activist policies would not appear to pay off: the
lower β, the more volatile inflation and output, especially the latter. The
simulation supports the Rogoff’s thesis that it is welfare-improving to appoint
a central banker who attaches greater relative importance to the inflation
objective than society does. No policy can effectively offset the impact on
economic activity of a sequence of negative output shocks: it still pays off
to be hawkish, but the attempts to reduce inflation volatility translate into
output fluctuations that are much wider than under rational expectations.
What worsens the performance of monetary policy is the uncoupling between
expectations and policy targets: since expectation depends on past values of
inflation, they cannot be easily anchored, unless the policymaker acts like an
inflation nutter. According to the performance index, strategy LEX is highly

23This feature also characterises inflation zone targeting, see Mishkin and Westelius (2006). It is easy
to see that when the cost of overshooting the upper or undershooting the lower bound is extremely large
(C −→∞ in Mishkin’s and Westelius’ notation) and the policymaker does not care greatly about inflation
varibility inside the range (ωπ −→ 0), strategy LEX and inflation zone targeting become more and more
alike.
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successful in promoting social welfare. In the UE case, except for very high
values of β, it is more effective than strategy QUA, and in the CE case, it is
uniformly better. A central banker endowed with lexicographic preferences
ensures both robustness and effectiveness of monetary policy.

2.5 Conclusions

The essay presented in this chapter focuses on the implications for the effec-
tiveness of monetary policymaking of discarding the assumption of rational
expectations and applies a principal-agent approach to deal with the time-
inconsistency problem that arises when the central bank cannot commit. It is
assumed that society can delegate monetary policy to a central banker with
either quadratic or lexicographic preferences. Special attention is paid to the
latter case, which seems a better fit with the objectives of inflation-targeting
central banks. The main focus is on validating the hypothesis that policies
designed to be efficient under rational expectations can perform very poorly
when knowledge is incomplete and agents learn adaptively.
The evidence produced confirms that when agents do not possess complete
knowledge on the structure of the economy and rely instead on an adap-
tive learning technology, a bias toward conservatism arises, suggesting that
society is better off by appointing a policymaker whose degree of inflation
aversion is higher than its own. The explanation is that agents’ and policy-
makers’ attempts to learn adaptively introduce inertia into the system and
induce prolonged deviations of output and inflation from target, thereby rais-
ing the costs for the central bank of not responding promptly and forcefully
to shocks. The chapter also shows that the strategy of implementing a lexi-
cographic preference ordering performs very well, on average. It comes close
to maximising social welfare for a wide range of values of βS and outper-
forms the quadratic-preference strategies unless society is extremely inflation
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averse.
These findings tally closely with those of Orphanides and Williams (2002),
which is surprising given the differences in the theoretical framework. First,
the model adopted here has no intrinsic dynamics, and the only source of
persistence is the assumption that agents learn adaptively: the uncoupling
between actual and perceived inflation is much less probable with such a
simple dynamic structure, though presumably the lack of dynamics in the
economy is compensated for by the inertia induced by the efforts of the
central bank to estimate the mean and variance of the output-inflation trade-
off. Second, though only inflation expectations have a direct impact on the
equilibrium outcome, output gap uncertainty does affect the central bank’s
estimates of the moments of α and hence the policy setting: it is by no means
obvious that a strategy that penalises output variability will be conducive to
higher welfare. The justification for the bias in favour of hawkish policies lies
in the role of central bank learning: excessively activist policies reduce the
information content of the output gap and make estimates of the coefficients
of the policy rule too volatile and unreliable.

2.6 Appendix

Proof of Lemma 1. Consider first two random variables, u and v,

defined on the unit segment [0, 1]. Their sum, w = u + v, is defined on
the close interval [0, 2]. The distribution function of w, for 0 ≤ w ≤ 1,

is given by H (w) =
w∫
0

du
w−u∫
0

dv = w2

2 , while, for value of w comprised

in the interval (1, 2], it is equal to H (w) =
w∫
0

du
w−u∫
0

dv −
w∫
1

du
w−u∫
0

dv −
w∫
1

dv
w−v∫
0

du = 1 − (2−w)
2

2 . The corresponding density function is h (w) = w

for 0 ≤ w ≤ 1 and h (w) = 2 − w for 1 < w ≤ 2, or, more compactly,

64



h (w) = min [w, 1]−max [0, w − 1].
Consider now the case in which the two random variables, rather than having
support on the unit interval, are both defined on [−µ, µ]. One can write
ε = −µ+2µu and ξ = −µ+2µv; their sum, z = ε+ξ = −2µ+2µ (u+ v) =

−2µ + 2µw, is a linear transformation of the random variable w, i.e. z =

g (w). One can use the change-of-variable technique to compute the density
function f (·) of the variable z, i.e. f (z) =

∣∣ d
dzg
−1 (z)

∣∣h (g−1 (z)
)
. Since

g−1 (z) = 1 + z
2µ and

∣∣ d
dzg
−1 (z)

∣∣ = 1
2µ , one has that

for − 2µ ≤ z ≤ 0 f (z) =
(

1 + z
2µ

) ∣∣∣ ddz (1 + z
2µ

)∣∣∣ = 1
2µ + z

4µ2

for 0 ≤ z ≤ 2µ f (z) =
[
2−

(
1 + z

2µ

)] ∣∣∣ ddz (1 + z
2µ

)∣∣∣ = 1
2µ −

z
4µ2

which can be written in a more compact way as f (z) = 1
2µ+ 1

4µ2 [min (z, 0)−max (0, z)].
The corresponding distribution function is

for − 2µ ≤ z ≤ 0 F (z) = 1
8µ2 (2µ+ z)2

for 0 ≤ z ≤ 2µ F (z) = 1− 1
8µ2 (2µ− z)2

Proof of Proposition 1. By definition, E (ε|z) =
∫
D

εf (ε|z) dε =
∫
D

εf1(z|ε)f2(ε)
f3(z) dε,

where fi (·), i = 1, 2, 3, denotes a (conditional or marginal) density function,
and D is the domain of ε|z, which clearly depends on the current realisation
of the signal z. The density function of z conditional on ε is the same as the
density function of ξ, which is 1

2µ , while the probability law of z, as shown
in Lemma 1, is f3 (z) = 1

2µ + 1
4µ2 [min (z, 0)−max (0, z)]. It follows that

E (ε|z) =
∫
D

εf (ε|z) dε =
∫
D

ε
1

2µ ·
1

2µ
1

2µ+ 1
4µ2 [min(z,0)−max(0,z)]

dε

=
∫
D

ε
2µ+min(z,0)−max(0,z)dε

The remaining problem is to find D, the support of ε|z. Since ε = z − ξ, a
given value z of the signal shifts the support of the random variable ε, which
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becomes D = [−µ, µ] ∩ [−µ+ z, µ+ z]. Two cases are possible, depending
on whether z is positive or negative. If z = −z1 < 0, then ε ∈ [−µ,−z1 + µ]

and

E (ε|z) =
−z1+µ∫
−µ

ε
2µ−z1

dε = 1
2µ−z1

ε2

2

∣∣∣−z1+µ

−µ
= 1

2µ−z1

(−z1+µ)
2−µ2

2 =

1
2µ−z1

z1(z1−2µ)
2 = −z1

2 = z
2

If, instead, z = z2 > 0, then ε ∈ [−µ+ z2, µ] and

E (ε|z) =
µ∫

−µ+z2

ε
2µ−z2

dε = 1
2µ−z2

ε2

2

∣∣∣µ
−µ+z2

= 1
2µ−z2

µ2−(z2−µ)
2

2 =

1
2µ−z2

z2(2µ−z2)
2 = z2

2 = z
2

Notwithstanding the distribution of the variables is not normal, the optimal
estimate for the unobserved shock ε is the same as in the (standard) case of
a Gaussian variable.

Proof of Proposition 2. If the output shock is not too unfavourable, the
central bank’s problem has an internal solution, obtained from the first order
condition

E [α (α (π − πe) + ε− k)] = E
(
α2
)

(π − πe) + E (α)
(z

2
− k
)

= 0

The optimal inflation rate is therefore

π = πe − α
α2+σ2

α

(
z
2 − k

)
= πe − 1

φ (z − 2k)

where φ−1 ≡ α
α2+σ2

α

1
2 . If instead z signals a value of ε close to −µ, the

value of π minimising the loss function is not admissible and the central
bank will choose π = π. The optimal strategy for the monetary authority
is therefore the one described by (2.5), i.e. π = πe − 1

φ (max (z,Λ)− 2k),
where Λ = 2k + φ (πe − π).
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The upper bound on inflation implies that π = πe − 1
φ (z − 2k) ≤ π, which

holds for z ∈ [2k + φ (πe − π) , 2µ]: the higher k, the higher expected infla-
tion and the smaller the probability that the central bank succeeds in stabil-
ising output. Since the density function of the signal has a kink at zero, it
matters for the computation of expected inflation whether 2k+φ (πe − π) is
positive or negative, for its value determines how the support of the signal is
split.
In a RE equilibrium, beliefs are on average correct, implying that πe = Eπ,
which holds when 2k = E [max (z,Λ)]. When the previous condition is
satisfied, Λ is determined and so is πe. The proof of the existence and
uniqueness of the RE equilibrium runs as follows. First, let us rewrite the
left-hand side of the previous equality as 2k = Λ − φ (πe − π) > Λ (as π >
πe for k < µ and π = πe otherwise). Then, let us divide everything by 2µ,
so that the equilibrium condition becomes:

λ− φ (πe − π)

2µ
= E (max [x, λ]) (A1)

where x = z/ (2µ) is a random variable with support on the interval [−1, 1]

and λ = Λ/ (2µ).
A straightforward application of the change-of-variable formula gives the den-
sity function of x, which is f (x) = 1 + [min (x, 0)−max (0, x)] = 1 − |x|.
In order to compute E (max [x, λ]) it is necessary to study how the func-
tion max [x, λ] changes as λ increases from −∞ to +∞. Three cases are
to be distinguished: (1) if λ 6 −1, max [x, λ] = x for all x in [−1, 1]; (2)
if λ ∈ (−1, 1), max [x, λ] = λ for −1 < x < λ and max [x, λ] = x for
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λ 6 x < 1; (3) if λ > 1, max [x, λ] = λ. Accordingly,

E (max [x, λ]) =



I (λ < −1) ·
1∫
−1

x (1− |x|) dx

+ I (−1 6 λ < 0) ·

{
λ∫
−1

λ (1 + x) dx+
1∫
λ

x (1− |x|) dx

}

+ I (0 6 λ 6 1) ·

{
λ∫
−1

λ (1− |x|) dx+
1∫
λ

x (1− x) dx

}
+ I (λ > 1) · λ

where I (·) is the indicator function. After computing the integrals, the
previous expression for E (max [x, λ]) simplifies to

E (max [x, λ]) = 0 · I (λ < −1) + 1
6 (1 + λ)3 · I (−1 6 λ < 0)

+ 1
6

(
1 + 3λ+ 3λ2 − λ3

)
· I (0 6 λ 6 1) + λ · I (λ > 1)

The intersection between E (max [x, λ]) and the straight line λ − φ(πe−π)
2µ

detects a value of λ – which depends on k – that pinpoints the RE equilibrium:
πe is obtained as πe = π + 2µ

φ

(
λ (k)− 2k

2µ

)
.

The equilibrium exists because the left-hand side of equation (A1) is below
the right-hand side for low values of λ, while it is above it for high values
of λ: as both functions are continuous, they must cross at least once. The
equilibrium is unique because the slope of E [max (x, λ)] is never greater
than that of λ − φ(πe−π)

2µ and accordingly there cannot be more than one
intersection.24

In the general case, to determine πe it is necessary to solve a third-order
polynomial, but the analysis is greatly simplified if one sets 2k+φ (πe − π) =

0 equal to zero. Under this assumption, expected inflation is the solution to
the following equation

24For λ 6 −1 the slope of E [max (x, λ)] is 0; for λ ∈ (−1, 1) it is positive but below 1; for λ > 1

it is equal to 1. The slope of λ − φ(πe−π)
2µ on the other hand is always equal to 1. The only case when

there are multiple solutions (actually infinite ones) is when the functions E [max (x, λ)] and λ− φ(πe−π)
2µ

overlap for λ > 1, which happens when k > 2µ, implying π = πe = π for all values of the supply shock ε.
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πe =
0∫
−2µ

π
(

1
2µ + z

4µ2

)
dz +

2µ∫
0

(
πe − z−2k

φ

)(
1

2µ −
z

4µ2

)
dz

= π
2 + 1

2

(
πe + 2k

φ

)
−

2µ∫
0

z
φ

(
1

2µ −
z

4µ2

)
dz

= π
2 + 1

2

(
πe + 2k

φ

)
− µ

3φ

Expected inflation is therefore πe = π + 2k
φ −

2µ
3φ , which simplifies to

πe = π − µ

3φ

once k is substituted out using the restriction 2k + φ (πe − π) = 0. The
implied value of the target level of output is k = φ(π−πe)

2 = µ
6 .

Proof of Proposition 3. Regardless of the preferences of the monetary
authority, the recursive system representing the learning process is of the

form θt = θt−1 + 1
tQ (θt−1, Xt), where θt =

(
πeP t, α̂t, Ry,t, Rπ,t

)′
and Xt =

(1, αt, zt, εt). To show the asymptotic stability of the REE under learning,
the procedure is the following: first, it must be verified that there exists a
non-trivial open domain that contains the equilibrium point and in which the
learning algorithm satisfies a few regularity conditions concerning the updat-
ing functionQ (θt−1, Xt) and the stochastic process driving the state variables
Xt (θt−1); second, the local (or global) stability of the ODE associated to the
stochastic recursive system must be established.
Consider first the case of lexicographic preferences. The system (2.16) has a
unique equilibrium point θ∗, where πeP = π − µ/3

φ , , α̂ = α, Rπ = 2
3φ2

(
µ2

3

)
and Ry =

(
α2 + σ2

α

) [
2

3φ2

(
µ2

3

)]
+ 1

2
µ2

3 . It can be easily seen that θ∗ is the
REE. The stochastic process Xt (θt−1) is white noise, with finite absolute mo-
ments, so that regularity conditions (B.1) and (B.2) in Evans and Honkapohja
(2001) are satisfied.25 In addition, the gain sequence approaches zero asymp-
totically and is not summable. Finally, provided that Rπ and Ry are non

25Chapter 6 in Evans and Honkapohja (2001) lists the regularity conditions required for the assessment
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zero along the learning path, Q (θt−1, Xt) satisfies a Lipschitz condition26

on a compact set containing the equilibrium point θ∗, which ensures that
regularity conditions (A.1)-(A.3) in Evans and Honkapohja (2001) are also
met. Convergence of the learning process to the REE hinges therefore on
the stability of the associated ODE (2.18). The system is recursive and the
asymptotic behaviour of the subsystem describing central bank learning can
be assessed independently of the expectations formation mechanism of the
private agents. Indeed, provided that Rπ and Ry are invertible along the
convergence path, Ry → E

(
y − z

2

)2 and Rπ → E (π − πeP )2 from any start-
ing point. As R−1

π E (π − πeP )2 → I , it is easily seen that α̂t → α, since
the eigenvalue of the Jacobian of the corresponding differential equation has
a negative real part. Conditional on α̂t → α, convergence of private sector
inflation forecasts follows, since the associated ODE is stable.
A more formal proof of the convergence of the learning process to the REE
requires proving that the Jacobian of the ODE, evaluated at the REE θ∗,
has eigenvalues whose real parts are negative. In order to show that this is
indeed the case, first note that Rπ = E (π − πeP )2 at θ∗, implying that Rπ

does not appear in the first three equations of the ODE evaluated at θ∗. A
similar result holds for Ry. In the last two equations, the derivatives of Rπ

and Ry (and, accordingly, of E (π − πeP )2 and E
(
y − z

2

)2) cancel out, so that
the Jacobian has the following upper triangular, block-recursive structure:

Dh (θ∗) =


−1

2 −
1

α2+σ2
α

µ
12

3
2µ

1
α −

3
2µ

α2+σ2
α

α

0 −1 0 0

0 0 −1 0

0 0 0 −1


It is easily checked that its eigenvalues are

(
−1

2 ,−1,−1,−1
)
. They are all

of the asymptotic behaviour of the stochastic recursive algorithm. Local stability is treated in section
6.2, while global convergence is analysed in section 6.7.

26Q (θt−1, Xt) satisfies a Lipschitz condition if it is bounded and twice continuously differentiable, with
bounded second derivatives.
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negative and the system is therefore E-stable.
Consider now the case of quadratic preferences. The unique equilibrium
point θ∗ of the system (2.16) is now πeP = α

βk, , α̂ = α, Rπ = E (π − πeP )2 =

2
(
ρ
φ

)2 (
µ2

3

)
and Ry = E

(
y − z

2

)2
=
(
α2 + σ2

α

) [
2
(
ρ
φ

)2 (
µ2

3

)]
+ 1

2
µ2

3 . The

stochastic process Xt (θt−1) is independent of θ and is the same as in the
previous case, so that regularity conditions (B.1) and (B.2) in Evans and
Honkapohja (2001) are satisfied. The same holds for the assumptions (A.1)-
(A.3) on the gain sequence and the updating function Q (θt−1, Xt). The
stability of the associated ODE (2.19) can be proved in the same way as
for the system (2.18). Provided that Rπ and Ry are invertible along the
convergence path, Rπ → E (π − πeP )2 from any starting point; central bank
estimates converge to the true parameter values α, since the eigenvalue of
the Jacobian of the corresponding differential equation has a negative real
part, and πeP → α

βk, since the associated ODE is stable.
As in the previous case, the structure of the Jacobian justifies the sequential
solution of the system. At θ∗, the derivative matrix of the ODE (2.19) is
equal to

Dh (θ∗) =


− β
α2+σ2

α+β
1

α2+σ2
α+β

µ
6 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


The lower block for Rπ and Ry can be solved first; then, triangularity of the
upper block ensures that convergence for α̂t does not depend on the asymp-
totic behaviour of πeP t. The eigenvalues of the Jacobian are

(
− β
α2+σ2

α+β
,−1,−1,−1

)
and the system is therefore E-stable.
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RE T=2000 RE T=2000

0.0000 -0.0005 0.0289 0.0283
0.2642 0.1807 0.2508 0.2308

output variability 0.0084 0.0088 0.0074 0.0076
inflation variability 0.0022 0.0023 0.0291 0.0298

0.3494 0.3628 1.0000 1.0000
0.8203 0.8453 9.8428 9.7605
1.0925 1.1462 54.5380 55.0000

0.0000 -0.0005 0.0051 0.0048
0.2642 0.1807 0.2029 0.1844
0.0084 0.0088 0.0076 0.0078
0.0022 0.0023 0.0059 0.0059

0.3494 0.3628 0.3105 0.3168
0.8203 0.8453 1.0000 1.0000
1.0925 1.1462 2.8307 2.8287

0.0000 -0.0005 0.0009 0.0008
0.2642 0.1807 0.0975 0.0775

output variability 0.0084 0.0088 0.0086 0.0088
inflation variability 0.0022 0.0023 0.0017 0.0016

0.3494 0.3628 0.3627 0.3680
0.8203 0.8453 0.8319 0.8340
1.0925 1.1462 1.0000 1.0000

output variability

πe
P:    δ = 0.3570πe

P:    δ = 0.3351
α:      δ = 0.4951
ψ:     δ = 0.4609

α:      δ = 0.2435
ψ:     δ = 0.4884

α:      δ = 0.3642
πe

P:    δ = 0.4080

α:      δ = 0.2728
πe

P:    δ = 0.2185

ψ:     δ = 0.4892

Table 2a - Least squares learning and the volatility of output and inflation
(unconstrained estimator - decreasing gain sequence)

The table reports the estimated value (in 500 replications) of expected inflation, the coefficient of the optimal policy
rule, the standard deviation of output and inflation, the performance index and the rate at which estimates of πe

P, α 
and ψ converge to the REE. The performance index is the ratio between the social loss function under the delegated
policymaker and that that would have been obtained by appointing a central banker with the same preferences as
society's. Agents are assumed to have infinite memory, implying a decreasing gain sequence. Recursive least
squares estimates are unconstrained (UE case). In columns 1 and 3, the RE values for lexicographic and,
respectively, quadratic preferences are shown; in columns 2 and 4, the same statistics are presented for the case
when agents learn.  

Lexicographic preferences Quadratic preferences

β = 0.176

β =1.0

policy rule coefficient

convergence speed

Performance index: βS=0.176
Performance index: βS=1.0
Performance index: βS=5.667

β =5.667

mean πe
P

convergence speed

ψ:     δ = 0.4609 ψ:     δ = 0.4891

πe
P:    δ = 0.3351

α:      δ = 0.4951

Performance index: βS=0.176
Performance index: βS=1.0

mean πe
P

mean πe
P

ψ:     δ = 0.4609
α:      δ = 0.4951

policy rule coefficient

Performance index: βS=5.667

Performance index: βS=0.176
Performance index: βS=1.0
Performance index: βS=5.667

policy rule coefficient

πe
P:    δ = 0.3351convergence speed

inflation variability



RE T=2000 RE T=2000

0.0000 -0.0005 0.0289 0.0288
0.2642 0.2084 0.2508 0.2001

output variability 0.0084 0.0090 0.0074 0.0076
inflation variability 0.0022 0.0026 0.0291 0.0291

0.3494 0.3974 1.0000 1.0000
0.8203 0.9326 9.8428 1.2276
1.0925 1.2008 54.5380 48.8786

0.0000 -0.0005 0.0051 0.0051
0.2642 0.2084 0.2029 0.4747
0.0084 0.0090 0.0076 0.0077
0.0022 0.0026 0.0059 0.0059

0.3494 0.3974 0.3105 0.3163
0.8203 0.9326 1.0000 1.0000
1.0925 1.2008 2.8307 2.5821

0.0000 -0.0005 0.0009 0.0009
0.2642 0.2084 0.0975 0.0503

output variability 0.0084 0.0090 0.0086 0.0090
inflation variability 0.0022 0.0026 0.0017 0.0018

0.3494 0.3974 0.3627 0.3944
0.8203 0.9326 0.8319 0.8952
1.0925 1.2008 1.0000 1.0000Performance index: βS=5.667

policy rule coefficient

Performance index: βS=0.176

β =1.0

policy rule coefficient

policy rule coefficient

inflation variability

Performance index: βS=5.667

Performance index: βS=1.0

Performance index: βS=0.176
Performance index: βS=1.0

β =5.667

mean πe
P

Performance index: βS=1.0

Table 2b - Least squares learning and the volatility of output and inflation
(unconstrained estimator - constant gain sequence)

The table reports the estimated value (in 500 replications) of expected inflation, the coefficient of the optimal policy
rule, the standard deviation of output and inflation and the performance index. The performance index is the ratio
between the social loss function under the delegated policymaker and that that would have been obtained by
appointing a central banker with the same preferences as society's. Agents are assumed to use a finite number of
observations in computing RLS estimates, implying a constant gain sequence. Recursive least squares estimates
are unconstrained (UE case). In columns 1 and 3, the RE values for lexicographic and, respectively, quadratic
preferences are shown; in columns 2 and 4, the same statistics are presented for the case when agents learn.

Lexicographic preferences Quadratic preferences

Performance index: βS=5.667

mean πe
P

output variability

mean πe
P

Performance index: βS=0.176

β = 0.176



RE T=2000 RE T=2000

0.0000 -0.0003 0.0289 0.0267
0.2642 0.2365 0.2508 0.2411

output variability 0.0084 0.0087 0.0074 0.0075
inflation variability 0.0022 0.0025 0.0291 0.0271

0.3494 0.4153 1.0000 1.0000
0.8203 0.9092 9.8428 8.7535
1.0925 0.7491 54.5380 28.4679

0.0000 -0.0003 0.0051 0.0047
0.2642 0.2365 0.2029 0.1913
0.0084 0.0087 0.0076 0.0077
0.0022 0.0025 0.0059 0.0056

0.3494 0.4153 0.3105 0.3475
0.8203 0.9092 1.0000 1.0000
1.0925 0.7491 2.8307 1.5986

0.0000 -0.0003 0.0009 0.0014
0.2642 0.2365 0.0975 0.0805

output variability 0.0084 0.0087 0.0086 0.0105
inflation variability 0.0022 0.0025 0.0017 0.0026

0.3494 0.4153 0.3627 0.6033
0.8203 0.9092 0.8319 1.2990
1.0925 0.7491 1.0000 1.0000Performance index: βS=5.667

Performance index: βS=0.176
Performance index: βS=1.0
Performance index: βS=5.667

Performance index: βS=1.0

β =5.667

mean πe
P

convergence speed

ψ:     δ = 0.4870
α:      δ = 0.4544
πe

P:    δ = 0.3331

Performance index: βS=0.176

inflation variability

policy rule coefficient

output variability

πe
P:    δ = 0.4193

α:      δ = 0.4670

ψ:     δ = 0.4765

ψ:     δ = 0.4765

πe
P:    δ = 0.4193

α:      δ = 0.4670

β = 0.176

β =1.0

mean πe
P

Performance index: βS=1.0
Performance index: βS=5.667

Performance index: βS=0.176

Table 3a -  Least squares learning and the volatility of output and inflation
(constrained estimator - decreasing gain sequence)

The table reports the estimated value (in 500 replications) of expected inflation, the coefficient of the optimal policy
rule, the standard deviation of output and inflation, the performance index and the rate at which estimates of πe

P, α 
and ψ converge to the REE. The performance index is the ratio between the social loss function under the delegated
policymaker and that that would have been obtained by appointing a central banker with the same preferences as
society's. Agents are assumed to have infinite memory, implying a decreasing gain sequence. Recursive least
squares estimates are constrained to belong to a subset of the parameter space (CE case). In columns 1 and 3, the
RE values for lexicographic and, respectively, quadratic preferences are shown; in columns 2 and 4, the same
statistics are presented for the case when agents learn.  

Lexicographic preferences Quadratic preferences

α:      δ = 0.4525
πe

P:    δ = 0.1616

ψ:     δ = 0.4918

policy rule coefficient

convergence speed

policy rule coefficient

πe
P:    δ = 0.2972πe

P:    δ = 0.4193
α:      δ = 0.4670
ψ:     δ = 0.4765

α:      δ = 0.4557
ψ:     δ = 0.4892

convergence speed

mean πe
P



RE T=2000 RE T=2000

0.0000 -0.0003 0.0289 0.0288
0.2642 0.1917 0.2508 0.2070

output variability 0.0084 0.0101 0.0074 0.0075
inflation variability 0.0022 0.0023 0.0291 0.0290

0.3494 0.5040 1.0000 1.0000
0.8203 1.1546 9.8428 9.6551
1.0925 1.4084 54.5380 51.4546

0.0000 -0.0003 0.0051 0.0051
0.2642 0.1917 0.2029 0.1603
0.0084 0.0101 0.0076 0.0077
0.0022 0.0023 0.0059 0.0058

0.3494 0.5040 0.3105 0.3192
0.8203 1.1546 1.0000 1.0000
1.0925 1.4084 2.8307 2.6668

0.0000 -0.0003 0.0009 0.0009
0.2642 0.1917 0.0975 0.0588

output variability 0.0084 0.0101 0.0086 0.0089
inflation variability 0.0022 0.0023 0.0017 0.0016

0.3494 0.5040 0.3627 0.3900
0.8203 1.1546 0.8319 0.8799
1.0925 1.4084 1.0000 1.0000

Performance index: βS=5.667

Table 3b -  Least squares learning and the volatility of output and inflation
(constrained estimator - constant gain sequence)

The table reports the estimated value (in 500 replications) of expected inflation, the coefficient of the optimal policy
rule, the standard deviation of output and inflation and the performance index. The performance index is the ratio
between the social loss function under the delegated policymaker and that that would have been obtained by
appointing a central banker with the same preferences as society's. Agents are assumed to use a finite number of
observations in computing RLS estimates, implying a constant gain sequence. Recursive least squares estimates
are constrained to belong to a subset of the parameter space (CE case). In columns 1 and 3, the RE values for
lexicographic and, respectively, quadratic preferences are shown; in columns 2 and 4, the same statistics are
presented for the case when agents learn.

Lexicographic preferences Quadratic preferences

inflation variability
output variability

Performance index: βS=0.176
Performance index: βS=1.0

policy rule coefficient

mean πe
P

β = 0.176

β =1.0

mean πe
P

policy rule coefficient

Performance index: βS=0.176
Performance index: βS=1.0
Performance index: βS=5.667

β =5.667

mean πe
P

Performance index: βS=0.176
Performance index: βS=1.0
Performance index: βS=5.667

policy rule coefficient



UE CE UE CE

6.6936 6.0532 1.9096 2.1572
min y -0.0177 -0.0149 -0.0132 -0.0196
max y 0.0025 0.0025 0.0067 0.0067

2.8320 1.0090 1.0370 0.9868
min π -0.0028 -0.0012 0.0286 0.0261
max π 0.0013 0.0013 0.0330 0.0330

0.1634 0.1409 1.0000 1.0000
0.5891 0.4687 17.9880 16.7520
1.4124 0.8177 190.9600 155.5900

6.6936 6.0532 2.6290 2.6582
min y -0.0177 -0.0149 -0.0138 -0.0144
max y 0.0025 0.0025 0.0054 0.0054

2.8320 1.0090 1.0060 0.9812
min π -0.0028 -0.0012 0.0048 0.0048
max π 0.0013 0.0013 0.0084 0.0084

0.1634 0.1409 0.1460 0.1564
0.5891 0.4687 1.0000 1.0000
1.4124 0.8177 7.2675 6.2611

6.6936 6.0532 5.7385 5.5524
min y -0.0177 -0.0149 -0.0162 -0.0149
max y 0.0025 0.0025 0.0028 0.0028

2.8320 1.0090 0.6207 0.9806
min π -0.0028 -0.0012 -0.0003 0.0008
max π 0.0013 0.0013 0.0025 0.0025

0.1634 0.1409 0.1361 0.1365
0.5891 0.4687 0.4769 0.4726
1.4124 0.8177 1.0000 1.0000

Table 4a - Dynamic response to contractionary shocks

The table reports a few statistics measuring how the equilibrium outcome under learning differs from the perfect
knowledge - i.e. rational expectations - benchmark. Results are presented for both the "plain" RLS algorithm (UE)
and the constrained version (UE); agents are assumed to have infinite memory, implying a decreasing gain
sequence. The first two columns refer to lexicographic preferences, while the next two to quadratic (dis)utility. To
describe the dynamic response of output and inflation and to compare the outcomes under adaptive learning and
rational expectations, three measures are computed: (1) the ratio of the volatility of the target variables under
adaptive learning and under rational expectations; (2) the trough and (3) the peak of the responses of output and
inflation. In the last three lines of each section of the table the value of the performance index is presented. All
statistics are computed on the first 50 observations.

Lexicographic preferences Quadratic preferences

Performance index: βS=0.176

Performance index: βS=5.667

σALπ/σREπ

σALy/σREy

σALy/σREy

(decreasing gain sequence)

β =5.667

σALπ/σREπ

β = 0.176

σALy/σREy

β = 1.0

Performance index: βS=0.176
Performance index: βS=1.0

σALπ/σREπ

Performance index: βS=1.0
Performance index: βS=5.667

Performance index: βS=0.176

Performance index: βS=1.0
Performance index: βS=5.667



UE CE UE CE

7.0633 5.5241 2.0835 1.6911
min y -0.0170 -0.0138 -0.0156 -0.0111
max y 0.0025 0.0025 0.0067 0.0067

1.3607 0.7174 0.9863 0.9938
min π -0.0017 -0.0002 0.0283 0.0286
max π 0.0025 0.0013 0.0330 0.0330

0.1938 0.1217 1.0000 1.0000
0.6838 0.4498 17.8460 19.4540
1.2303 0.7748 168.8800 182.7800

7.0633 5.5241 2.6372 2.3021
min y -0.0170 -0.0138 -0.0148 -0.0122
max y 0.0025 0.0025 0.0054 0.0054

1.3607 0.7174 0.9321 0.9540
min π -0.0017 -0.0002 0.0046 0.0048
max π 0.0025 0.0013 0.0084 0.0084

0.1938 0.1217 0.1528 0.1281
0.6838 0.4498 1.0000 1.0000
1.2303 0.7748 6.2019 6.7111

7.0633 5.5241 5.5729 5.3428
min y -0.0170 -0.0138 -0.0149 -0.0143
max y 0.0025 0.0025 0.0028 0.0028

1.3607 0.7174 0.7987 0.8049
min π -0.0017 -0.0002 0.0005 0.0007
max π 0.0025 0.0013 0.0025 0.0025

0.1938 0.1217 0.1383 0.1308
0.6838 0.4498 0.4987 0.4982
1.2303 0.7748 1.0000 1.0000

β = 0.176

σALy/σREy

β = 1.0

Performance index: βS=0.176
Performance index: βS=1.0

σALy/σREy

β =5.667

σALπ/σREπ

Performance index: βS=1.0
Performance index: βS=5.667

Performance index: βS=0.176

Table 4b - Dynamic response to contractionary shocks

The table reports a few statistics measuring how the equilibrium outcome under learning differs from the perfect
knowledge - i.e. rational expectations - benchmark. Results are presented for both the "plain" RLS algorithm (UE)
and the constrained version (UE); agents are assumed to use a finite number of observations in computing RLS
estimates, implying a constant gain sequence. The first two columns refer to lexicographic preferences, while the
next two to quadratic (dis)utility. To describe the dynamic response of output and inflation and to compare the
outcomes under adaptive learning and rational expectations, three measures are computed: (1) the ratio of the
volatility of the target variables under adaptive learning and under rational expectations; (2) the trough and (3) the
peak of the responses of output and inflation. In the last three lines of each section of the table the value of the
performance index is presented. All statistics are computed on the first 50 observations.

Lexicographic preferences Quadratic preferences

(constant gain sequence)

Performance index: βS=5.667

Performance index: βS=5.667

σALπ/σREπ

σALπ/σREπ

σALy/σREy

Performance index: βS=0.176
Performance index: βS=1.0



Chapter 3

Monetary policy with misspecified,
heterogeneous and ever-changing
expectations

3.1 Introduction and motivation

The vast literature on adaptive learning focuses overwhelmingly on small
linear models. Issues like the stability of the equilibrium, the speed of con-
vergence and the dynamics of the learning process are dealt with only for
models limited to a handful of equations. And the implications for monetary
policymaking are analysed in this very restricted setting, sharply narrowing
the range of possible uses. This neglect stems chiefly from the complica-
tions of studying stochastic recursive algorithms in large, non-linear systems,
but this is unfortunate, because several issues that are relevant only in the
context of large-scale models are not paid due attention.
In most of the literature on adaptive learning, it is assumed that the perceived
law of motion (PLM) coincides with the minimum state variable (MSV) so-
lution of the corresponding rational expectations equilibrium (REE). This is
a convenient simplification that avoids the complexities of dealing with a po-
tential multitude of alternative PLMs and allows straightforward analysis of
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the asymptotic properties of the learning algorithm. With non-linear models,
however, this is no longer possible, since a closed-form MSV solution does
not generally exist; still, if the model is medium-sized or large, no unique
and commonly accepted linear approximation will be available either, given
the large number of state variables that could be included in the forecasting
equation.1

Absent an MSV solution acting as focal point, agents have to pick out a PLM
from a profusion of alternatives, deciding on the basis of some predetermined
criterion and taking into account costs of information-gathering and data-
processing: different agents end up selecting different forecasting equations
and no one sticks to the same PLM indefinitely, preferring to switch based on
observed forecasting performances. Evolutionary game theory, which studies
the behaviour of large populations who repeatedly engage in strategic inter-
actions, provides the tools for modelling how agents choose among predictors.
Because of degrees-of-freedom constraints, each PLM chosen includes only a
handful of explanatory variables and accordingly represents just a projection
on a small-dimensional space of the actual law of motion, and the ensuing so-
lution is a restricted-perceptions equilibrium. Misspecified expectations also
have non-trivial implications for policymaking. Under least squares learning,
beliefs become fully rational only if the learning process is E-stable, which
depends on the properties of the function h (θ) = lim

t→∞
EQ (θ,Xt), where

Q (θ,Xt) describes how the estimates of the vector θ of coefficents of the
PLM is updated every period. When only a subset of the state vector Xt en-
ters the PLM, the asymptotic limit of EQ (θ,Xt) depends on the covariances

1Assume that the model describing the economy contains l free endogenous variables and n prede-
termined (endogenous and exogenous) variables; for each endogenous jump variable there are M (n) =
n∑
j=0

(
n

j

)
= 2n alternative linear approximations to the RE solution, an overabundance of options

even for small models. If expectations are multi-step ahead, the curse of dimensionality becomes even
more uncontrollable, as the right-hand side variables entering the PLM must themselves be forecast: the
alternative forecasting models become M (n) ∈ O

(
2ψn

)
, with ψ � 1.
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between the variables entering the PLM and those characterising the ALM.
The main implication is that even asymptotically the equilibrium solution
depends on the specific form of the PLM, as does the learning process. Ac-
cordingly, if policymakers can affect the shape of the function Q (θ,Xt), by
guiding the choice of agents’ PLMs, they can influence economic outcomes.
Central banks, for instance, can improve the ability of financial markets to
price long-term assets by providing credible information on how monetary
policy rates are set, i.e. by choosing the right degree of transparency.
As is apparent from the foregoing, introducing learning in a high-dimensional
non-linear model entails many complexities and makes it difficult to generalise
the findings of the recent literature on adaptive learning. There are problems
of model underparameterisation, heterogeneous beliefs, ever-changing expec-
tations models, and non-ergodicity in expectations formation. The main im-
plication is that the long-run properties of the learning algorithm change; in
particular, under suitable but not too restrictive conditions, the asymptotic
equilibrium no longer coincides with the REE, but becomes indeterminate,
depending on the specific form of the expectations equations.
Not only analytic issues, but also policy prescriptions depend on the structure
of the model. For monetary policymaking, Orphanides and Williams (2007)
have shown that when agents learn adaptively, the incentives and constraints
facing monetary authorities change substantially: compared with the rational
expectations case, imperfect knowledge2 (i) reduces the scope for stabilisation
of the real economy; (ii) requires more strongly inflation-averse policies and
(iii) increases the inertia in interest rate setting.
Besides the degree of activism, departing from the RE paradigm clearly
changes the way transparency affects monetary policy effectiveness. Is it
still the case that central banks enhance welfare by providing information

2Since imperfect knowledge is a precondition for bounded rationality and learning, that expression is
used here and henceforth as a synonym of learning and as an antonym of rational expectations, following
Orphanides and Williams (2002).
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to households and firms, or should they rather exploit private information
to generate inflation surprises? In the case of the standard New Keynesian
model, Berardi and Duffy (2006) show that when the central bank operates
under commitment, the effects of transparent policies are unambiguously
positive, while under discretion there are cases when opaqueness may ensure
better outcomes. Eusepi (2005) shows that a sufficient degree of transparency
helps make the monetary policy rule robust to expectational errors. These
findings are of limited generality, however, since in both papers uncertainty
is restricted to the inflation objective and the functional form of the policy
rule.3 In a large model, where non-linearities abound, the flow of information
from the monetary authority to the private sector is potentially much richer
and the role of communication more important. To a considerable extent the
monetary authority can decide on the amount of information to provide to
the public so as to influence the equilibrium outcomes.
This chapter uses a medium-size model to analyse expectations formation
under adaptive learning, heterogeneous beliefs and ever-changing forecast-
ing equations. Empirical rather than analytical results are presented. Two
monetary policy issues are used as case studies, the first involving the op-
timal degree of activism - as in Orphanides and Williams - and the second
concerning the benefits associated with transparent policies.
This work makes a number of original contributions.
First, it assumes that in order to anticipate the future path of economic vari-
ables, agents can choose among a set of alternative forecasting equations,
picking the one with the best track record. Second, it allows agents to have
heterogeneous expectations: the share of people selecting a given forecasting
model follows a law of motion that is a discrete-time version of the replica-
tor dynamics, implying a gradual movement from worse to better models,

3In Berardi and Duffy (2006), uncertainty about the monetary policy strategy means that agents do
not know whether the lagged output gap is part of the reaction function of the central bank (i.e. whether
policy is conducted under discretion or under commitment).
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unlike another important class of dynamic processes, namely best response
dynamics, which involves instantaneous movement to the best-performing
strategies. Third, it analyses learning in an economy where expectations
have a pervasive role, which is unmatched in the literature: the overwhelm-
ing majority of the very few papers studying bounded rationality in large
non-linear models introduce learning only in the exchange rate equation.
The chapter is organised as follows. The next section presents a survey
of the literature on adaptive learning and presents the replicator dynamics
developed in evolutionary game theory to model predictor selection; section 3
outlines the model used in the simulations and introduces stochastic gradient
learning. Section 4 presents some evidence, obtained by means of simulation,
on the impact on monetary policymaking of departing from the assumption
that agents are fully rational. Sensitivity analysis is presented in the following
part. Section 6 concludes.

3.2 The literature

There are very few papers on learning in large non-linear models and they
deal mainly with the asymptotic convergence of the learning algorithm, dis-
regarding all the monetary policy implications. Garratt and Hall (1997) use
the LBS macromodel, adjusted to include adaptive learning schemes to form
expectations on the exchange rate, to study whether the choice of the PLM
affects the uniqueness and the stability of the equilibrium and whether the
volatility of the transition path depends on how agents learn. The issue is
whether adaptive learning is E-stable even when the PLM is overparame-
terised.4 Absent analytical results due to the size of the LBS macromodel,
they assume that E-stability is achieved when the parameters of the expec-

4A learning process that converges to the REE even when the PLM is overparameterised is said to be
strongly E-stable.
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tations rule cease changing. Garratt and Hall, who use the Kalman filter for
the updating of the learning parameters, find that the choice of the PLM
modifies the volatility and the speed of convergence of the learning process
but obtain less clear-cut evidence on strong E-stability. The end-point for
output seems to be the same regardless of the specific form of the PLM,
but that for inflation does not. The authors also find that the dynamics
and end-value responses of output and inflation are weakly affected by the
choice of the expectations rule, but are sensitive to the hyperparameters of
the model, i.e. the values of the covariance matrices of the transition and ob-
servation equations. The paper is interesting and innovative but has several
shortcomings: (i) the forecasting model is the same for all agents; (ii) the
learning process relies on hyperparameters that are calibrated rather than
estimated; (iii) only exchange rate expectations play a role; (iv) policy issues
are entirely neglected; (v) the empirical analysis is based on very short time
horizons (less than 10 years).
Beeby, Hall and Henry (2001) go one step further and propose three meth-
ods to select a “sensible” PLM when an obvious choice is not available. The
first option estimates the effects of a shock to each of the variables on the
exchange rate and selects the variables that have a large impact; the second
method prescribes computing the rolling correlation (on a 4-quarter window)
between the exchange rate and each potential regressor, and ranking the cor-
relations by standard deviations, and choosing the series with the less volatile
correlations; the last procedure selects the variables that move most closely
with the first few principal components. Beeby, Hall and Henry find also
that, regardless of the method used, learning algorithms are quite effective in
extracting information from any series, so that the exact form of the rule is
unimportant, but they all differ substantially from the RE solution, suggest-
ing that even small deviations from the benchmark of full information and
full rationality may have a strong impact on model properties. An obvious
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weakness of the paper is that the choice of the best-fitting model is made at
the outset once and for all and no heterogeneity in expectations is allowed.
Dieppe et al. (2011) represents an original attempt to incorporate learning
in a large non-linear model, namely the multi-country model of the Euro-
pean Central Bank: it assumes that agents adopt as PLM the reduced form
of the equation whose future value they want to anticipate, disregarding all
other information. The coefficients of the forecasting equation are updated
by means of the Kalman filter, whose hyperparamaters are calibrated. The
paper has strengths and weaknesses: it sheds light on the impact of learning
in a model where beliefs are among the main drivers of the equilibrium out-
comes but allows no heterogeneity in expectations formation and relies on
convoluted and ad-hoc assumptions to specify the PLMs.
The existence of differences in expectations, invariably observed in the real
world, is the subject of a vast literature. Evans and Ramey (1992) explicitly
introduce the costs of calculation into the process of forming expectations:
in any period, agents can revise expectations on the basis of a correct model
of the economy if they are willing to pay a price, or can keep their expecta-
tions unchanged, incurring no cost. Full convergence to rational expectations
happens only when the calculation algorithm becomes infinitely fast and re-
source costs approach zero. Sethi and Franke (1995) show that persistent
heterogeneity can be derived on the basis of evolutionary dynamics in the
presence of optimisation costs: the use of sophisticated methods is favoured
when optimisation costs are low or when the environment has a high degree
of exogenous variability. Deterministic and dynamically stable environments
favour the use of simpler and cheaper forecasting methods. Dynamic predic-
tor selection is considered by Brock and Hommes (1997) in a model where
agents adapt their beliefs over time by choosing from a finite set of different
expectations functions on the basis of costs and of a measure of fit, which is
publicly available. Brock and Hommes find that a large response to goodness
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of fit can lead to high-order cycles and chaotic dynamics. The rationale is
simple: when agents use the cheaper and less accurate predictors, the steady-
state equilibrium is unstable, whereas the costly, sophisticated models are
stabilising; near the steady-state it pays to use the cheap predictors, which
moves the economy away from the steady-state. For a large enough response,
this tension leads to local instability and complex global dynamics. Branch
and Evans (2006), working on a similar model, find different results. They
assume that agents choose on the basis of the predictive performance among
a list of costless, misspecified econometric models and obtain conditions un-
der which there is an equilibrium with agents heterogeneously split between
the misspecified models even as the intensity of choice becomes arbitrarily
large. Branch and McGough (2008) introduce the replicator dynamics into
a model with rationally heterogeneous expectations and show that (i) it is
possible to generalise the results of Sethi and Franke to a model with an ar-
bitrarily large number of predictors and (ii) complicated dynamics can arise
also in setups that are more general than those of Brock and Hommes. Fi-
nally, Parke and Waters (2006) study the conditions under which initially
heterogeneous beliefs eventually converge to a single forecasting procedure,
based on fundamentals and resembling rational expectations.
A common feature of the papers focusing on heterogeneity in expectations
formation is that they work with highly simplified models that can be solved
analytically and are therefore unsuitable for studying policy issues.
The impact on monetary policymaking of assuming boudedly rational agents
is the subject of the paper by Orphanides and Williams (2007). The au-
thors examine the performance and robustness of alternative monetary pol-
icy rules by estimating a macroeconomic model in which private agents and
the central bank possess imperfect knowledge about the true structure of the
economy. They find that policies that appear to be optimal under perfect
knowledge can perform very poorly when knowledge is incomplete, partly as
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a result of the persistent policy errors due to misperceptions of the natural
rates and partly as a result of the learning process that agents use to form
expectations. Efficient policies that take account of private learning and of
non-observability of natural rates have two features: first, they call for more
aggressive responses to inflation; second, they exhibit a high degree of iner-
tia in the setting of the monetary policy rate. Indeed, difference rules (i.e.
rules having on the right-hand-side the lagged interest rate with a coefficient
equal to 1), which circumvent the need to rely on uncertain estimates of the
natural rates, appear to be robust to potential misspecifications of private
sector learning and to the magnitude of variation in natural rates.
The value of communication in monetary policy under imperfect knowledge
is studied in several papers, including Ferrero and Secchi (2010), Berardi and
Duffy (2006) and Eusepi and Preston (2007). Ferrero and Secchi find mixed
results on the impact of transparency on the effectiveness of monetary poli-
cymaking: when the central bank reveals information about its own expected
interest path, conditions for stability under learning become more stringent
and the speed of convergence slows down; on the contrary, the announcement
of expected inflation and output gap enlarges the set of policy rules which
are consistent with stability and a fast process of convergence. Berardi and
Duffy link monetary policy transparency to the specification of the forecast
rule adopted by the private sector, unlike the traditional view that equates
transparency with more or better information. They adopt the standard
cashless, three-equation, New Keynesian model and find that under commit-
ment central bank communication is unequivocally welfare-enhancing, while
under discretion the relative value of transparency is ambiguous and depends
on target values. Eusepi and Preston find that in a dynamic stochastic
general equilibrium model with imperfect knowledge, under no communi-
cation the policy rule fails to stabilise macroeconomic dynamics, fostering
expectations-driven fluctuations. However, by announcing the details of the
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policy process, stability is restored: communication permits households and
firms to construct more accurate forecasts of future macroeconomic condi-
tions. They further find that if the central bank only announces the desired
inflation target, economies with persistent shocks will frequently be prone to
self-fulfilling expectations.
While offering significant insights into monetary policymaking, these papers
also share two weaknesses, namely the inability to deal with heterogeneous
and ever-changing expectations and an overly simplified description of the
monetary policy transmission channels.

3.3 The model

The model used here is a reduced-scale version (a so-called maquette), repro-
ducing the basic features of the Bank of Italy Quarterly Model.5 The sample
that has been used to estimate the model covers a 30-year horizon, from the
early 1970s to the late 1990s, before Italy joined the European Monetary
Union.
The behavioural equations are consistent with maximising agents, but the

5A detailed description of the theoretical underpinnings of the Bank of Italy Quarterly Model is in
Terlizzese (1994) and Busetti et al. (2005). The model is Keynesian in the short run, with the level of
economic activity primarily determined by aggregate demand, and neo-classical in the long run. Along a
steady-state growth path, the dynamics of the model stem solely from capital accumulation, productivity
growth, foreign inflation and demographics; in the short run, a number of additional features matter,
namely (i) the stickiness of prices and wages, (ii) the putty-clay nature of capital and (iii) expectational
errors. Agents are not fully rational and form expectations by projecting the variables of interest on
a subset of predetermined variables; however, unlike adaptive learning, the coefficients of the PLM are
not updated whenever new observations are available. In equilibrium - i.e. when no shocks affect the
model, expectations are fulfilled and all adjustment processes are completed - the model describes a
full-employment economy, in which output, employment and the capital stock are consistent with an
aggregate production function, relative prices are constant and inflation equals the exogenous rate of
growth of foreign prices. Money is neutral, though not super-neutral. In the taxonomy proposed by
Fukač and Pagan (2009), the Bank of Italy Quarterly Model belongs to the 2nd Generation, but shares
some of the features of 3rd (i.e. stock-flow consistency and prominence of steady-state properties).
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model is not strictu sensu microfounded,6 since it does not contain all the
cross equations restrictions that hold when agents are fully rational, and its
structural equations are not tied down exclusively by taste and technology pa-
rameters.7 Identification is achieved by imposing that the responses of model
variables to exogenous shocks are consistent with stylised facts and theoret-
ical presumptions. Like the model in Orphanides and Williams (2007), its
main merit is to fit the sample data reasonably well. The learning framework
accommodates the Lucas critique, in the sense that expectations formation is
endogenous and adjusts to changes in policy or in the structure of the econ-
omy,8 and accordingly it is legitimate to measure the welfare implications of
competing interest-rate rules.
The maquette has some 90 endogenous and 70 exogenous variables. Taking
into account expectations formation, the model is described by the following
set of vector equations:

ỹt = f1

(
Êt−1ỹt, Êt−1ỹt+1, ..., Êt−1ỹt+h, ŷt, xt; Ψ1

)
+ u1,t

ŷt = f2 (xt; Ψ2) + u2,t

wt = f3 (wt−1, wt−2, ..., wt−q; Ψ3) + u3,t

(3.1)

where ỹt and ŷt are, respectively, the vectors of free and predetermined en-
dogenous variables; wt indicates the set of exogenous variables, including the
intercept; uj,t (j = 1, 2, 3) are innovations; xt is the vector that assembles wt
and all the lags of ỹt, ŷt and wt; the matrices Ψj (j = 1, 2, 3) are collections
of parameters; Ê is the (nonrational) expectations operator; h represents the

6Many of the econometric models used for forecasting purposes by central banks are not microfounded.
In the euro area, most central banks except the Finnish use semi-structural models like the Bank of Italy’s;
in the United States, the FRB/US, FRB/MCM and FRB/World, which are are not truly structural, are
still nevertheless the prime large-scale macro models currently in use at the Fed. See Fagan and Morgan
(2005) for the euro area and Pescatori and Zaman (2011) for the United States.

7Incidentally, one could convincingly object that a model that assumes imperfect knowledge should
not feature structural equations that are consistent with full rationality.

8Orphanides and Williams (2004) use the expression “noisy rational expectations” as a synonym of
adaptive learning.
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maximum lead with which free variables enter the system; q is the order of
the possibly non-linear autoregression for the vector wt.
Beliefs, which have a direct impact on ỹt but affect ŷt only indirectly (through
lags of ỹt), enter the model in several ways: ex-ante real interest rates affect
the demand for both consumption and capital goods; next-period expected
inflation drives current-period wage claims; beliefs about future price devel-
opments affect the policy interest rates9 and the term structure, which is
modelled according to the expectations hypothesis;10 anticipated changes in
the nominal exchange rate bear upon competitiveness and the terms of trade.
Moreover, beliefs play a direct role in shaping policy decisions, since natural
rates are non-observable and the central bank has to estimate them, before
deciding on the proper monetary stance.
The monetary policy transmission mechanism, which is described in detail,
works in three phases: first, a change in the policy interest rate spills over to
other segments of the capital market, affecting financial asset returns (namely
yields on long-term bonds and exchange rates); next, the movements in fi-
nancial prices interact with the spending behaviour of households and firms;
and finally, the change in output and unemployment gaps, driven by the re-
sponse of consumption and investment, induces wages and prices to adjust to
restore the equilibrium. The adjustment process induces modifications in the
composition of private and public sector balance sheets, which in turn exert
second-round effects on interest rates, thus setting the stage for the response
of aggregate demand and supply: the interaction between the real and the
financial side of the economy continues until a new equilibrium is reached.
Interest rates affect output through five transmission channels: (i) the cost-of-

9The short-term (policy) interest rate depends on the current unemployment gap and on next-period
inflation, the latter variable expressed in terms of deviations from target inflation. Some inertia in the
policy instruments is allowed by including the lagged interest rate among the arguments of the policy
rule.

10Long-term interest rates are assumed to be a weighted average of current and future short-term rates,
with the term spread constant.
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capital channel, which works through changes in the optimal capital-output
ratio; (ii) the substitution-effect-in-consumption channel, involving the re-
sponse to financing costs of the relative price of present as opposed to future
consumption; (iii) the income and cash-flow channel, based on how capital
income flows affect disposable income, whose effects depend on the financial
structure of the economy and on borrowers’ and lenders’ relative propensity
to spend; (iv) the wealth channel, that takes into account how fluctuations in
borrowing conditions affect the discounted value of future expected payoffs
of physical and financial assets; and (v) the exchange rate channel, which
measures how fluctuations in exchange rates – triggered by the uncovered
interest-rate parity condition – affect competitiveness, the price of imported
goods, aggregate demand and inflation.

3.3.1 The learning mechanism

Bounded rationality may be modelled by using recursive least squares (RLS)
learning. A convenient alternative to RLS is the stochastic gradient (SG)
algorithm, whose main advantage is that it does not rely on information
on the second moments of the variables in the forecasting equation. SG
learning, which under standard conditions is consistent but not efficient, has
been found to work well in complex environments, suggesting that it has
robustness properties that RLS lacks. The main drawbacks are: (i) it is
not invariant with respect to changes in the units of measurement of the
variables in the PLM and (ii) E-stability does not always imply convergence
of SG learning.
Recently, Evans et al. (2006) have proposed a generalisation of the SG algo-
rithm, called Generalised Stochastic Gradient (GSG) learning, which solves
the invariance problem. They also show that the GSG algorithm has other
important justifications: first, it approximates a Bayesian estimator in mod-
els where parameters drift; second, it is a maximally robust optimal pre-
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diction rule when there is parameter uncertainty; third, though conditions
for the stability of generalised stochastic gradient learning differ in general
from those governing stability under least squares learning, E-stability in
most cases remains a necessary condition for asymptotic convergence of GSG
learning.
In all the experiments described in this paper, expectations are modelled by
means of a GSG algorithm, as described in (3.2).

Êj
t−1ỹi,t = ϕiTj,t−1D

j
ixt j ∈ {0, , .., ki}

ϕij,t = ϕij,t−1 + γtΓD
j
ixt

(
yt − ϕiTj,t−1D

j
ixt

)
xij,t = xij,t−1g

(
ỹi,t − Êj

t−1ỹi,t, ỹi,t − Êt−1ỹi,t,
)

g1 < 0, g2 > 0

Êt−1ỹi,t =
ki∑
j=1

xij,t−1Ê
j
t−1ỹi,t

(3.2)

ỹi,t indicates the ith free variable, γt is the gain sequence and ϕij,t represents
the vector of coefficients of the PLM estimated as of time t − 1. The first
equation represents the jth PLM for variable ỹi,t: as agents have imperfect
knowledge, they use only a subset of the state vector xt, i.e. Dj

ixt, to make
predictions;11 moreover, being uncertain about the data generating process,
they use ki forecasting equations to predict ỹi,t, switching from one to another
depending on some measure of fit. The share of individuals choosing model
j ∈ {1, 2, ..., ki} is equal to xij,t, which is a function of its forecasting accuracy(
ỹi,t − Êj

t−1ỹi,t

)
relative to the average performance of all forecasting models(

ỹi,t − Êt−1ỹi,t

)
. The last equation in (3.2) states that the expected value of

ỹi,t is the weighted average of the forecasts of the ki PLMs.
Though the structural relationships among variables are in general non-linear,
the PLMs are assumed to be linear. The gist of the GSG algorithm is cap-
tured by the (fixed) matrix Γ, which does not coincide with the inverse of the

11Dj
i is a selector matrix, i.e. a matrix whose rows have all zeros and a single 1.
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second-moment matrix of the regressors (as in recursive least squares) and is
not equal to the identity matrix (as in the gradient learning algorithm).
Stability is governed by the differential equation

dϕ

dτ
= ΓMx (T (ϕ)− ϕ) (3.3)

where T (ϕ) is the (expected value of the) ALM, Mx = limt→∞EDixtx
T
t D

T
i

and τ is notional time. When both Γ and Mx are positive definite, the fixed
point of (3.3) is the REE ϕ and (local) stability is achieved when the eigen-
values of the linearisation of the above matrix differential equation12 have
negative real parts. With RLS learning, the term ΓMx cancels out and (lo-
cal) stability depends only on the eigenvalues of the Jacobian of T (ϕ) − ϕ,
i.e. DT − I. In general, the stability conditions for the RLS and GSG algo-
rithms do not coincide and neither implies the other; they become equivalent
when the matrix DT − I is H-stable or, alternatively, when Γ is such that
ΓMx = I.13

In all the simulations described here, the scaling matrix Γ is set equal to
the inverse of the sample covariance matrix of the regressors estimated on
historical data.

3.3.2 Heterogeneous expectations and predictor selection

If agents can pick one out of a large number of forecasting equations, none
of which is clearly superior, some problems arise: first, expectations can be
heterogenous, since there is no guarantee that everyone will choose the same
PLM (or the same sample period); second, agents may elect to change their
forecasting equation if they perceive its accuracy as poor; third, several PLMs

12The linearisation of the RHS of equation (3.3) is (ΓMx ⊗ I)
(
DT

′ − I
)
, where DT is the Jacobian

of the vectorised mapping T (ϕ).
13A matrix C, whose eigenvalues have negative real parts, is said to be H-stable if the eigenvalues of

HC have negative real parts whenever the matrix H is positive definite. See Evans et al. (2010), in
particular Proposition 3 and 4.
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can coexist asymptotically, though enough observations are available to tell
which performs best.
Evolutionary game theory provides the tool for constructing an explicit model
of the process by which agents select the strategy to play in a repeated
game.14 In the typical evolutionary game-theoretic model, there is a large
population of agents whose payoff is a function not only of their own strategy
but also of other players’ behaviour: if an agent can maximise and knows
other players’ actions, then he can choose the best response; if he does not,
he can learn from the observed history of play, which conveys information
about how the opponents are likely to play and suggests which strategies
are most successful. Agents gradually learn to play an equilibrium if they
play the same game (or similar games) repeatedly: once all players have
learned how their opponents are playing, and if all are maximising, then they
converge to a Nash equilibrium. But how do they reach such an equilibrium?
The simplest evolutionary model one could use is the replicator dynamics,
which specifies that agents tend to select strategies that do better than the
population average and discard those that do worse.
Evolutionary models exhibit learning as a primary ingredient, but are not
structural models of learning or bounded rationality: individuals are not
explicitly modelled and are treated as naive learners, who do not understand
that their behaviour can affect the future play of their opponents and do not
take into account that their competitors behave just like them. Agents do not
look for patterns in historical data but behave as if the world is stationary,
presuming that other players’ experience is relevant for them, which justifies
imitation.
Here I use the discrete-time version of the replicator dynamics. The economy
is populated by a large but finite number of individuals, who play strategy

14Mailath (1998) and Samuelson (2002) are short but very good surveys of evolutionary game theory;
Weibull (1995) is a comprehensive and detailed reference.
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i ∈ {1, 2, .., K} in a symmetric two-player game with mixed-strategy simplex
∆ ⊂ RK−1. Let pit > 0 be the number of individuals who currently select
pure strategy i (i.e. who choose model i as a predictor for variable yt) and let

pt =
K∑
i=1

pit > 0 be the total population; the share of agents adopting strategy

i is accordingly defined as xit ≡
pit
pt

and the vector of predictor proportions

(also referred as population state) is xt =
[
x1
t x2

t ... xKt

]T
∈ ∆, showing

that a population state is formally identical with a mixed strategy. The
payoff to any pure strategy i at a random match when the population is in
state xt∈∆ is u

(
eit,xt

)
, where ei is a vector with 1 in the ith position and 0

elsewhere, representing a pure strategy (i.e. a vertex of the simplex ∆); the

associated average payoff is
K∑
i=1

xitu
(
eit,xt

)
. The pis evolve according to the

following laws of motion:

pit =
(
g + u

(
eit−1,xt−1

))
pit−1,∀i

where g represents the (steady-state) growth rate of the population (the so-
called background net birthrate), which implies that

pt =
K∑
i=1

xit−1

(
g + u

(
eit−1,xt−1

))
pt−1 =

(
g +

K∑
i=1

xit−1u
(
eit−1,xt−1

))
pt−1

The discrete-time replicator dynamics is accordingly:

xit =
g+u(eit−1,xt−1)

g+
K∑
i=1

xit−1u(eit−1,xt−1)
xit−1

For the vector xt to be a proper population state, it must belong to the unit
simplex in RK−1 and each of its elements must satify the constraint that
0 6 xit 6 1: both conditions are clearly satisfied in the standard case when
u (·,x) and g are positive.15

15Branch and McGough (2008) use a rule for updating predictor proportions that is state-contingent.
They distringuish the strategies j ∈ B (xt−1) that perform worse than average from the strategies i ∈
G (xt−1) that perform better. To impose that

∑
i x

i
t = 1, they compute

∑
j∈B(xt−1) |∆x

j
t | and distribute

that amount to the strategies i ∈ G (xt−1) in proportion to their payoffs.
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In the empirical section an exponential transformation of the mean-square er-
ror is used as the payoff function, namely u

(
eit,xt

)
= exp

[
−λ
(
MSEi

t + Ci
)]
,16

where Ci is the cost of using model i and MSEi
t = (1− ωt)MSEi

t−1 +

ωt

(
yt − Êi

t−1yt

)2

, with ωt ∈
{

1
t , ω
}
and Êi

t−1 being the (conditional) expec-
tations operator based on model i. For simulation purposes, the parameters
of the replicator dynamics have been given the following values: g = .02;
λ = 1000; Ci = 0, ∀i.

3.3.3 The role of expectations

Expectations play a pervasive role in the model: they enter the price- and
wage-setting equations, affect monetary policy decisions and drive prices in
asset markets. Both the central bank and private agents are assumed to
be boundedly rational: the monetary authority learns about inflation and
the natural rates of interest and unemployment; households and firms learn
about the policy rate, inflation and the exchange rate. It is assumed that the
central bank does not consciously attempt to influence the speed of learning
by adjusting the degree of activism in policymaking.17

Unlike the central bank, which uses a single forecasting model for each vari-
able of interest, the private sector employs several predictors jointly. There
is no way to avoid unwarranted assumptions in specifying the multiple and
mutually coexisting forecasting models that boundedly rational agents use.
The problem is how to constrain the information set in an intelligent way,
choosing among the innumerable possible ways of doing so. The solution
adopted here is to consider only specifications that are sensible economically
and that generate predictions that track realisations reasonably well: good-

16A convex mapping like the exponential function does not reorder the ranking of the payoffs, but
alters players’ reaction to small and large forecast errors.

17Ellison and Valla (2001) show that strategic interactions create a connection between the activism of
the central bank and the volatility of inflation expectations: the latter reacts to the former because an
activist policy produces more information, helping the learning process.
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ness of fit is assessed using the criteria proposed in Beeby, Hall and Henry
(2001).
The central bank is assumed to set the policy instrument18 it according to
the following reaction function:

it = ρit−1 + (1− ρ)
[
r∗ + π + απ

(
ÊCB
t−1πt+1 − π

)
− αu (ut − u∗)

]
(3.4)

where ÊCB indicates central bank expectations and r∗ and u∗ are, respec-
tively, the non-observable natural real interest rate and unemployment rate,
which the policymaker seeks to estimate by computing the sample average
of the corresponding observables. The central bank’s PLMs for π, r∗ and u∗

are: 
ÊCB
t−1πt = πt−1 + α1,t−1∆it−1 + α2,t−1∆πt−1

ÊCB
t−1r

∗
t = r∗t−1 + γt (it−1 − πt−1 − r∗t−1)

ÊCB
t−1u

∗
t = u∗t−1 + γt (ut−1 − u∗t−1)

(3.5)

where γt is the gain sequence.19 The PLM for inflation is admittedly simple,
but it captures the idea that inflation is sticky and depends on the mone-
tary policy stance. The specification was chosen because it minimises the
standard error of the regression in a two-variable equation and exhibits a
high and stable correlation with survey measures of inflation expectations.20

18The Bank of Italy Quarterly Model includes several interest rates. To keep the size of the maquette
small, all money market rates were reduced to one - the monetary policy instrument - defined as the
weighted average of the yields of 3, 6, and 12-month Treasury bills.

19In the case of decreasing gain γt = 1
t , while for perpetual learning γt = γ.

20Besides the short-term interest rate and lagged inflation, the following variables were considered as
eligible regressors: (1) the output gap; (2) the growth rate of GDP; (3) the unemployment rate; (4) the
oil price; (5) the nominal effective exchange rate. Absent a unique procedure for selecting the regressors,
an evaluation was made on the basis of four criteria: (1) the standard error of the regression; (2) the
correlation between ÊCBt−1πt and survey measures of inflation expectations; (3) the rolling correlation (with
a 4-year window) with actual inflation; (4) the co-movement with the 1st and 2nd principal components.
The last two criteria are suggested by Beeby et al. (2001) on the grounds that one picks the variables whose
correlation with inflation is high and stable and the other helps select regressors that do not overlap in the
amount of predictive information. In principle, the maximisation of the correlation between ÊCBt−1πt and
survey-based inflation expectations is what one should be concerned with in choosing the specification of
the PLM; in practice, survey data are not a fully satisfactory proxy of households’ and firms’ anticipations
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The specification is in first differences, so that it is consistent with a time-
varying inflation objective, reflecting the historical experience of monetary
policymaking in Italy in the 1970s and 1980s.
According to the PLM chosen, the central bank’s expectations for next-period
inflation are equal to:

ÊCB
t−1πt+1=A1,t−1πt−1 + A2,t−1πt−2 + A3,t−1∆it + A4,t−1∆it−1 (3.6)

where A1,t−1 =
1−α3

2,t−1

1−α2,t−1
, A2,t−1 = 1−A1,t−1, A3,t−1 = α1,t−1 and A4,t−1 =

(1 + α2,t−1)α1,t−1.
Individuals neither observe the central bank’s inflation expectations nor com-
pute model-based estimates. Rather, they pick a forecast out of a limited
number of alternatives, sold for a fee Ck by professional forecasters, who use
their own model to estimate the future value of economic variables. Absent
any empirical evidence for estimating the cost parameters Ck, it is assumed
that Ck = 0, ∀k, so that the only factor affecting the choice of a given fore-
casting model is accuracy. The relative performance of each model, measured
by its mean square error, is common knowledge and in each period agents
buy the forecast with the best track record.
Concerning inflation predictions, it is assumed that agents choose among the
following 5 predictors:

Êπ1
t−1πt = ϑ1

2,t−1∆yt−1 + ϑ1
3,t−1πt−1 + ϑ1

4,t−1πt−2 + ϑ1
5,t−1∆it−1

Êπ2
t−1πt = ϑ2

0,t−1 + ϑ2
1,t−1ut−1

Êπ3
t−1πt = ϑ3

0,t−1 + ϑ3
2,t−1∆yt−1 + ϑ3

6,t−1∆et−1

Êπ4
t−1πt = ϑ4

0,t−1 + ϑ4
7,t−1∆ulct−1 + ϑ4

8,t−1∆p
M
t−1

Êπ5
t−1πt = ϑ5

0,t−1 + ϑ5
3,t−1πt−1

of future price dynamics. Principal component analysis suggests that two factors explain most of the
sample variance and hence two-regressor models are considered. Among the specifications featuring only
two regressors, that with lagged inflation and the policy interest rate (i) minimises the standard error of
the regression; (ii) exhibits the second-highest correlation with survey-based expected inflation; (iii) has
the highest and most stable correlation with actual inflation and (iv) presents regressors moving closely
with the first principal component.
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where Êπk
t−1 is the expectations operator referring to the kth inflation predic-

tor; yt is output; ut the unemployment rate; et is the exchange rate; ulct
unit labour costs; pMt the import deflator.21 The first equation captures the
idea that inflation is sticky and responds to changes in the monetary policy
stance and in output growth; the second is a simplified Phillips curve; the
third and fourth equations model consumer price dynamics as the sum of
domestic costs, proxied either by output growth or by changes in unit labour
costs, and foreign inflation, measured by the exchange rate or, alternatively,
the import deflator; the last equation models inflation as an AR(1) process.

Private sector inflation expectations are equal to Êπ
t−1πt =

5∑
j=1

xjt−1Ê
πj
t−1πt,

i.e.

Êπ
t−1πt = Θ0,t−1 + Θ1,t−1ut−1 + Θ2,t−1∆yt−1 + Θ3,t−1πt−1 + Θ4,t−1πt−2

+ Θ5,t−1∆it−1 + Θ6,t−1∆et−1 + Θ7,t−1∆ulct−1 + Θ8,t−1∆p
M
t−1

where Θ0,t−1 =
5∑
j=2

xjt−1ϑ
j
0,t−1, Θ1,t−1 = x2

t−1ϑ
2
1,t−1, Θ2,t−1 = x1

t−1ϑ
1
2,t−1 +

x3
t−1ϑ

3
2,t−1, Θ3,t−1 = x1

t−1ϑ
1
3,t−1 + x5

t−1ϑ
5
3,t−1, Θ4,t−1 = x1

t−1ϑ
1
4,t−1, Θ5,t−1 =

x1
t−1ϑ

1
5,t−1, Θ6,t−1 = x3

t−1ϑ
3
6,t−1, Θ7,t−1 = x4

t−1ϑ
4
7,t−1 and Θ5,t−1 = x4

t−1ϑ
4
5,t−1.

Individuals rely upon professional forecasters for (short-term) interest rate
expectations as well; they are aware which rate is the central bank’s instru-
ment, but they do not know either the precise form of the interest-rate rule
or how natural rates are estimated. It is assumed that agents can choose

21All variables but ut are log transformations.
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among the following 7 predictors:

Êi1
t−1it = θ1

0,t−1 + θ1
1,t−1ut−1 + θ1

3,t−1πt−1

Êi2
t−1it = θ2

0,t−1 + θ2
1,t−1ut−1 + θ2

3,t−1πt−1 + θ2
4,t−1it−1

Êi3
t−1it = θ3

0,t−1 + θ3
1,t−1ut−1 + θ3

3,t−1Ê
i3
t−1πt+1 + θ3

4,t−1it−1

Êi4
t−1it = θ4

0,t−1 + θ4
2,t−1Ê

i4
t−1∆yt + θ4

3,t−1Ê
i4
t−1πt+1 + θ4

4,t−1it−1

Êi5
t−1it = θ5

0,t−1

Êi6
t−1it = θ6

0,t−1 + θ6
2,t−1Ê

i6
t−1∆yt + θ6

3,t−1Ê
i6
t−1πt+1 + θ6

4,t−1it−1 + θ6
5,t−1Ê

i6
t−1∆et

Êi7
t−1it = θ7

0,t−1 + θ7
4,t−1it−1

(3.7)
where Êij

t−1 is the expectations operator referring to the jth interest-rate
predictor. Models 1 to 4 reflect the main finding of the model comparison
project conducted by Bryant, Hooper and Mann (1993), namely that effective
interest-rate rules react to both inflation and economic slackness, the latter
measured in terms of the unemployment rate or, alternatively, the GDP
growth rate. The four specifications differ also with regard to policy inertia
and the timing of the arguments of the interest-rate rule. Models 5 and
7 capture the naive belief that the central bank seeks to keep the nominal
interest rate constant, allowing at most temporary deviations from the target
level. Equation 6 includes the exchange rate among the variables affecting the
monetary policy stance, which is not uncommon for small open economies.22

In some of the above forecasting models, predictions of future variables ap-
pear among the regressors, which in principle would require specifying addi-
tional (and possibly multiple) PLMs for each of them. To simplify matters,
the following solution has been adopted: expectations of the right-hand-side
variables are obtained under the assumption that they evolve according to
simple AR(1) processes, namely Êt−1zt = ψz0,t−1 + ψz1,t−1zt−1 , where zt is,
alternatively, πt, ut, ∆yt or ∆et.23

22Bryant, Hooper and Mann (1993) find that interest-rate rules that react to the exchange rate perform
worse on average than those that neglect it. Taylor and Williams (2009) make a similar claim.

23It is implicitly assumed that the professional forecasters predicting the short-term interest rate are
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The average expected short-term interest rate at time t is therefore equal to

Êi
t−1it =

7∑
k=1

xkt−1Ê
ik
t−1it

= Ω0,t−1 + Ω1,t−1ut−1 + Ω2,t−1∆yt−1

+ Ω3,t−1πt−1 + Ω4,t−1it−1 + Ω5,t−1et−1

(3.8)

where

Ω0,t−1 =
7∑

k=1

xkt−1θ
k
0,t−1 + ψ∆y

0,t−1

∑
k∈{4,6}

xkt−1θ
k
2,t−1

+
(
1 + ψπ1,t−1

)
ψπ0,t−1

∑
k∈{3,4,6}

xkt−1θ
k
3,t−1 + ψ∆e

0,t−1x
6
t−1θ

6
5,t−1

Ω1,t−1 =
3∑

k=1

xkt−1θ
k
1,t−1

Ω2,t−1 = ψ∆y
1,t−1

∑
k∈{4,6}

xkt−1θ
k
2,t−1

Ω3,t−1 =
(
ψπ1,t−1

)2 ∑
k∈{3,4,6}

xkt−1θ
k
3,t−1

Ω4,t−1 =
∑

k∈{2,3,4,6}
xkt−1θ

k
4,t−1

Ω5,t−1 = ψ∆e
1,t−1x

6
t−1θ

6
5,t−1

Expectations of short-term interest rates form part of the equation of the
yield curve. According to the expectations hypothesis, k-year bond yields
are equal to the k-year moving average of current and the future short-
term interest rates plus a constant term premium that agents estimate using
the historical mean. To prevent forecast errors from accumulating when
computing multi-step ahead interest-rate expectations, the term premium is
corrected for the mean difference between expected and actual past policy
rates:

Êt−1termt = termt−1 + γt

[(
iLt−1 − it−1

)
+ 1

6

6∑
j=1

ξt−j − termt−1

]
(3.9)

not the same as those forecasting inflation.
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where ξt−j ≡ it−1 − Êt−1−jit−1 measures the surprise on the policy interest
rate.
By taking the jth lead of equation (3.8), for 1 6 j 6 5, and replacing all non-
predetermined variables, one obtains the following expression for Êt−1it+j:

Êi
t−1it+j = Ωj

0,t−1 + Ωj
1,t−1ut−1 + Ωj

2,t−1∆yt−1

+ Ωj
3,t−1πt−1 + Ωj

4,t−1it−1 + Ωj
5,t−1∆et−1

(3.10)

where

Ωj
0,t−1 = Ω0,t−1 + Ω1,t−1

1−(ψu0,t−1)
j+1

1−ψu0,t−1
+ Ω2,t−1

1−(ψ∆y
0,t−1)

j+1

1−ψ∆y
0,t−1

+ Ω3,t−1
1−(ψπ0,t−1)

j+1

1−ψπ0,t−1
+ Ω4,t−1Ω

j−1
0,t−1 + Ω5,t−1

1−(ψ∆e
0,t−1)

j+1

1−ψ∆e
0,t−1

Ωj
1,t−1 = Ω1,t−1

(
ψu1,t−1

)j+1
+ Ω4,t−1Ω

j−1
1,t−1

Ωj
2,t−1 = Ω2,t−1

(
ψ∆y

1,t−1

)j+1

+ Ω4,t−1Ω
j−1
2,t−1

Ωj
3,t−1 = Ω3,t−1

(
ψπ1,t−1

)j+1
+ Ω4,t−1Ω

j−1
3,t−1

Ωj
4,t−1 = Ω4,t−1Ω

j−1
4,t−1

Ωj
5,t−1 = Ω5,t−1

(
ψ∆e

1,t−1

)j+1
+ Ω4,t−1Ω

j−1
5,t−1

with Ω0
k,t−1 = Ωk,t−1, k = 1, 2, ..., 5. It is clear from the above expression that

the long-term interest rate depends on expectations of several variables, so
that policies that focus on a single objective at the cost of others are unlikely
to be welfare-enhancing.
Private sector expectations also affect the value of the domestic currency.
As there is no well-established specification for the exchange rate equation,
only two competing models are considered: the first relates exchange rate
dynamics to the ratio of net foreign assets to nominal GDP; the second
captures the belief that the value of the domestic currency is a random walk.

Êe1
t−1et = et−1 + β1,t−1∆

FAt−1

Yt−1
+ β2,t−1∆et−1

Êe2
t−1et = et−1

(3.11)

Among the set of two-regressor specifications, the model selected (i) min-
imises the standard error of the regression; (ii) exhibits the second higest
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correlation with survey measures of exchange rate changes; (iii) has explana-
tory variables that move closely in line with the first two principal compo-
nents; (iv) presents the second largest and most stable correlation with the
change in the exchange rate. Along with the UIP, equation (3.11) determines
et as a function of its own lags, the interest rate differential and foreign in-
debtedness.

3.4 Simulation results

Monetary policy rules are ranked on the basis of their impact on social wel-
fare. Society dislikes both price and output variability, defined as the un-
conditional variances of inflation and GDP growth. The target value of both
variables is the steady-state equilibrium value and the two objectives have
the same weight in the welfare function, which is equal to:

W = −
[
E (πt − π)2 + E

(
∆yt −∆y

)2
]

(3.12)

Using unconditional variances rather than discounted future losses implic-
itly favours policies that minimise the overall impact of shocks, penalising
those that trade smaller fluctuations today for larger ones tomorrow. Unlike
Orphanides and Williams (2007), here the welfare function factors in out-
put rather than unemployment but the change is inconsequential, since in
all the experiments the ranking of the policy rules is the same regardless of
the argument variable. Interest rate volatility is not included, but it affects
social welfare indirectly, since the term structure exerts a powerful influence
on GDP.
Model simulations are used to illustrate how the interaction between the
expectations formation mechanism and the monetary policy rule affects the
equilibrium outcomes. The optimal policy is selected via a grid search on the

102



parameters {ρ, απ, αu} of the Taylor-type reaction function: in order to save
on computation time, the step-length of the grid search is initially quite large
(.1 for ρ; .5 for απ and αu), but gradually diminishes once the region con-
taining the welfare-maximising triplet is located. Each experiment consists
of 500 replications and all simulations cover an interval of 490 years (from
year 2011 to year 2500). In the first 90 periods, the main stochastic equa-
tions24 are shocked to test how effectively the monetary policy rule stabilises
the economy;25 in the subsequent 400 years, all shocks are reset to zero and
the model settles down on the steady-state equilibrium growth path, which
makes it possible to assess the convergence properties of the learning algo-
rithm. The GSG algorithm is initialised using OLS estimates on historical
data.

3.4.1 Optimal monetary policy under rational expectations

Under rational expectations the optimal monetary policy has a small de-
gree of interest rate smoothing, a strong response to inflation and a non-
negligible concern for changes in the unemployment rate (see Fig.1): the
welfare-maximising coefficients are ρ = 0.4, απ = 2 and αu = 1.5.
Comparing the performance of alternative rules provides some notable in-
sights. First, the degree of inertia does not matter greatly: the welfare
function is quite flat for positive values of ρ up to 0.7. For higher values,
both output and inflation variability increase, suggesting that too smooth a
path of the policy interest rate fails to stabilise the economy; for ρ > 0.9

the system no longer converges, showing that difference rules are not a vi-
able alternative. Second, the equilibrium outcomes are not overly sensitive

24The equations are: (i) household consumption, (ii) exports, (iii) the private sector value added
deflator and (iv) the consumption deflator. The white-noise shocks may be interpreted as referring to
domestic and foreign household preferences and domestic and foreign mark-ups.

25To ensure a fair comparison across policy rules, the same sequences of random draws are used for
each triplet {ρ, απ, αu}.
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to the value of αu, possibly because of the role of fiscal policy in stabilising
the economy. Close to the local optimum, the welfare function exhibits a
hump-shaped response to αu; away from it, no well-defined relationship is
apparent. Third, the policymaker’s response to deviations from the inflation
target ought to be quite strong: the optimum is achieved when απ = 2 , while
for απ ≤ 1 the model is not stable, suggesting that the Taylor principle holds.
This finding is not trivial, since unlike small closed-economy models with no
government, the maquette of the Bank of Italy Quarterly Model model pro-
vides for channels other than monetary policy that help to tame inflationary
pressures.26 Social welfare turns out to be very sensitive to changes in απ,
contrary to what happens with αu or ρ: other things equal, it falls by nearly
one sixth when απ = 3 and by one third when απ = 4. Fourth, mild changes
in the weighting of the objectives of the loss function are inconsequential:
the optimal policy stays the same when the weight of output stabilisation is
halved and remains close to optimal when it is doubled.

3.4.2 Optimal monetary policy under learning

The foregoing results are based on four partly interrelated hypotheses: (i)
the economic environment is stationary, since equations do not change over
time; (ii) agents know the structure of the economy; (iii) expectations are
rational and (iv) the central bank is credibly committed to an unchanging
policy rule. Each assumption has a strong impact on the properties of the
system and on the policymaker’s incentives and constraints. Uncertainty
about the structure of the economy forces policymakers to rely on estimates
of the unobserved natural rates; imperfect knowledge on how the economy
works alters the way monetary policy and private sector expectations inter-

26An increase in inflation worsens price competitiveness and reduces the real value of non-indexed finan-
cial wealth; the resulting decline in exports and private-sector spending translates into less employment
and decelerating costs. Besides, there is usually fiscal drag weakening aggregate demand. Since these
channels are at work in the model, the Taylor principle may not be a necessary condition for determinacy.
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act; learning makes an otherwise stationary environment non-stationary; and
the imperfect credibility of the central bank reduces the authority’s ability
to steer market expectations.
In order to assess the impact of these assumptions on the central bank’s
strategy, I run three sets of simulations. In the benchmark case, labelled
“no transparency”, I assume that agents do not know the current value of
the policy interest rate when they take their decisions but observe it with
a one-period delay (i.e. the private sector forms expectations before the
monetary policy rate for the current period is set). In the second experiment,
I assume that the central bank pre-announces the current-period monetary
policy stance, so that ÊP

t−1it = it; this case is dubbed “partial transparency”,
because the authority communicates neither its own estimates of the natural
rates (ÊCB

t−1r
∗
t and ÊCB

t−1u
∗
t ) nor the coefficients of the reaction function (ρ,

απ and αu). The final set of simulations posits a “fully transparent” central
bank that provides private agents with all the information it processes in
making policy decisions.27 Comparing the first experiment with the rational
expectations equilibrium, one can assess the welfare losses and the changes
of the optimal monetary policy rule due to imperfect knowledge; comparing
the other two experiments with the benchmark “no transparency” hypothesis,
one can gauge the gains from an effective communication strategy.
The size and complexity of the model make it hard to disentangle the channels
through which monetary policy decisions affect the economy and to assess
how the parameters of the interest-rate rule bear on output and inflation
volatility. In order to determine which factors affect welfare most strongly,
social welfare and its drivers have been regressed on the standard deviations
of the main macroeconomic variables. Table 1 reports the t -statistics of
these regressions: a negative correlation between welfare and the standard

27The expression “full transparency” is not perfectly appropriate here, as the central bank does not
communicate everything to the public, e.g. its PLM for inflation and the variables entering the interest-
rate rule.
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deviation of a variable implies that the lower the volatility of that variable,
the greater the increase in social welfare. The entries in the table suggest
that the anchoring of inflation expectations and the stabilisation of wages and
prices are the primary sources of welfare movements: when transparency is
not complete, lower variability of surprise and expected inflation results in
higher welfare; when transparency is full, wage fluctuations are the main
factor in economic instability. The econometric evidence suggests that by
controlling nominal variables the monetary policymaker succeeds in keeping
the real variables in check as well. The exchange rate and the term spread
do not appear to be significant drivers of welfare.

The benchmark case

Table 2a presents summary statistics describing how alternative policy rules
work. Monetary policies are appraised according to two indices: the level of
welfare and the rejection rate (i.e. the percentage of non-converging repli-
cations). Results on the optimal rule are presented in the first row; the
other policies are arranged so that only one parameter at a time changes,
making it easier to see how sensitive the rule’s performance is to changes in
each element of the triplet (ρ, απ, αu). For every combination of parameters,
the table shows the first and second moment from steady-state of (i) out-
put, (ii) inflation, (iii) inflation surprises, (iv) private-sector nominal wage
growth, (v) the (mean) intercept of the inflation PLMs, (vi) the difference
between central bank and private-sector inflation expectations, (vii) the opti-
mal capital-output ratio, (viii) the short and (ix) the long-term interest rate.
In the last two columns, the table shows the entropy of inflation and of the
policy rate, measuring the uncertainty agents face in choosing the forecasting
model.
The entropyH of a discrete random variableX, whose values are {x1, x2, ..., xK},
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is defined as H (X) = −
K∑
k=1

p (xk) logb p (xk), where p (xk) is the probability

of drawing xk and b is the base of the logarithm. H (X) reaches its maximum
when, for each xk, p (xk) = 1/K and its minimum when p (xk) = 1 for one
xk and zero otherwise. Common values for b are 2, e or 10; alternatively, one
can choose b = K so that H (X) ∈ [0, 1]. In this paper, xk represents the
kth forecasting model and p (xk) is the share of agents buying its predictions;
H(X) = 1 means that the data do not help to discriminate among models,
while H(X) = 0 indicates that one predictor dominates and precludes the
others.
Comparing the equilibrium outcomes under rational expectations and learn-
ing, it seems that neither the uncertainty about the natural rate nor the
expectations formation mechanism entail substantial welfare losses: the op-
timal policy under learning achieves nearly the same welfare level as the op-
timal policy under rational expectations, and even suboptimal ones perform
quite well in most cases. What does change is the shape of the optimal policy
rule: under adaptive learning, the optimal policy requires a weaker response
to deviations of inflation from target (απ = 0.4 rather than απ = 2.0) and
a stronger concern for output stabilisation (αu = 3.5 rather than αu = 1.5).
This outcome depends mostly on the exchange rate: under adaptive learning,
exchange rate expectations are stickier and the value of the currency - and
hence inflation - is less volatile, which induces the monetary policymaker to
pay more attention to output stabilisation. The degree of inertia is roughly
the same (ρ = 0.3 rather than ρ = 0.4), but it does not seem to play a sub-
stantial role: social welfare is to a large extent unaffected by the coefficient
of the lagged interest rate and does not change significantly for values of ρ in
the range [0.3, 0.5]; as ρ increases, output fluctuates less and inflation more.
Concerning the performance of alternative monetary policy rules under learn-
ing, table 2a offers several insights. In particular, it shows that inflation
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volatility is much more responsive than output volatility to changes in ρ,
απ and αu: the range of variation of the standard deviation of inflation is
about seven times that of output. Not surprisingly, the best-performing rules
are those that anchor prices better, even if this comes at the cost of wider
fluctuations in the level of economic activity. If the inertia of the policy rule
decreases from 0.8 to 0.3, inflation volatility decreases by one-fourth, while
that of output increases by less than one-fiftieth; if απ falls from 2.5 to 0.5,
the second moment of both of the central bank’s objectives diminishes; if αu
rises from 1.0 to 2.5, inflation counter-intuitively becomes much less erratic
and output fluctuates more. More effective rules have a low or even zero re-
jection rate; moreover, the share of non-converging replications seems to be
proportional to the degree of inertia and inversely related to responsiveness
to the unemployment gap.
The best-performing policies are therefore those that (l) have low inertia;
(2) do not overreact to changes in inflation; and (3) lean strongly against
aggregate demand shocks. These rules succeed in keeping price fluctua-
tions under control mostly through expectations management. Applying
the law of total variance, the second moment of inflation (i.e. V ar (πt))
can be decomposed into the sum of the expected value of its conditional
variance (E (V ar (πt|It−1))) and the variance of its conditional expectation
(V ar (E (πt|It−1))): the first term can be proxied by the variance of time-t
inflation surprises averaged across time, the second by the variance of ex-
pected inflation, where expected inflation in each period is computed aver-
aging across replications. The recipe for effectiveness is therefore to make
inflation predictable (which reduces the first term) and to prevent expecta-
tions from decoupling from targets (which minimises the second).28 If these
two requirements are not met, wages - which depend on inflation expecta-

28The alignment between target and expected inflation is also measured by the first and second moments
of the intercept of the forecasting models used for predicting inflation. Both statistics are shown in table
1.

108



tions - become excessively erratic and nominal instability is transmitted to
households’ and firms’ spending decisions. Table 2a confirms that a high
level of welfare is in general associated with predictable inflation and stable
expectations: predictability is inversely related to the volatility of inflation
surprises.
Expectations are one of the key elements in understanding how the economy
responds to monetary policy actions. If beliefs are not homogeneous, a natu-
ral question is whether model heterogeneity disappears as data accumulates:
the answer is a resounding no, regardless of the central bank’s communication
strategy.
With regard to short-term interest-rate expectations, the two PLMs that
include output growth and next-period inflation (the 4th and 6th models)
outperform the others, despite the fact that the central bank policy rule uses
the unemployment rate as a proxy for slackness in economic activity. The
population state gradually converges towards a situation where more than
80% of the agents use one of these two models. Similar results are found
for expected inflation. The best-fitting PLM has unit labour costs and the
import deflator as regressors, while the second-best has the unemployment
rate as the sole explanatory variable; taken together, they account for nearly
85% of agents’ picks. The ranking of the forecasting models is more or less
the same across replications and end-of-sample proportions cluster together
quite neatly. For the exchange rate the picture is different: neither of the two
forecasting models clearly stands out and the relative accuracy of the com-
peting PLMs seems to be driven by a combination of shocks to the economy.
Unlike the other variables, exchange rate expectations are highly dispersed
across replications.
One finding is common to all three cases and to all transparency regimes:
highly inaccurate forecasting models tend to be discarded, but no PLM suc-
ceeds in ruling out all the others, possibly because there is not enough in-
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formation in the data. Heterogeneity in expectations formation seems to be
an intrinsic feature of the model: even for the policy interest rate - which
depends on a small set of variables and is more accurately tracked by agents’
expectations - two PLMs coexist. Does this finding depend on the value of
the sensitivity parameter λ of the payoff function? Not really. Fig. 2 shows
that even for very high values of the responsiveness of the payoff function to
forecast errors, the heterogeneity in expectations formation does not disap-
pear. On the contrary, excessively high values of λ tend to reduce the share
of agents choosing the two best forecasting models, especially for inflation:
heterogeneity in expectations stops decreasing, and the selection of forecast-
ing models becomes more and more erratic. Indeed, when λ exceeds a certain
threshold (i.e. when λ > 2500) social welfare deteriorates: the volatilities of
output growth and inflation increase, as agents tend to switch too frequently
from one forecasting model to another, making predictions inaccurate and
disanchoring expectations.
These results clash with those of Orphanides and Williams (2007), who find
that when private agents have imperfect knowledge, the central bank benefits
from more strongly inflation-averse policies, which help prevent expectations
from decoupling from target inflation. This contrasting evidence is explained
by differing monetary policy transmission mechanisms. The Orphanides-
Williams model is a plain-vanilla three-equation New-Keynesian model: the
policy instrument affects aggregate demand directly and inflation indirectly
(through the output gap); as long as interest rate changes offset inflationary
pressures, they stabilise the economy and have negligible spillovers on social
welfare.29 The model used in this chapter has a much richer transmission
mechanism, where expectations not only drive monetary policy choices but
also affect wage setting, competitiveness and asset prices: a strong interest-
rate response to price shocks makes actual inflation more erratic and less

29Provided of course that interest rate volatility does not have a large weight in the loss function.
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predictable. What happens is that by overreacting to inflationary pressures,
the policymaker induces greater fluctuations in consumption and investment,
putting additional pressures on prices. The net effect is to amplify rather than
attenuate the initial shock.
An additional channel affecting the transmission of monetary impulses works
through asset prices. A tightening of the policy stance results in an appre-
ciation of the currency, which keeps price dynamics in check, both directly
(through a lower import deflator) and indirectly (through the impact of a
deterioration in price competitiveness on economic activity). But the simu-
lation results suggest that this channel plays only a minor role in shaping the
response of the economy to monetary impulses. Policy stimuli bear upon the
yields of long-term bonds and the slope of the term structure of interest rates
also. There is no easily discernible relationship among the coefficients of the
policy rule, the volatility of the term structure and social welfare. Consider-
ing the volatility of inflation-adjusted yields, it clearly has a positive effects
on the standard deviation of output growth, but the impact on welfare is dis-
torted by the response of inflation, whose fluctuations seem to be dampened
by more volatile real interest rates.30

Two other findings are worth mentioning. First, the Taylor principle does not
apply: though the welfare-maximising value of απ is 0.4, the model is stable
and learnable, and the rejection rate is zero.31 Second, the optimal rule has
the lowest entropy associated with the predictor proportions of PLMs for the
short-term interest rate, suggesting that one ingredient in a successful policy

30The link between learning and interest rates is not a novel feature of this paper. Dewachter and
Lyrio (2006) present a macroeconomic model in which agents learn about the central bank’s inflation
target and the real interest rate to explain the joint dynamics of output, inflation and the term structure
of interest rates. Learning generates endogenous stochastic endpoints that act as level factors for the
yield curve. They find that their model has a better fit than those based on rational expectations and
generates sufficiently volatile endpoints to match the variation in long-maturity yields and in surveys of
inflation expectations.

31Svensson (2000) explains why the Taylor principle does not hold in open economies.
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is enabling agents to discriminate between good and bad forecasting models.

The case of partial transparency

Transparency of monetary policy refers to the absence of information asym-
metries between policymakers and the private sector. Perfect transparency,
in the setup used here, implies that the central bank discloses to the general
public both its estimates of the natural rates and the precise form of the
policy rule; incomplete transparency is defined as a situation where the pol-
icymaker communicates in advance only the monetary stance (i.e. the value
of it). In this case, expectations about future policy rates, which are needed
to price long-term securities, are formed with a PLM that differs from the
true interest-rate rule, namely:

Êi
t−1it+j = Ωj

0,t−1 + Ωj
1,t−1ut−1 + Ωj

2,t−1∆yt−1

+ Ωj
3,t−1πt−1 + Ωj−1

4,t−1it + Ωj
5,t−1∆et−1

Table 2b shows the results of the simulations under partial transparency.
There seems to be only a modest gain from being transparent: the optimal
policy achieves a level of welfare that is just slightly better than the best
outcome under opaqueness. Some benefits are discernible in lower rejection
rates and in the way the central bank manages to steer agents’ behaviour:
when agents know in advance what the central bank is going to do, they
behave in a way that is consistent with the monetary stance, fostering the
achievement of the objectives with smaller changes in the policy instrument.
Less volatile short-term interest rates promote a somewhat flatter term struc-
ture and are conducive to a more precise appraisal of the unobserved natural
rates, though the evidence is not unambiguous.
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The case of full transparency

The equilibrium outcomes change substantially when the central bank is
fully transparent and discloses all the information that it uses in choosing
its monetary stance. Full trasparency holds when no information asymmetry
between the central bank and the general public exists. Since the central
bank informs market participants of the coefficients of the policy rule, the
inflation objective, and its own estimates of the natural rates, expectations
about future policy rates are set according to the following equation:{
Êi
t−1it+j = ρÊi

t−1it−1+j + (1− ρ) i∗t+j

i∗t+j = ÊCB
t−1r

∗
t + π + απ

(
Êi
t−1πt+1+j − π

)
− αu

(
Êi
t−1ut+j − ÊCB

t−1u
∗
t

)
for j > 0. The only remaining information asymmetry is the one about the
PLMs for inflation and the unemployment rate, which are not the same for
the central bank and the private sector. As shown in Table 2c, the best
performing rule features a much higher degree of inertia, a stronger infla-
tion aversion and a lower concern for output fluctuations. The sensitivity
to changes in the value of ρ is high: for ρ = .3, welfare is nearly 20 p.p.
lower than at the optimum. A low degree of inertia tends to destabilise the
exchange rate and raises substantially the cost of financing, which justifies
the deterioration of the policy performance.32 Welfare is also sensitive to
the value of αu, since too weak a response to unemployment gaps injects
variability in inflation. It is worth stressing that though the optimal strategy
exhibits a larger απ and a smaller αu than in the partial and no-transparency
cases, output fluctuates less and inflation more; moreover, for most combina-
tions of {ρ, απ, αu}, the policy interest rate tends to be less volatile, but the
long-term yield exhibits much larger fluctuations. A possible explanation is
that when the natural rates and the policy parameters are not estimated, but

32As shown in Table 2c, the bias of the long-term interest rate - i.e. the difference between the mean
value across time and replications and the steady-state value - is always larger than 200 basis points.
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provided by the central bank, there is no automatic error-correction mecha-
nism working through recursive learning, so that expected future policy rates
become extremely erratic and the term structure biased and volatile.33

One noteworthy feature is that in all cases, even when the overall performance
of the policy rule is poor, the standard deviation of output is smaller than
under partial transparency or opaqueness.34 Higher inflation volatility is
traded for lower output volatility, as witnessed also by the standard deviation
of the capital-output ratio, which is substantially smaller than in the other
two cases. Notwithstanding the relatively large variability of inflation, the
mean intercept of the inflation PLMs turns out to be mush less biased and
unstable.
While the optimal rule does not improve significantly upon the partial and
no-transparency case, suboptimal strategies seems on average to perform
better, suggesting that transparency may be conducive to robustness. All in
all, it seems that central bank talk has a beneficial but very modest impact on
agents’ expectations and behaviour. The explanation of this finding echoes
the warning of Amato, Morris and Shin (2002), who note that central bank
communication has a dual function: on the on hand, it provides signals
about the policymaker’s private information; on the other hand, it serves
as a coordination device for the beliefs of private agents and may at times
induce agents to do away with their own private information. The first
effect is welfare-enhancing; the second may be welfare-reducing. Which effect
prevails cannot be said in general: in the case considered, it seems that the

33This guess is confirmed by the value - not reported in the table - of the 1st and 2nd moments of the

variable measuring interest-rate missperceptions, i.e. 1
6

6∑
j=1

(
it−1 − Êt−1−jit−1

)
, which are much larger

than in the previous cases.
34It is not certain however that this outcome is to be attributed to monetary policy. An alternative

possibility is that this result is due to fiscal policy: at the optimum point, the standard deviation of the
tax rate on disposable income (which is the fiscal policy instrument used to keep the debt-to-GDP ratio
close to its target of 0.6) is more volatile and much higher than in the steady-state equilibrium; in the
partial and no-transparency cases, the opposite happens.
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benefits of adopting a completely transparent policy are largely offset by its
shortcomings.

3.4.3 Perpetual learning

The canonical justification for adopting gain sequences that remain bounded
above zero is that the economy is subject to structural shifts and, accord-
ingly, past observations should be given less weight than recent data in the
learning algorithm. There is actually a second rationale for using constant-
gain estimators that fits the model in this paper perfectly: the possibility of
nonconvergence to the REE. If convergence to the perfect information equi-
librium is for whatsoever reason unlikely, then the actual stochastic process
followed by the economy may best be modelled - given the PLMs employed
by agents - as undergoing structural change over time. The main implica-
tion of constant-gain learning is that agents’ estimates are always subject to
sampling variation and never converge to fixed values; for this reason, some
authors name this adaptive scheme "perpetual learning".
Table 3a to 3c report the simulation results under the three alternative com-
munication strategies in the case of perpetual learning. Under no trasparency,
there is hardly any difference between the decreasing and constant gain cases.
The best policy is essentially the same, just a bit more inertial (ρ = .31 rather
than ρ = .3) and slightly less reactive to fluctuations in real activity (αu = 3.2

rather than αu = 3.5 ). Welfare is apparently not affected by the memory
of the learning algorithm: it is either the same or slightly lower, suggesting
that observations far away in the past are indeed barely informative. The
ranking of suboptimal policies is not altered either: the worst outcomes are
achieved when either απ is too high or αu is too low.
Similar results are obtained when the central bank discloses the information
it uses in making policy decisions. Under partial transparency, the welfare-
maximising policy features a slightly milder response to the unemployment
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gap (αu = 3 vs. αu = 3.2). Under full transparency the opposite happens:
the optimum is achieved with a somwhat higher value of αu and a somewhat
lower value of απ. In general, the simulations confirm that when the monetary
policymaker reacts too aggressively to price shocks or too meekly to demand
fluctuations, the economy becomes unstable and social welfare plunges.

3.5 Sensitivity analysis

The results just described are based on several ad-hoc assumptions. On
some of them - the number of replications in each experiment or the initial
conditions of the learning process - a thorough sensitivity analysis can be
conducted; on others - the choice of the PLMs - no fully-satisfactory testing
procedure is available: with hundreds of variables, there are too many PLMs
that can be chosen, most of them indistinguishable in terms of parsimony or
fitting.
To test the generality of the findings described in the previous section, four
sensitivity analysis exercises are conducted: in the first, the model is simu-
lated with 10,000 replications and the results compared with those obtained
in the baseline experiment, to test whether the latter are distorted by the
small number of replications; in the second, the initial conditions of the
learning algorithm are changed, by increasing/decreasing the (fixed) covari-
ance matrix of the regressors, that drives the size of the Kalman gain and
accordingly the extent of the revisions in expectations once new data becomes
available; in the third, the sensitivity of the optimal monetary policy rule to
changes in the welfare function is assessed; in the final experiment, initial
conditions for predictor proportions xit are set randomly, by drawing from
a uniform distribution with support in [0, 1], instead of imposing that they
are equal to the reciprocal of the number of forecasting models and constant
across replications.
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3.5.1 Experiment #1: the number of replications

For each experiment, the number of replications has been chosen so as to
guarantee reliable results while keeping the time needed for a full search of
the optimal policy at an acceptable level. The model, augmented with the
learning recursions, contains nearly 300 equations: when all 500 replications
converge, it takes roughly two minutes to complete them; when some of them
diverge, it can require two hours of computer time. Since the search for the
optimum policy calls for the evaluation of more than 300 combinations of the
Taylor-rule coefficients, 500 replications has been viewed as an acceptable
compromise.
To assess whether the results shown in Tables 2a to 2c are affected by small
sample bias, the equilibrium outcomes of the three communication regimes
at the optimum have been compared with the results obtained by running
10,000 replications. Table 4 presents a summary of the findings. Only three
variables are compared: social welfare, output growth and inflation; for the
latter two, both the first (bias) and the second moment (volatility) from
the steady-state equilibrium are considered. Each entry is the ratio between
the value computed in 10,000 replications and that obtained in 500 ones;
for all ratios, the mean, the median, the maximum and the minimum across
replications are shown.
According to the evidence presented in Table 4, the size of the small sample
bias is negligible: regardless of the transparency regime, the difference in
welfare does not reach 2 percentage points and the discrepancy is even smaller
for the volatility of output growth and inflation. The estimates of the biases
are less alike and sometimes even change sign, but this is no evidence of
the existence of a significant small-sample bias: both the numerator and the
denominator of the ratios are close to zero, so that even small differences can
lead to high jumps in the ratio. The precision of the estimates based on few
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replications is confirmed by looking at the ratios between the maxima and
minima, which are surprisingly low.

3.5.2 Experiment #2: the size of Γ

A second type of sensitivity analysis has been conducted on initial conditions
of the learning algorithm. A critical parameter is Γ, the moment matrix of
the regressors entering the (generalised) stochastic gradient learning recursive
equations: unlike the coefficients of the PLM, the matrix Γ is not updated,
but held fixed at some assigned level. To assess the influence of the value of
Γ on the ranking of the policy rules, other simulations have been run, using
kΓ as the moment matrix of the regressors. Six cases have been considered,
corresponding to k =

{
9
10 ,

11
10 ,

3
4 ,

5
4 ,

1
2 ,

3
2

}
. Table 5 shows the results for the

three monetary regimes and the 6 values of k; the entries in the table indicate
the rank of each policy rule in terms of social welfare. In the final two rows,
the Spearman ρ and the Kendall τ rank correlation coefficients are presented.
The results are reassuring. In the full transparency case, there is no un-
certainty about which is the welfare-maximising policy rule: all values of
kΓ point to the same rule. Something similar happens in the partial trans-
parency case, where the optimal policy is identified for all values of k except
3
2 , while the ranking in the no-transparency regime seems to be somewhat
more dependent on choice of Γ. The sample values of the rank correlation
coefficients - surprisingly high in nearly all cases - confirm that the actual
value of Γ is quite irrelevant not only in detecting the optimal policy, but
also in ordering suboptimal ones.

3.5.3 Experiment #3: specification of the welfare function

The welfare function (3.12) used in the paper does not penalise interest rate
instability and attributes the same importance to the volatility of inflation
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and that of output growth. The first feature is justified on the grounds that in
a sufficiently large model excess volatility of the monetary policy instrument
trasmits to other asset prices, affecting private-sector spending decisions, so
that it is implicitly incorporated in the volatility of output and inflation; the
second feature reflects the desire to treat evenly fluctuations in nominal and
real variables, as in Orphanides and Williams (2007).
As it is unclear which are the appropriate weights of the different arguments
of the welfare functions, it is advisable to test how sensitive is the choice
of the best-performing monetary policy rule to the specification of social
preferences. A more general specification of the welfare function is

W = −
[
ζE (πt − π)2 + (1− ζ)E

(
∆yt −∆y

)2
+ ωE

(
it − i

)2
]

(3.13)

The parameter ζ measures the degree of inflation aversion, while non-zero
values of ω signal that society dislikes interest rate volatility as well. For
ζ = .5 and ω = 0, (3.13) coincides with (3.12); ζ = .5 and ω = 0.125 are
instead the values used in Orphanides and Williams (2007).
Tables 6a to 6c show how different combinations of the parameters (ζ, ω)

affect the ranking of monetary policy rules. Each row of the table corresponds
to a policy rule, while the columns refer to alternative values of the weights of
the interest rate and inflation objectives relative to that of output growth. In
the last two rows of the table, the Spearman’s and Kendall’s rank correlation
coefficients are shown.
Three findings are worth stressing: (1) save the case when the degree of
inflation aversion of the monetary policymaker is very low, changes in the
weight of the inflation objective have no impact on the choice of the best-
performing rule: the rank correlation coefficients is in all but one case not
just high, but equal to 1; (2) adding interest rate volatility to the welfare
function does not influence the ordering of the policy rules, unless its weight
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is unreasonably high. Using the same specification as in Orphanides and
Williams (2007), does not alter the results shown in table 2a to 2c; (3) in
the full transparency case, the ranking of the policy rules turns out to be
much more sensitive to the inclusion of interest rate volatility in the welfare
function, though the main features of the best-performing policy changes
only marginally. In general, more inertial and less activist policies seem to
becomes more effective. The main rationale of this outcome is that under full
transparency the short-term interest rate is much more volatile than inflation
and output growth, so that even for low values of ω the shape of the welfare
function changes in a non-negligible way.

3.5.4 Experiment #4: stochastic initial conditions for model pro-
portions xit

In all the experiments described so far, initial conditions for predictor pro-
portions xit are set equal to the reciprocal of the number of models used to
forecast a given variable and are kept constant across PLMs and replications,
under the presumption that this creates a level playing field for all compet-
ing forecasting models. To assess whether this assumption does indeed leave
the model selection process unaffected, additional simulations are run, this
time drawing initial conditions from a uniform distribution with support in
(a finite subset of) R+; the constraints on model proportions are enforced
by rescaling each draw so as to ensure a unit sum. Table 7 shows predictor
proportions at the end of the simulation horizon under fixed and random
initial conditions, together with two other statistics: the standardised dif-
ference between average predictor proportions and the correlation between
initial conditions and limit values of model shares.
For all the variables - short-term interest rata, inflation and exchange rate -
the table clearly shows that initial conditions do not matter much: the ranking
of the models is the same regardless of the way initial conditions are set
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and the standardised difference between predictor proportions is always well
below one and quite close to zero. The correlation between initial and final
values of the predictor proportions is in general non-negligible, suggesting
that initial conditions are not irrelevant, though not important enough to
change the long-run behaviour of the system.

3.6 Conclusions

This paper has analysed the properties of a large non-linear model popu-
lated by boundedly rational and incompletely informed agents. When the
economy is sufficiently complex, individuals do not know the "true" law of
motion of the variables they need to predict and are confronted with a host
of equally plausible forecasting models. If agents can pick one out of a large
number of predictors, none of which clearly superior, there is no guarantee
that everyone selects the same one; in addition, they may choose to change
to a different forecasting model if the predictive accuracy of the one that
they are using deteriorates. Expectations therefore end up being misspec-
ified, heterogeneous and ever-changing, even asymptotically, when enough
observations are available to detect which forecasting model exhibits the best
predictive performance. As the equilibrium to which the economy asymptot-
ically converges differs from the REE and depends on the specific form of
the expectations equations, central bank communication may be beneficial if
it helps private agents to coordinate their beliefs. The paper is an attempt
to assess whether in such a model economy the implications for monetary
policymaking are similar to those found in the literature for small, linear
systems and whether higher degrees of transparency are welfare-enhancing.
The main findings are the following. First, expectations heterogeneity is an
intrinsic feature of the economy: regardless of the monetary policy in place,
no PLM succeeds in ruling out all the other forecasting models, though the
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most inaccurate ones are eventually dismissed. Second, the monetary poli-
cymaker has much weaker incentives (than, e.g., in the paper by Orphanides
and Wiliams) to adopt more inflation-averse policies, since too strong a reac-
tion to price shocks increases both inflation and output volatility and tends
to make the model unstable and non-learnable. At first sight, this outcome
seems quite counterintuitive: a central bank that is committed to tame infla-
tionary pressures is presumably more credible and more effective in anchoring
long-run inflation expectations and bond yields. This connection however is
not present in the model and credibility depends on outcomes, not inten-
tions: agents learn from the data and what matters is whether monetary
policy makes the economy more stable. Third, more transparent policies are
in some cases mildly welfare-enhancing, but they never warrant sizeable im-
provements; the degree of transparency alters the form of the optimal policy
rule also, as it increases inflation aversion. Disclosing more information is
however not always beneficial.
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Note: The values reported on the x-axis are scaled by 1000, implying that the value λ=1000 used in the simulations corresponds to
the value of 1 on the x-axis. The blue and green lines represent the sum of the predictor proportions of the two most successful
forecasting models for the short-term interest rate and for inflation; the red line shows the share of agents adopting the best
predictive model for the exchange rate.  

Fig.2 - Predictor proportions and payoff function

0,5

0,6

0,7

0,8

0,9

1

0,1 1 5 10 15 17,5 20 21 22 22,5 23 24 25 27,5 30 35 50 75 100

Lambda coefficient

pr
ob

ab
ili

ty

Interest Rate Inflation Exchange Rate



volatility of: Welfare σ Δy σ π Welfare σ Δy σ π Welfare σ Δy σ π

π e -34.19 -4.52 71.86 -37.97 -5.55 68.02 -5.53 -8.05 7.38

π-π e -35.57 -4.53 193.68 -42.04 -5.54 180.24 -35.59 -5.15 42.75

Δw -21.87 -5.12 37.32 -21.89 -6.23 33.43 -41.33 -4.23 19.24

Θ 0 -17.28 -5.40 26.67 -21.65 -6.24 31.79 0.09 1.24 -0.44

k* -1.03 -0.97 1.12 -0.12 -0.27 0.15 -4.19 -1.28 3.32

Δπ e 1.72 3.30 -1.88 1.50 2.52 -1.64 -6.39 -9.53 8.38

i -0.03 0.63 -0.15 0.07 0.57 -0.17 -0.67 -1.89 1.04

i L 0.20 0.76 -0.39 0.23 0.60 -0.32 0.19 -1.21 0.18

i L -π 3.67 8.45 -4.38 3.37 5.21 -3.75 0.27 -1.15 0.11

i-π 1.29 1.93 -1.53 1.45 1.96 -1.59 -0.33 -1.75 0.72

i L -i 0.10 0.84 -0.30 0.33 0.90 -0.45 0.47 -0.81 -0.11

e -0.85 -1.00 0.95 -0.11 -0.31 0.14 0.53 -0.94 -0.14

Table 1 - Impact on welfare of the volatility of the main macroeconomic variables

The table reports the t -statistic of the simple regression of welfare and the standard deviation of the arguments of the welfare function on
the volatility of a subset of the main macroeconomic variables included in the model. The first column lists the set of regressors; the
subsequent ones, coming in groups of three (one group for each transparency regime), show the t -statistic of the regression of,
respectively, welfare, the volatility of output growth (σΔy) and the volatility of inflation (σ π ) on the variable indicated in the first column.
The notation is used as follows: π e is expected inflation; π-π e is surprise inflation; Δw is wage growth; Θ 0 is the mean intercept of the
forecasting equations for inflation; k* is the optimal capital-output ratio; Δπ e is the difference between central bank and private-sector
inflation expectations; i and i L are the short (policy) and long-term interest rate; i-π and i L -π are the corresponding real rates; i -i L is the 
term spread; e  is the exchange rate.

No Transparency Partial Transparency Full Transparency



W RR Δy π π-π e Δw Θ 0 Δπ e k* i i L H(π e ) H(i e )

  vol. 1.115 1.137 1.076 1.15 1.90 0.15 3.22 1.905 0.543 0.061 0.024

  bias 0.005 0.057 -0.003 0.06 1.89 -0.13 3.22 0.589 0.012 0.786 0.641

  vol. 1.043 1.546 1.29 2.15 3.11 0.14 3.23 1.834 0.518 0.08 0.021

  bias 0.004 0.064 -0.01 0.07 2.96 -0.11 3.23 0.509 -0.053 0.71 0.744

  vol. 1.052 1.340 1.18 1.68 2.53 0.14 3.22 1.763 0.492 0.07 0.022

  bias 0.003 0.058 -0.01 0.06 2.45 -0.11 3.22 0.652 0.026 0.75 0.720

  vol. 1.057 1.297 1.16 1.58 2.40 0.14 3.22 1.730 0.478 0.07 0.020

  bias 0.003 0.056 -0.01 0.06 2.34 -0.12 3.22 0.673 0.045 0.76 0.714

  vol. 1.060 1.273 1.15 1.52 2.32 0.14 3.22 1.712 0.470 0.07 0.021

  bias 0.003 0.056 -0.01 0.06 2.27 -0.12 3.22 0.688 0.058 0.76 0.709

  vol. 1.063 1.260 1.14 1.48 2.27 0.14 3.22 1.704 0.466 0.07 0.022

  bias 0.003 0.055 -0.01 0.06 2.23 -0.12 3.21 0.699 0.069 0.76 0.706

  vol. 1.046 1.394 1.21 1.80 2.75 0.14 3.24 1.623 0.481 0.08 0.021

  bias 0.004 0.073 -0.01 0.08 2.65 -0.11 3.23 0.400 -0.080 0.74 0.713

  vol. 1.047 1.405 1.22 1.83 2.78 0.14 3.23 1.795 0.505 0.08 0.023

  bias 0.003 0.060 -0.01 0.06 2.68 -0.11 3.22 0.608 -0.004 0.73 0.729

  vol. 1.049 1.424 1.23 1.88 2.80 0.13 3.22 1.988 0.551 0.08 0.027

  bias 0.003 0.050 -0.01 0.05 2.70 -0.11 3.21 0.796 0.062 0.73 0.743

  vol. 1.052 1.460 1.25 1.97 2.82 0.13 3.21 2.215 0.617 0.08 0.034

  bias 0.002 0.044 -0.01 0.05 2.71 -0.10 3.21 0.971 0.116 0.73 0.752

  vol. 1.055 1.453 1.24 1.97 2.82 0.13 3.20 2.379 0.662 0.08 0.039

  bias 0.002 0.037 -0.01 0.04 2.71 -0.10 3.20 1.114 0.166 0.72 0.754

  vol. 1.040 1.607 1.32 2.24 3.18 0.14 3.23 1.436 0.367 0.08 0.020

  bias -0.002 0.082 -0.03 0.09 3.02 -0.11 3.23 0.554 0.009 0.70 0.749

  vol. 1.041 1.546 1.29 2.11 3.06 0.14 3.23 1.712 0.472 0.08 0.021

  bias 0.002 0.072 -0.02 0.08 2.92 -0.11 3.23 0.561 -0.011 0.71 0.739

  vol. 1.047 1.405 1.22 1.83 2.78 0.14 3.23 1.795 0.505 0.08 0.023

  bias 0.003 0.060 -0.01 0.06 2.68 -0.11 3.22 0.608 -0.004 0.73 0.729

  vol. 1.057 1.320 1.17 1.66 2.49 0.14 3.22 1.887 0.536 0.07 0.024

  bias 0.004 0.056 -0.01 0.06 2.42 -0.11 3.22 0.657 0.006 0.76 0.723
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Table 2a - Monetary policy effectiveness under no transparency

The table reports a summary of the results (500 replications) of the model simulations (for the initial 140 periods). For 
each set of parameters of the central bank's interest-rate rule, mean (bias) and standard deviation (volatility) with
respect to the steady-state values are reported (in p.p.). W stands for welfare (as a ratio to the optimum, reported in
row 1) and RR for the rejection rate; Δy is the growth rate of GDP, π and π-π e are actual and surprise inflation; Δw 
is wage growth; Θ 0 is the mean intercept of the forecasting equations for inflation; Δπ is the difference between
central bank and private-sector inflation expectations; k* is the optimal capital-output ratio; i and i e are the actual and
expected short-term (policy) interest rate; i L is the yield on Treasury bonds; H(π e ) and H(i e ) are the entropy
associated, respectively, with the choice of the forecasting model for π e  and i e .

ρ=0.3 0.0α π =0.4 α u =3.5 -0.026

(decreasing gain learning) 

ρ



W RR Δy π π-π e Δw Θ 0 Δπ e k* i i L H(π e ) H(i e )

  vol. 1.106 1.118 1.064 1.129 1.910 0.148 3.219 1.781 0.543 0.057 0.025

  bias 0.005 0.057 -0.005 0.057 1.900 -0.126 3.217 0.616 0.045 0.797 0.649

  vol. 1.041 1.490 1.260 2.041 2.950 0.137 3.225 1.737 0.525 0.075 0.023

  bias 0.003 0.060 -0.015 0.064 2.820 -0.108 3.222 0.489 0.023 0.726 0.757

  vol. 1.051 1.288 1.154 1.580 2.410 0.137 3.217 1.656 0.507 0.067 0.021

  bias 0.003 0.057 -0.011 0.059 2.350 -0.115 3.214 0.621 0.076 0.766 0.729

  vol. 1.056 1.257 1.137 1.498 2.310 0.138 3.215 1.638 0.502 0.064 0.022

  bias 0.003 0.058 -0.012 0.061 2.250 -0.117 3.213 0.647 0.092 0.773 0.720

  vol. 1.059 1.235 1.125 1.442 2.240 0.139 3.213 1.624 0.499 0.062 0.024

  bias 0.003 0.057 -0.012 0.059 2.200 -0.119 3.211 0.661 0.105 0.777 0.714

  vol. 1.062 1.224 1.119 1.408 2.200 0.139 3.211 1.618 0.500 0.061 0.026

  bias 0.003 0.056 -0.013 0.058 2.160 -0.120 3.209 0.672 0.119 0.778 0.711

  vol. 1.047 1.350 1.185 1.714 2.610 0.140 3.233 1.539 0.496 0.071 0.023

  bias 0.004 0.074 -0.013 0.079 2.520 -0.114 3.230 0.387 -0.042 0.752 0.721

  vol. 1.046 1.351 1.186 1.729 2.630 0.137 3.220 1.690 0.516 0.073 0.022

  bias 0.003 0.058 -0.012 0.061 2.540 -0.112 3.217 0.581 0.056 0.748 0.741

  vol. 1.047 1.376 1.201 1.791 2.660 0.134 3.208 1.881 0.572 0.075 0.021

  bias 0.002 0.045 -0.013 0.047 2.560 -0.109 3.206 0.751 0.147 0.744 0.758

  vol. 1.049 1.397 1.213 1.846 2.680 0.132 3.198 2.071 0.641 0.077 0.023

  bias 0.001 0.034 -0.015 0.035 2.580 -0.106 3.195 0.897 0.235 0.740 0.766

  vol. 1.051 1.403 1.217 1.874 2.690 0.130 3.188 2.233 0.709 0.078 0.032

  bias 0.001 0.025 -0.015 0.025 2.590 -0.104 3.185 1.017 0.318 0.735 0.759

  vol. 1.032 1.587 1.313 2.198 3.120 0.140 3.221 1.410 0.411 0.082 0.020

  bias -0.002 0.080 -0.033 0.089 2.960 -0.112 3.218 0.545 0.095 0.708 0.764

  vol. 1.035 1.494 1.261 2.013 2.960 0.138 3.222 1.633 0.493 0.075 0.022

  bias 0.001 0.066 -0.021 0.069 2.820 -0.110 3.218 0.546 0.063 0.726 0.752

  vol. 1.046 1.351 1.186 1.729 2.630 0.137 3.220 1.690 0.516 0.073 0.022

  bias 0.003 0.058 -0.012 0.061 2.540 -0.112 3.217 0.581 0.056 0.748 0.741

  vol. 1.056 1.266 1.143 1.555 2.380 0.137 3.219 1.762 0.540 0.067 0.021

  bias 0.004 0.056 -0.007 0.058 2.320 -0.114 3.217 0.609 0.051 0.770 0.733

Table 2b - Monetary policy effectiveness with transparency

The table reports a summary of the results (500 replications) of the model simulations (for the initial 140 periods). For 
each set of parameters of the central bank's interest-rate rule, mean (bias) and standard deviation (volatility) with
respect to the steady-state values are reported (in p.p.). W stands for welfare (as a ratio to the optimum, reported in
row 1) and RR for the rejection rate; Δy is the growth rate of GDP, π and π-π e are actual and surprise inflation; Δw 
is wage growth; Θ 0 is the mean intercept of the forecasting equations for inflation; Δπ is the difference between
central bank and private-sector inflation expectations; k* is the optimal capital-output ratio; i and i e are the actual and
expected short-term (policy) interest rate; i L is the yield on Treasury bonds; H(π e ) and H(i e ) are the entropy
associated, respectively, with the choice of the forecasting model for π e  and i e .
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W RR Δy π π-π e Δw Θ 0 Δπ e k* i i L H(π e ) H(i e )

  vol. 1.053 1.202 1.096 1.443 0.350 0.124 2.967 1.557 4.169 0.036 0.022

  bias -0.014 -0.163 -0.010 -0.128 0.130 -0.088 2.965 0.595 3.897 0.214 0.780

  vol. 1.044 1.260 1.134 1.582 0.360 0.126 2.998 1.316 3.098 0.038 0.027

  bias -0.016 -0.145 -0.001 -0.143 0.130 -0.087 2.997 0.532 2.816 0.220 0.811

  vol. 1.031 1.252 1.122 1.507 0.350 0.128 2.965 1.654 4.474 0.034 0.023

  bias -0.012 -0.155 -0.022 -0.105 0.120 -0.089 2.962 0.719 4.227 0.211 0.768

  vol. 1.022 1.303 1.149 1.591 0.340 0.131 2.969 1.835 4.924 0.033 0.022

  bias -0.008 -0.137 -0.037 -0.059 0.120 -0.090 2.966 0.802 4.667 0.207 0.753

  vol. 1.013 1.363 1.182 1.695 0.340 0.134 2.977 2.006 5.264 0.033 0.021

  bias -0.004 -0.113 -0.052 -0.008 0.120 -0.090 2.974 0.880 4.990 0.204 0.742

  vol. 1.006 1.426 1.218 1.806 0.340 0.137 2.987 2.162 5.522 0.032 0.021

  bias 0.001 -0.087 -0.067 0.044 0.120 -0.091 2.983 0.953 5.230 0.202 0.733

  vol. 1.033 1.233 1.112 1.481 0.350 0.128 2.970 1.507 3.975 0.036 0.027

  bias -0.015 -0.161 -0.012 -0.134 0.130 -0.089 2.968 0.747 3.731 0.216 0.783

  vol. 1.039 1.223 1.106 1.473 0.350 0.126 2.971 1.473 3.878 0.036 0.025

  bias -0.015 -0.161 -0.010 -0.138 0.130 -0.089 2.969 0.633 3.631 0.215 0.786

  vol. 1.046 1.217 1.106 1.473 0.350 0.123 2.973 1.465 3.795 0.036 0.024

  bias -0.015 -0.160 -0.008 -0.140 0.130 -0.088 2.971 0.530 3.542 0.215 0.788

  vol. 1.053 1.214 1.106 1.481 0.350 0.122 2.975 1.479 3.725 0.036 0.024

  bias -0.016 -0.158 -0.006 -0.141 0.130 -0.087 2.973 0.440 3.464 0.214 0.789

  vol. 1.060 1.214 1.107 1.494 0.350 0.120 2.977 1.511 3.669 0.036 0.024

  bias -0.016 -0.157 -0.005 -0.141 0.130 -0.086 2.975 0.362 3.396 0.213 0.789

  vol. 1.020 1.451 1.243 1.927 0.360 0.137 3.041 1.213 2.282 0.039 0.027

  bias -0.013 -0.106 -0.010 -0.115 0.140 -0.088 3.038 0.527 2.044 0.220 0.844

  vol. 1.028 1.283 1.146 1.600 0.360 0.128 2.998 1.297 3.056 0.037 0.028

  bias -0.016 -0.141 -0.006 -0.141 0.130 -0.089 2.996 0.568 2.830 0.218 0.814

  vol. 1.039 1.223 1.106 1.473 0.350 0.126 2.971 1.473 3.878 0.036 0.025

  bias -0.015 -0.161 -0.006 -0.138 0.130 -0.089 2.969 0.633 3.631 0.215 0.786

  vol. 1.049 1.210 1.098 1.445 0.350 0.127 2.969 1.765 4.802 0.035 0.020

  bias -0.009 -0.152 -0.023 -0.083 0.120 -0.090 2.966 0.802 4.514 0.211 0.765
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Table 2c - Monetary policy effectiveness with full transparency

The table reports a summary of the results (500 replications) of the model simulations (for the initial 140 periods). For 
each set of parameters of the central bank's interest-rate rule, mean (bias) and standard deviation (volatility) with
respect to the steady-state values are reported (in p.p.). W stands for welfare (as a ratio to the optimum, reported in
row 1) and RR for the rejection rate; Δy is the growth rate of GDP, π and π-π e are actual and surprise inflation; Δw 
is wage growth; Θ 0 is the mean intercept of the forecasting equations for inflation; Δπ is the difference between
central bank and private-sector inflation expectations; k* is the optimal capital-output ratio; i and i e are the actual and
expected short-term (policy) interest rate; i L is the yield on Treasury bonds; H(π e ) and H(i e ) are the entropy
associated, respectively, with the choice of the forecasting model for π e  and i e .

ρ=0.72 0.0α π =1.4 α u =2.3 -0.026

(decreasing gain learning)



W RR Δy π π-π e Δw Θ 0 Δπ e k* i i L H(π e ) H(i e )

  vol. 1.112 1.136 1.074 1.16 1.93 0.15 3.22 1.801 0.575 0.064 0.018

  bias 0.004 0.047 -0.018 0.05 1.92 -0.12 3.22 0.884 0.024 0.783 0.621

  vol. 1.038 1.497 1.25 2.05 3.23 0.13 3.22 1.776 0.571 0.07 0.023

  bias 0.002 0.052 -0.03 0.05 3.03 -0.10 3.22 0.589 0.014 0.71 0.722

  vol. 1.052 1.314 1.16 1.63 2.58 0.13 3.21 1.737 0.552 0.07 0.019

  bias 0.002 0.044 -0.02 0.04 2.49 -0.11 3.21 0.715 0.080 0.75 0.700

  vol. 1.058 1.269 1.14 1.52 2.44 0.14 3.21 1.700 0.537 0.07 0.019

  bias 0.002 0.042 -0.02 0.04 2.37 -0.11 3.21 0.731 0.096 0.76 0.693

  vol. 1.062 1.250 1.13 1.47 2.36 0.14 3.21 1.690 0.532 0.07 0.020

  bias 0.002 0.041 -0.02 0.04 2.30 -0.11 3.21 0.744 0.107 0.76 0.688

  vol. 1.066 1.236 1.12 1.43 2.30 0.14 3.21 1.679 0.527 0.07 0.022

  bias 0.002 0.041 -0.02 0.04 2.25 -0.11 3.21 0.752 0.115 0.76 0.685

  vol. 1.044 1.351 1.18 1.71 2.78 0.14 3.22 1.582 0.522 0.07 0.020

  bias 0.002 0.059 -0.03 0.06 2.66 -0.11 3.22 0.501 -0.014 0.74 0.689

  vol. 1.045 1.380 1.20 1.78 2.84 0.13 3.22 1.770 0.567 0.07 0.021

  bias 0.002 0.046 -0.03 0.05 2.71 -0.10 3.21 0.678 0.055 0.74 0.710

  vol. 1.047 1.413 1.21 1.86 2.89 0.13 3.21 1.980 0.627 0.07 0.023

  bias 0.002 0.037 -0.03 0.04 2.76 -0.10 3.21 0.843 0.111 0.73 0.732

  vol. 1.051 1.435 1.23 1.92 2.92 0.13 3.20 2.182 0.687 0.07 0.026

  bias 0.001 0.031 -0.03 0.03 2.78 -0.09 3.20 0.995 0.158 0.73 0.751

  vol. 1.056 1.474 1.25 2.01 2.93 0.13 3.20 2.422 0.762 0.07 0.031

  bias 0.001 0.027 -0.03 0.03 2.78 -0.09 3.20 1.147 0.196 0.72 0.760

  vol. 1.025 1.460 1.24 1.96 3.15 0.14 3.22 1.295 0.393 0.07 0.020

  bias -0.003 0.062 -0.04 0.06 2.96 -0.11 3.21 0.627 0.072 0.72 0.718

  vol. 1.035 1.468 1.24 1.96 3.15 0.13 3.22 1.627 0.517 0.07 0.021

  bias 0.000 0.058 -0.04 0.06 2.96 -0.10 3.22 0.621 0.049 0.72 0.715

  vol. 1.045 1.380 1.20 1.78 2.84 0.13 3.22 1.770 0.567 0.07 0.021

  bias 0.002 0.046 -0.03 0.05 2.71 -0.10 3.21 0.678 0.055 0.74 0.710

  vol. 1.057 1.293 1.15 1.61 2.53 0.13 3.21 1.857 0.592 0.07 0.021

  bias 0.002 0.040 -0.02 0.04 2.44 -0.10 3.21 0.730 0.066 0.75 0.707

α u

Table 3a - Monetary policy effectiveness under no transparency

The table reports a summary of the results (500 replications) of the model simulations (for the initial 140 periods). For 
each set of parameters of the central bank's interest-rate rule, mean (bias) and standard deviation (volatility) with
respect to the steady-state values are reported (in p.p.). W stands for welfare (as a ratio to the optimum, reported in
row 1) and RR for the rejection rate; Δy is the growth rate of GDP, π and π-π e are actual and surprise inflation; Δw 
is wage growth; Θ 0 is the mean intercept of the forecasting equations for inflation; Δπ is the difference between
central bank and private-sector inflation expectations; k* is the optimal capital-output ratio; i and i e are the actual and
expected short-term (policy) interest rate; i L is the yield on Treasury bonds; H(π e ) and H(i e ) are the entropy
associated, respectively, with the choice of the forecasting model for π e  and i e .

ρ=0.31 0.0α π =0.3 α u =3.2 -0.026

(constant gain learning)
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W RR Δy π π-π e Δw Θ 0 Δπ e k* i i L H(π e ) H(i e )

  vol. 1.106 1.118 1.064 1.137 1.950 0.147 3.213 1.731 0.577 0.058 0.027

  bias 0.003 0.045 -0.017 0.043 1.930 -0.121 3.211 0.661 0.073 0.793 0.642

  vol. 1.033 1.416 1.213 1.896 3.050 0.133 3.215 1.645 0.561 0.067 0.025

  bias 0.002 0.049 -0.028 0.050 2.880 -0.101 3.212 0.559 0.073 0.728 0.743

  vol. 1.052 1.266 1.140 1.536 2.490 0.135 3.208 1.634 0.559 0.065 0.022

  bias 0.002 0.045 -0.024 0.045 2.410 -0.109 3.206 0.675 0.119 0.763 0.718

  vol. 1.057 1.231 1.122 1.449 2.370 0.135 3.207 1.611 0.551 0.063 0.023

  bias 0.002 0.044 -0.023 0.043 2.310 -0.111 3.205 0.694 0.133 0.769 0.709

  vol. 1.061 1.211 1.111 1.394 2.300 0.136 3.205 1.597 0.547 0.063 0.025

  bias 0.002 0.043 -0.022 0.043 2.250 -0.113 3.203 0.705 0.144 0.771 0.704

  vol. 1.064 1.208 1.109 1.375 2.260 0.137 3.204 1.605 0.552 0.063 0.027

  bias 0.002 0.043 -0.023 0.044 2.200 -0.114 3.202 0.718 0.158 0.773 0.703

  vol. 1.045 1.298 1.153 1.611 2.660 0.136 3.223 1.482 0.526 0.067 0.023

  bias 0.003 0.060 -0.028 0.064 2.560 -0.108 3.220 0.464 0.007 0.752 0.706

  vol. 1.045 1.334 1.173 1.693 2.730 0.134 3.211 1.672 0.573 0.068 0.024

  bias 0.002 0.046 -0.026 0.045 2.620 -0.105 3.209 0.642 0.101 0.748 0.731

  vol. 1.046 1.362 1.189 1.762 2.780 0.131 3.200 1.867 0.637 0.069 0.023

  bias 0.001 0.034 -0.025 0.032 2.650 -0.101 3.198 0.795 0.191 0.743 0.753

  vol. 1.048 1.388 1.203 1.830 2.820 0.129 3.191 2.063 0.713 0.071 0.021

  bias 0.000 0.023 -0.024 0.021 2.680 -0.098 3.188 0.929 0.275 0.737 0.762

  vol. 1.051 1.417 1.219 1.902 2.830 0.127 3.182 2.268 0.796 0.073 0.028

  bias -0.001 0.015 -0.024 0.013 2.700 -0.094 3.180 1.050 0.354 0.732 0.754

  vol. 1.023 1.453 1.233 1.949 3.140 0.135 3.210 1.283 0.435 0.072 0.020

  bias -0.002 0.061 -0.039 0.065 2.950 -0.106 3.207 0.610 0.147 0.722 0.748

  vol. 1.034 1.438 1.224 1.907 3.090 0.135 3.213 1.573 0.539 0.069 0.022

  bias 0.000 0.056 -0.035 0.058 2.910 -0.103 3.210 0.602 0.110 0.727 0.739

  vol. 1.045 1.334 1.173 1.693 2.730 0.134 3.211 1.672 0.573 0.068 0.024

  bias 0.002 0.046 -0.026 0.045 2.620 -0.105 3.209 0.642 0.101 0.748 0.731

  vol. 1.057 1.256 1.135 1.532 2.440 0.134 3.210 1.755 0.598 0.066 0.025

  bias 0.002 0.042 -0.021 0.042 2.370 -0.107 3.208 0.678 0.098 0.768 0.724

3.2

(constant gain learning)

0.4

0.8

23.6ρ=0.8
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-0.025

4.0

0.0
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0.0
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0.795
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α π =2.0
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α u =1.0

α u =1.5

α u =2.0

α u =2.5

Table 3b - Monetary policy effectiveness with full transparency

The table reports a summary of the results (500 replications) of the model simulations (for the initial 140 periods). For 
each set of parameters of the central bank's interest-rate rule, mean (bias) and standard deviation (volatility) with
respect to the steady-state values are reported (in p.p.). W stands for welfare (as a ratio to the optimum, reported in
row 1) and RR for the rejection rate; Δy is the growth rate of GDP, π and π-π e are actual and surprise inflation; Δw 
is wage growth; Θ 0 is the mean intercept of the forecasting equations for inflation; Δπ is the difference between
central bank and private-sector inflation expectations; k* is the optimal capital-output ratio; i and i e are the actual and
expected short-term (policy) interest rate; i L is the yield on Treasury bonds; H(π e ) and H(i e ) are the entropy
associated, respectively, with the choice of the forecasting model for π e  and i e .

ρ=0.26 0.0α π =0.7 α u =3.0



W RR Δy π π-π e Δw Θ 0 Δπ e k* i i L H(π e ) H(i e )

  vol. 1.061 1.191 1.089 1.411 0.350 0.127 2.968 1.619 4.359 0.036 0.031

  bias -0.013 -0.160 0.026 -0.117 0.130 -0.087 2.966 0.666 4.061 0.214 0.740

  vol. 1.045 1.253 1.129 1.565 0.360 0.126 3.005 1.295 2.999 0.038 0.034

  bias -0.016 -0.140 0.024 -0.141 0.130 -0.082 3.003 0.528 2.712 0.221 0.787

  vol. 1.039 1.239 1.114 1.481 0.350 0.129 2.967 1.608 4.274 0.034 0.030

  bias -0.014 -0.156 0.022 -0.115 0.130 -0.088 2.965 0.681 4.024 0.212 0.733

  vol. 1.031 1.286 1.137 1.555 0.350 0.132 2.966 1.775 4.689 0.033 0.028

  bias -0.011 -0.144 0.013 -0.081 0.120 -0.089 2.964 0.746 4.427 0.208 0.715

  vol. 1.024 1.341 1.166 1.651 0.340 0.136 2.970 1.933 5.001 0.033 0.026

  bias -0.008 -0.127 0.004 -0.043 0.120 -0.089 2.967 0.806 4.723 0.205 0.700

  vol. 1.017 1.400 1.196 1.754 0.340 0.139 2.975 2.080 5.239 0.032 0.026

  bias -0.005 -0.109 -0.006 -0.006 0.120 -0.089 2.971 0.861 4.941 0.202 0.690

  vol. 1.038 1.221 1.105 1.456 0.350 0.130 2.976 1.455 3.798 0.036 0.032

  bias -0.016 -0.157 0.025 -0.136 0.130 -0.087 2.974 0.697 3.549 0.217 0.751

  vol. 1.044 1.213 1.103 1.454 0.350 0.127 2.977 1.440 3.723 0.036 0.032

  bias -0.016 -0.157 0.026 -0.139 0.130 -0.086 2.975 0.612 3.472 0.216 0.757

  vol. 1.050 1.210 1.103 1.459 0.350 0.124 2.979 1.447 3.660 0.036 0.032

  bias -0.016 -0.157 0.027 -0.141 0.130 -0.085 2.977 0.536 3.402 0.216 0.763

  vol. 1.056 1.209 1.104 1.470 0.350 0.122 2.980 1.472 3.608 0.036 0.031

  bias -0.016 -0.156 0.028 -0.142 0.130 -0.084 2.979 0.468 3.341 0.215 0.769

  vol. 1.063 1.211 1.106 1.487 0.350 0.120 2.982 1.514 3.568 0.036 0.031

  bias -0.016 -0.156 0.029 -0.143 0.130 -0.083 2.980 0.410 3.289 0.214 0.774

  vol. 1.017 1.447 1.233 1.919 0.360 0.137 3.047 1.225 2.235 0.039 0.030

  bias -0.014 -0.101 0.008 -0.113 0.140 -0.081 3.044 0.547 1.991 0.220 0.826

  vol. 1.030 1.277 1.142 1.588 0.360 0.128 3.004 1.291 2.964 0.037 0.034

  bias -0.016 -0.136 0.021 -0.137 0.130 -0.085 3.003 0.576 2.731 0.219 0.790

  vol. 1.044 1.213 1.103 1.454 0.350 0.127 2.977 1.440 3.723 0.036 0.032

  bias -0.016 -0.157 0.026 -0.139 0.130 -0.086 2.975 0.612 3.472 0.216 0.757

  vol. 1.058 1.199 1.092 1.419 0.350 0.128 2.967 1.683 4.551 0.035 0.029

  bias -0.012 -0.157 0.024 -0.104 0.130 -0.088 2.965 0.716 4.260 0.212 0.733

Table 3c - Monetary policy effectiveness with full transparency

The table reports a summary of the results (500 replications) of the model simulations (for the initial 140 periods). For 
each set of parameters of the central bank's interest-rate rule, mean (bias) and standard deviation (volatility) with
respect to the steady-state values are reported (in p.p.). W stands for welfare (as a ratio to the optimum, reported in
row 1) and RR for the rejection rate; Δy is the growth rate of GDP, π and π-π e are actual and surprise inflation; Δw 
is wage growth; Θ 0 is the mean intercept of the forecasting equations for inflation; Δπ is the difference between
central bank and private-sector inflation expectations; k* is the optimal capital-output ratio; i and i e are the actual and
expected short-term (policy) interest rate; i L is the yield on Treasury bonds; H(π e ) and H(i e ) are the entropy
associated, respectively, with the choice of the forecasting model for π e  and i e .
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α u =1.5

α u =2.0

α u =2.5

α π =1.5

α π =2.0

ρ=0.4

ρ=0.3

α π =0.5

ρ=0.7

α π =2.5

α π =1.0

α π =1.0

ρ=0.8

0.988

0.989

0.985

α u =2.0

0.889

0.841

0.971

0.934

α u =2.0

0.991

0.977

0.793

0.936

0.991

0.995 0.0

0.0

0.0

0.0

0.0

0.0

4.0

0.0

0.0

0.0

0.0

ρ=0.6

ρ=0.5

0.947

0.0

0.0

0.0



max min mean median

Δy 1.036 0.845 1.010 1.006

π 1.172 0.924 1.000 1.003

max min mean median

Δy 1.110 1.016 1.041 1.125
π 1.096 0.360 1.005 1.010

max min mean median

Δy 1.046 0.848 1.011 1.008
π 1.167 0.898 1.000 1.002

max min mean median

Δy 1.113 1.000 1.043 1.143
π 1.073 0.457 1.005 1.020

max min mean median

Δy 1.066 0.889 1.012 1.020
π 1.078 0.894 1.001 1.008

max min mean median

Δy 1.352 1.010 0.993 0.987
π 0.990 1.324 1.002 0.997

NO TRANSPARENCY

bias ratios

PARTIAL TRANSPARENCY

Table 4 - Sensitivity analysis: number of replications

Each entry in the table is the ratio between the value of the first or
second moment of welfare, output growth and inflation computed on
10,000 and 500 replications. For output growth and inflation not only the
mean, but also the maximum, minumum and the median of each set of
replications are presented.

(decreasing gain learning)

bias ratios

Welfare ratio = 0.991

Welfare ratio = 0.990

Welfare ratio = 0.989

volatility ratios

bias ratios

FULL TRANSPARENCY

volatility ratios

volatility ratios



1 0.9 1.1 3/4 5/4 1/2 3/2 1 0.9 1.1 3/4 5/4 1/2 3/2 1 0.9 1.1 3/4 5/4 1/2 3/2

ρ=0.8 11 12 11 12 11 11 12 11 11 12 12 12 12 12 8 8 9 8 8 8 8

ρ=0.6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7

ρ=0.5 3 3 3 3 3 3 3 3 3 4 3 3 3 3 10 10 8 10 10 10 10

ρ=0.4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 11 11 11 11 11 11

ρ=0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 13 12 12 12 12 12

α π =0.5 6 6 6 6 6 6 6 7 6 6 6 6 6 6 5 6 3 6 4 5 5

α π =1.0 7 7 7 7 7 7 7 6 7 7 7 7 7 7 3 4 2 3 2 3 2

α π =1.5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 2 4 2 3 2 3

α π =2.0 10 9 9 9 10 10 10 9 9 9 9 9 9 9 4 3 5 4 5 4 4

α π =2.5 9 10 10 10 9 9 9 10 10 10 10 10 10 10 6 5 6 5 6 6 6

α u =1.0 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 13 13 13 13 13

α u =1.5 12 11 12 11 12 12 11 12 12 11 11 11 11 11 9 9 10 9 9 9 9

α u =2.5 4 4 4 4 4 4 4 4 4 3 4 4 4 4 1 1 1 1 1 1 1

0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.96 0.99 0.99 1.00 0.99

0.95 0.97 0.95 1.00 1.00 0.97 0.97 0.92 0.95 0.95 0.95 0.95 0.92 0.87 0.97 0.95 1.00 0.97

α u =2.0

Table 5 - Sensitivity analysis: initial conditions

The table reports the ranking in terms of welfare of the competiting policy rules for a set of values of the Γ matrix (the
normalising factor of the generalised stochastic gradient algorithm). The values of Γ considered are (1) the one used in
the baseline simulations; (2) Γ scaled up and down by 10 p.p.; (3) Γ multiplied by 1.25 and 0.75; (4) Γ set equal to 1.5
and 0.5 times the benchmark value. As in the previous tables, only the initial 140 observations are used in computing the
welfare ranking. For each policy rule, the model is simulated 500 times. Each row of the table refers to a policy rule, while
the columns are divided into three subgroups, corresponding to the alternative monetary regimes (i.e. no transparency,
partial transparency and full transparency). In the last two rows of the table, the Spearman's and Kendall's rank
correlation coefficients are shown. 

(constant gain learning) 

full transparency

Spearman ρ (%)

Kendall τ (%)

partial transparencyno transparency

kГ where k is:

α π =1.0ρ=0.7

ρ=0.7

α π =1.0 α u =2.0



0.98 0.90 0.84 0.59 0.59 0.93 1.00 1.00 1.00 1.00 1.00 1.00

0.93 0.76 0.63 0.43 0.43 0.87 1.00 1.00 1.00 1.00 1.00 1.00
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2 2 2 2

3 3 3

2 2 1 1 1 1 2

2 2 333 3 2 2

4 3 444 4 3 4

6 5 665 5 6 6

The table reports the rankings in terms of welfare of the competiting policy rules for alternative specifications of the
welfare function. The parameter ω is the weight attached to the unconditional variance of the interest rate (σ2

while the parameter ζ and (1-ζ) measure, respectively, the relevance of inflation (σ2
π) and output growth (σ2

Δy

volatility. Each row of the table corresponds to a policy rule, while the columns refer to alternative values of the
weights of the interest rate and inflation objectives relative to that of output growth.In the last two rows of the table,
the Spearman's and Kendall's rank correlation coefficients are shown. 

α π α u

Welfare function: -[ζσ2
π+(1-ζ)σ2
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2
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Table 6a - Sensitivity analysis: specification of the welfare function
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(no transparency)
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0.98 0.92 0.82 0.74 0.66 0.93 1.00 1.00 1.00 1.00 1.00 1.00

0.93 0.80 0.60 0.52 0.45 0.87 0.98 0.98 1.00 1.00 1.00 1.00

ω/1-ζ (for ζ=0.5): ζ/1-ζ (for ω=0):
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Table 6b - Sensitivity analysis: specification of the welfare function
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The table reports the rankings in terms of welfare of the competiting policy rules for alternative specifications of the
welfare function. The parameter ω is the weight attached to the unconditional variance of the interest rate (σ2

while the parameter ζ and (1-ζ) measure, respectively, the relevance of inflation (σ2
π) and output growth (σ2

Δy

volatility. Each row of the table corresponds to a policy rule, while the columns refer to alternative values of the
weights of the interest rate and inflation objectives relative to that of output growth.In the last two rows of the table,
the Spearman's and Kendall's rank correlation coefficients are shown. 
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0.83 0.55 0.36 0.24 0.10 0.59 0.90 0.99 1.00 0.99 0.99 0.99

0.74 0.43 0.27 0.21 0.14 0.43 0.78 0.96 0.98 0.96 0.96 0.96

ω/1-ζ (for ζ=0.5): ζ/1-ζ (for ω=0):

9/101/2

(full transparency)

7/4 23/41/2 5/4 6/41/4
ρ

3/4

11

8

9

7

13

12

14

6

4

3

5

2

4

2

5

10 11 11 11

2 3

14

12

13

8

11

α π =1.5

α u =2.0

α u =2.0

ρ=0.4

ρ=0.3

α π =0.5

ρ=0.7

α π =2.5

α π =1.0

α π =1.0

ρ=0.8

ρ=0.6

ρ=0.5

α u =1.5

α u =2.0

α u =2.5

α π =2.0

ρ=0.72 1α π =1.4 α u =2.3 1 13 1 1 18

10 910 9 9 9

5

10

14 14 14 14

7

10

3

4

4

7

9

Table 6c - Sensitivity analysis: specification of the welfare function
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The table reports the rankings in terms of welfare of the competiting policy rules for alternative specifications of the
welfare function. The parameter ω is the weight attached to the unconditional variance of the interest rate (σ2

while the parameter ζ and (1-ζ) measure, respectively, the relevance of inflation (σ2
π) and output growth (σ2

Δy

volatility. Each row of the table corresponds to a policy rule, while the columns refer to alternative values of the
weights of the interest rate and inflation objectives relative to that of output growth.In the last two rows of the table,
the Spearman's and Kendall's rank correlation coefficients are shown. 
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x r x f z ρ x r x f z ρ x r x f z ρ

PLM #1 0.000 0.000 0.000 -0.034 0.000 0.000 0.000 0.029 0.687 0.634 0.206 0.555

PLM #2 0.006 0.006 -0.003 0.755 0.319 0.265 0.479 0.795 0.313 0.366 -0.206 0.555

PLM #3 0.149 0.158 -0.320 0.872 0.050 0.053 -0.021 0.671 – – – –

PLM #4 0.449 0.464 -0.539 0.837 0.517 0.574 -0.502 0.735 – – – –

PLM #5 0.000 0.000 0.000 0.022 0.113 0.108 0.045 0.628 – – – –

PLM #6 0.396 0.372 0.862 0.556 – – – – – – – –

PLM #7 0.000 0.000 0.000 0.024 – – – – – – – –

Short-term Interest Rate

Table 7 - Sensitivity analysis: impact of initial conditions on predictor proportions
The table shows the limiting behaviour of predictor proportions under fixed and random initial conditions. The first
column lists the forecasting models used for forming expectations (7 for the short-term interest rate; 5 for inflation: 2 for
the exchange rate). The next columns show - for each of the 3 variables - 4 statistics: the average across replications of
the share of population selecting model i under random (x r ) and fixed (x f ) initial conditions; the standardised difference
(z ) between x r and x f ; the correlation (ρ ) between random initial conditions and limit values of predictor proportions.
The denominator of z is the simple average of the standard deviations of the limit values of predictor proportions under
random and fxed initial conditions.   

Exchange RateInflation



Chapter 4

Monetary policy uncertainty and the
stock market

4.1 Introduction

The stance of monetary policy is a crucial variable for investors who have a
short/medium-term perspective. In fact, the effect of inflation on future cash
flows largely depend on the way monetary authorities respond. In the case of
a non-accommodating policy, higher inflation induces a monetary tightening,
which adversely affects future growth, producing lower cash flows and stock
prices. In the case of an accommodating policy however, inflation simply
indicates an accelerating cycle and signals higher cash flows and stock prices.
However transparent monetary policy is, investors cannot anticipate the cen-
tral bank’s moves with certainty. This is due to the genuine uncertainty
surrounding policy decisions1 and to asymmetries in data availability and
information processing that differentiate private investors and the central
bank.

1As Christiano et al. (1999) note, there is a discretionary component of monetary policymaking,
unrelated to economic developments, that is driven by “exogenous shocks to the preference of the monetary
authority, perhaps due to stochastic shifts in the relative weight given to unemployment and inflation.
These shifts could reflect shocks to the preferences of the members of the Federal Open Market Committee,
or to the weights by which their views are aggregated. A change in weights may reflect shifts in the
political power of individual committee members or in the factions they represent.”.
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Incomplete knowledge about the central bank’s actions generates uncertainty
and so affects investors’ decisions. To reduce this uncertainty, capital market
participants exploit any available signal to learn something about the stance
of monetary policy. By giving the investors an opportunity to study the
central banker’s reaction, inflation is helpful in this regard. Inflation may
either reinforce or disconfirm beliefs in a given monetary policy stance. If
investors’ expectations are confirmed, uncertainty diminishes and so do the
risk premium and the required rate of return. If this reduction in stock
returns is large enough, it may induce an unexpected negative correlation
between inflation and returns, which may help to explain the so-called Fisher
“puzzle”, i.e. the empirical observation that expected inflation and stock
returns fail to move together but actually move in opposite directions.
Here we explicitly link stock prices to monetary policy uncertainty, making
a few original contributions. We show that uncertainty over monetary policy
carries a price, which helps to explain the Fisher puzzle. We start by laying
out a theoretical model that directly relates the effects of inflation on stock
returns to the way in which investors learn about the stance of monetary pol-
icy. We assume monetary policy to be an exogenous process and study how
investors react to the uncertainty generated by the non-observability of the
policymaker’s preferences. Neglecting the systematic (i.e. state-contingent)
component of monetary policy is admittedly a strong simplification, but it
helps us to focus on the discretionary elements that obscure the public’s
understanding of the central bank’s strategies. We then show how this un-
certainty affects stock prices. Inflation is one of the signals on which investors
rely to learn the stance of monetary policy. We prove that, depending on the
equilibrium beliefs of the investors on the monetary policy stance, a change in
consumer prices has different effects on the risk premium: a change in infla-
tion that confirms investors’ beliefs leads to a reduction in the risk premium;
one that contradicts them increases the premium.
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We argue that this can explain the Fisher puzzle. That is, an increase in
inflation may reduce uncertainty and therefore risk premia, thus producing a
negative correlation between inflation and returns, if the signal embedded in
inflation is consistent with investors’ beliefs. The opposite happens if there
is a deceleration in prices when investors are anticipating an accommodative
monetary stance; symmetrically, a decrease in inflation can induce either a fall
or a rise in excess returns depending on whether it corroborates or invalidates
investors’ beliefs. Realistically calibrating the model with US data, we show
that the reduction in risk premia during the periods when investors beliefs
are confirmed by the change in consumer prices is sufficient to generate the
negative correlation.
We then test the restrictions of the model, using US data for the period 1965-
1998. We construct a market-based proxy of monetary policy uncertainty
and show that it is priced. Moreover, conditioning on the fundamental and
monetary policy uncertainty makes the Fisher puzzle disappear. The empir-
ical results largely support our hypothesis, showing that uncertainty about
monetary policy is indeed priced.
The chapter is organized as follows. The next section briefly surveys the lit-
erature. Section 3 sets out a simple model describing the interaction between
monetary policy uncertainty and stock prices. Section 4 reports the testable
restrictions that the model implies. Section 5 describes the construction of
a proxy for monetary policy uncertainty and Section 6 provides the main
empirical findings. A brief conclusion follows.

4.2 The literature

The relationship between monetary policy uncertainty, inflation and stock
returns has scarcely been studied directly. Monetary economists have ana-
lyzed monetary policy uncertainty extensively but have usually neglected to
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consider its influence on asset prices; financial economists have studied the
impact of expected and unexpected inflation on stock returns thoroughly but
without attributing any significant role to uncertainty about the monetary
stance.
With this caveat in mind, we can identify three relevant strands of literature
dealing with the Fisher effect or monetary policy uncertainty or both: (1)
essays on the connections between transparency and credibility on the one
hand and monetary policy effectiveness on the other; (2) work testing whether
investing in real assets provides protection against inflation shocks and, if not,
why the Fisher effect does not hold; (3) assessments of the impact of changes
in monetary policy regimes on asset prices, in particular on the correlation
between inflation and stock returns.
The first strand is mostly concerned with gauging the role of transparency
and credibility in the conduct of monetary policy and in determining its effec-
tiveness (Barro and Gordon (1983), Cuckierman and Meltzer (1986), Good-
friend (1986), Kydland and Prescott (1977), Rogoff (1989), Stein (1989),
Svensson (1999)). Credibility is either assumed constant (Barro and Gor-
don (1983), Kydland and Prescott (1977)) or modelled as a sequence of id-
iosyncratic unobservable shifts (Cuckierman and Meltzer (1986)). In the
latter case, transparency, credibility and reputation are derived in models
where the characteristics of the monetary authority are non-observable to
the private sector and inferred from the policy outcome. In this context, the
uncertainty over the type of monetary policy (i.e. accommodating or non-
accommodating) is relevant for its impact on the effectiveness of the conduct
of monetary policy itself. For example, Faust and Svensson (1997) show
how a low-credibility central bank may optimally conduct a more inflation-
ary policy than a high-credibility one. However, no direct link is explicitly
formulated between monetary policy uncertainty and asset prices.
Financial economists, on the other hand, have mostly focused on dividend
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uncertainty and touched upon inflation uncertainty; they have very rarely in-
vestigated the direct impact of monetary policy uncertainty on asset prices.
More strikingly, even models that properly account for the relationship be-
tween inflation and stock returns are rare. In a general equilibrium context,
Stulz (1986) shows that an increase in expected inflation, by reducing real
wealth, induces investors to choose a portfolio of risky assets with a lower risk-
return profile, which generates a negative correlation between stock returns
and inflation. Thorbecke (1997) examines the effects of monetary policy in-
novations on stock returns and finds strong evidence that monetary policy is
a common risk factor and that assets must pay positive premia to compensate
for exposure to it.
The most commonly studied feature of the relationship between inflation
and asset prices is the so-called ”Fisher puzzle”, i.e. the fact that, contrary
to the conventional wisdom, common stocks do not fully insure against in-
flation and, actually, move in the “wrong” direction when prices accelerate
(or decelerate). In particular, Fama and Schwert (1977) show a negative
correlation between inflation and stock returns, real and nominal, as well
as excess returns. The fact that their specification is neither structural nor
reduced-form implies that their results may be due to spurious correlation,
caused by the omission of relevant variables. Fama (1981) himself suggests
that the anomalous return-expected inflation relation may be due to errors
in the specification: his hypothesis is that anticipated changes in economic
activity affect inflation and stock returns in opposite directions, so that the
failure to control for expectations of future output growth generates a spu-
rious negative correlation.2 Boudoukh and Richardson (1993) challenge the

2In particular, when a proxy for future real activity is included as a regressor, expected inflation
loses most of its explanatory power and becomes insignificant. A similar objection has been raised more
recently by Groenewold et al. (1997), who show that when stock returns and macroeconomic variables
are jointly modelled, the reduced-form equation for common stock returns features as regressors all
the exogenous variables (government consumption, tax rates and foreign variables). When the proper
theoretical restrictions are imposed and the entire structure of the model is taken into account, the sign

142



view that stock returns and expected inflation are negatively correlated, with
evidence that over long holding periods the ”Fisher puzzle” disappears.
A modified version of Fama’s argument is offered by Geske and Roll (1983),
who argue that the causality runs from stock returns to inflation expecta-
tions, not the reverse. Given that the government derives most of its revenues
from income taxes, when stock prices go down in response to an anticipated
deterioration of business conditions, so do government revenues and unless
public expenditure is adjusted accordingly, fluctuations in revenues will be
reflected in larger deficits, which will be financed partly by printing money.
As investors foresee a future monetization of the debt, inflation expectations
rise. Thus movements in stock prices caused by changes in anticipated eco-
nomic conditions will be negatively correlated with changes in both expected
and unexpected inflation.
Boudoukh, Richardson and Whitelaw (1994) investigate the cross-sectional
implications of the Fisher relation and find that the stock returns of non-
cyclical industries tend to covary positively with expected inflation, while for
cyclical industries the contrary holds.
A third strand in the literature seeks to explain the relationship between
stock returns and inflation by looking directly at the role of switches in mon-
etary policy regimes. Evans and Lewis (1995), for example, find that during
the post-war period there were significant shifts in inflation; although antici-
pated, infrequent regime changes in the inflation process induce a significant
small-sample bias in the estimate of the long-run Fisher relationship, which
creates the appearance of a decoupling between ex ante nominal returns and
inflation.
Kaul (1990) maintains that counter-cyclical money supply is responsible for
the negative correlation between inflation and asset returns; a different regime
of the effect of expected inflation is not univocally determined and depends on the specific value of the
coefficients.
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- pro-cyclical response of the money supply to output fluctuations - would
lead to insignificant or even positive correlations. Along the same lines,
Söderlind (1999) shows that if the central bank attempts to stabilize output
fluctuations, nominal returns and inflation should move in parallel since the
monetary authority keeps real interest rates fixed in order to cushion shocks
to economic activity; conversely, if the central bank is mostly concerned with
inflation, movements in nominal rates are, to a large extent, likely to reflect
changes in real rates.3 However, neither of these models considers investors’
efforts to discover the type of monetary policy and the uncertainty generated
by the learning process.
In general, the three strands of the literature have not investigated the way
investors react to the informational uncertainty concerning the stance of mon-
etary policy and are therefore unable to account for the way financial markets
use inflation as a signal to price the uncertainty resulting from the type of
monetary regime. Our contribution is to provide a framework that mod-
els and links uncertainty over fundamentals with that over monetary policy:
unlike Fama (1981), Boudoukh, Richardson and Whitelaw (1994) or, less
markedly, Kaul (1990) and Söderlind (1999), we do not view the omission of
future growth prospects as the main cause of the Fisher puzzle; unlike Evans
and Lewis (1995) and Geske and Roll (1983), we do not attribute the negative
correlation between asset returns and inflation to the use of unsophisticated
econometric techniques; we disagree with Boudoukh and Richardson (1993)
that confining the Fisher puzzle to short-run holding periods is an acceptable
solution. Our main objective is to show that both in theory and in practice
uncertainty about monetary policy is the missing risk factor that explains
why stocks apparently fail to insure against inflation.

3Thorbecke (1997) seeks to measure the influence of monetary policy on stock returns, finding that
though such influence is quite sizeable, it is not enough to explain the predictive power of other financial
variables (e.g. dividend yield) or to account for the predictable volatility in excess returns.
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4.3 A simple model

The literature in general agrees that, while the actions of the monetary pol-
icymaker are rather explicit, their interpretation is not immediate. Indeed,
any action has to be considered in terms of macroeconomic developments
and depends on the overall monetary objectives. Investors do not have ac-
cess to the same information set as the monetary authority and they are
uncertain about the objectives of the central bank. We focus on the pro-
cess through which investors seek to judge the monetary policy stance from
inflation outcomes.
We do not try to describe the behavior of the monetary authority. Instead we
assume that monetary policy is an exogenous process and examine how asset
prices are affected by the reaction of investors to the uncertainty generated
by the non-observability of the central bank’s preferences. The model, which
builds on David (1987), Veronesi (1999) and David and Veronesi (2000),
posits an exchange economy with a single consumption good and a single
risky asset.
The model and the empirical estimation are based on a Markov switching
framework. As observed by Sims (1982) and Cooley et al. (1984), it is doubt-
ful at best to characterize changes in the policy framework as permanent
changes in the parameters of a reaction function. In fact, genuine changes of
regime are rare indeed, since agents, knowing the menu of choices available
to the policymakers, form their expectations on the basis of past experience,
accounting for all possible outcomes: they have a probability distribution
ranging over all possible policy rules and use it to forecast the behavior of
the policymakers. From this perspective, “regime” changes are neither rare
events nor abnormal policy shifts but should be seen as variations in cen-
tral bank policy that cannot be accounted for as a reaction to the state of
the economy. These changes might reflect exogenous shocks to the policy-
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maker’s preferences, due perhaps to stochastic shifts in the relative weights
assigned to the various policy objectives, or may be induced by changes in
the composition of the monetary policy committee. Alternatively, they might
be caused by incomplete non-observability of the state of the economy at the
time decisions are to be taken (Christiano et al.,1999).
In this framework, a Markov switching model is versatile enough to cover
both once-and-for-all structural changes and policies that are set period-by-
period. Any intermediate case can be obtained by an appropriate choice of
the parameters of the transition matrix.

4.3.1 Monetary policy regimes

Monetary policy is represented by the exogenous Poisson process θt, which
can take two values: a and b. When θt = a > 0, monetary policy is ac-
commodating; when θt = b < 0, it is restrictive. The matrix of transition
probabilities between time t and time t+ dt is:

a b
a 1− λdt λdt

b λdt 1− λdt
(4.1)

For simplicity, we assume that a = 1 and b = −1. This framework is meant to
capture the fact that while the actions of the monetary authority are rather
explicit, their interpretation is not immediate or direct. In fact, investors
do not have access to the information set of the central bank and do not
know the monetary objectives in detail, so they have to infer them from the
information and signals available (i.e., consumer and stock prices).
Given that our focus is the reaction of investors to monetary policy un-
certainty, the description of the behavior of the central bank is necessarily
highly stylized. One possible objection to our approach is that there is really
nothing in the model that differentiates shifts in the monetary stance from
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movements in payoff-relevant variables. This issue is addressed below.

4.3.2 Investors’ behavior and stock returns

The model features a representative investor, endowed with a power utility
function u(t, Ct) = e−φtC

1−ρ
t −1
1−ρ , where Ct is the consumption level, ρ is the

degree of risk aversion and φ is the discount rate; the investor can invest in a
risky asset (stock) and in a safe bond, which delivers a nominal riskless return
equal to rnt . Uncertainty is represented by the vector of Wiener processes zt =

(zD,t, zp,t, ze,t)
′ that collects the shocks driving the time path of real dividends,

inflation and the endowment process. By assumption, the elements of the
vector zt are pairwise uncorrelated. The laws of motion of real dividends
(Dt), the price level (pt) and consumption (Ct) are given by the following set
of Brownian motions:

dDt

Dt
= [µD + βθt] dt+ bDdzt

dpt
pt

= [µp + δθt] dt+ bpdzt
dCt
Ct

= [µc + γθt] dt+ bcdzt

(4.2)

The systematic component of the growth rate of dividends is equal to the
sum of the drift term µD, which captures productivity developments, and β,
which is positive by assumption and measures the sensitivity of earnings to
monetary policy; stochastic fluctuations around the mean growth rate are
driven by the term bDdzt, where bD = (σD, 0, 0). Accordingly, in the short
run a restrictive monetary stance reduces the real growth of the economy
(θt < 0), while an expansionary stance (θt > 0) raises it; in the long run,
monetary policy is neutral, as Eθt = 0.
The specification of the law of motion of the price level of the single con-
sumption good in the economy (pt) follows Stulz (1986). µp is the long-run
inflation level and δ, a positive parameter, measures the sensitivity of the
price level to the stance of monetary policy. We assume it to be positive. β
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and δ characterize the type of economy and define how costly it is for the
central bank to tame inflation: if β is high and δ is low, the deflationary
impact of curbing inflation is substantial, while if β is low and δ is high, the
central bank can reduce inflation without major output losses. As for the
stochastic component, we assume that bp = (0, σp, 0).
Our modelling of the transmission of monetary policy impulses is consistent
with the prototype New Keynesian model (Clarida, Gali and Gertler, 1999).
Also, notice that although monetary policy affects dividend growth and in-
flation, the model does not imply that it is the sole cause of booms and
recessions.
The investor has two sources of income: dividends and endowment (Berk,
Green and Naik, 1999, Cecchetti, Lam andMark, 1993, Campbell and Cochrane,
1999, and Barberis, Huang and Santos, 2001). We define their aggregate
value as total real consumption (David and Veronesi, 2000). The law of mo-
tion of consumption is represented by the third equation in (4.2), where µc
is long-term mean consumption growth, γ is the impact of monetary policy
on it, and bc = (σcD , 0, σe). We also assume that the impact of monetary
policy on consumption differs from its impact on dividends and that γ ≤ β.
Three signals are available to the investors (Dt, pt and Ct) and there are four
sources of uncertainty, which can be used to learn about the value of θt.4

Theorem 4.3.1. The expected value of the nominal excess stock return over
the riskless asset (Rt) is:

E[
dSnt
Snt

+
Dn
t

Snt
− rnt dt]/dt = Γt + Θt + Φt = Ft + Φt (4.3)

where Snt is the stock price, Γt = µD−β(1−2πa,t)−φ−ρµc+ 1
2ρ(ρ+1)bcb

′
c,

Θt = (1−2πa,t)
[

2(β−ργ)λ
Ψt

+ γρ
]
, Φt = πa,t(1−πa,t)4(β−ργ)

Ψt
(βΩt+ δ−γ), πa,t

4Given the assumption of a single representative agent, the observation of dividends provides the same
information as the observation of asset prices or returns (i.e., stock and bond rates).
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is the probability that the monetary stance is accommodating and the values
of Ωt and Ψt are defined in the Appendix (proof in the Appendix).

Γt consists of the conditional expected real dividend return (Et[
dDt

Dt
]/dt =

µD − β(1 − 2πa,t)) and some adjustment for consumption growth and risk.
Θt represents the risk of inflation and in particular the risk that in order
to curb inflation the central bank will curb output growth. These first two
terms represent the part of the risk due to both the real sources of income
(dividend and endowment or consumption) and inflation. We aggregate them
and define Ft = Γt+Θt as the “fundamental” component of the risk premium.
Finally, the term Φt captures monetary policy uncertainty: it is highest at
πa,t = 0.5 and lowest at πa,t = 0 or πa,t = 1.
Equation (4.3) provides two key insights: one on pricing and the other on the
Fisher puzzle. It also gives us a way of directly quantifying the degree of mon-
etary policy uncertainty. In the next section we examine these implications
separately. First, however, we define expected inflation:

E

[
dpt
pt

]
/dt = [µp + (2πa,t − 1)δ] (4.4)

This equation shows that there is a direct mapping between expected inflation
(Et [dpt/pt]) and the beliefs on the stance of monetary policy (πa,t). This
implies that we can use one as a direct proxy for the other.5

4.4 The role of monetary policy uncertainty

4.4.1 Pricing implications

Equation (4.3) shows that the risk premium can be broken down into a
component due to “fundamental uncertainty” (Ft) and one due to “monetary

5In particular, from a simple application of the Implicit Function Theorem, we can see that there is a
direct relationship between the impact of expected inflation on stock returns and the impact of a change

in the beliefs about the type of monetary regime (πa) on stock returns. That is, Et
{

dR
dE[ dpp ]

= 1
2δ

dR
dπa

}
.
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policy uncertainty” (Φt). The former is a function of the uncertainty over the
real fundamentals (dividend and endowment) and inflation. The latter (Φt)
is a function of investors’ beliefs about the monetary policy stance (πa,t) or,
according to equation (4.4), about inflation.
A graph of the relationship between risk premia and investors’ beliefs is given
in Figures 1 and 2. We graph the risk premium for different values of β, δ,
πa,t and the percentage share of dividends out of aggregate consumption.
The graphs are based on parameters calibrated to the data for the period
January 1965 - December 1998. Details on this calibration are provided in the
Appendix. The risk premium has a hump-shaped relationship with respect to
beliefs: when πa,t < 0.5, i.e. when the market is confident that the monetary
policy is restrictive, an increase in inflation disconfirms expectations and
raises uncertainty and the risk premium; conversely, when πa,t > 0.5, i.e.
when the market is confident that the stance is accommodating, an increase
in inflation reduces uncertainty and hence the risk premium. An acceleration
in price dynamics confirms the priors of an investor who believes the central
bank is accommodative and therefore reduces the uncertainty about central
bank’s actions.

Exhibit 1: Effects of expected inflation on risk premia

Perceived Monetary Policy Regime

Non-accommodating Accommodating

(πa < 0.5) (πa > 0.5)

Expected inflation increases Positive Negative

Expected inflation decreases Negative Positive

Therefore, an increase in inflation when investors believe that the monetary
policy is tight (first quadrant in Exhibit 1) or a reduction when they believe it
to be expansionary (fourth quadrant) will increase the risk premium. On the
contrary, an increase of inflation when investors believe monetary policy is
accommodating (second quadrant) or a reduction when they believe it to be
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restrictive (third quadrant) will reduce the risk premium. The points on the
diagonal represent outcomes where a change in expected prices (Inflet ) moves
against investors’ prior beliefs; conversely, the off-diagonal points represent
outcomes where a change in expected prices is aligned with the priors.
The intuition is that a change in consumer prices gives investors an oppor-
tunity to study how the central bank reacts and infer the monetary policy
stance. Low inflation can reinforce beliefs in a non-accommodating policy
where they exist, as well as disprove beliefs in an accommodating stance. If
the signal reinforces investors’ beliefs, it reduces the risk premium. In par-
ticular, both an increase in inflation when investors believe that monetary
policy is tight and a reduction when they believe it is expansionary will in-
crease the risk premium. Vice-versa, an increase in inflation when investors
believe that the central banker is an inflation dove and a reduction when the
central banker is believed to be a hawk will reduce the risk premium.
Equation (4.3) provides a directly testable restriction. If we use the pricing
kernel representation, excess stock returns can be expressed as:

E[Rjt|Ωt−1] =
L∑
i=1

λi,t−1cov[Rjt,Υit|Ωt−1] (4.5)

where Rjt is the excess rate of return on the j th stock at time t, λi is the price
of risk, Υit is the return on the portfolio that proxies for the i th factor of the
economy, for i = 1, ..., L, and Ωt−1 is investors’ information set. We consider
two cases. In the unrestricted case, there are 4 factors (i.e., L = 4): the 3
Fama and French factors (FF henceforth), which proxy for the fundamentals
(i.e., Ft), and the factor proxying for monetary policy uncertainty (i.e., Φt).
In the restricted case, we consider only the 3 FF factors.
If we define Mt as the marginal rate of substitution between returns at t and
at t − 1, the first order conditions of the portfolio choice problem can be
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expressed as:

E[Mt(1 + rnt )|Ωt−1] = 1 and E[MtRjt|Ωt−1] = 0 (4.6)

where rnt is the conditionally riskless rate of interest at time t-1. By substi-
tuting equation (4.5) into equation (4.6), we have:

Mt = [1− λo,t−1 −
L∑
i=1

λit−1Υit]/(1 + rnt ). (4.7)

Equation (4.6) allows us to proceed to define the orthogonality conditions of
the econometric specification. We use a set of instrumental variables Zt−1,

in order to proxy for the information set Ωt−1.
6 We assume that the price of

risk (λ) is linearly related to such state variables, according to:

λo,t−1 = −Zt−1δ and λi,t−1 = Zt−1φi, (4.8)

where δ and φ1, φ2, ..., φL are time-invariant vectors of weights. If we define
the innovation ut in the marginal rate of substitution as:

ut = 1−Mt(1 + rnt ) (4.9)

or, using equation (4.7):

ut = −Zt−1δ+
L∑
i=1

Zt−1φiΥit (4.10)

and we define hjt = Rjt − Rjtut, we can rewrite the pricing conditions of
equation (4.6) in terms of the orthogonality conditions:

E[ut|Ωt−1] = 0 (4.11)

E[ht|Ωt−1] = 0 (4.12)

where ht is the vector that contains the hjt stacked for all the considered
portfolios. In particular, if we define the vector of residuals εt = (ut,ht), we

6The vector Zt−1 contains the state variables on which investors condition their portfolio decision.
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can rewrite the system of equations (4.11) and (4.12) as:

E[εt|Zt−1] = 0 (4.13)

or, considering its sample version:

Z′ε = 0 (4.14)

where Z is the T×Q matrix containing the sample values of the instruments,
ε the T × (1 + m) matrix containing the residuals, T the sample size, Q
the number of instruments and m the number of portfolios used to test the
model (25 in the book-to-market and size specification and 17 in the industry
specification).
Equation (4.14) allows us to test whether the model is correct and whether
the additional factor we are considering is relevant and priced. If the factors
are priced, equations (4.11) and (4.12) must hold and the quadratic form of
equation (4.14) must be asymptotically distributed as a χ2.
Also, from equations (4.7) and (4.8), we can derive the pricing power of the
monetary policy factor by looking directly at the significance of the vector of
coefficients φΦt, where λΦt,t−1 = Zt−1φΦt, for monetary policy uncertainty: if
monetary policy uncertainty is priced, at least some of the coefficients of φΦt

should be significant. When the risk factors are correlated, testing for the
significance of λΦt,t−1 (φΦt) is the appropriate strategy. In fact, the λs are
the multiple regression coefficients ofMt on [Ft, Φt] and capture whether one
factor is marginally useful in pricing assets, given the presence of the other
factors (Cochrane, 2000).

4.4.2 New Perspective on the Fisher Puzzle

Equation (4.3) has direct implications for the Fisher puzzle. While the Fisher
relationship requires that:

Corr [Rjt, Infl
e
t ] = 0, ∀j (4.15)
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the “Fisher puzzle” is the empirical finding that:

Corr [Rjt, Infl
e
t ] < 0 (4.16)

On the basis of our working hypothesis, this negative correlation can now
be explained in terms of the monetary policy risk premium. If a change
in consumer price dynamics reduces the portion of the risk premium due
to monetary policy uncertainty substantially enough, the net effect can be a
negative correlation between inflation and stocks returns.
Unconditionally, the sign of the correlation between expected inflation (Inflet )
and risk premium depends on the relative frequency of periods when mone-
tary policy is perceived as non-accommodating and on the size of the compo-
nent of the risk premium due to policy uncertainty relative to the component
due to fundamental uncertainty. The correlation between an increase in con-
sumer prices and risk premia is positive in periods of non-accommodating
monetary policy, negative during accommodating periods. The fact that
monetary policy has been perceived as accommodating for most of our sam-
ple period (Figure 3) may justify the negative relationship found in the lit-
erature. This is also consistent with the fact that on a longer sample the
Fisher relationship appears to hold (Boudoukh and Richardson (1993)).
Conditionally, if we control properly for fundamental uncertainty (Ft) and
monetary policy uncertainty (Φt), we should be able to get back to the ex-
pected zero correlation between inflation and excess stock returns. A directly
testable restriction is therefore:

Corr [Rjt, Infl
e
t | Ft,Φt] = 0 (4.17)

As a strategy, we accordingly verify whether unconditionally we find the
Fisher puzzle in our sample and whether, after conditioning on fundamentals
and policy uncertainty, the puzzle disappears.
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4.5 A proxy for monetary policy uncertainty

Equation (4.3) also suggests a way to construct a measure of monetary policy
uncertainty: I = πa(1−πa). This indicator peaks (It = 0.25) when investors
are highly uncertain about the monetary policy regime (i.e. πa,t = 0.5), and
is lowest (It = 0) when investors have a well-defined belief (i.e., πa,t = 0 or
πa,t = 1). To apply this indicator, we need to find suitable proxies for πa, e.g.
using survey measures of inflation expectations or exploiting the information
content of financial data. The former approach is limited by the lack of
a good proxy. One possibility is the dispersion of the forecasts contained
in the surveys of professional forecasters and economists. For example, the
Livingston Survey, the ASA-NBER Survey of Professional Forecasters and
the University of Michigan Inflation Expectations survey contain information
about expected inflation. The former two also have some information on
the dispersion of forecasts among analysts. However, the Livingston Survey
is relatively infrequent (semi-annual), while the ASA-NBER Survey has a
variable number of responses over time and covers quite a short period.7

Furthermore, in both cases the latent variable about which investors are
uncertain is not the monetary policy regime but inflation itself.
A direct quantification of the monetary policy stance is provided by the
indexes of Boschen-Mills (1995) and Bernanke-Mihov (1998). These have
been constructed using standard monetary variables and provide the best
identification of the monetary policy regime. Unfortunately, they are based
on data not immediately available to the market. Nor do they offer any
way of quantifying the degree of uncertainty. We therefore need to construct
a measure that allows us to quantify both the market’s monetary policy
expectations and the uncertainty over them.
Accordingly, we go for the direct approach. We first estimate investors’ beliefs

7See in particular, Dean Croushore, Introducing: the Survey of Professional Forecasters, Business
Review, Nov./Dec. 1993.
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about the type of monetary regime and their volatility and then construct
the index of monetary policy uncertainty. We assume that policy changes
represent a latent stochastic process which can be estimated jointly with the
parameters of the model. This accounts properly for the instability of the
regimes, avoids arbitrary assumptions and provides a direct measure of the
regimes as they are perceived by the market.

4.5.1 Monetary policy regimes

To identify the monetary policy regimes, we use a two-state Markov switch-
ing VAR. The VAR includes five variables: the excess return on the market
portfolio, the corresponding dividend yield, the risk-free (real) rate, consumer
price inflation (CPI) and the real GDP growth rate. The non-financial data
is provided by the Federal Reserve. The model is estimated by maximum
likelihood (ML), using quarterly data from 1965:3 to 1998:4. An EM algo-
rithm is used to estimate the vector of parameters and the hidden Markov
process (see Appendix E). Unlike the theoretical model, the unconditional
probabilities of the two monetary policy regimes are not restricted to be the
same.
The probability of the non-accommodating regime (πb,t) is shown in Figure 3,
which also presents a proxy of monetary policy uncertainty. To identify the
regimes, we look at the correlations with standard indexes of monetary policy.
The correlation is very high for both the Boschen-Mills index (38.3%) and
the Bernanke-Mihov measure (48.1%), which is strong evidence of the quality
of our estimates. As further evidence, we consider the correlation with the
Romer and Romer (1989) index of monetary policy, based on the “minutes” of
the FOMC meetings. For the period for which both indicators are available,
the four episodes of restrictive policy (December 1968, April 1974, August
1978 and October 1979) identified by πb,t coincide with those identified by
the Romer and Romer index. This strongly supports our identification, as
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the unconditional probability of the non-accommodating regime is just 0.31
and the likelihood that this result is due to chance is well below 1%.
It is nevertheless possible that these correlations may be due to spurious ef-
fects if, for instance, the Markov process simply captures cyclical movements
in the economy. To address this issue, we regress πb,t on alternative measures
of the monetary policy stance and on a proxy for business cycle fluctuations.
We estimate the model:

πb,t = α + βMt + γBCt + εt (4.18)

where Mt and BCt are, respectively, the index of monetary policy stance
(either Bernanke-Mihov or Boschen-Mills one) and a proxy for business cycle
fluctuations. Regarding the latter, indicators mostly based on the NBER
Business Cycle Reference Dates are used: (i) the series for cyclical peaks, (ii)
the series for cyclical troughs; (iii) the difference between peaks and troughs;
(iv) the sequence of NBER turning points linearly interpolated; (v) James
Stock’s coincident, leading and recession indexes (and some transformations
of them).8 If the correlation between our indicator and the exogenous mea-
sures of the monetary policy stance were due to spurious correlation, we
would expect it to disappear when we control for business cycles.
In Table 1 we report the results for the case when the Bernanke-Mihov index
is used.9 The results are quite clear-cut: the β coefficient exhibits a high t-
statistic and has the expected sign in all the specifications. Furthermore, the
statistics for γ are in general less significant than the corresponding statistics
for β.10

Finally, direct inspection of the index (Figure 3) suggests that the regimes
8A detailed description of these indicators is reported in the Appendix. We thank J. Eberly and R.

Jaganathan for suggesting some of them.
9The analysis based on the Boschen-Mill Index provides analogous results. However, these results are

less reliable, as the Boschen-Mill Index is a discrete variable with limited range of variation.
10The residual correlation with the cyclical indicators are due to the inherent link between monetary

policy and business cycle.
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are identified correctly. The accommodating regime is more frequent from
1965 to the 1970s, with the exception of 1966-1967. This is consistent with
the standard explanation that “money growth accelerated ... and persisted
through the 1970s. US inflation began to accelerate in 1964, with a pause
in 1966-1967, and was not curbed until 1980” (Bordo and Schwartz, 1999).
It was only in the second part of the 1970s that monetary policy gradually
became tighter with a change in operating procedures.11 Tightening can be
clearly identified during the Volcker era. The accommodating regime seems to
prevail also at the end of the sample, when stable and low inflation allowed
the Fed to follow a less tight policy and to accommodate the “irrational
exuberance” of the stock market.

4.5.2 A market-based measure of monetary policy uncertainty

Once the perceived regimes of monetary policy have been estimated, the
construction of a measure of policy uncertainty is immediate. The obvious
choice is to use the index It = πa,t(1−πa,t), where πa,t is the probability that
investors attach to monetary policy being accommodating, as estimated from
the Markov-switching VAR model. From Figure 3 it is easy to see that higher
volatility and lower persistence are more common in expansionary regimes.
The next step is to construct a tracking portfolio that mimics It, which pro-
vides a direct measure of the possibility for investors to hedge the risk due
to monetary policy uncertainty. The construction of the tracking portfo-
lio shows whether this particular source of uncertainty is actually hedgeable
(Campbell, Lo and MacKinlay, 1997, Cochrane, 2000) and if hedgeability

11In the early 1970s, the Fed gradually abandoned indirect targeting in favor of direct targeting of the
federal funds rate, allowing movements only within a narrow band (usually 25 basis point), specified by
the FOMC each time it met. In 1975, the Fed started to adopt and announce one-year money growth
targets, in application of Congressional Resolution 133. In 1979, targeting of non-borrowed reserves in
place of direct federal funds rate targeting was adopted. Finally, in October 1982 the FOMC decided to
abandon non-borrowed reserves targeting in favor of managing borrowed reserves.
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changes over time. However, it is worth stressing that the results do not
depend upon it. Indeed, replicating the analysis on the index of policy un-
certainty without the tracking portfolio yields essentially the same results.
We use the technique developed by Lamont (2000) and Vassallou (2001),
whose underlying intuition is that innovations in returns reflect changes in
expectations of future cash flows and discount rates. Provided that market
expectations are properly accounted for, portfolios whose innovations have a
strong correlation with revisions in expectations about fundamentals can be
used to explain the cross-sections of asset returns.
We therefore regress It, viewed as a measure of information uncertainty, on
a set of portfolios, the so-called base assets, and on instrumental variables,
which summarize the information available to market participants and proxy
for their expectations. The regression model is:

It+k = α + θBt + ζZt−1 + εt+k (4.19)

where Bt represents the set of base assets,12 Zt is the set of instruments and
It+k is the realized future value of uncertainty.13 Given that the tracking
portfolios are generated regressors, we also compute the White-corrected t-
statistics. Table 2 reports the estimates of equation (4.19). Note that the R2,
while lower than in Lamont and Vassallou, is still comfortably high, especially
considering that the factors we are trying to mimic are not so persistent or

12The base assets are term, junk and ME1/ME5. “Term” stands for the spread between the yield on
10-year Treasury bonds and 3-month Treasury bills; “junk” is the difference between Moody’s Baa and
Aaa corporate yields; “ME1/ME5” is the return on an arbitrage portfolio that is long on stocks of small
firms (first NYSE market equity quintile) and short on stocks of large firms (fifth NYSE market equity
quintile). Their returns are in excess of the riskless rate.
The instrumental variables are expected inflation, actual inflation, producer price inflation, the excess

return on the market portfolio, and the share of durables in total consumption.
13The tracking portfolios are selected so as to maximize the fit of equation (4.19). In order to assess

whether the results are robust, a few other tracking portfolios, which combine portfolios constructed on the
basis of book-to-market categorization and portfolios constructed on the basis of industrial categorization
(2-digit SIC codes), have been estimated and used as an alternative. No notable differences were found,
apart from a worse fit of the regression model (4.19).
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predictable.
The tracking portfolio θBt is our measure of monetary policy uncertainty Φt.

To proxy for fundamental uncertainty we rely on recent studies (Liew and
Vassallou, 2001 and Vassallou, 2000) that show that the FF factors are good
proxies of news on future GDP growth and are correlated with innovations on
other macroeconomic fundamentals. We consider both a CAPM model and
a specification based on the three FF factors. In the former case we proxy
fundamental uncertainty with the excess return on the market portfolio, in
the latter we use the three FF factors, i.e., Market, SMB and HML. 14

4.6 Evidence on the market price of policy uncertainty

We proceed as follows. First, we estimate whether the Fisher puzzle shows
up also in our sample (restriction (4.16)). Then we focus on the pricing rela-
tionship (4.3) and assess whether monetary uncertainty affects stock returns
and is therefore priced. Finally, relying on this pricing relationship, we go
back to the Fisher puzzle, compare restrictions (4.15) and (4.17) and see
whether, by properly conditioning on the uncertainty factors, the puzzle is
resolved.

4.6.1 Inflation and stock returns: the Fisher puzzle

We start by testing whether the Fisher puzzle actually exists in our sample
using the 25 size and book-to-market portfolios and 17 industry portfolios.
Descriptive statistics of the sample data are provided in Table 3, Panel A

14“Market” is the excess return of the aggregate market portfolio over the riskless rate, book-to-market
(“HML”) is the difference between the average returns on the two portfolios with high book-to-market
ratios and the average returns on the two portfolios with low book-to-market ratios. Size (“SMB”) is the
difference between the average returns on three small stock portfolios and the average returns on the
three big stock portfolios.
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and B. We estimate the following equation (4.16):

Ri,t = α + βiInfl
e
t + εi,t (4.20)

where Inflet is inflation expected on the basis of information up to time
t − 1 and Ri,t represents the excess returns of the i-th portfolio. Expected
inflation is constructed by using the one-period-ahead forecast based on the
Markov-switching VAR specification allowing for regime shifts, i.e.: Inflet =

πa,tInfl
e
a,t + πb,tInfl

e
b,t, where πa,t and πb,t = 1− πa,t are the probabilities

(conditional upon information as of time t − 1) of the two monetary policy
regimes and Inflea,t and Infleb,t are expectations as of time t − 1 of time-t
inflation in the first and second regime respectively.15

Table 4 reports the results for the size and book-to-market portfolios (Panel
A) and for the industry portfolios (Panel B). In all cases and for all portfolios
there is a highly significant negative correlation between expected inflation
and excess returns, confirming that the “Fisher puzzle” holds regardless of
sample period or the criterion for forming portfolios. Expected inflation
affects risk premia and the relationship is negative. Let us now explain why.

4.6.2 Evidence of Pricing

To assess whether monetary policy uncertainty is priced, we estimate equa-
tion (4.14). The additional factor (Φt) is measured by the tracking portfolio
described above. In the unrestricted case, the vector of factors is F̃t =

[Ft, Φt]
′. Data on the FF factors is derived from Kenneth French’s website.

The information variables are those used in the literature (Ferson and Har-
vey, 1991, 1993 and 1999, Dumas and Solnik, 1995): a constant, a January
dummy, the one-month T-Bill yield (T-bill), the dividend yield of the S&P
500 index (div), the term premium, i.e. the spread between a 10-year and 1-

15The correlation between Inflet - as estimated by our Markov-switching VAR - and University of
Michigan Inflation Expectations is 0.93.
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year Treasury bond yield (term), the junk premium, i.e. the spread between
Moody’s Baa and Aaa corporate bond yields (junk), the spread between the
one-month return on a three-month T-bill and the return on a one-month
T-bill (hb3 ).
The tests are based on the GMM estimation of the Q×(1+m) orthogonality
conditions described in equation (4.14). We consider both industry portfolios
and size and book-to-market portfolios. In addition to the specification using
Ft and Φt as risk factors, we also estimate two alternative models: one in
which the factor that proxies for policy uncertainty is orthogonalized with
respect to the FF factors (Panels C and D) and one in which the FF factors
are orthogonalized with respect to Φt (Panels E and F).16 Though the FF
factors are expected to proxy for fundamental uncertainty, they may also be
related to monetary policy and could capture part of the effects of mone-
tary policy uncertainty. Estimating the two alternative models allows us to
better isolate the component of the risk premium that depends on monetary
policy uncertainty, removing from the FF factors the part that is not due to
fundamentals.
We report the values of the estimated coefficients (φfs) in Table 5: Panels
A, C and E for the size portfolios and Panels B, D and F for the industry
portfolios. The last row of each panel reports the χ2 of the model and the
associated p-value. The results show that we cannot reject the null at any
confidence level, as the p-value is in general close to 0.99. This is evidence
for our working hypothesis that monetary policy uncertainty is priced, since
the analysis shows that most of the coefficients contained in φΦt are highly
significant. In particular, the price of risk of monetary policy uncertainty is
related to div, junk, term, hb3, the January dummy and the constant in the
case of the book-to-market and size portfolios and to div, junk, term, the

16The orthogonalization of the three risk factors is obtained by taking the residuals of the regression
of each of them on the tracking portfolio for It.

162



January Dummy and the constant in the case of the bok-to-market and size
portfolios. The φΦt are different from zero at any significance level.

4.6.3 Inflation and stock returns: the Fisher relationship revived

We can now verify how uncertainty about monetary policy regimes affects
the relationship between stock returns and inflation. In particular, we want
to check whether the joint use of fundamental uncertainty (Ft) and monetary
policy uncertainty (Φt), as specified in equation (4.3), can explain the Fisher
puzzle (restriction (4.17)). Accordingly, we estimate the following equation:

Ri,t = α + δ′iFt + γiΦt + βiInfl
e
t + εi,t (4.21)

Restrictions (4.15) and (4.17) require that γi > 0 and βi = 0. That is, if
information uncertainty is priced, the relationship between expected inflation
and returns should be non-negative. For the more uncertain investors are over
future monetary policy actions, the higher the risk premium should be.
Table 6 reports the results for the three-factor specification 17. The results
strongly support our working hypothesis. The coefficient on monetary policy
uncertainty is positive and highly significant, both in the case of book-to-
market and size portfolios and in the case of industry portfolios (i.e., γi > 0).
The estimated coefficient remains highly significant even after the application
of the White correction to control for the problem of generated regressors.
In particular, the tracking portfolios are positive and strongly significant in
24 out of 25 cases for the size and book-to-market portfolios and in 13 out
of 17 cases for the industry portfolios.
The impact of policy uncertainty would appear to be negatively related to the
size of the company: the larger the company, the less the impact. This effect
is approximately monotonic and regards both the value of the coefficients
and their statistical significance: the value of γ increases from a minimum of

17The one-factor specification (CAPM) gives the same results.
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-0.06 for the largest companies to a maximum of 0.82 for the smallest, with
the respective t-statistics rising from -1.09 to 21.30. This seems to suggest
that the largest companies are more capable of hedging uncertainty, either
because they operate in many sectors (industrial diversification) or because
they are financially more sophisticated (financial diversification).
In the case of industry portfolios, those that do not appear to be affected by
monetary policy uncertainty are mostly those concentrating in such sectors
as Utilities, Oil, Consumer Products and Financial Services. In the case of
Utilities and Oil stocks, this suggests a sort of “built in hedge” against mon-
etary policy shocks, in that the periods when monetary policy is tighter are
presumably those with higher inflation and often coincide with periods when
oil- and energy-related stocks fare better. In the case of financial services,
the lack of correlation between monetary uncertainty and the financial sector
confirms that the returns on financial stocks, banks stocks in particular, are
positively affected by tight monetary policy.18

In order to assess the robustness of the results and in line with the findings
of Brennan, Chordia and Subrahmanyam (1998), we also estimate equation
(4.21) for portfolios grouped according to three alternative criteria: (i) the
ratio between cash flow and market price, (ii) the price-earning ratio and
(iii) the dividend yield. The results, reported in Table 6, Panel C, agree with
our previous findings. In particular, monetary policy uncertainty is strongly
correlated with stock returns in 8 out of 10 portfolios in the cases of both

18In general, the literature has identified channels through which inflation and an accommodating
monetary policy adversely affect banks’ cash flows. In particular, Kessel (1956) and Alchian and Kessel
(1960) argue that banks’ shareholders would suffer from inflation because banks are net holders of financial
assets whose contractual characteristics are fixed in nominal terms. More recently, Dermine (1985 and
1987) considers the tax burden. He argues that as taxes are calculated on nominal profits, “the increase
in after-tax earnings fueled by inflation is not sufficient to finance a constant level of real dividends
and the retained earnings that are required to satisfy an exogenous capital adequacy ratio”. Therefore,
exogenously imposed capital adequacy ratios together with taxation of nominal returns, he argues, means
that inflation reduces banks’ cash flows. Empirical evidence seems to confirm this hypothesis (Dermine,
1999).
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cash-flow-to-price and earnings-to-price portfolios and in 9 out of 10 portfolios
in the case of dividend-yield portfolios. Moreover, in most instances βi is not
statistically different from zero. In particular, expected inflation is significant
in only 6 out 25 cases for the size and book-to-market portfolios and 4 out of
17 for the industry portfolios. Furthermore, for both cash-flow-to-price and
earnings-to-price portfolios, expected inflation is not significant in 9 out of
10 cases and is never significant for dividend-yield portfolios. This supports
the main theoretical findings.
As an additional robustness check, we have also investigated the relative im-
portance of fundamental uncertainty and monetary policy uncertainty, by
re-estimating equation (4.21) without the proxy for monetary policy uncer-
tainty. The results (not reported) show that the model’s fit, as measured
by the Adjusted R2, deteriorates sharply, which suggests that a significant
fraction of the explanatory power of model (4.21) is captured by the tracking
portfolio. When Φt is not included in the regression, the average Adjusted
R2 falls from 0.9 to 0.8 on average. Moreover, the coefficient of expected
inflation turns statistically significant.19 This suggests that fundamental un-
certainty by itself is not enough to resolve the Fisher puzzle; that is, that the
joint presence of both fundamental and policy uncertainty is required, as the
model indicates.

4.7 Conclusion

We have studied the relationship between inflation and stock returns from
an original perspective. If investors do not know the monetary policy stance
and use inflation as a signal to it, the learning process generates uncertainty
that increases the risk premium. A change in consumer prices has effects on

19The sign of the coefficient is now positive. This contrasts with the strict definition of the Fisher rela-
tionship, which would impose a zero correlation between excess returns and expected inflation (restriction
4.17)

165



the equity risk premium that vary with investors’ beliefs. We show that a
change in consumer prices that confirms investors’ beliefs leads to a reduction
in risk premia, while a change that contradicts them has the opposite effect.
We then construct a market-based proxy of monetary policy uncertainty,
showing that it is priced and demonstrating that this helps to explain the
Fisher puzzle. We further show that, by conditioning on it, the Fisher puzzle
disappears.
Our results provide a link between asset pricing and monetary economics.
They suggest a new channel through which the central bank affects financial
markets, one that has not been properly explored to date. Moreover, we
shed new light on the “rules versus discretion” debate, quantifying the cost
- in terms of higher risk premium - of discretion. It would be interesting
to extend this analysis to other countries to see whether different degrees
of disclosure of the central bank’s targets are related to differing impact of
monetary policy uncertainty on stock returns.

4.8 Appendix

Proof of Theorem 1. We first solve investor’s learning problem and then we
define the equilibrium stock price. Investors observe Dt, C t and pt (signals)
and try to infer the value of θt.20 The unobservable component (θt) can take
values a and b (that is E = [a, b]). From Liptser and Shiryayev (pag. 333)
we know that the posterior probability of a is:

dπa,t = (1− 2πa,t)λdt+ πa,t(µi,t − µt)′(ΣΣ′)−
1
2dvt (4.22)

where µi,t = (µD + βθt, µp + δθt, µc)
′, µt =

∑
j∈{a,b} µj,tπj,t, Σ = (bD, bp,

bc)
′ and bD = (σD, 0, 0)′, bp = (0, σp, 0)′ and bc = (σcD , 0, σe)

′. The vector
20Investors observe nominal Dividends (Dn

t ). However, given that they also observe consumption prices
(pt), the informational content of the dividends coincides with their real component (D t).
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ν = (νD, νp, νe), defined on the agents’ new filtration, follows:

dvt=(ΣΣ′)−
1
2 (dWt − µtdt) (4.23)

We can also rewrite equation (4.22) as:

dπa,t = (1− 2πa,t)λdt+ πa,t(1− πa,t)(a− b) (βΩtdνD,t + δdνp,t − γdνe,t) =

= µπa,tdt+ σν,tdνt (4.24)

where: µπa,t = (1 − 2πa,t)λ, Ωt =
σcD−σe
σe

, σν,t = (σνD,t, σνp,t, σνe,t)
′, where

σνD,t = πa,t(1 − πa,t)(a − b)βΩt, σνD,t = πa,t(1 − πa,t)(a − b)δ and σνe,t =

−πa,t(1− πa,t)(a− b)γ.
We can now define the equilibrium stock price. The price of the stock is the
present discounted value of its future dividends, discounted by the stochastic
discount factor (Campbell and Kyle, 1993, Wang, 1993), that is:

Snt = Et

[∫ ∞
t

nsD
n
s ds

nt

]
(4.25)

where Snt is the nominal value of the stock, Dn
t is the nominal dividend and

nt is the nominal stochastic discount factor. We define S(s) as the real price
of the stock and rn the nominal interest rate. Given the law of motion of the
real consumption process described in equation (4.2), in equilibrium the real
pricing kernel is: mt = uc(t, Ct) = e−φtC−ρ. This implies that the the law of
motion of the real stochastic discount factor is:

dmt = ktmtdt− ρmtσDdzD,t (4.26)

where kt = −φ− ρ(µc + γθt) + 1
2ρ(ρ+ 1)bcb

′
c.

Given that the nominal stochastic discount factor (nt) is a function of both
real stochastic factor (mt) and the price level (pt), it can be defined as:
nt = mt

pt
. The nominal dividend can be therefore expressed in terms of the

real dividend (Dt) and of the price level (pt) as: Dn
t = Dtpt. Its law of motion
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follows:

dDn
t = ptdDt +Dtdpt = Dn

t [µD + βθt + µp + δθt] dt+Dn
t [σDdzD,t + σpdzp,t] =

= Dn
t µDndt+Dn

t [σDdzD,t + σpdzp,t] (4.27)

To determine the price of the stock we use Proposition 1 from Veronesi (1999)
which relates the value of a stock to the present discounted value of future
dividends. For the general case where the underlying regimes (θi,t) can take
i = 1...N values, the nominal price of the stock (Snt ) can be defined as a
function of nominal dividends and nominal discount factors, such as:

Snt nt = Et

[∫ ∞
t

nsD
n
s ds

]
= Dn

t Et

[∫ ∞
t

nsD
n
s

ntDn
t

ds

]
=

= Dn
t Et

[∫ ∞
t

msDs

mtDt
ds

]
= Dn

t

N∑
i=1

Et

[∫ ∞
t

Ξs

Ξt
ds|θt = θi,t

]
πi,t =

= Dn
t

N∑
i=1

Ci,tπi,t (4.28)

where Ξt = mtDt and Ci,t = Et

[∫∞
t

Ξs
Ξt
ds|θt = θi,t

]
. Ξt follows:

dΞt = [k+µD+βθt−ρσ2
D]dt+[1−ρ]σDdzD,t = µΞ,tdt+[1−ρ]σDdzD,t (4.29)

The solution requires us to determine the value of Ci,t. Let’s define At =

−Λ−diag(µΞt). Given that we consider only two regimes, (θt can only take
values a and b), we have that:

A = −

[
−λ λ

λ −λ

]
+

[
−µΞt|θt=a 0

0 −µΞt|θt=b

]
=

[
−µΞt|θt=b + λ −λ
−λ −µΞt|θt=a + λ

]
(4.30)

Ci,t can be computed using the relationship Ct = A−1
t 1m, where 1m is a

unity vector. That is, we have that: Ca,t =
2λ−µΞt|θt=b

(−µΞt|θt=a+λ)(−µΞt|θt=b+λ)−λ2
and

Cb,t =
2λ−µΞt|θt=a

(−µΞt|θt=a+λ)(−µΞt|θt=b+λ)−λ2
. The nominal price is:

Snt = Dn
t

∑
i∈{a,b}

πi,tCi,t (4.31)
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The law of motion of the nominal price of the asset is determined by totally
differentiating equation (4.31). That is:

dSnt
Snt

=
[
µDn

t ,tdt+Dn
t [σDdzD,t + σpdzp,t]

]
+

∑
i∈{a,b}Ci,t {µπ,tdt+ σν,tdνt}∑

i∈{a,b}Ci,tπi,t
+∑

i∈{a,b}Ci,tπi,t {Dn
t σν,tdνt(σD,tdzD,t + σp,tdzp,t)}∑
i∈{a,b}Ci,tπi,t

(4.32)

Let’s specify that a = 1 and b = −1. Using equation (4.23), we have
that: dzD,t = 1

σD
{dνD,t − β [θt + (1− 2πa,t)] dt} and dzp,t = 1

σp
{dνp,t−

δ [θt + (1− 2πa,t)] dt}. After substituting out for Ca,t and Cb,t, we can write:
dSnt
Snt

= {µD + µp − (1− 2πa,t)(β + δ) + (1− 2πa,t)
2(β − ργ)λ

Ψt
+

πa,t(1− πa,t)
4(β − ργ)

Ψt
(βΩt + δ − γ)}dt+ σs,tdνt (4.33)

where Ψt =
∑

i∈{a,b}Ci,tπi,t = Ca,tπa,t + Cb,tπb,t = −µD − k + 2λ+ (2πa,t −
1)(β − γρ)+ ρbDb′D, Ωt =

σcD−σe
σe

, σs,t = (1 +
(µΞt|θt=a−µΞt|θt=b)

Ψt
σνD,t, 1 +

(µΞt|θt=a−µΞt|θt=b)

Ψt
σνp,t,

(µΞt|θt=a−µΞt|θt=b)

Ψt
σνe,t) and k = −φ − ρµc + 1

2ρ(ρ + 1)bcb
′
c.

Therefore, we can define the expected value of the nominal stock return as:

Et(
dSnt
Snt

)/dt = µD,t + µp,t − (1− 2πa,t)(β + δ) + (1− 2πa,t)
2(β − ργ)λ

Ψt
+ Φt

(4.34)
where Φt = πa,t(1− πa,t)4(β−ργ)

Ψt
(βΩt + δ − γ). We can also derive the equi-

librium riskless real rate of return, as:

E [rt] = φ+ ρµc −
1

2
ρ(ρ+ 1)bcb

′
c + ργθt (4.35)

and expected inflation as:

E

[
dpt
pt

]
/dt = [µp + (2πa,t − 1)δ] (4.36)

The expected nominal riskless rate is:

E[rnt ] = E[rt] + µp + δ(2πa,t − 1) =

= φ+ ρµc −
1

2
ρ(ρ+ 1)bcb

′
c + µp + (2πa,t − 1)(δ + γρ) (4.37)
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Using equation (4.37) and (4.34), we find that the expected excess rate of
return on the stock (risk premium) is:

E [Rt] = E[
dSnt
Snt

+
Dn
t

Snt
− rnt dt]/dt =

= µD,t + µp,t − (1− 2πa,t)(β + δ) + (1− 2πa,t)
2(β − ργ)λ

Ψt
+

Dn
t

Snt
− φ− ρµc +

1

2
ρ(ρ+ 1)bcb

′
c − µp − (2πa,t − 1)(δ + γρ) + Φt

= Ft + Φt (4.38)

Calibration of the model. The model is calibrated using data provided by
the Federal Reserve Bank of St. Louis (”FRED”) for the period January 1965-
December 1998. Given that the unit period is a quarter, all the parameters
are defined on a quarterly basis. The following values are used: µp = 0.0112,
σp = 0.0062, µDn = 0.0220, σDn = 0.0222, µD = 0.0108 and σD = 0.023.

The values of the parameters for real consumption are µc = 0.0077 and
σc = 0.009. The decomposition of the volatility of consumption is based on
the assumption that dividends represent roughly 5% of overall consumption
as reported in the literature (see Berk, Green and Naik, 1999, Cecchetti, Lam
and Mark, 1993, Campbell and Cochrane, 1999, Barberis, Huang and Santos,
2001). This implies that σe =

√
σ2
c − 0.052σ2

cD
/0.952, where σcD = σ

D
.

The impact of monetary policy on consumption is equal to 5% of that on
dividends (γ = 0.05 β); we consider different values of β in the interval
[0.001-0.5]: the case of β = 0.5 corresponds to an elasticity of consumption
to (and GDP) to θt equal to 2.5%. The impact of monetary policy on prices
is assumed to be equal to 2% yearly, which corresponds also to the sample
value of price volatility.
In order to determine the value of λ we consider the transition probability
Pt(a, b), that is the probability of moving from one regime to the other.
Using quarterly data the Markov-switching model delivers an estimate of
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Pt(a, b) = 0.1640. The degree of risk aversion (ρ) is assumed to be equal to
2. The results are robust to changes in ρ.
In order to determine λ we apply Karlin and Taylor (pag. 151-152). We have
that:

Ps =
1

2λ

(
λ(1 + e−2λs) λ(1− e−2λs)

λ(1− e−2λs) λ(1 + e−2λs)

)
(4.39)

and λ can be obtained as the solution to 0.5(1−e−2λs) = 0.1640,where s = 1

for a unit period equal to a quarter. The solution is λ = 0.1987.

The data. The data and the procedure for constructing portfolios come from
K. French’s web page. Industry portfolios are constructed by first assigning
each NYSE, AMEX, and NASDAQ stock to an industry portfolio at the end
of June of year t based on its four-digit SIC code at that time and then
computing the returns from July of t to June of t + 1. The size and book-
to-market portfolios are constructed at the end of June of each year as the
intersections of 5 portfolios formed on (i) size (market equity, ME) and (ii)
the ratio of book equity to market equity (BE/ME). For size the breakpoints
for year t are the NYSE market equity quintiles at the end of June of each
year; for BE/ME they depends on book equity for the last fiscal year divided
by ME in December of year t − 1. The BE/ME breakpoints are NYSE
quintiles. We considered the period July 1965-December 1998.21

Cash-flow-to-price portfolios are constructed by grouping stocks into 10 deciles.
Portfolios are formed on the basis of the ratio of cash flow (CF) to price (P)
computed at the end of June of year t, using NYSE breakpoints. The CF
used in June of year t is total earnings before extraordinary items, plus equity
share of depreciation, plus deferred taxes (if available) for the last fiscal year
end in t− 1. P is price times the number of shares outstanding at the end of
December of t − 1. Earnings-to-price portfolios and dividend-yield-to-price

21Fama and French provide 38 portfolios, but given that 5 of them contain a large number of missing
values in the sample period, we use only 33 portfolios.
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portfolios are constructed analogously. Portfolios are formed on the basis
of the value of earnings, dividend yields and prices computed at the end of
June; earnings used in June of year t are total earnings before extraordinary
items for the last fiscal year end in t − 1. The dividend yield used to form
portfolios in June of year t is the total dividend paid from July of year t− 1

to June of year t per dollar of equity.

Indexes of Business Cycle. We use two sets of indexes: NBER Business
Cycle Reference Dates (peaks, troughs and peaks-troughs) and James Stock’s
coincident and leading indexes. In particular, NBERPEAK is the series
showing the Business Cycle Reference Dates of the peaks: the index takes
value 1 at peaks and zero elsewhere; NBERTROU contains the Business
Cycle Reference Dates of the troughs: the index takes value 1 at the trough
and zero elsewhere; NBERDATE is constructed as the difference between the
previous two indexes; NBERCYCL is a linear interpolation of NBERPEAK
and NBERTROU: it attaches a value of 1 to NBER peaks and a value of -1
to troughs and then connects peaks and troughs by means of linear segments.
XLI is Stock’s NBER Experimental Leading Index: it is the forecast of the
growth of the Experimental Consumer Index in the following 6 months; XRI
is Stock’s NBER Experimental Recession Index, measuring the probability
that the economy is in recession in the next 6 months; XLI_2 is Stock’s
NBER Alternative Non Financial Experimental Leading Index, and XRI_2
is Stocks’ NBER Alternative Non Financial Experimental Recession Index.
All these indexes are constructed as forecasts six months ahead. Therefore, to
account for possible delays in investors’ reactions or for misalignments with
financial market variables, alternative measures constructed as the 6th order
lags of Stock’s indexes (respectively XLIL6, XLI_2L6, XRIL6 and XRI_2L6)
are also used. We also consider Stock’s Experimental Coincident Recession
Index: given the non-stationarity of this index, we use two transformationst,
that is (i) the logarithm of its first differences (XCI_1) and (ii) the detrended
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logarithm (XCI_2).

The Markov-Switching VAR. To identify monetary policy regimes, a two-
state Markov-switching VAR model is used. The state-space representation
of the model is the following:

yt = cst + A1,styt−1 + ....+ Ap,styt−p + εt =

=
(
ξ
′

t ⊗ I
)[ c1

c2

]
+ (ξ′t ⊗ I)

[
A11

A12

]
yt−1 + ..+

(
ξ
′

t ⊗ I
)[ Ap1

Ap2

]
yt−p + εt

ξt = F
′
ξt−1 + ηt

where: ξt = [1, 0]′ if st = 1 and ξt = [0, 1]′ if st = 2; st is an unobserved
random variable that takes the values 1 or 2 according to which regime the
process is in at time t. F = {pij}i,j=1,2 is the transition matrix and pij is the
probability that st = j given that st−1 = i.
The hypotheses underlying the statistical model are standard: the error term
in the observation equation, εt, is assumed to be i.i.d. normal, with covariance
matrix Σst; ηt is a martingale difference sequence, independent of εt and of all
available information, past values of st included. The VAR is stable in both
states. The vector yt contains five variables: the excess return on the market
portfolio, the corresponding dividend yield, the risk-free real rate, CPI infla-
tion and the growth rate of real GDP; the sample period starts in 1965:3 and
ends in 1998:4.22 The model is estimated by maximum likelihood, using the
EM algorithm. Given an ML-estimate of the vector of parameters (i.e. ψ =

(c′1, c
′
2, vec(A11)

′, vec(A12)
′, ..., vec(Ap2)

′, vec(Σ1)
′, vec(Σ2)

′, vec(F )′)), the
hidden Markov process is estimated by iterating on the following set of equa-

22The same model, estimated on monthly data, is much more noisy. The reason is that at higher
frequencies it takes too high order a VAR to provide an adequate account of the correlation structure of
the data, which inevitably reduces the efficiency of the estimates.
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tions:

ξ̂t|t =
ξ̂t|t−1 � ηt

1′
(
ξ̂t|t−1 � ηt

) , ξ̂t+1|t = F ′ξ̂t|t and ξ̂t|T = ξ̂t|t �
{
F
[
ξ̂t+1|T ÷ ξ̂t+1|t

]}
(4.40)

where ξ̂t|t−k = E(ξt|Yt−k), Yt = {y1, y2,..., yt}, ηt represents the 2 × 1 vec-
tor whose i-th element is the conditional density f(yt|st = i, Yt−1;ψ) , 1 is
a 2 × 1 unit vector and the symbols � and ÷ denote element-by-element
multiplication and division.
While the index of switches in monetary policy regimes is quarterly, the data
on returns are monthly. In order not to waste degrees of freedom, the index
is therefore disaggregated to a monthly frequency by applying the method
suggested by Chow and Lin (1971), with the inflation rate used as the indi-
cator variable. The method consists of estimating the model using quarterly
data, under the assumption that the error term is first-order autocorrelated,
and then using the GLS coefficients to estimate the endogenous variable at
missing points.
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Figure	  1	  -	  Excess	  Returns	  and	  the	  value	  of	  the	  monetary	  policy	  parameter	  δ

	  



Figure	  2	  -	  Excess	  Returns	  and	  the	  share	  of	  dividends	  over	  consumption	  
	  
	  

	  



The figure reports the 6th-order centred moving average of the probability of a non-accommodative monetary policy as perceived
by the investors and estimated by means of a Markov-Switching VAR. It also reports the uncertainty about the monetary policy,
calculated as the product between the probability of tight monetary policy and the complement to one.

Figure 3 - Perceived regimes of monetary policy and uncertainty
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Table 1: 
Probability of the Monetary Policy Regime and Business Cycle  

The table reports summary statistics about the regression: πt=α+βΦt+γBCt+εt, where πt is the 
probability of accommodative monetary policy regime derived from the estimated Markow-switching 
model; Φt is the index of monetary policy stance computed by Bernanke-Mihov and BC is either a 
busincess cycle index derived from NBER dating or one of James Stock's indices. The index of 
Bernanke-Mihov increases as the monetary policy becomes more accommodative. The first column 
indicates which business cycle index has been used in the regression; the second column shows the 
adjusted R2 of the regression; the third and fourth ones present, respectively, the estimated 
coefficient and the corresponding t-statistics of the monetary policy index; finally, the last two 
columns report the point estimate and the t-statistc of the coefficient of the business cycle index. The 
sample spans the period from January 1961 to December 1996. 
            
      

Business Cycle index Adjusted 
R2 

β  tβ γ  tγ 

            
      

NBERCYCL 0.200 2.97 5.14 -0.10 -2.07 
NBERDATE 0.202 3.68 9.06 -0.26 -2.20 
NBERPEAK 0.200 3.73 9.21 -0.33 -2.00 
NBERTROU 0.194 3.78 9.31 0.18 1.11 
XLI 0.229 2.87 6.34 0.03 4.26 
XLI_2 0.221 3.37 8.14 0.03 3.80 
XRI 0.309 2.13 4.95 -0.62 -7.94 
XRI_2 0.249 3.27 8.11 -0.86 -5.36 
XRI_C 0.219 3.81 9.59 -0.24 -3.66 
XCI_1 0.200 3.70 9.10 7.30 2.07 
XCI_2 0.262 1.96 3.94 -3.28 -5.94 
XLIL6 0.196 3.82 9.48 0.01 1.46 
XLI_2L6 0.192 3.86 9.50 0.01 0.77 
XRIL6 0.224 3.71 9.36 -0.28 -3.94 
XRI_2L6 0.197 3.90 9.62 -0.26 -1.61 
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Table 2: 

Economic tracking portfolio for It: regression coefficients and portfolio weights 
 

This table reports results from the following regression: It+12=α+βBt+χZt-1+ut, where Bt denotes the vector of base 
assets and Zt-1 the set of control variables. The base assets are two bond portfolios and one equity portfolio. 
Term stands for the spread between the yield on 10-year Treasury bonds and 3-month Treasury bills; junk is the 
difference between Moody's Baa and Aaa corporate yields; ME1/ME5 is the return on an arbitrage portfolio which 
is long on stocks of small firms (first NYSE market equity quintile) and short on stocks of big firms (fifth NYSE 
market equity quintile). Their returns are in excess of the riskless rate. The vector of control variables includes 
expected inflation (infe), actual CPI inflation (inf), inflation measured by the year-on-year rate of change of the 
index of producer prices for finished goods (infppi) and the share of household expenditure on durable goods out 
of total expenditure (shrdc). T-values in the last two columns are computed by using the OLS estimator of the 
covariance matrix of the estimated coefficients in the first case and by using the White estimator in the second 
case, so as to correct for heteroscedasticity in the residuals.  

Regressors Coefficients t-statistics (OLS) t-statistics (White) 

 
Base assets 

    
term  -0.397 -2.120 -2.264 

junk 32.493 2.642 2.563 

ME1/ME5 0.049 2.589 2.510 
 

Control variables 
    

Infle -12.781 -3.845 -3.670 

Infl 3.031 1.530 1.514 

Inflppi 0.397 2.187 2.077 

exmkt -0.306 -3.332 -3.188 

shrdc 1.082 3.132 3.322 

        
    

R2 0.099   

Adjusted R2 0.080   

Standard error 0.072 

Residual Autocorrelation F(12,368)=1.551 p-value=0.104 

Heteroschedasticity  (linear) χ(8)=27.907 p-value=0.001 

Heteroschedasticity  (exp.) χ(8)=8.361 p-value=0.399 

Current sample 1965.8-1997.12  
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Table 3: Summary  Financial Statistics 

Excess returns on 25 book/market and 17 industry portfolios. MARKET is the market portfolio and EXMKT 
is the excess return of the market portfolio. The one-month Treasury bill proxies for the riskless rate. The 
sample covers the period July 1965 - December 1998. Both the sample means and their standard 
deviations are annualized. ρj j=1,2,3,4,12,24, is the sample autocorrelation of order j. 

Portfolio Mean Std. Dev. ρ 1 ρ 2 ρ 3 ρ 4 ρ 12 ρ 24 
 

 Panel A: Size and book-to-market portfolios 
S1/B1 1.888  26.484 0.234 0.018 -0.011 0.002 0.054 -0.023 
S1/B2 8.703  23.119 0.226 -0.002 -0.025 -0.002 0.065 -0.016 
S1/B3 8.887  20.943 0.221 0.005 -0.012 -0.028 0.090 0.013 
S1/B4 11.551  19.771 0.224 -0.013 -0.015 -0.020 0.124 -0.011 
S1/B5 12.795  20.857 0.248 -0.006 -0.024 -0.034 0.178 0.053 
S2/B1 4.907  25.228 0.168 -0.036 -0.053 -0.039 -0.016 -0.036 
S2/B2 7.725  21.157 0.183 -0.031 -0.036 -0.042 0.041 0.004 
S2/B3 10.546  19.080 0.184 -0.030 -0.029 -0.021 0.048 -0.035 
S2/B4 11.385  18.000 0.171 -0.041 -0.029 -0.009 0.092 0.009 
S2/B5 12.280  19.906 0.160 -0.067 -0.063 -0.041 0.135 0.026 
S3/B1 5.449  23.173 0.144 -0.026 -0.036 -0.064 -0.008 -0.044 
S3/B2 8.589  19.240 0.174 -0.012 -0.001 -0.060 0.014 -0.003 
S3/B3 8.421  17.540 0.155 -0.039 -0.039 -0.045 0.012 -0.018 
S3/B4 10.334  16.498 0.161 -0.023 -0.004 -0.038 0.051 0.032 
S3/B5 11.585  18.850 0.153 -0.075 -0.067 -0.029 0.095 -0.007 
S4/B1 6.157  20.235 0.107 -0.027 -0.026 -0.057 -0.021 -0.036 
S4/B2 5.421  18.488 0.128 -0.028 -0.032 -0.026 -0.028 -0.011 
S4/B3 8.436  17.104 0.080 -0.026 -0.014 -0.072 0.003 -0.008 
S4/B4 9.736  16.184 0.082 0.000 0.001 -0.062 0.055 0.013 
S4/B5 11.127  18.887 0.044 -0.035 -0.019 -0.020 0.035 0.002 
S5/B1 6.248  16.771 0.055 -0.002 0.005 -0.018 0.056 -0.012 
S5/B2 5.965  16.111 0.036 -0.060 -0.002 0.007 -0.002 -0.020 
S5/B3 6.067  15.162 -0.034 -0.052 0.007 -0.035 -0.012 0.019 
S5/B4 7.839  14.822 -0.055 0.008 0.064 -0.084 0.035 0.022 
S5/B5 8.601  16.184 0.021 -0.007 -0.039 0.003 0.046 0.012 
MARKET 12.607  15.475 0.054 -0.039 -0.011 -0.033 0.019 -0.012 
EXMKT 6.259  15.547 0.060 -0.034 -0.009 -0.031 0.016 -0.015 

 

Panel B: Industry Portfolios 
Food 8.559  15.970 0.067 -0.060 0.001 -0.023 0.070 -0.049 
Mines 4.457  22.527 0.047 -0.011 -0.017 -0.057 -0.028 0.060 
Oil 6.854  18.305 -0.013 -0.040 0.022 0.020 0.004 -0.043 
Clths 5.493  21.358 0.236 0.045 -0.032 -0.059 0.068 -0.046 
Durbl 6.992  18.855 0.107 0.046 0.002 -0.027 0.033 -0.008 
Chems 5.319  18.533 0.013 -0.052 0.044 -0.013 -0.038 0.024 
Cnsum 9.718  16.946 0.019 -0.005 -0.054 0.004 0.100 -0.002 
Cnstr 7.136  20.499 0.109 -0.042 -0.025 -0.073 0.027 -0.003 
Steel 2.576  21.235 -0.004 -0.055 -0.081 -0.014 -0.100 0.087 
FabPr 5.879  18.165 0.153 -0.061 -0.038 -0.052 0.023 -0.006 
Machn 6.314  19.937 0.097 0.008 -0.013 -0.051 0.015 0.053 
Cars 5.529  20.317 0.132 -0.017 -0.018 -0.050 0.026 -0.031 
Trans 6.411  20.909 0.124 -0.006 -0.087 0.044 -0.003 0.029 
Utils 4.215  13.699 0.017 -0.108 0.011 0.029 0.044 0.020 
Rtail 7.702  19.827 0.170 0.006 -0.073 -0.054 0.035 -0.061 
Finan 8.099  17.913 0.126 -0.042 -0.037 -0.017 0.037 -0.051 
Other 6.554  16.370 0.049 -0.038 -0.008 -0.075 -0.013 0.005 
MARKET 12.607  15.475 0.054 -0.039 -0.011 -0.033 0.019 -0.012 
EXMKT 6.259  15.547 0.060 -0.034 -0.009 -0.031 0.016 -0.015 
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Table 4:  Expected Inflation and Excess Returns 

Size and book-to-market portfolio excess returns are regressed on a constant and the proxy for expected 
inflation derived from the estimated Markov-switching model. The first column shows the adjusted R2 of the 
model while the second one reports value of the regression coefficient of expected inflation. The last column 
reports the t-statistic for testing whether the expected inflation parameter is statistically significant. To correct for 
the bias due to the presence of a generated regressor, White standard errors have been used. The sample 
period is July 1965-December 1998. Returns are in excess of the 30-day Treasury bill.  

Expected Inflation 
Portfolio Adjusted R2 

coefficient t-stat 
 

Panel A: Size and book-to-market portfolios 
S1/B1 0.011 -3.761 -1.996 
S1/B2 0.020 -4.201 -2.596 
S1/B3 0.019 -3.728 -2.521 
S1/B4 0.024 -3.909 -2.905 
S1/B5 0.023 -4.032 -2.693 
S2/B1 0.013 -3.849 -2.171 
S2/B2 0.017 -3.583 -2.386 
S2/B3 0.027 -3.984 -2.850 
S2/B4 0.025 -3.648 -2.816 
S2/B5 0.018 -3.479 -2.437 
S3/B1 0.018 -4.069 -2.546 
S3/B2 0.022 -3.630 -2.631 
S3/B3 0.027 -3.670 -2.816 
S3/B4 0.031 -3.668 -3.029 
S3/B5 0.021 -3.549 -2.410 
S4/B1 0.021 -3.790 -2.617 
S4/B2 0.024 -3.657 -2.802 
S4/B3 0.019 -3.028 -2.380 
S4/B4 0.032 -3.658 -3.142 
S4/B5 0.022 -3.633 -2.601 
S5/B1 0.051 -4.730 -4.230 
S5/B2 0.035 -3.819 -3.456 
S5/B3 0.033 -3.498 -3.330 
S5/B4 0.029 -3.195 -3.044 
S5/B5 0.043 -4.195 -3.878 

Panel B:  Industry market portfolios 
Food 0.039 -3.899 -4.110 
Mines 0.001 -1.534 -1.122 
Oil 0.014 -2.818 -2.532 
Clths 0.020 -3.865 -2.992 
Durbl 0.055 -5.462 -4.855 
Chems 0.023 -3.615 -3.200 
Cnsum 0.035 -3.971 -3.872 
Cnstr 0.017 -3.493 -2.802 
Steel 0.008 -2.636 -2.034 
FabPr 0.020 -3.228 -3.009 
Machn 0.036 -4.663 -3.928 
Cars 0.040 -5.030 -4.151 
Trans 0.023 -4.051 -3.196 
Utils 0.019 -2.438 -2.907 
Rtail 0.029 -4.263 -3.567 
Finan 0.034 -4.079 -3.806 
Other 0.030 -3.511 -3.623 
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TABLE 5:  Evidence of pricing 

 
This table reports the Generalized Method of Moments tests of the moment conditions of 
equations 17-20 in the text. We consider the standard Fama and French factors (Panels A and B) 
and the “orthogonalized” Φt factor (Panels C and D), where the monetary policy uncertainty factor 
(Φt) has been previously orthogonalized by regressing it on the Fama and French factors. Panels 
A and C report the estimates for 25 book-to-market and size portfolios, while Panels B and D 
report the estimates for 17 industry portfolios. The vectors,  δ, φMKT, φHML, φSMB, φΦt, contain the 
coefficients of the linear relationship between  λ, λMKT, λHML, λSMB, λΦt and the vector of instruments, 
Z. The instrumental variables are a constant, one month T-bill yield (T-bill), dividend yield of the 
S&P 500 index (Div), term premium – spread between a 10 years and 1year Treasury bond yield 
(Term), junk premium – spread between Moody’s Baa and Aaa corporate bond yields (Junk), 
difference between the one month returns of a three month and one month T-bill (Hb3) and a 
January dummy that takes value 1 for January and 0 otherwise. We report the estimated 
coefficients as well as the t-stat. Last rows of each panel reports the test for overidentifying 
restrictions and the Wald test for the significance of the φΦt coefficients. The value of the χ2 
statistic, the degrees of freedom and the p-value are reported. The coefficients for the dividend 
yield (Div), the difference between the one month returns of a three month and one month T-bill 
(Hb3), the Treasury Bill (T-bill) and the junk premium (Junk) have been divided by 100.  
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Non-orthogonalized factors 
 

 
Panel A: Book-to-market and size portfolios 

  δ  φMKT φHML φSMB φΦ 
 Mean t-test Mean t-test Mean t-test Mean t-test Mean t-test 
           
Constant 0.84 1.73 1.33 0.27 51.72 6.27 49.94 4.77 -57.92 -2.97 
           
Div 17.46 6.38 -120.72 -4.70 -174.03 -4.18 392.40 7.68 -709.50 -6.49 
           
Junk -55.87 -7.68 155.19 3.09 35.65 0.41 -717.43 -9.18 1992.41 10.03 
           
Term 50.35 7.17 -649.59 -11.84 499.78 5.20 698.94 5.91 -2223.51 -9.41 
           
Hb3 -1.18 -2.90 17.70 5.35 51.18 8.09 12.45 2.19 3.05 0.26 
           
T-bill -4.45 -4.62 52.98 6.00 17.32 1.44 -214.24 -9.97 204.66 6.40 
           
DummyJANUARY -7.67 -11.95 -22.11 -5.13 87.53 10.66 110.82 11.08 -61.28 -2.96 

 
Overidentifying restrictions test:   χ2 = 61.65; degrees of freedom: 147; p-value: 0.99. 

 
Wald test:     χ2 = 323.11; degrees of freedom:7; p-value: 0.00.  

 
 

 
Panel B: Industry portfolios 

  δ  φMKT φHML φSMB φΦ 
 Mean t-test Mean t-test Mean t-test Mean t-test Mean t-test 
           
Constant 5.33 7.33 5.48 0.90 -1.79 -0.17 11.27 0.67 -128.60 -4.93 
           
Div -33.01 -7.48 -25.60 -0.98 193.09 2.97 248.96 4.02 1215.85 8.11 
           
Junk 12.65 1.18 228.21 3.95 425.35 3.06 -665.45 -4.73 -1240.16 -4.07 
           
Term -15.87 -1.95 72.43 0.88 613.22 5.21 -199.71 -1.03 686.83 2.30 
           
Hb3 4.03 6.03 -0.74 -0.12 4.18 0.31 66.77 6.15 -133.77 -6.98 
           
T-bill -0.10 -0.08 -11.27 -0.99 -201.36 -9.34 -171.29 -7.00 -34.42 -0.83 
           
DummyJANUARY 0.33 0.50 -12.77 -2.37 29.82 2.61 -12.81 -1.02 -46.37 -2.09 

 
Overidentifying restrictions test:   χ2 =49.09; degrees of freedom: 91;  p-value: 0.99. 

 
Wald test:     χ2 = 237.81; degrees of freedom:7; p-value: 0.00. 
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Orthogonalized Φt factor 
 

Panel C: Book-to-market and size portfolios 
  δ  φMKT φHML φSMB φΦ 

 Mean t-test Mean t-test Mean t-test Mean t-test Mean t-test 
           

Constant 0.84 1.73 -1.64 -0.31 38.35 3.60 23.16 3.06 -57.92 -2.97 
           

Div 17.46 6.38 -157.21 -5.32 -337.88 -6.58 64.34 2.48 -709.51 -6.49 
           

Junk -55.86 -7.68 257.62 4.71 495.73 5.18 203.76 2.73 1992.41 10.03 
           

Term 50.35 7.17 -763.90 -12.45 -13.76 -0.12 -329.19 -3.35 -2223.41 -9.41 
           

Hb3 -1.18 -2.90 17.86 5.20 51.88 6.46 13.86 2.76 3.05 0.26 
           

T-bill -4.45 -4.61 63.50 6.49 64.58 4.97 -119.61 -9.71 204.64 6.40 
           

DummyJANUARY -7.67 -11.95 -25.26 -5.68 73.39 8.16 82.49 11.49 -61.28 -2.96 
 

Overidentifying restrictions test:    χ2 =  61.35; degrees of freedom: 147;  p-value: 1. 
 

Wald test: χ2 =320.04  ; degrees of freedom: 7; p-value: 0.00. 
 

 
 

Panel D: Industry portfolios 
  δ  φMKT φHML φSMB φΦ 
 Mean t-test Mean t-test Mean t-test Mean t-test Mean t-test 
           

Constant 5.33 7.33 -1.13 -0.17 -31.49 -2.23 -48.18 -3.42 -128.59 -4.93 
           

Div -33.01 -7.48 36.90 1.31 473.86 5.94 811.12 12.37 1215.82 8.11 
           

Junk 12.65 1.18 164.42 2.77 138.94 0.90 -1238.86 -8.63 -1240.11 -4.07 
           

Term -15.87 -1.95 107.75 1.26 771.83 5.65 117.86 0.83 686.86 2.30 
           

Hb3 4.03 6.03 -7.62 -1.22 -26.70 -1.70 4.92 0.50 -133.77 -6.98 
           

T-bill -0.10 -0.08 -13.04 -1.12 -209.31 -8.51 -187.21 -6.98 -34.42 -0.83 
           

DummyJANUARY 0.33 0.50 -15.16 -2.68 19.11 1.46 -34.24 -4.40 -46.36 -2.09 
 

Overidentifying restrictions test:   χ2 = 49.09; degrees of freedom: 91; p-value: .99. 
 

Wald test:     χ2 = 237.81; degrees of freedom:7;  p-value: 0.00. 
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Table 6: Expected Inflation and monetary uncertainty  
 

   Different groupings of portfolio excess returns are regressed on a constant, the three 
Fama-French risk factors (Ft), the tracking portfolio mimicking monetary policy 
uncertainty (Φt) and the proxy for expected inflation derived from the estimated Markov-
switching model (Inflet). We consider the 25 size and book-to-market portfolios (Panel A), 
the 17 industry portfolios (Panel B), cash flow-to-price portfolios (Panel C), earnings-to-
price portfolios (Panel D) and dividend-to-price portfolios (Panel E). In the case of Cash 
flows to price portfolios (CF/P), cash flow is the cash flow at the last fiscal year end of the 
prior calendar year, while price is represented by the market capitalization (ME) at the 
end of December of the prior year. In the case of earnings-to-price, we consider the 
excess returns on portfolios formed on deciles of the distribution of E/P, where E/P are 
the  earnings before extraordinary at the last fiscal year end of the prior calendar year 
divided by ME at the end of December of the prior year. In the case of dividends-to-price 
portfolios, we consider the excess returns on portfolios formed on deciles of the 
distribution of D/P, where D/P is the dividend yield. In all the cases stocks are grouped 
into 10 deciles. 
   The first column shows the adjusted R2 of the model. The subsequent two columns 
present, respectively, the point vale and the t-statistic for the coefficient on the tracking 
portfolio. The last two columns report the corresponding evidence for the expected 
inflation parameter. Due to the presence of a generated regressor, the error term in the 
equation in not homoskedastic. To correct for the bias in the OLS estimate of the 
covariance matrix of the estimated coefficients, White standard errors have been used. 
The sample spans the period from July 1965 to December 1998. Returns are measured 
in excess of the return on a 30-day Treasury bill.  
   The first column shows the adjusted R2 of the model. The subsequent two columns 
present, respectively, the point vale and the t-statistic for the coefficient on the tracking 
portfolio. The last two columns report the corresponding evidence for the expected 
inflation parameter. Due to the presence of a generated regressor, the error term in the 
equation in not homoskedatic. To correct for the bias in the OLS estimate of the 
covariance matrix of the estimated coefficients, White standard errors have been used. 
The sample spans the period from July 1965 to December 1998. Returns are measured 
in excess of the return on a 30-day Treasury bill. 
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Regression Model: Ri,t =αi+δ 'iFt+γi(Φt)+βiInflet+εi,t 

Tracking Portfolio Expected Inflation 
 Portfolio Adjusted R2 

coefficient t-stat coefficient t-stat 
 

Panel A:  Size and book-to-market portfolios 
S1/B1 0.931 0.799 9.867 0.436 1.001 
S1/B2 0.954 0.802 16.182 -0.579 -1.957 
S1/B3 0.962 0.821 21.300 -0.472 -1.808 
S1/B4 0.959 0.753 18.547 -0.842 -3.217 
S1/B5 0.957 0.805 18.594 -0.797 -2.707 
S2/B1 0.955 0.497 9.275 0.899 2.540 
S2/B2 0.959 0.603 12.977 0.292 0.973 
S2/B3 0.954 0.503 10.990 -0.424 -1.576 
S2/B4 0.946 0.446 10.119 -0.068 -0.229 
S2/B5 0.953 0.546 11.521 0.428 1.473 
S3/B1 0.949 0.419 7.843 0.591 1.755 
S3/B2 0.938 0.483 9.499 0.114 0.356 
S3/B3 0.925 0.353 7.354 0.018 0.054 
S3/B4 0.926 0.367 7.701 -0.230 -0.666 
S3/B5 0.918 0.407 7.042 0.422 1.110 
S4/B1 0.943 0.228 4.692 0.600 2.090 
S4/B2 0.915 0.316 5.894 0.499 1.356 
S4/B3 0.915 0.236 4.342 1.005 2.853 
S4/B4 0.897 0.270 4.530 0.097 0.230 
S4/B5 0.877 0.473 6.902 0.423 1.066 
S5/B1 0.932 0.126 2.612 -0.836 -2.400 
S5/B2 0.918 0.118 2.341 0.162 0.525 
S5/B3 0.859 -0.064 -1.087 0.439 1.067 
S5/B4 0.891 0.151 2.696 0.635 1.864 
S5/B5 0.809 0.267 3.696 -0.657 -1.321 

 
Panel B:  Industry portfolios 

Food 0.746 0.219 2.680 -0.671 -1.295 
Mines 0.550 0.530 3.448 1.971 2.023 
Oil 0.541 0.189 1.481 0.504 0.626 
Clths 0.796 0.822 8.325 -0.459 -0.735 
Durbl 0.798 0.358 4.101 -1.776 -3.214 
Chems 0.768 0.377 4.079 0.238 0.407 
Cnsum 0.754 -0.046 -0.529 -0.411 -0.749 
Cnstr 0.888 0.272 3.867 1.292 2.897 
Steel 0.650 0.443 3.438 1.391 1.703 
FabPr 0.811 0.294 3.717 0.525 1.049 
Machn 0.809 0.411 4.633 -0.991 -1.765 
Cars 0.623 0.630 4.948 -1.750 -2.170 
Trans 0.814 0.328 3.531 0.415 0.706 
Utils 0.576 -0.098 -1.061 0.593 1.013 
Rtail 0.743 0.565 5.482 -0.779 -1.193 
Finan 0.866 -0.091 -1.363 0.633 1.492 
Other 0.938 0.188 4.570 0.318 1.223 
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Regression Model: Ri,t =αi+δ'iFt+γi(Φt)+βiInflet+εi,t 
 

Portfolio 
 

Adjusted R2 
 

Tracking portfolio Expected Inflation 

  coefficient t-test coefficient t-test 
 

Panel C: Cash flows-to-price portfolios (CF/P) 
Decile 1 0.924 0.170 2.900 -0.530 -1.400 
Decile 2 0.926 0.174 3.561 -0.523 -1.446 
Decile 3 0.913 0.139 2.549 0.207 0.577 
Decile 4 0.918 0.093 1.775 0.532 1.535 
Decile 5 0.890 0.205 3.577 1.005 2.732 
Decile 6 0.898 0.068 1.255 0.228 0.621 
Decile 7 0.876 0.154 2.760 0.422 1.135 
Decile 8 0.868 0.211 3.583 -0.009 -0.020 
Decile 9 0.867 0.299 4.091 -0.237 -0.563 
Decile 10 0.889 0.325 4.976 -0.029 -0.064 

  
Panel D: Earnings-to-price portfolios (E/P) 

Decile 1 0.905 0.277 4.314 -0.860 -2.376 
Decile 2 0.938 0.100 2.176 0.368 1.345 
Decile 3 0.915 0.208 3.962 0.320 0.887 
Decile 4 0.894 0.114 1.929 0.396 1.060 
Decile 5 0.911 0.157 3.336 0.600 1.841 
Decile 6 0.894 0.118 1.774 0.667 1.798 
Decile 7 0.889 0.148 2.909 0.305 0.934 
Decile 8 0.875 0.163 2.743 -0.175 -0.372 
Decile 9 0.886 0.285 4.361 -0.475 -1.307 
Decile 10 0.894 0.264 4.347 -0.224 -0.483 

   
Panel E: Dividends-to-price  portfolios (D/P) 

Decile 1 0.918 0.179 2.885 0.458 1.162 
Decile 2 0.922 0.198 3.955 0.331 0.951 
Decile 3 0.929 0.147 2.870 -0.124 -0.374 
Decile 4 0.924 0.114 2.053 0.242 0.690 
Decile 5 0.908 0.170 3.232 0.435 1.147 
Decile 6 0.896 0.160 2.964 0.550 1.605 
Decile 7 0.898 0.090 1.717 0.596 1.848 
Decile 8 0.873 0.196 3.265 0.521 1.531 
Decile 9 0.827 0.167 2.495 -0.149 -0.368 
Decile 10 0.683 0.240 2.493 -1.092 -1.731 
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