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1. In this paper, a Banach space (X, || - ||), whose elements are complex
valued Lebesgue measurable functions over the interval (0, 1), will be called
a Banach function space, if it satisfies the following conditions:

(1.1) lg| <|f|V, fe X implies ge X and |lg|| < | f:
(1.2) 0t I Wl <M (n=1,2,-) implies

U fu=fe X and £ =sup £l

From (1.2) it follows that the norm || - || on a Banach function space is
semicontinuous, i.e., 0<fu1f, f. f.€X implies | fll=sup| f.l[. The space
n>1

(X, |- 1) is called rearrangement invariant, if 0<fe X implies g€ X and
Il 7ll=llgll for each function g, equimeasurable with f. Let L', L= be the
Lebesgue spaces over (0, 1), and let B(L'; L”) be the set of all bounded linear
operators from each of the spaces L', L into itself. By I T; (=1, or =o0)
we denote the norm of an operator 7°¢ B(L'; L) on the corresponding spaces.
For each a>0, f, is the function given by f,(v)=flax), if ar<l, f.(r)=0,
if ar>1. We write also

(1.3) o f =fui

it is easy to see that g, is a bounded linear operator on X, if X is rearrange-
ment invariant.

The following theorem was proved in [4]%:

Theorem A. Let X be a rearrangement invariant Banach function
space.  Then, for every TeB(IL'; L”), T is a bounded linear operator from

1) |f| denotes the function defined by |fl(x)=|/f(x)}, x€(0.1). f<g means that
flx)<glr) holds almost everywhere.

2} We write 0<f 1, if OSAS o< If 0<f, 1 and Ulf,,:j'. we write 0< /1 f

simply.

3) Theorem A was first proved by W. Orlicz for Orlicz spaces [7]. A. P. Calderén
gave the theorem in full generarity for quasi-linear operators in [1]. In [4] Theorem A is
stated for Lipschitz operators.
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X into itself, and
(1. 4) 17 < 1T oo Nloull

holds, where a=\||T)|o \T.".

In this paper we deal with the complete continuity of 7" on X, when
T is completely continuous on either L' or L*, and we give a necessary and
sufficient condition in order that every 7€ B(L'; L=) which is completely
continuous on L' (or L~) is also completely continuous on X (Theorems 1
and 2).

2. In the sequel, we assume that X is a Banach function space which
is also rearrangement invariant. Since X is rearrangement invariant, X is
contained in L' [5]. We need the following lemma :

Lemma 1. If 0<a<l1, 1<]|o.]|+<a ! holds.

Proof. The inequality: 1<|g,||y is evident. Let 0<fe X, and let
a=n-m ', where m and n are natural numbers with n<m. Since ¢,f=o0,
(fX0,0)”, we may assume without loss of generarity that f=fX,.. Now
we define ¢g; by ¢,=7,,0,f, 1<i<m, where b,=(i—1)-m ' and 7,, is a trans-
lation operator defined by b, : (z,,h)(x)=h(x—b,), if 0<x—b,<1; (7,,h)(x)=0
otherwise. Then ¢,~¢%, 7,j=1,2, -, m, and g¢,9,=0, if ixj. Put h;=

Jon -1

2. gis 1<j<m, where we put g,=g, ,, if £>m. Obviously it follows
ig
that f~h,~h; for all 7, j, and

m m

EI hy=n} g~no,.,.f,
'E i 1

m

since o,., f=a, (0, f)=0, 19~ X, g;. This implies
i1

Ao S = | 5 0y <l =mlL 1,

because X~ is rearrangement invariant. Therefore ||g,.,,-f||<m-n || f|| holds.

For an arbitrary real « >0, take natural numbers 7, m such that z -m '<a<1.

We have then |lo. f*||” <l|o,... . f*|l, hence ||, f/*||<m-n || f*|=m-n || f|.

Letting n-m '}, we obtain ||lo,f|| <|lo.f*|| <a '||f]l, which proves Lemma 1.
Now we consider the following conditions on X:

(2.1) o]l v<1 for some a>1;

) II7lx denotes the norm of 7" on X.

) Ze denotes the characteristic function of the set e.
) We write f~g, if / is equimeasurable with g¢.

) f* denotes the decreasing rearrangement of | /.
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(2.2) ol v <a ! Jor some 0<a<l.

Since ¢,=0, 0, holds for every a>0, and |lo.| <[\, i a>b>0,
(2.1) and (2.2) are equivalent to the following conditions respectively:

(2 4) hm a Houn,\’ =0.
a—0
Lemma 2. If X satisfies the condition (2.1), then lim||T,|v=0 holds for

n—oc

every sequence {T,} of B(I'; L) such that im || T,||,=0 and sup | T,||. < co.
1

n—oo n>
Proof. By Theorem A each T, is a bounded linear operator on X. For
any ¢>0 we can find an >1 such that a>7 implies |lo,||y<e-K ', where
K=sup|T,|.., since (2.1) is equivalent to (2.3). For such >0, we choose
n>1

an 7, so large that K| 7,|l;'>» holds for each n>#n,. Then, by (1.4) we
get for n>n,

HTHHA\'g HTHHO.OHO'GHH.\' > dy = HTan'oHTnHl ! >

Since o,,= 0, 0, holds with b,=|T,||cK '<1 and =K T it
follows from Lemma 1 that |j¢, [[.<llo, |I\llo. x<b, o, [[x. Therefore we
obtain for n>n,

HTHHA\'<KH(74‘,I“.\’<5 )

which completes the proof.
An operator A on I is called an averaging operator, if A is defined by

(2.5) Af = Ao f = Fdle) (S f(;r)dx) L., .

where e;Ne;=¢, if ixj, CJeiC(O, 1), and n=1,2,---. The averaging oper-
i1

ators belong to B(L'; L) clearly. When X is rearrangement invariant, both
A and I—A are always contractions on X, because f>Af* and f>f—Af
hold. Moreover A is completely continuous on X. As is well known, there
exists a sequence of averaging operators {A,} such that A, converges strongly
to I, the identity operator, on L'. Now we can prove the following theorem:

Theorem 1. Let X be rearrangement invariant. In order that every
TeB(L'; L”) which is completely continuous on L' be also completely con-
tinuous on X, it is necessary and sufficient that X satisfies (2.1).

t t
8) f>g means that 5f*(.’1‘)d.rgs g*(x)dr for all 0<t<1l. f>g implies | /I>lgl. if
0 0

X is a rearrangement invariant Banach function space.
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Proof.  Sufficiency. Let V| be a unit ball of I'. By the assumption
TV, is contained in a compact set of I'. Hence, for a sequence of averaging
operators {A,}, we have 11m {supH (I—A)TF} =0, that is, 11m NI—=A)T

together with |(I—A,) THOQ\HTHOO, n>1. It follows frorn Lemma 2 that
lim ||(I—A,)T||x=0. Since each A,T, n>1 is completely continuous on X,

7200

T is also completely continuous on X.

Necessity. Suppose that |lo,|ly=1 for all a>1. Then for a,=2* we
can find an g,€ X, ¢,>0, and ||g,.]| =1 such that lo. g.l>%. Putting g,=0xq,,
we have

HO'Z"g:zH >% and Hg;z“<1 > 71-_'1,2, A

Since X is rearrangement invariant, we may assume without loss of generarity
that g,=g¢.%,, where X, is the characteristic function of the interval: I,=

(2 », 2. Moreover, by the semicontinuity of the norm | -| we may
assume that ¢, is a simple function for every n>1. Now let ¢, =
7"71

Z an,vx(r'nw 1 ) Where an,»zo and 2 = n, 0<C7z 1< <Cn »m,, \—)' " ‘1 Au de'
&~ " .

notes the averaging operator defined by the intervals 7,,=/(c,. 1, ¢,.), v=
1,2,---,m,, that is,

Af= z o) (|

Putting 7, =o,»A,, we have for every n>1 a linear operator 7', belonging
to B(L'; L) with |T.,=2 " and ||T,|le=1. Since T, f=T,(f%,) and

T, /=(T. )%, J,=(27%,2 ") hold for all n>1, the operator 7T'= }o:o: T,

71

is defined on L= also and ||7"||.=1. On the other hand, as ||7']|,< i N7
no1

=1, T acts also from I! into itself. Furthermore as an operator on I, T
is completely continuous, as is easily seen. The operator 7' thus defined,
however, is not completely continuous as an operator on X. In fact, for
each n>1, Tg.=T,9.=0dmA,g9.=ayq,, hence ||[Tg.||>%. If the sequence
{T¢,} contains a subsequence which converges in the norm || - || to an element
of X, the limit must be 0, since 7'g, converges to 0 almost everywhere by
virtue of (1.2). This is a contradiction. Thus the necessity of the condition

“nyv

fla) dx)xmfh,.n__), . fell.

“nyyon

(2.1) is proved.

If TeB(I'; L~) is completely continuous on L=, the set 7'V, is con-
tained in a compact set of L®, hence it is separable, where V. is a unit ball
of L=. Then, as is well known, there exists a sequence of averaging operators
{A,} such that A, converges to [ strongly on 7'V,,. As similarly as Lemma
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2 we can prove that both lim |7,

200

=0 and sup || 7’|}, <oo imply lim ||7,}|+=0
n>1 2-->00

provided that X satisfies (2.2). On the other hand, if .X violates (2.2), we
can construct an operator 1" of B(L'; L~) which is completely continuous on
L~>, but not on X. Such an operator can be constructed in a similar way
as in Theorem 1. Thus we get”

Theorem 2. Let X be rearrangement invariant. In order that every
Te B(L'; L) which is completely continuous on L= be also completely con-
tinuous on X, it is necessary and sufficient that X satisfies (2.2).

3. In this section we give a simple condition equivalent with (2.1) or
(2.2), when X is one of some concrete spaces: Orlicz spaces, Lorentz spaces
Alp), and M(p) [2]. In [6] it is shown that the condition (2.2) is equivalent
to the property that XeHLP, i.e., f€ X implies ¢f€ X, where 6f is the Hardy-
Litilewwood majorant of f. A necessary and sufficient condition for the con-
dition (2.2) is also given in [3, 6] for Orlicz spaces, or spaces /A(p). For
a Banach function space X we denote by X the conjugate space of X, the

set of all Lebesgue measurable functions ¢ such that Sl|f(t)g(t)]dt<oo for
0

all fe X. The conjugate norm is defined by | g||=sup {Sl [ f(t)g(t)|dt; fe X,
0

Hf]l<1} (9e X). X is rearrangement invariant, if X is so. The conditions

(2.1) and (2.2) are mutually dual for the pair X and X, since a 'g, : is the con-
jugate of the operator ¢,. As L ,=L,, where N is the complementary
function of M, we obtain by [3; Theorem 4, or 6; Theorem 3]

Theorem 3. i) L, satisfies (2.1) if and only if M satisfies the 4,-
condition, i.e., there exist uy>0 and 7>0 such that M2u)<rM(u) for all
u>u, .

i) Ly satisfies (2.2) if and only if N satisfies the d,-condition.

For the spaces /A(¢), Put (D(;r):S'gp(t)dt, 0<x<1l. @(x) is a positive,

0
nondecreasing concave function on (0, 1). In [3, 6] it is shown that (2.2) is

equivalent to
(3.1) lim sup @ (2u)®(u) '<2.

w — 0
On the other hand, we can prove that (2.1) is equivalent to
(3.2) lim inf @ (2u)®(u) '>1 .
w =0
In fact, if (3.2) is true, then @(2u)®(u) '=1+6, u<u,<1 for some 6>0 and

9) Making use of the fact that ¢, and a ls, ' are mutually conjugate, we can also
prove Theorem 2.
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>0, Put w=2-u,'. Then for any ¢ with 0<a<1 we have'”
hoXo.wlls = 1oz Lwli<(1+4) N0,y <X +6) g, -

This implies |lo. 1, <(1+0) '| £l for all feA(e), which shows |lo.|l,<(1+4) '
<1. Hence (2.1) holds.

Conversely, if (3.2) does not hold, we can find sequences of positive
numbers {a,} and {e,} such that «,<2 " «,|, @(2a,)®(a,) '<1+¢,, and
e, =(n2") ' for every n>1. Let b,=2"a, and 2,=Xy,, . Since @ is a con-
cave function, @(2"a,)<(1+2"%,)®(a,), n>1 holds. It follows from this that
Wl llom2, )l ' =@ (2"a,)@(a,) '<(1+2"%,)=1+n"'. Hence |g,],=>1+n ") ",
n>1, and limsup ||¢.]|;=>1. This is, however, inconsistent with (2.3). There-

a — oo

fore we have

Theorem 4. i) Alp) satisfies (2.1) if and only if @ satisfies (3.2).

i) Alp) satisfies (2.2) if and only if @ satisfies (3.1).

Since the spaces A(p) and M(p) are mutually conjugate [2], we obtain
immediately from Theorem 4

Theorem 5. i) Mlp) satisfies (2.1) if and only if @ satisfies (3.1).

i) M) satisfies (2.2) if and only if @ satisfies (3.2)™.
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1
10) The norm | - |1 of the space /(¢) is defined by |fH4:§ f*(@)¢(x)dr. In particular,
0
Zo,wll1=® (a).
11) In [3] a condition equivalent to (2.2) is given by the condition thatg”d)(.l‘)l‘ tdr<
0

A®(a), 0<a<1, for some fixed constant A>0.
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