ON THE COMPLETE CONTINUITY OF OPERATORS IN AN INTERPOLATION THEOREM

 $\mathbf{B}\mathbf{y}$

Tetsuya SHIMOGAKI

- 1. In this paper, a Banach space $(X, \|\cdot\|)$, whose elements are complex valued Lebesgue measurable functions over the interval (0, 1), will be called a *Banach function space*, if it satisfies the following conditions:
 - (1.1) $|g| \leq |f|^{1}$, $f \in X$ implies $g \in X$ and $||g|| \leq ||f||$;
 - (1.2) $0 \leqslant f_n \uparrow^{2}, \|f_n\| \leqslant M \quad (n = 1, 2, \dots) \text{ implies}$ $\bigcup_{n=1}^{\infty} f_n = f \in \mathbf{X} \text{ and } \|f\| = \sup_{n \ge 1} \|f_n\|.$

From (1.2) it follows that the norm $\|\cdot\|$ on a Banach function space is semicontinuous, i.e., $0 \le f_n \uparrow f$, $f, f, f \in X$ implies $\|f\| = \sup_{n \ge 1} \|f_n\|$. The space $(X, \|\cdot\|)$ is called *rearrangement invariant*, if $0 \le f \in X$ implies $g \in X$ and $\|f\| = \|g\|$ for each function g, equimeasurable with f. Let L^1 , L^∞ be the Lebesgue spaces over (0, 1), and let $B(L^1; L^\infty)$ be the set of all bounded linear operators from each of the spaces L^1 , L^∞ into itself. By $\|T\|_i$ (i=1, or $=\infty$) we denote the norm of an operator $T \in B(L^1; L^\infty)$ on the corresponding spaces. For each a > 0, f_a is the function given by $f_a(x) = f(ax)$, if ax < 1, $f_a(x) = 0$, if ax > 1. We write also

$$(1.3) \sigma_a f = f_a;$$

it is easy to see that σ_a is a bounded linear operator on X, if X is rearrangement invariant.

The following theorem was proved in [4]3):

Theorem A. Let X be a rearrangement invariant Banach function space. Then, for every $T \in B(L^1; L^{\infty})$, T is a bounded linear operator from

¹⁾ |f| denotes the function defined by |f|(x) = |f(x)|, $x \in (0, 1)$. $f \le g$ means that $f(x) \le g(x)$ holds almost everywhere.

²⁾ We write $0 \le f_n \uparrow$, if $0 \le f_1 \le f_2 \le \cdots$. If $0 \le f_n \uparrow$ and $\bigcup_{n=1}^{\infty} f_n = f$, we write $0 \le f_n \uparrow f$

³⁾ Theorem A was first proved by W. Orlicz for Orlicz spaces [7]. A. P. Calderón gave the theorem in full generarity for quasi-linear operators in [1]. In [4] Theorem A is stated for Lipschitz operators.

X into itself, and

$$||T||_{x} \leq ||T||_{\infty} \cdot ||\sigma_{\alpha}||_{x^{4}}$$

holds, where $a = ||T||_{\infty} ||T||_{1}^{-1}$.

In this paper we deal with the complete continuity of T on X, when T is completely continuous on either L^1 or L^{∞} , and we give a necessary and sufficient condition in order that every $T \in B(L^1; L^{\infty})$ which is completely continuous on L^1 (or L^{∞}) is also completely continuous on X (Theorems 1 and 2).

2. In the sequel, we assume that X is a Banach function space which is also rearrangement invariant. Since X is rearrangement invariant, X is contained in L^1 [5]. We need the following lemma:

Lemma 1. If 0 < a < 1, $1 \le ||\sigma_a||_X \le a^{-1}$ holds.

Proof. The inequality: $1\leqslant \|\sigma_a\|_X$ is evident. Let $0\leqslant f\in X$, and let $\alpha=n\cdot m^{-1}$, where m and n are natural numbers with n< m. Since $\sigma_a f = \sigma_a (f\chi_{(0,a)})^{5}$, we may assume without loss of generarity that $f=f\chi_{(0,a)}$. Now we define g_i by $g_i=\tau_{b_i}\sigma_n f$, $1\leqslant i\leqslant m$, where $b_i=(i-1)\cdot m^{-1}$ and τ_{b_i} is a translation operator defined by $b_i: (\tau_{b_i}h)(x)=h(x-b_i)$, if $0< x-b_i<1$; $(\tau_{b_i}h)(x)=0$ otherwise. Then $g_i\sim g_j^{6}$, $i,j=1,2,\cdots,m$, and $g_ig_j=0$, if $i\not=j$. Put $h_j=\sum\limits_{k=1}^{j+n-1}g_k$, $1\leqslant j\leqslant m$, where we put $g_k=g_{k-m}$, if k>m. Obviously it follows that $f\sim h_i\sim h_j$ for all i,j, and

$$\sum_{j=1}^{m} h_j = n \sum_{i=1}^{m} g_i \sim n \sigma_{n,m-1} f,$$

since $\sigma_{n-m-1}f = \sigma_{m-1}(\sigma_n f) = \sigma_{m-1}g_1 \sim \sum_{i=1}^m g_i$. This implies

$$n \|\sigma_{n \cdot m^{-1}} f\| = \left\| \sum_{j=1}^{m} h_j \right\| \leqslant m \|h_1\| = m \|f\|$$
,

because X is rearrangement invariant. Therefore $\|\sigma_{n \cdot m^{-1}} f\| \le m \cdot n^{-1} \|f\|$ holds. For an arbitrary real $\alpha > 0$, take natural numbers n, m such that $n \cdot m^{-1} < \alpha < 1$. We have then $\|\sigma_{\alpha} f^*\|^{7} \le \|\sigma_{n \cdot m^{-1}} f^*\|$, hence $\|\sigma_{\alpha} f^*\| \le m \cdot n^{-1} \|f^*\| = m \cdot n^{-1} \|f\|$. Letting $n \cdot m^{-1} \upharpoonright \alpha$, we obtain $\|\sigma_{\alpha} f\| \le \|\sigma_{\alpha} f^*\| \le \alpha^{-1} \|f\|$, which proves Lemma 1.

Now we consider the following conditions on X:

(2.1)
$$\|\sigma_a\|_X < 1$$
 for some $a > 1$;

⁴⁾ $||T||_X$ denotes the norm of T on X.

⁵⁾ χ_e denotes the characteristic function of the set e.

⁶⁾ We write $f \sim g$, if f is equimeasurable with g.

⁷⁾ f^* denotes the decreasing rearrangement of |f|.

(2.2)
$$\|\sigma_a\|_X < a^{-1}$$
 for some $0 < a < 1$.

Since $\sigma_{a^2} = \sigma_a \cdot \sigma_a$ holds for every a > 0, and $\|\sigma_a\|_X \le \|\sigma_b\|_X$ if a > b > 0, (2.1) and (2.2) are equivalent to the following conditions respectively:

$$\lim_{\alpha \to \infty} \|\sigma_{\alpha}\|_{x} = 0 ;$$

$$\lim_{a\to 0} a \|\sigma_a\|_X = 0.$$

Lemma 2. If **X** satisfies the condition (2.1), then $\lim_{n\to\infty} ||T_n||_{\mathcal{X}} = 0$ holds for every sequence $\{T_n\}$ of $\mathbf{B}(\mathbf{L}^1; \mathbf{L}^\infty)$ such that $\lim_{n\to\infty} ||T_n||_1 = 0$ and $\sup_{n\geq 1} ||T_n||_{\infty} < \infty$.

Proof. By Theorem A each T_n is a bounded linear operator on X. For any $\varepsilon > 0$ we can find an $\eta > 1$ such that $a > \eta$ implies $\|\sigma_a\|_X < \varepsilon \cdot K^{-1}$, where $K = \sup_{n \ge 1} \|T_n\|_{\infty}$, since (2.1) is equivalent to (2.3). For such $\eta > 0$, we choose an n_0 so large that $K \|T_n\|_{1}^{-1} > \eta$ holds for each $n \ge n_0$. Then, by (1.4) we get for $n \ge n_0$

$$||T_n||_X \le ||T_n||_{\dot{\infty}} ||\sigma_{a_n}||_X, \quad a_n = ||T_n||_{\dot{\infty}} ||T_n||_1^{-1},$$

Since $\sigma_{a_n} = \sigma_{b_n} \sigma_{c_n}$ holds with $b_n = \|T_n\|_{\dot{\omega}} K^{-1} \leqslant 1$ and $c_n = K \cdot \|T_n\|_1^{-1}$, it follows from Lemma 1 that $\|\sigma_{a_n}\|_X \leqslant \|\sigma_{b_n}\|_X \|\sigma_{c_n}\|_X \leqslant b_n^{-1} \|\sigma_{c_n}\|_X$. Therefore we obtain for $n \ge n_0$

$$||T_n||_X \leq K ||\sigma_{c_n}||_X \leq \varepsilon$$
,

which completes the proof.

An operator A on L^1 is called an averaging operator, if A is defined by

$$(2.5) Af = A_{(\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n)} f = \sum_{i=1}^n d(\mathbf{e}_i)^{-1} \left(\int_{\mathbf{e}_i} f(x) dx \right) \chi_{\mathbf{e}_i} ,$$

where $\mathbf{e}_i \cap \mathbf{e}_j = \phi$, if $i \neq j$, $\bigcup_{i=1}^n \mathbf{e}_i \subset (0,1)$, and $n=1,2,\cdots$. The averaging operators belong to $\mathbf{B}(\mathbf{L}^1; \mathbf{L}^{\infty})$ clearly. When \mathbf{X} is rearrangement invariant, both A and I-A are always contractions on \mathbf{X} , because $f > Af^{(8)}$ and f > f - Af hold. Moreover A is completely continuous on \mathbf{X} . As is well known, there exists a sequence of averaging operators $\{A_n\}$ such that A_n converges strongly to I, the identity operator, on \mathbf{L}^1 . Now we can prove the following theorem:

Theorem 1. Let X be rearrangement invariant. In order that every $T \in B(L^1; L^{\infty})$ which is completely continuous on L^1 be also completely continuous on X, it is necessary and sufficient that X satisfies (2.1).

⁸⁾ f > g means that $\int_0^t f^*(x) dx \ge \int_0^t g^*(x) dx$ for all 0 < t < 1. f > g implies $||f|| \ge ||g||$, if X is a rearrangement invariant Banach function space.

Proof. Sufficiency. Let V_1 be a unit ball of L^1 . By the assumption TV_1 is contained in a compact set of L^1 . Hence, for a sequence of averaging operators $\{A_n\}$, we have $\lim_{n\to\infty} \{\sup_{f\in V_1} \|(I-A_n)Tf\|_1\} = 0$, that is, $\lim_{n\to\infty} \|(I-A_n)T\|_1 = 0$ together with $\|(I-A_n)T\|_{\infty} \le \|T\|_{\infty}$, $n\ge 1$. It follows from Lemma 2 that $\lim_{n\to\infty} \|(I-A_n)T\|_{X} = 0$. Since each A_nT , $n\ge 1$ is completely continuous on X, T is also completely continuous on X.

Necessity. Suppose that $\|\sigma_n\|_x = 1$ for all a > 1. Then for $a_n = 2^{2n}$ we can find an $g_n \in X$, $g_n \ge 0$, and $\|g_n\| = 1$ such that $\|\sigma_{a_n}g_n\| > \frac{1}{2}$. Putting $g'_n = \sigma_{2^n}g_n$, we have

$$\|\sigma_{2^{n}}g'_{n}\| > \frac{1}{2} \text{ and } \|g'_{n}\| \leq 1, \qquad n=1,2,\cdots$$

Since \boldsymbol{X} is rearrangement invariant, we may assume without loss of generarity that $g_n' = g_n' \chi_n$, where χ_n is the characteristic function of the interval: $I_n = (2^{-n}, 2^{-n+1})$. Moreover, by the semicontinuity of the norm $\|\cdot\|$ we may assume that g_n' is a simple function for every $n \geq 1$. Now let $g_n' = \sum_{\nu=1}^m a_{n,\nu} \chi_{(c_{n,\nu-1},c_{n,\nu})}$, where $a_{n,\nu} \geq 0$ and $2^{-n} = c_{n,0} < c_{n,1} < \cdots < c_{n,m_n} \leq 2^{-n+1}$. Λ_n denotes the averaging operator defined by the intervals $I_{n,\nu} = (c_{n,\nu-1}, c_{n,\nu})$, $\nu = 1, 2, \cdots, m_n$, that is,

$$A_n f = \sum_{\nu=1}^{m_n} (c_{n,\nu} - c_{n,\nu-1})^{-1} \bigg(\int_{c_{n,\nu-1}}^{c_{n,\nu}} f(x) \, dx \bigg) \chi_{(c_{n,\nu-1},c_{n,\nu})} \;, \qquad f \in L^1 \;.$$

Putting $T_n = \sigma_{2^n} A_n$, we have for every $n \ge 1$ a linear operator T_n belonging to $\boldsymbol{B}(\boldsymbol{L}^1; \boldsymbol{L}^{\infty})$ with $\|T_n\|_1 = 2^{-n}$ and $\|T_n\|_{\infty} = 1$. Since $T_n f = T_n(f \chi_n)$ and $T_n f = (T_n f) \chi_{J_n}$, $J_n = (2^{-2n}, 2^{-2n+1})$ hold for all $n \ge 1$, the operator $T = \sum_{n=1}^{\infty} T_n$ is defined on \boldsymbol{L}^{∞} also and $\|T\|_{\infty} = 1$. On the other hand, as $\|T\|_1 \le \sum_{n=1}^{\infty} \|T_n\|_1 = 1$, T acts also from \boldsymbol{L}^1 into itself. Furthermore as an operator on \boldsymbol{L}^1 , T is completely continuous, as is easily seen. The operator T thus defined, however, is not completely continuous as an operator on \boldsymbol{X} . In fact, for each $n \ge 1$, $Tg'_n = T_ng'_n = \sigma_{2^n}A_ng'_n = \sigma_{2^n}g'_n$, hence $\|Tg'_n\| > \frac{1}{2}$. If the sequence $\{Tg'_n\}$ contains a subsequence which converges in the norm $\|\cdot\|$ to an element of \boldsymbol{X} , the limit must be 0, since Tg'_n converges to 0 almost everywhere by virtue of (1.2). This is a contradiction. Thus the necessity of the condition (2.1) is proved.

If $T \in \boldsymbol{B}(\boldsymbol{L}^1; \boldsymbol{L}^{\infty})$ is completely continuous on \boldsymbol{L}^{∞} , the set TV_{∞} is contained in a compact set of \boldsymbol{L}^{∞} , hence it is separable, where V_{∞} is a unit ball of \boldsymbol{L}^{∞} . Then, as is well known, there exists a sequence of averaging operators $\{A_n\}$ such that A_n converges to I strongly on TV_{∞} . As similarly as Lemma

2 we can prove that both $\lim_{n\to\infty} ||T_n||_{\infty} = 0$ and $\sup_{n\geq 1} ||T_n||_1 < \infty$ imply $\lim_{n\to\infty} ||T_n||_x = 0$ provided that \boldsymbol{X} satisfies (2.2). On the other hand, if \boldsymbol{X} violates (2.2), we can construct an operator T of $\boldsymbol{B}(\boldsymbol{L}^1; \boldsymbol{L}^{\infty})$ which is completely continuous on \boldsymbol{L}^{∞} , but not on \boldsymbol{X} . Such an operator can be constructed in a similar way as in Theorem 1. Thus we get⁹⁾

Theorem 2. Let X be rearrangement invariant. In order that every $T \in B(L^1; L^{\infty})$ which is completely continuous on L^{∞} be also completely continuous on X, it is necessary and sufficient that X satisfies (2.2).

3. In this section we give a simple condition equivalent with (2.1) or (2.2), when \boldsymbol{X} is one of some concrete spaces: Orlicz spaces, Lorentz spaces $\Lambda(\varphi)$, and $M(\varphi)$ [2]. In [6] it is shown that the condition (2.2) is equivalent to the property that $\boldsymbol{X} \in \operatorname{HLP}$, i.e., $f \in \boldsymbol{X}$ implies $\theta f \in \boldsymbol{X}$, where θf is the $\operatorname{Hardy-Littlewood}$ majorant of f. A necessary and sufficient condition for the condition (2.2) is also given in [3, 6] for Orlicz spaces, or spaces $\Lambda(\varphi)$. For a Banach function space \boldsymbol{X} we denote by $\overline{\boldsymbol{X}}$ the conjugate space of \boldsymbol{X} , the set of all Lebesgue measurable functions g such that $\int_0^1 |f(t)g(t)| dt < \infty$ for all $f \in \boldsymbol{X}$. The conjugate norm is defined by $\|g\| = \sup \left\{ \int_0^1 |f(t)g(t)| dt \right\}$ for all $f \in \boldsymbol{X}$. $\overline{\boldsymbol{X}}$ is rearrangement invariant, if \boldsymbol{X} is so. The conditions (2.1) and (2.2) are mutually dual for the pair \boldsymbol{X} and $\overline{\boldsymbol{X}}$, since $a^{-1}\sigma_a$ is the conjugate of the operator σ_a . As $\overline{\boldsymbol{L}}_M = \boldsymbol{L}_N$, where N is the complementary function of M, we obtain by [3; Theorem 4, or 6; Theorem 3]

Theorem 3. i) L_M satisfies (2.1) if and only if M satisfies the Δ_2 -condition, i.e., there exist $u_0 \ge 0$ and $\tau > 0$ such that $M(2u) \le \tau M(u)$ for all $u \ge u_0$.

ii) L_M satisfies (2.2) if and only if N satisfies the Δ_2 -condition.

For the spaces $\Lambda(\varphi)$, Put $\Phi(x) = \int_0^x \varphi(t) dt$, 0 < x < 1. $\Phi(x)$ is a positive, nondecreasing concave function on (0, 1). In [3, 6] it is shown that (2.2) is equivalent to

(3.1)
$$\limsup_{u \to 0} \Phi(2u)\Phi(u)^{-1} < 2.$$

On the other hand, we can prove that (2.1) is equivalent to

(3. 2)
$$\liminf_{u \to 0} \Phi(2u)\Phi(u)^{-1} > 1.$$

In fact, if (3.2) is true, then $\Phi(2u)\Phi(u) \stackrel{1}{\geq} 1 + \delta$, $u \leq u_0 < 1$ for some $\delta > 0$ and

9) Making use of the fact that σ_a and $a^{-1}\sigma_a$ i are mutually conjugate, we can also prove Theorem 2.

 $u_0 > 0$. Put $\alpha = 2 \cdot u_0^{-1}$. Then for any α with $0 < \alpha < 1$ we have

$$\|\sigma_{\alpha}\chi_{(0,a)}\|_{\mathtt{J}} = \|\chi_{(0,2^{-1}u_{\vartheta}a)}\|_{\mathtt{J}} \leqslant (1+\delta)^{-1} \|\chi_{(0,u_{\vartheta}a)}\|_{\mathtt{J}} \leqslant (1+\delta)^{-1} \|\chi_{(0,a)}\|_{\mathtt{J}}.$$

This implies $\|\sigma_{\alpha}f\|_{A} \leq (1+\delta)^{-1} \|f\|_{A}$ for all $f \in A(\varphi)$, which shows $\|\sigma_{\alpha}\|_{A} \leq (1+\delta)^{-1} < 1$. Hence (2.1) holds.

Conversely, if (3.2) does not hold, we can find sequences of positive numbers $\{a_n\}$ and $\{\varepsilon_n\}$ such that $a_n < 2^{-n}$, $a_n \downarrow$, $\Phi(2a_n)\Phi(a_n)^{-1} \le 1 + \varepsilon_n$, and $\varepsilon_n = (n2^n)^{-1}$ for every $n \ge 1$. Let $b_n = 2^n a_n$ and $\chi_n = \chi_{(0,b_n)}$. Since Φ is a concave function, $\Phi(2^n a_n) \le (1 + 2^n \varepsilon_n) \Phi(a_n)$, $n \ge 1$ holds. It follows from this that $\|\chi_n\|_A \|\sigma_2^n \chi_n\|_A^{-1} = \Phi(2^n a_n) \Phi(a_n)^{-1} \le (1 + 2^n \varepsilon_n) = 1 + n^{-1}$. Hence $\|\sigma_2^n\|_A \ge (1 + n^{-1})^{-1}$, $n \ge 1$, and $\limsup_{n \to \infty} \|\sigma_n\|_A \ge 1$. This is, however, inconsistent with (2.3). Therefore we have

Theorem 4. i) $\Lambda(\varphi)$ satisfies (2.1) if and only if Φ satisfies (3.2).

ii) $\Lambda(\varphi)$ satisfies (2.2) if and only if Φ satisfies (3.1).

Since the spaces $\varLambda(\varphi)$ and $M(\varphi)$ are mutually conjugate [2], we obtain immediately from Theorem 4

Theorem 5. i) $M(\varphi)$ satisfies (2.1) if and only if Φ satisfies (3.1).

ii) $M(\varphi)$ satisfies (2.2) if and only if Φ satisfies (3.2)¹¹⁾.

References

- [1] A. P. CALDERÓN: Spaces between L¹ and L∞ and the theorem of Marcinkiewicz, Studia Math., 26 (1966), 273–299.
- [2] G. G. LORENTZ: On the theory of spaces A, Pacific J. Math., 1 (1951), 411-429.
- [3] — : Majorants in spaces of integrable functions, Amer. J. Math., 77 (1955), 484–492.
- [4] G. G. LORENTZ and T. SHIMOGAKI: Majorants for interpolation theorems, the Memorial Volume to Dr. Ananda Raur (in printing).
- [5] E. M. SEMENOV: Imbedding theorems for Banach function spaces of measurable functions, Dokl. Akad. Nauk SSSR, 156 (1964), 1292-1295 (Russian).
- [6] T. SHIMOGAKI: Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan 17 (1965), 365–373.
- [7] W. ORLICZ: On a class of operations over the space of integrable functions, Studia Math., 14 (1954), 302–309.

Department of Mathematics Hokkaido University

(Received April, 20, 1968)

¹⁰⁾ The norm $\|\cdot\|_A$ of the space $A(\mathcal{G})$ is defined by $\|f\|_A = \int_0^1 f^*(x) \mathcal{G}(x) dx$. In particular, $\|\chi_{(0,a)}\|_A = \Phi(a)$.

¹¹⁾ In [3] a condition equivalent to (2.2) is given by the condition that $\int_0^a \phi(x) x^{-1} dx \le A \Phi(a)$, 0 < a < 1, for some fixed constant A > 0.