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ON CERTAIN PROPERTIES OF MODULAR
- CONVERGENCE

By

Masahumi SASAKI

Let R be a universally continuous semi- ordered linear space. A
functional m(a) (@€ R) is said to be a modular on R if it sa.tlsﬁes the
following modular conditions:

LD 0=m@)= +weo for all a€R;

(2) if m(a)=0 for all £€=0, then a=0;

(3) for any a€R there exists a>0 such that m(aa)< + oo;

(4) for every a€R, m(éa) is a convex function of &;

B)  Ja| < |b] implies m@)<m®);
®)  a~b=0 implies m (a+b)=m(a)+m(b);
(7 0=a: rea - implies m(a)= s;u})m(aa).

Throughout the paper we use the n"otat\ions and terminologies used
in [2]. Here |w|-lim a@,=a or w-lima,=a for a,a,€R (»=1,2,3,--")

| ] Y-

means 11m [a|(]ay —a|)=0 or lim @ (a, —a)=0 respectively for any aeR™ ",

YV oo

If (L'(u) is a real convex function, defined for #=0, such that ¢(0)=
and @w)=0 for u>0, but @ (u) not identically zero or infinity for u>0,
then @(u) is called a Younc function.

We assume that 4 is a point set, and that a countably additive
non-negative measure pu(E)(E€A) is defined for the o-ring 4 of subsets
of 4. We suppose furthermore that the measure g is complete (i.e.
u(E)=0, E,cFE, implies E,€4, so u(E,)=0), totally o-finite (i.e. 4 is
a countable union of sets of finite measure) and p(4)>0.

If f(x) is an arbitrary real-valued p-measurable function on 4, and
@(u) is a Younc function, the space .

Ly={f: | ‘;w(a |f@)dp(@)< +o00  for some a> o}

is called Orricz space.

1) REm™ be the modular conjugate space of R, i.e. E™ is the space of the modular
bounded universally continuous linear functionals on R. The conjugate modular % of m
is defined as %(é)=su}g{& (€)—m (x)} for every @€ E™.

ze
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If f(x), g(x) are arbitrary real-valued p-measurable functions on 'A,
we define f=g to mean that we have f(x)=g(x) almost everywhere
on 4. For a Youne function ¢(u), putting

mo () = ¢(F@Ddu@),

we obtain a modular m4(f) on Ly, Where considering L, as a semi- ordered
linear space. Then L, is a modulared semi-ordered linear space.”

W. A. J. LuxemBurG and A. C. ZAANEN (cf. [1] §8) have proved about
the Orwuicz space L,

Theorem A,.- w-lima,=a for a, a,€L; (»=1,2,8,--), tmplies

YV >

l_im mg(Ea,)=mgy(¢a) for all £=0.

Y >0

Theorem A,. For a,a,€L,(»=1,2,3,---), if a,u(d:)'~conve¢ges in measure
on every set of finite measure to a(x), and

lim mg(a,) =mg(@)< + oo,

Y>>

then lim m, (-2— (a, —a))

Y »oo

Theorem A;. Fora,a,€L,(v=12,3,--), if a,(x) c()nverges N measure
to a(x) on every set of finite measure, and mg s stmple® cmd

lim mg(aa,)= mg(aa)<< + oo for some a>O

P

then : o |w|—11m a,=a.

Y e

On the other hand, H. Nagano (cf. [2] §47) had proved:
Theorem B. If R is semi-regular®, then w-lim a,=a, m(a)< co tmplies
l_iﬁm(aa,,);m(aa) for 0<a<1.

Y -»oc .

But this fact can be generalized as follows:
Theorem B;. If R is semi-reqular, then w-lima,=a zmplws
lim m(éa,)=mEa) for all £=0.

Y oo

Proof. By the formula (0) in §38 [2] we have
}a(Ea,,)——m-(a)gm,(Eau)(u: »2,3,--) for any aek™ ,5>0

We obtain hence

2) The ORLICZ space Lg is the BANACH space having the modular norm as its norm.’
Lg is an example of the modulared semi-ordered linear space with a constant modular.

3) A modular m is said to be simple, if m (a)=0 implies a=0.

4) R is said to be semi-regular, if a[p]=0 for all @€ R implies p=0.
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@ (éa)— (7) < lim m (éa,)

by assumption. Since sup {d(Ed)—'—?T@((f)} -——ym(sa) by Théorem 39.3 [2]; we
ﬁeﬁm .
conclude that m(¢a)<lim m(¢a,). Q.E.D.

EY
The above Theorem B, is an extension of Theorem A, to the
modulared semi-ordered linear space.

Theorem B.. If R 1is semi-regular, then [w] 11m a,=a, lim m(a,)*

Y oo

m(a) for a domestic® a€R implies 11mm<~2—(a,,,——a))

Y oo

We can replace the domestlcness of @ by m(@)< + oo, as is seen in
Corollary 1 of Theorem D. |
By this Theorem B. we obtain immediately :

Theorem B, ([2] Theorem 47.9). If R is semi-regular, then
\[w]—hm a,=a, hm mEa,)=m(Ea) < +oo for all £=0 implies m-lim a, =a®.

Y —>co

Th1s Theorem B; is an extension of Corollary 1 in [1] to the mo-
dulared semi-ordered linear space.

The main purpose of this paper is to give the extensions of The-
orems A, and A; to the modulared semi-ordered linear space, and to
consider its relations to Theorems B, and B;.

- KantoroviTcr [4] introduced . star convergence, . i.e., we write
s—hm a, =@a if every partial sequence from a, € R (v=1,2,8,---) contains

D

a partial sequence which is order convergent to a.
We write ind-lim a,=a, if 11m(a,,mp) a~p for all pER and we

Y >0

write ind-lima,=a, if l}in_(a,,vp)_avp for all peR.

If ind-lim a, =ind-lim a,=a, then a, (v=1,2,3,---) -is said to be

individually convergmt to the individual limit @, and we write
md-lima, =a. - : ‘

Y -»oo

We define that a sequence a,€R (v=1,2,3,- ) is star individually
convergent to ¢ and write s-ind-lim a,=a, if, for any partial sequence

Y »oo

of a, »=1,2,8, ---), we can select a partial sequence which is individually
convergent to a (cf. [2], p. 112).

Lemma 1. (cf. [2] Theorem 27.10) If R is semi-regular and super-

5) An element a€R is said to be domestic, if m{axa)< oo for some a>1.
6) m-limay,=a for a,ay€R (v=1,2,8,-) means limm({(ay—a)=0 for all £=0.
YV

Viad ol
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universally continuous”, then

|w|-lim a,=a implies s-ind-lima,=a,
Yoo Y >o0
‘Theorem C. If 4 is a countable union of sets of finite measure, then
in order that a,€L, (v=1,2,8,---) converges in measure to a€Lg on every set
of finite measure, it s necessary and sufficient that a, (v=1,2,3,---) is star
individually convergent to a, considering L, as a modulared semi-ordered
linear space, t.e., s—ind-lim a,=a.

Y »oc0

Proof. We prove first: in order that a,(x) (v=1,2,3,---) converges
in measure to a(x) on every set of finite measure, it is necessary and
sufficient that any subsequence of {a,(®)} contains a subsequence which
converges to a(x) almost everywhere.

For some measurable sets E, (°=1,2,3,---) of finite measure, if

4= UEQ, and a,(x) (v»=1,2,8,---) converges in measure to a(x) on E,

(P-—l 2,8,---), then, by induction we can find integers v(ic P) (k, P =
1,2,38,---) such that

,,<{ z: |a,@—a@)|=

;;}0E0>'<—;; for v=u(s,P).

For such a double sequence u(x,P)(k,0=1,2,3,---) we obtain another
double sequence v, (©) (¢,0=1,2,8,---) such that v, (°+1) (¢=1,2,3,---) is
a subsequence of »,(P) (rc_l 2,8,---) for every f and v,(P)<v...:(P)
(t=1,2,8,---) for every P. |

For such a sequence v.(°) (¢, P=1,2,8,---) we obtain

lim a,, (@) =a(x) almost everywhere on £, (°=1,2,3,---),

because, putting F,,= { @, cox@)— a,(ac)[>———\ NE, (¢, =12, 3 )

2+ f

for #<¢ and xz€FE,— G F,, (¢, ,=12,8,---), we have

(Pv E:1y2:3"")~

1
2¢

(ﬁ;’ P:I’Z’S"”) ’

-1

Since ,1<[;‘] F,,p)g éMFY,oK%

7) R is said to be superuniversally continuous, if for any systeni ar=0 (A€ 4) there

exist countable aa,, Ay €4 (u=1,2,3,~-~) for which ﬂlax,,=aﬂ ax .
Y= €A
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putting : Fp:(o{ D F, , ' r=1,2,8,--.),

t=17=¢g

we obtain pu(Fy) =0 r=1,2,3,---).
Moreover we obtain by diagonal process

lim a, ., (x) = a(x) almost everywhere.
& > .

Cohversely, if {a,(x)} is not convergent in measure to a(x) on some
set & of finite measure, then there exist e>0 and a partial sequence
{a,, @)} of {a,(xr)} such that

r({z: o, @—a@|=c}NE)>0 (+=1,2,3,--).

Thus we can not select any partial sequence from {a,(xr)} which con-
verges to a(x) almost everywhere on E. Contradlctlng the assumption.
Thus we obtain our conclusion. '

Therefore we need only prove, by deﬁmtlon of star individually
convergence, the following fact: in order that a,(®)=0 (»=1,2,3,---)
converges to 0 almost everywhere, it is necessary and sufficient that
a,(»=1,2,8,---) is individually convergent to O, considering L, as a
semi-ordered linear space.

If a,(x) (+=1,2,8,--) converges to 0 almost everywhere, then, put-
ting b, (x)=inf (a, (¥), p(x)) (»=1,2,8,---) for any 0<p€L,, we have

0=b,(®)= p(x) everywhere,
and hence there exist sup b,€L,
vzl
Since limb,(x) =0 almost everywhere, we have then

Voo

infsupbd,(x)=0 almost everywhere.
rz=1 vz

Therefore we obtain, considering L, as a semi-ordered linear space,
N Ub,=0. Thus we have limb,=0 for any ngG'L@;
LZiyvzu Yo

Therefore we conclude ind-lima,=0 by definition..

Yo

Conversely, we prove that v
ind-lima,=0, 0=<a,€L, (»=1,2,8,--) implies lima, (x)=0
Y -»>0 )

Yo
almost everywhere. ,
Let X, be the characteristic function of £, where E is an arbltrary
set of finite measure.
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Since Xz€L,, we have by assumptlon lim (@, ~Xz) =

e

Therefore we conclude easily

lima,() =0 almost everywhere on K.

Y oo

Since the measure g is totally o-finite, we obtain

lima, @) =0 almost everywhere. Q.E.D.

Y-

Lemma 2. s- ind-lim a, =a implies lim m(€a,)=m (Ea) for all - £=0.

V—>>° u—):c
Proof. If there exists a partial sequence a,, (v=1,2,3, ) such
that lim m (a, )<m(¢a) for £>0, ind-lima, =a,

PR Y >0

then putting b,= ﬂ lappl, we have

b,,mp ﬂ(la,hp],«p)T, Ja|~p for any p>0 since md—hm[apy[_la[

by Theorem 15.4 [2]. Therefore, putting p=|a| we have
m(Ea) = hm m (&b, ~|al))) <11mm(501,,L D

contrad1ct1ng the assumption. ) ) Q.E.D.

Theorem D. - s—nd-lim a,=a, llmm(a,,,) m (@) < +oo for a,a, ER
TR
1

(u=1,ﬁ2,3,v---) implies lim m(a(a,,——a))=0 Sfor Oéaé—z—.

Proof.. We may assume that aS;O is a simple element and
ind-lima, =a. :

For, there exists a projector [p]® such that [p]la] is simple and
m(1—[p])@)=0 by Theorem 35.4 [2]. We obta.m‘by Lemma 2

lim m ([pla,) =m(ple), limm(1—[p)a,)=m(1—[p)a).

C Yoo PR

But we have by assumption |
lim {m((pla,)+m (1~[pDa,)} = m(@) =m(ple) +m(1—[eDa) . |

Consequently we obtain:
lim m([p] a,) = m(ple), lim m(@—[p]) ay) =m(@~[p)a).

8) [pl is a projection operator to the normal manifold generated by p: [pla=

U (a~v|pl) for 0=a€ER.

v =1
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Since m((1—[p))a)=0 and

m <—21«(1 —[»)(a, —a)) = —;— m((1—[p)a,)+ é—m((lv—.[p])a) :

we have thus Li»rgm<%(l~—[p])(a,,—a)) =0.

Now let a be simple. ’Since ind-lim a,=a by assumption, there exists

Y oo )
by Theorem 15.3 [2] [s,]15-[a] such that lim[s,]|a, —a|=0(=1,2,3,---).
V-
Putting ~ b,,, = U [so]|a,—a| ®,£=1,2,3,---), we obtain by
definition ~ :
bo,s 1710 °=123,-).

Since a normal manifold [a]R is totally continuous” as a space by
Theorem 36.2 [2], there exist [¢,,.]1%-:[a] (¢=1,2,3,:--) and positive
numbers &,, ,!7.,0 ©,1=12,8,---) such that )

(90,2100, :<€0.2.c]] ©,4,£=1,2,8,---) by Theorem 14.2 [2].

Therefore there exists a sequence [¢.]1%-:[a] and /ip,,, ©,rp=1,2,38,---)
such that [¢.]=<[gs,1,,,] @, #=12,3,---) by definition of total con-
tinuity. We have then ' ' :

[(I;»][su] oo, _al-—g[Qp.au,g][Su] la, —a| = EQu,k;b,p]bu,n§-s)&,h}h,p,mla’|
‘ (p, £=1,2,8,---).

Therefore, putting [p.]=[qg.][s.] (#=1,2,8,---), there exists x, such that,
[pu]la, —a|<|a| for every & ==%,, and we obtain

[p]15ela], lim[p.]la.—a] =0  (#=1,2,3,).
We havé then by Theorem 35.1 [2]
1}5{3 m(p.](@,—a) = 0 (r=1,2,38,--).

If for some >0 we have
lim m ([a]—[p.) a,) > € (1=1,2,3, ),

then, since  limm ([a]a,)=1im m([a]—[p.))a,)+lim m ((p.]a,)

P e

"9} R is said to be totally éontinuous, if for any double sequence of projectors
[pv,r] 15 -1[P1(»=1,2,8,--) there exist a sequence [po] [S.:[p]land #y,0 (v,0=1,2,8,--) such
that [pp]é[‘py,p y:p] (v, 0= 1,\2,3,"').
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we have hence limm ((a]a,)>limm(p.]a,)+e

)

and hence, as limm(a,) = m(a) by assumption,
YV > .

m (@) >m([(py]a)+ e (1=1,2,8,--)
by lemma 2, contradicting m([pp]a)T?;lm(a) . '
Therefore for any >0 there exists g, for which

lim m ([a]—[p)a,)<e  for p=p,.
Since we have obviously_ |
m (4@, —a) Sm (L)@ @)+~ m(al—(p.Da)

+ _;_m ([a]—[puDa,)

we obtain hence for p=p,

— /1 : 1 |
. limm <? ‘ay —q)) s e+ 5 m(al—[p) @)
and consequently for p—oo
Hx?lm(l-l—(a,,—a» <e for any >0,
Y >0 2 '
. : 1 N
that is, - hmm-(? (a_,,—a)> =0. Q.E.D.
. . 1 ©®
Remark 1. The above Theorem D is not true if a> — .
For example, consider the modulared space [=1,
| _ y
Putting a:(lylyly"')y a’u:(l_)lv"'i _1’1'19"')’
we have lima, =a, m(a)=limm(a,) =0,
XS Vo0 .
and limm (a(@a—a,)) = +oo for a >% .
10) Mr. T. SHIMOGAKI remarked this fact.
" 11) We define the modular by the formula
0 if sup [Evli=1

= : £ —(.).
m(a) 4oo if  suples|>1 or a=(&).
vz
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Remark 2. Since for 0=<a,b€R we have (cf.[2], Theorem 36.8)
m (a) +m (b) =m(a—>b) ,
we obtain in the same manner used in the proof of the above Theorem D :

s—ind-lim a,=a, limm(a,)=m@ < +oc for 0=a,a,€ER

Y oo Y>>0

(»=1,2,8,---) implies lim m(a,—a)=0.

Y oo

Remark 3. - If m(éa)< +oo for every £>0, then
s—ind-lim a, =a, lim m(a,)=m(@) for a,a,€R(»=1,2,3, )

Y oo Y o0

implies limm (a(a,—a)) =0 for 0Za<1'™,

Because, for any projectors [p.]15-:[a], we have obviously
m(a(a, —a)=am(p.]@, —a)+am((a]—[p.]a.)

+1—a)m (—l—i—; ([a]—[»:D “>

(x=1,2,3, ) for 0=<a<l.
Therefore we conclude easily in the same manner we proved the
above Theorem D

lim m (a(a, —a)) = for 0<a<l.

YV >0

The above Theorem D is an extension of Theorem A, to the modu-
lared semi-ordered linear space.

In the following we shall explain the relatmns of the above The-
orem D to Theorems B, and B;.

Corollary 1 of Theorem D. If R is semi-regular, then

lwl-lima, =a, limma,)=m(@)< +eo

Y oo f Y >

-

implies lim m(a(a,—a)) =0

Y oo

W]

:Proof. From |w]-lima,=a we obtain by Theorem 27.7 [2]

YV->0

]w]—lini [p]a,=[r]a, ]w]—]im (1—[p)a, =(1—[p])a for any pER,
and hence by Theorem B, . \
lim m ([19]%) Zm([p]a') lim m((1—[p)a,) =m(1—[p]a).

v->=° V—):o

Therefore by the method applied to Theorem D we need only prove
the case where a0 is simple.
If a is simple, then we have by Theorem 35.2 [2] the normal
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manifold [a¢]R is superuniversally continuous as a space, and hence by
Theorem D and Lemma 1 we obtain immedia’tely our conclusion. Q.E.D.

Remark. The following fact may be found in the proof of Theorem
47.8 [2]. If R is semi-regular, then
lwl-lima,=a, limm(a,)=m(@<+c for 0<a,a,€R (»=1,2,3,---)

Y>>

implies B limm(@a,—a) = 0.

YV >0

The above Corollary 1 is the generalization of Theorm B,.
Cdrollary 2 of Theorem D. If R is semi-regular, then
lwl-lima,=a, limm(a,)=mEa)<+c foral £=0

Y oo V>

implies s—ind-lima, = o .

YV >0
Proof. By assumption and Corollary 1 we have

m-lima, = a.
V oo
Therefore we obtain by Theorem 47.4 [2]
n-lim a,=a for the first (or second) norm'®> by m. Since the first

Y>>

(or second) norm is semi-continuous by definition, we obtain immediately
our conclusion by Theorem 33.1 [2]. Q.E.D.

By Theorem D (or Corollary 2 of Theorem D) and Theorem 48.1
[2] we have obviously :

Corollary 3 of Theorem D. If m is uniformly simple™, then

s—ind-lim a, =a (or |w|- 11m a,=a) and lim m(a,)=m(@)< + e

U—))O Y oo

“implies : m—-hm a,=a.

Y oo

Corollary 4 of Theorem D. If m is finite™ and monotone complete™,

12) On R we can define two norms as follows (ef. [3], p. 213 and p. 218):

] = mf“"’;"( G2 el = inf wER).

£>0 m(E <1 [E | -
(2] is said to be the first norm by m and [|=] is sald to be the second norm or the modular
norm by m. ' :
183) A modular m is said to be umformly s1mple, if
inf m(éx)>0 for all £>0.

m(z)=1
14) An element a€R is said to be finite, if
m(§a)< + o0 for all £=0. A modular m on R is said to be finite, if all '
elements are finite. ' . : -
15) A modular m on R is said to be monotone complsete, if for
0=aat, ., ﬁggm(aa)<+oo there exists a € R for which aat, ,a



On Certain Properties of Modular Convergence 47

then ~ s—ind-lima,=a, limm(a,)=m(a) for a,a,€R (v=1,2,3,--)
: Y. -»20 Y oo ' : ’ .
rmplies m-lima,=a.

Y o0
‘Proof. Since by Theorem D
v - . »
l,Lnim (—2~— (a, a)> =0,

there exists a subsequence a,, (#=1,2,8,--) of a, (+=1,2,8, ---) such that

1 1
m(5 @, —0)S o (@=1238).
Putting ' b,“:é— C la,,—a| (x=1,2,8,---), we have
: . ‘ p=1 ; .
oo £ ° 1 | — ‘
0=<b,17., supm(b)=sup N m(5-(@,—a)=1.

Since m is monoton complete, there exists b€ B for which b= U |a,,—al.
. =g

Thus we obtain |a,,—a|=<b (¢=1,2,3,---), and hence |a, [=|a|+b
(x=1,2,3,---).
Therefore we have by assumption

lim |a,,—a| =0,
u 500 )
and hence limé¢|a,,—a] =0 for any £>0.
e ) '

Since m is finite by assumption, we obtain by Theorem 35.1 [2]

lim m(¢$(a,,—a) =0 for any £>0,
B0 .
and hence lim mE(@,—a)) = 0 for any £>0,
that is, m-lima,=a. - Q.E.D.

Y o0

Theorem E. If R s semi-regular, then
s—ind-lim a, =a, lim m (a,)=m(a)< + o

Y>> Y-r>o

smplies : h lw|-limea, =a.

Y >0

Proof. We need only prove that
ind-lima,=a, limm(@,)=m(@)< +o

- Y0 V>

implies , lw|-lima,=a.

Y >0
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For any 0<pER there exist [p.]1%..p] such that 11m [pu]la, —a|=
(x=1,2,3,---) by Theorem 15.8 [2]. We have then obv1ously
lim |@|((pu] @, —a))=0 (x=1,2,8,---) for any aeR™.

i

By the formula (3) in §38 [2] there exists a>0 such that # (a@)< + oo
for any a€R™.
We obtain by the formula (0) in §38 [2]

% 1@l ((P)—[p,D o, —a)<m(al TPl —[ps])+m (—;- (@, ——a)>

(v,p=1,2,8,---) for any aekR™,
By assumptxon, Theorem D and Theorem 35.1 [2], for any &>0, there
exist v, and g, for which

m(— (a, —a))g? - for v=y,,
2 (o] [p]—[P]) = - for pz=pm,
and hence 7l {([p]—[peD]a, —a) < e for v=y, and p=p,.

Therefore we obtain lim |@|([p]la,—a])=0 for any 0<p€eR and GeR™.
Y »co

On the other hand, we have ‘by} the formula (0) in §38 [2]
5 1Tl ~[p] 2, ~a]) < m(a|a| 1 [pD) +m (-(@,—a)

(v=1,2,3,)
for any p€R and aeR™. v
Since (1—[p]){0 by Theorem 5.35 [2], we obtain in the same
. pER

manner proved above

lim |@|(la,—a])=0 for all aeR™, thatis,

ae
lw|-lima, =a. Q.E.D.

Y >0

Remark. The above Theorem E is the extension of Theorem A, to
the modulared semi- ordered linear space without any cond1t1on of
simpleness.

By Theorem D we obtain immediately:

Corollary 5 of Theorem D. If s-ind-lima,=a, hmm(‘-‘ay)—-
Vo Y >0

mEa)< +oo for all £=0, then we have m-lim a,=a.

V>
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Remark. If R is semi-regular, then we obtain immediately by
Theorem E and Corollary 2 that the assumptions of Theorem B; and
that of Corollary 5 of Theorem D are equivalent.

By Corollary 5 of Theorem D (or Theorem B,;) and Theorem 47.4
[2] we obtain immediately :

Corollary 6 of Theorem D. If s—ind-lim a,=a (or R is semi-reqular

V>0

and |w|-lima,=a), lim m (fa,)=m (éa)< +oo for all £=0 <mplies

n-lim a,=a for the first (or second) norm by m.

Y >0

Corollary 6 is an extension of Corollary 2 in §8 [1] (.e., if
|w|-lim a,=a for a, a, €L, (»=1,2,---), and if lim my(¢a,)=m4, Ea)< + co

YV »ca

for all £=0, then n-lim a,=a for the norms by m,) to the modulared

Y >0

semi-ordered linear space.

~ Finally I wish to express my gratitude to professor H. Nagano
and professor S. Yamauuro for their kind guidances, encouragements
and criticisms.
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