

## HOKKAIDO UNIVERSITY

| Title            | Calcium concentration in leaf litter alters the community composition of soil invertebrates in warm-temperate forests |
|------------------|-----------------------------------------------------------------------------------------------------------------------|
| Author(s)        | Ohta, Tamihisa; Niwa, Shigeru; Agetsuma, Naoki; Hiura, Tsutom                                                         |
| Citation         | Pedobiologia, 57(4-6), 257-262<br>https://doi.org/10.1016/j.pedobi.2014.07.003                                        |
| Issue Date       | 2014-11                                                                                                               |
| Doc URL          | http://hdl.handle.net/2115/58011                                                                                      |
| Туре             | article (author version)                                                                                              |
| File Information | Pedobiologia_rev3.pdf                                                                                                 |



| 1  | Title: Calcium concentration in leaf litter alters the community composition of soil                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------|
| 2  | invertebrates in warm-temperate forests.                                                                                    |
| 3  |                                                                                                                             |
| 4  | Authors: Tamihisa Ohta <sup>1</sup> , Shigeru Niwa <sup>2</sup> , Naoki Agetsuma <sup>3</sup> and Tsutom Hiura <sup>1</sup> |
| 5  |                                                                                                                             |
| 6  | Affiliations:                                                                                                               |
| 7  | <sup>1</sup> Tomakomai Research Station, Field Science Center for Northern Biosphere, Hokkaido                              |
| 8  | University, Takaoka, Tomakomai, Hokkaido 053-0035, Japan                                                                    |
| 9  | <sup>2</sup> Network Center of Forest and Grassland Survey in Monitoring Sites 1000 Project,                                |
| 10 | Japan Wildlife Research Center, Takaoka, Tomakomai, Hokkaido 053-0035, Japan                                                |
| 11 | <sup>3</sup> Wakayama Experimental Forest, Field Science Center for Northern Biosphere,                                     |
| 12 | Hokkaido University, Hirai, Kozagawa-cho Higashimuro-gun, Wakayama, 649-4563,                                               |
| 13 | Japan                                                                                                                       |
| 14 |                                                                                                                             |
| 15 | Running title: Calcium in leaf litter and soil organisms                                                                    |
| 16 |                                                                                                                             |

| 17 | *Corresponding Author: Email: tammyohta@gmail.com Phone: +81-0144-33-2171, |
|----|----------------------------------------------------------------------------|
| 18 | Fax: +81-0144-33-2173                                                      |
| 19 | Email:                                                                     |
| 20 | S. Niwa: sniwa@fsc.hokudai.ac.jp                                           |
| 21 | N. Agetsuma: agetsuma@fsc.hokudai.ac.jp                                    |
| 22 | T. Hiura: hiura@fsc.hokudai.ac.jp                                          |
| 23 |                                                                            |
| 24 |                                                                            |
| 25 |                                                                            |
| 26 |                                                                            |
| 27 |                                                                            |
| 28 |                                                                            |
| 29 |                                                                            |
| 30 |                                                                            |
| 31 |                                                                            |
| 32 |                                                                            |

33 ABSTRACT

| 35 | Many studies have shown the effects of aboveground plant species on soil organisms         |
|----|--------------------------------------------------------------------------------------------|
| 36 | due to differences in litter quality. However, the calcium concentration in soil has       |
| 37 | received less attention as a controlling factor of soil invertebrate communities, despite  |
| 38 | its being an essential element for many animals, especially crustaceans. Litter of         |
| 39 | Japanese cedar (Cryptomeria japonica) plantations, which account for 19% of the            |
| 40 | forested area in Japan, has a higher calcium concentration compared to other taxa such     |
| 41 | as broad-leaved trees. We predicted that C. japonica plantations affect soil invertebrates |
| 42 | by altering calcium availability. We compared soil properties including exchangeable       |
| 43 | calcium concentration and soil invertebrate communities between C. japonica                |
| 44 | plantations and natural broad-leaved forests. Exchangeable calcium was significantly       |
| 45 | higher in soil from cedar plantations than in that from broad-leaved forests. The          |
| 46 | invertebrate community composition differed between the two forest types and was best      |
| 47 | explained by the exchangeable calcium concentration. In particular, two major taxa of      |
| 48 | soil crustaceans (Talitridae and Ligidium japonicum) were found only in cedar              |

| 49 | plantations. Our results suggest that calcium concentrations in soil are altered in C. |
|----|----------------------------------------------------------------------------------------|
| 50 | <i>japonica</i> plantations and that this affects soil invertebrate communities.       |
| 51 |                                                                                        |
| 52 | Keywords: Evergreen broad-leaved trees, Cryptomeria japonica, forest management,       |
| 53 | crustaceans, Ligidium japonicum, Talitridae                                            |
| 54 |                                                                                        |
| 55 |                                                                                        |
| 56 |                                                                                        |
| 57 |                                                                                        |
| 58 |                                                                                        |
| 59 |                                                                                        |
| 60 |                                                                                        |
| 61 |                                                                                        |
| 62 |                                                                                        |
| 63 |                                                                                        |
| 64 |                                                                                        |

## 65 Introduction

| 67 | Soil organisms can be affected by differences in aboveground vegetation (Bardgett          |
|----|--------------------------------------------------------------------------------------------|
| 68 | and Wardle 2010), often driven by the quality of the litter types (Swift et al. 1979; Berg |
| 69 | and McClaugherty 2003). Differences in litter quality among plant species can influence    |
| 70 | the chemical properties of soil and act as determinants of the community structure of      |
| 71 | soil invertebrates (Widden and Hsu 1987; Wardle et al. 2006). Because calcium is a         |
| 72 | major structural component of the proteins forming animals, ambient calcium                |
| 73 | concentration related to the animal densities in calcium poor environment (Alstad et al.   |
| 74 | 1999; Hessen et al. 2000; Ohta et al. 2014). Similarly, soil calcium concentrations can    |
| 75 | have an important influence on soil invertebrate communities (Springett and Syers          |
| 76 | 1984). For example, the abundance of some soil invertebrates increase with the             |
| 77 | available soil calcium concentration (Hotopp 2002; Reich et al. 2005; Skeldon et al.       |
| 78 | 2007). Global pattern of soil calcium concentration is governed by geological change,      |
| 79 | acid deposition and annual precipitation (Potter and Conkling 2012; Binkley and Fisher     |
| 80 | 2013). For example, low rainfall areas (central North America) tend to have grater soil    |

| 81 | calcium than humid Eastern United States (Potter and Conkling 2012). Calcium              |
|----|-------------------------------------------------------------------------------------------|
| 82 | availability and cycling in regional scale are governed by numerous factors including     |
| 83 | forest vegetation dynamics, atmospheric deposition, soil mineral weathering, and losses   |
| 84 | due to leaching (Likens et al. 1998; McLaughlin and Wimmer 1999; Dijkstra and Smits       |
| 85 | 2002). However, much research over the last half century has focused on the leaching of   |
| 86 | calcium due to acid deposition (Likens et al. 1996; Driscoll et al. 2001), with much less |
| 87 | emphasis on other factors, such as changes in forest vegetation, even though the calcium  |
| 88 | concentration in leaf litter varies greatly among tree species.                           |
| 89 | Litter of members of the Cupressaceae has a higher concentration of calcium               |
| 90 | compared with other plant families (Kiilsgaard et al. 1987; Ohta et al. 2014). In this    |
| 91 | study, we focused on Japanese cedar (Cryptomeria japonica, Cupressaceae) because its      |
| 92 | leaf litter contains ~3% calcium (Xue and Luo 2002; Baba et al. 2004), more than three    |
| 93 | times the amount in many other taxa, such as fir (Abies spp.) and many broad-leaved       |
| 94 | trees (Kiilsgaard et al. 1987; Reich et al. 2005; Ohta et al. 2014). Japanese cedar       |
| 95 | plantations cover 12% of the total land area and 19% of the forested area in Japan        |
| 96 | (Forestry Agency 2011). Because soil organic matter in forests is derived mainly from     |

| 97  | plant litter, the chemical properties of litter affect soil chemical properties (Reich et al. |
|-----|-----------------------------------------------------------------------------------------------|
| 98  | 2005). Indeed, the soil in Japanese cedar plantations has a calcium content that is three     |
| 99  | to four times higher than that in evergreen broad-leaved forests in some parts of Japan       |
| 100 | (Tsutsumi 1987; Ohta et al. 2014). Ohta et al. (2014) showed that the calcium                 |
| 101 | concentration in soil and streams, and the density and survival of dominant aquatic           |
| 102 | crustaceans, were significantly higher in C. japonica plantations compared with               |
| 103 | evergreen broad-leaved forests. However, Ohta et al. (2014) did not assess the effects of     |
| 104 | forest vegetation on soil animal community through alteration of calcium availability.        |
| 105 | Soil crustaceans that are frequently dominant decomposers in soil systems (O'hanlon           |
| 106 | and Bolger 1999), and contain large amount of calcium in their body (Greenaway 1985).         |
| 107 | Terrestrial crustaceans mainly take calcium from their food (e.g. leaf litter) and soil       |
| 108 | water. Therefore, we anticipate that the calcium concentration in litter affects the          |
| 109 | community structure of soil organisms in calcium-poor environment.                            |
| 110 | Addition of inorganic calcium often increases soil pH (Likens et al. 1996; Driscoll           |
| 111 | et al. 2001; Warby et al. 2009), and therefore, higher calcium concentrations in soil due     |
| 112 | to differences in forest vegetation are also likely to increase soil pH (Reich et al. 2005).  |

| 113 | Alteration of soil pH also causes changes in the abundance of soil invertebrates (Hågvar  |
|-----|-------------------------------------------------------------------------------------------|
| 114 | 1990; Myrold 1990; Kaneko and Kofuji 2000). Therefore, plantations of C. japonica         |
| 115 | may affect the community structure of soil invertebrates via increased soil pH.           |
| 116 | We examined the effect of Japanese cedar (C. japonica) plantations on the                 |
| 117 | community structure of soil invertebrates, particularly the density of crustaceans. We    |
| 118 | conducted field surveys in six plots that differed in surrounding forest vegetation. We   |
| 119 | predicted (1) that the calcium concentration and soil pH would be higher in C. japonica   |
| 120 | plantations compared to evergreen broad-leaved forests, and (2) that crustacean density   |
| 121 | would be higher in <i>C. japonica</i> plantations than in evergreen broad-leaved forests. |
| 122 |                                                                                           |
| 123 | Methods                                                                                   |
| 124 |                                                                                           |
| 125 | Study area                                                                                |
| 126 |                                                                                           |
| 127 | We conducted field surveys in the Wakayama Experimental Forest of Hokkaido                |
| 128 | University (33°40'N, 135°40'E; 428 ha; annual mean temperature: 15.2°C) on the            |

| 129 | Southern Kii Peninsula of Japan. The geological structure in this region consists of      |
|-----|-------------------------------------------------------------------------------------------|
| 130 | sandstone and mudstone formed during the middle Tertiary (Tateishi 1976). Because of      |
| 131 | the highly acidic soil and high annual rainfall (~4000 mm), the area is extremely poor in |
| 132 | calcium (Kihira et al. 2005). The forest soils are extremely thin, nearly exposing the    |
| 133 | bedrock. Japanese cedar was planted in much of the area beginning in the 1960s, and       |
| 134 | remnant natural evergreen broad-leaved forests are patchy.                                |
| 135 | We established a sampling plot (50 $\times$ 50 m) in each of six different catchments of  |
| 136 | the Wakayama Experimental Forest. The plots were located on relatively flat forest        |
| 137 | floors and separated by 0.2-1.5 km. Three of the six catchments were mostly covered       |
| 138 | by evergreen broad-leaved forests 'evergreen', and the other three were covered by        |
| 139 | Japanese cedar plantations 'cedar'. Forests in the 'evergreen' plots were dominated by    |
| 140 | Quercus acuta, Quercus myrsinifolia, Quercus sessilifolia, Neolitsea aciculata, Eurya     |
| 141 | japonica, and Machilus thunbergii (Ohta et al. 2014). The C. japonica trees in the        |
| 142 | 'cedar' plots were planted 30-82 years prior to this study. Calcium concentration in the  |
| 143 | litter of <i>C. japonica</i> (3.4%) is about three times higher than in the evergreen     |
| 144 | broad-leaved species (0.8–1.5%) at this study site (Ohta et al. 2014). Carbon, nitrogen,  |

| 145 | phosphorus, and magnesium concentrations do not differ significantly among the                |
|-----|-----------------------------------------------------------------------------------------------|
| 146 | species, whereas potassium is about three times lower in C. japonica compared to the          |
| 147 | broad-leaved species (Ohta et al. 2014).                                                      |
| 148 |                                                                                               |
| 149 | Sampling                                                                                      |
| 150 |                                                                                               |
| 151 | On 24 July 2012, we collected five samples at each plot from the litter and soil layers       |
| 152 | using core samplers (soil layer: 50 mm in diameter and 50 mm in height, litter layer:         |
| 153 | 113 mm in diameter and 40 mm in height) to measure soil chemical properties and mass          |
| 154 | of the litter layer. To determine the soil crustacean density, we established five sampling   |
| 155 | quadrats separated by over 10 m in each plot. We collected crustaceans within the             |
| 156 | sampling quadrats ( $25 \times 25$ -cm) to a depth of 3 cm (including litter and surface soil |
| 157 | layers) on 17 May and 21 September 2013. Soil crustaceans were separated from soil by         |
| 158 | hand-sorting and placed in 99% ethanol. To examine the community structure of                 |
| 159 | ground-dwelling macroinvertebrates, we established two subplots ( $20 \times 20$ m) in each   |
| 160 | plot. We collected ground-dwelling invertebrates using five pitfall traps (8 cm in            |

| 161 | diameter and 6 cm in depth) per subplot. We placed the pitfall traps in each subplot $\sim 2$                |
|-----|--------------------------------------------------------------------------------------------------------------|
| 162 | m apart on 17 May, 19 July, 19 October, and 18 November 2013, and collected them 3                           |
| 163 | days later. We counted and identified all invertebrates found in the traps at least to the                   |
| 164 | ordinal level following Aoki (1999) and Ueno et al. (1985).                                                  |
| 165 |                                                                                                              |
| 166 | Sample processing                                                                                            |
| 167 |                                                                                                              |
| 168 | To measure soil nitrate and exchangeable calcium, we shook (160 rev min <sup><math>-1</math></sup> ) a 0.5 g |
| 169 | (air-dried mass) subsample of each soil sample in 100 ml of 1 M KCl solution for 1 h,                        |
| 170 | filtered the sample through filter paper (No. 5C; Advantec, Tokyo, Japan), and then                          |
| 171 | stored the suspension at -30°C until analysis. We analyzed the soil extracts for calcium                     |
| 172 | and nitrate concentration per unit air-dried mass using an inductively coupled plasma                        |

- 173 (ICP) atomic emission spectrometer (ICPE-9000; Shimadzu, Kyoto, Japan) and the
- absorptiometric method (Sakata 2000). We placed a 5-g (air-dried mass) subsample of
- each soil sample in 25 ml 1 M KCL and measured the pH using a pH meter (TOA-DKK,
- 176 HM-30V; TOA Electronics, Tokyo, Japan). We dried soil subsamples in a drying oven

| 177 | at 60°C for 24 h and then analyzed 50-mg dried soil samples for carbon and nitrogen         |
|-----|---------------------------------------------------------------------------------------------|
| 178 | concentrations per dry mass using a CN analyzer (Sumigraph NC-900; Sumika                   |
| 179 | Chemical Analysis Service, Osaka, Japan). We dried a 1-g fresh subsample at 60°C for        |
| 180 | 48 h to calculate the soil water content as the difference in mass before and after         |
| 181 | desiccation.                                                                                |
| 182 |                                                                                             |
| 183 | Statistical analysis                                                                        |
| 184 |                                                                                             |
| 185 | The soil properties (mass of the litter layer, water content, pH, C:N ratio,                |
| 186 | exchangeable calcium, total carbon, total nitrogen, and nitrate concentration) were fit to  |
| 187 | linear mixed models with forest vegetation type as a fixed factor and plot identity as a    |
| 188 | random factor. The statistical significance of the effect of the fixed factor in each model |
| 189 | was evaluated by a likelihood ratio test ( $\alpha = 0.05$ ).                               |
| 190 | We performed canonical correspondence analysis (CCA) to explore the                         |
| 191 | relationships between the soil invertebrate composition and soil properties. The            |
| 192 | invertebrate data from the five pitfall traps on all four sampling dates were pooled for    |

| 193 | each subplot. Before conducting the CCA ordination, the abundance data for each taxon                 |
|-----|-------------------------------------------------------------------------------------------------------|
| 194 | were standardized to unit variance, and the most important explanatory variables from                 |
| 195 | all soil properties were determined by forward stepwise selection based on Akaike's                   |
| 196 | information criteria and Monte Carlo permutation tests. All statistical analyses were                 |
| 197 | conducted with R version 2.9.2 software (R Development Core Team 2011).                               |
| 198 |                                                                                                       |
| 199 | Results                                                                                               |
| 200 |                                                                                                       |
| 201 | Soil exchangeable calcium concentration (likelihood ratio test: $\chi^2 = 9.13$ , d.f. = 1, P         |
| 202 | = 0.002) and C:N ratio (likelihood ratio test: $\chi^2$ = 8.90, d.f. = 1, <i>P</i> = 0.003) were      |
| 203 | significantly higher, and nitrate concentration (likelihood ratio test: $\chi^2 = 8.53$ , d.f. = 1, P |
| 204 | = 0.003) was significantly lower in 'cedar' than 'evergreen'. In particular, soil in 'cedar'          |
| 205 | plots had ~2.5 times more exchangeable calcium than the 'evergreen' plots (Table 1,                   |
| 206 | Fig. 1). The other soil properties including the mass of litter layer that was selected               |
| 207 | explainatory variable in community composition of soil invertebrates did not differ                   |
| 208 | significantly between the forest types although soil pH was marginally higher in 'cedar'              |

| 209 | than 'evergreen' (likelihood ratio test: $\chi^2 = 3.05$ , d.f. = 1, $P = 0.08$ ). We found two taxa |
|-----|------------------------------------------------------------------------------------------------------|
| 210 | of crustaceans, Talitridae (Amphipoda) and Ligidium japonicum (Isopoda: Ligiidae) in                 |
| 211 | 'cedar' plots by hand-sorting, but we found no crustaceans in 'evergreen' plots (Fig. 2).            |
| 212 | Abundances of Talitridae and L. japonicum did not differ significantly among 'cedar'                 |
| 213 | plots between the two sampling months (generalized linear models assuming Poisson                    |
| 214 | distribution and likelihood ratio tests: $P > 0.05$ ).                                               |
| 215 | Crustaceans, spiders, ants, beetles, lepidopteran larvae, and millipedes accounted for               |
| 216 | 23, 19, 9, 19, 10, and 9%, respectively, of the total invertebrates captured by pitfall traps        |
| 217 | (Table 2). Crustaceans (mainly Talitridae and L. japonicum) dominated the                            |
| 218 | ground-dwelling invertebrate communities in 'cedar' plots, while they were remarkably                |
| 219 | scarce, and millipedes (Paradoxosomatidae) and beetles were relatively abundant in                   |
| 220 | 'evergreen' plots. Talitridae and L. japonicum were only collected in 'cedar' plots using            |
| 221 | pitfall traps, and a few individuals of Venezillo sp. (Isopoda: Armadillidae) were                   |
| 222 | collected not only in 'cedar' but also 'evergreen' plots (Table 2). Taxonomic                        |
| 223 | compositions of ground invertebrates differed distinctively between 'cedar' and                      |
| 224 | 'evergreen' plots (Table 2, Fig. 3). From all the soil properties, exchangeable calcium              |

| 225 | concentration and mass of the litter layer explained the most variation among the 12     |
|-----|------------------------------------------------------------------------------------------|
| 226 | subplots in invertebrate community composition as determined through the forward         |
| 227 | selection process of CCA. The first and second axes explained 17.17 and 14.04%,          |
| 228 | respectively, of the variation in community composition (Monte Carlo permutation test:   |
| 229 | P < 0.05). The CCA ordination showed that community composition in the 'cedar' plots     |
| 230 | was distinctively different from that in the 'evergreen' plots along the first CCA axis, |
| 231 | which corresponded to the gradient of exchangeable calcium concentration, and the        |
| 232 | 'cedar' plots had much lower variation than the 'evergreen' plots (Fig. 3).              |
| 233 | Compositional difference within 'evergreen' was distinctively indicated by second axis,  |
| 234 | which weakly correlated with mass of litter layer (Fig. 3). Talitridae and L. japonicum  |
| 235 | had large negative values on the first axis, and their high abundance characterized the  |
| 236 | 'cedar' community.                                                                       |
| 237 |                                                                                          |
| 238 | Discussion                                                                               |
| 239 |                                                                                          |
| 240 | Our results show that forest vegetation might affect the community structure of soil     |

| 241 | invertebrates by altering calcium availability. Our field survey showed that soil                    |
|-----|------------------------------------------------------------------------------------------------------|
| 242 | exchangeable calcium was ~2.5 times higher and soil pH was not significantly higher in               |
| 243 | C. japonica plantations compared with that in evergreen broad-leaved forests (these                  |
| 244 | partly supported prediction 1). The major taxa of soil crustaceans (Talitridae and L.                |
| 245 | <i>japonicum</i> ) were found only in <i>C. japonica</i> plantations, whereas only a few individuals |
| 246 | of a minor crustacean species (Venezillo sp.) occurred in broad-leaved forests                       |
| 247 | (supporting prediction 2). The community structure of soil invertebrates varied with                 |
| 248 | forest vegetation types, and calcium in the soil layer was the most important                        |
| 249 | environmental variable explaining the variation in community composition (supporting                 |
| 250 | prediction 2). Furthermore, both intra- and inter-plot variation in the soil invertebrate            |
| 251 | community structure in C. japonica plantations were lower than in natural broad-leaved               |
| 252 | forests, suggesting that the homogeneous environment created by the monoculture                      |
| 253 | plantation caused a large decrease in micro- and local-scale $\beta$ -diversity of soil              |
| 254 | invertebrates. This might be caused by uniform increase in the abundance of Talitridae               |
| 255 | and L. japonicum in C. japonica plantations and difference in the mass of litter layer               |
| 256 | within 'evergreen' plots (Table 1, Fig. 3).                                                          |

| 257 | The difference in calcium concentration in leaf litter produces significant                  |
|-----|----------------------------------------------------------------------------------------------|
| 258 | differences in soil calcium (Morrison 1985; Kloeppel and Abrams 1995). In fact, Ohta         |
| 259 | et al. (2014) showed that the calcium concentration in C. japonica litter was about three    |
| 260 | times higher than that of dominant evergreen broad-leaved trees in Wakayama                  |
| 261 | Experimental Forest. We found that total calcium in the litter layer and                     |
| 262 | water-extractable calcium in the soil at 'cedar' sites were three to four times higher than  |
| 263 | at 'evergreen' sites. These results support our finding that calcium supplied by C.          |
| 264 | <i>japonica</i> litter increased the calcium concentration in the soil of our study plots.   |
| 265 | Field manipulations at the Hubbard Brook Experimental Forest in the northeastern             |
| 266 | United States indicated that adding CaSiO <sub>3</sub> to a catchment area increased calcium |
| 267 | concentrations in soil (Juice et al. 2006; Minocha et al. 2010; Nezat et al. 2010) and       |
| 268 | altered the community structure of terrestrial snails, which have high demand for            |
| 269 | calcium (Skeldon et al. 2007). Hotopp (2002) showed that the abundance of sugar              |
| 270 | maple, a calciphilic species (Likens and Bormann 1970), was positively correlated with       |
| 271 | terrestrial snail density. As in snails, crustaceans must ingest a lot of calcium            |
| 272 | (Greenaway 1985). Because terrestrial crustaceans lose 20% of their body calcium             |

| 273 | through exuviae (Ziegler et al. 2007), they need adequate calcium to calcify their               |
|-----|--------------------------------------------------------------------------------------------------|
| 274 | exoskeleton rapidly after exuviation. Terrestrial crustaceans in soil get calcium from           |
| 275 | soil water and litter (Greenaway 1985; Glötzner and Ziegler 2000). Therefore, the                |
| 276 | 'cedar' plots, which have high calcium levels in their litter and soil layers, are well          |
| 277 | suited for the survival of crustaceans (Figs. 1, 2). Indeed, both natural and artificial C.      |
| 278 | <i>japonica</i> forests in central Japan have high densities of crustaceans (Ikeda at al. 2005). |
| 279 | Calcium addition to acidic soil increases soil pH (Groffman et al. 2006; Groffman                |
| 280 | and Fink 2011). However, our result showed the soil pH was not significantly higher in           |
| 281 | <i>C. japonica</i> plantations that increase the calcium concentration of the soils (Table 1).   |
| 282 | Although previous studies showed soil pH may also affect the structure of invertebrate           |
| 283 | communities by altering forest vegetation (e.g. Kaneko and Kofuji 2000), forward                 |
| 284 | selection of the CCA analysis selected exchangeable soil calcium concentration and not           |
| 285 | pH in our result. Calcium concentration may have a greater impact on the community               |
| 286 | structure of soil invertebrates in our study site.                                               |
| 287 | The litter of other members of Cupressaceae, such as Chamaecyparis and                           |
| 288 | Sequoiadendron, also have high calcium content comparable to that of C. japonica                 |

| 289                                    | (Kiilsgaard et al. 1987; D'Amore et al. 2009). This might mean change in soil system                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 290                                    | through difference in calcium concentration in leaf litter is caused in other forest types.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 291                                    | Furthermore, Reich et al. (2005) showed that exchangeable calcium in soils and the                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 292                                    | density of earthworms were significantly higher in forests dominated by Acer                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 293                                    | pseudoplatanus and Tilia cordata compared to forests dominated by Larix and Pinus,                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 294                                    | even though calcium concentrations were ~40% lower in the litter of A. pseudoplatanus                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 295                                    | and <i>T. cordata</i> than in <i>C. japonica</i> . This implies that the change in soil systems is                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 296                                    | caused by the alteration of forest vegetation with low calcium content relative to $C$ .                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 297                                    | japonica.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 298                                    | Soil crustaceans, such as Talitridae and L. japonicum, are powerful litter                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 298<br>299                             | Soil crustaceans, such as Talitridae and <i>L. japonicum</i> , are powerful litter decomposers (Zimmer 2002). Their existence influences litter decomposition rates                                                                                                                                                                                                                                                                                                                                                                   |
| 298<br>299<br>300                      | Soil crustaceans, such as Talitridae and <i>L. japonicum</i> , are powerful litter<br>decomposers (Zimmer 2002). Their existence influences litter decomposition rates<br>(O'Hanlon and Bolger 1999), and their abundance can lead to increased turnover rates                                                                                                                                                                                                                                                                        |
| 298<br>299<br>300<br>301               | Soil crustaceans, such as Talitridae and <i>L. japonicum</i> , are powerful litter<br>decomposers (Zimmer 2002). Their existence influences litter decomposition rates<br>(O'Hanlon and Bolger 1999), and their abundance can lead to increased turnover rates<br>of organic matter. Furthermore, soil crustaceans affect the dynamics of organic matter                                                                                                                                                                              |
| 298<br>299<br>300<br>301<br>302        | Soil crustaceans, such as Talitridae and <i>L. japonicum</i> , are powerful litter<br>decomposers (Zimmer 2002). Their existence influences litter decomposition rates<br>(O'Hanlon and Bolger 1999), and their abundance can lead to increased turnover rates<br>of organic matter. Furthermore, soil crustaceans affect the dynamics of organic matter<br>by incorporating organic material from the forest floor into deeper soil horizons                                                                                         |
| 298<br>299<br>300<br>301<br>302<br>303 | Soil crustaceans, such as Talitridae and <i>L. japonicum</i> , are powerful litter<br>decomposers (Zimmer 2002). Their existence influences litter decomposition rates<br>(O'Hanlon and Bolger 1999), and their abundance can lead to increased turnover rates<br>of organic matter. Furthermore, soil crustaceans affect the dynamics of organic matter<br>by incorporating organic material from the forest floor into deeper soil horizons<br>(Mattson 2012) and may also enhance microbial biomass (Escher et al. 2000). Reich et |

| 305 | their litter cause an increase in exchangeable soil calcium and earthworm densities.    |
|-----|-----------------------------------------------------------------------------------------|
| 306 | Therefore, especially in calcium-poor environments, transformation of forest vegetation |
| 307 | might change the densities of key decomposers such as crustaceans and earthworms,       |
| 308 | thereby affecting the decomposition rates of soil organic matter and nutrient dynamics. |
| 309 |                                                                                         |
| 310 | Acknowledgments                                                                         |
| 311 | We thank staff members of Wakayama Experimental Forest, Hokkaido University, for        |
| 312 | their support during the study. This study was partly supported by Grant-in-Aid from    |
| 313 | JSPS (12J07244 to TO and 2566011103, 25281053 to TH) and from the Ministry of           |
| 314 | Environment (S-9-3 to TH).                                                              |
| 315 |                                                                                         |
| 316 |                                                                                         |
| 317 |                                                                                         |
| 318 |                                                                                         |
| 319 |                                                                                         |
| 320 |                                                                                         |

| 322 | Alstad, N.E.W., | , Skardal, L., | Hessen, | D.O., 1 | 999. | The effect of | of calcium | concentration | on |
|-----|-----------------|----------------|---------|---------|------|---------------|------------|---------------|----|
|-----|-----------------|----------------|---------|---------|------|---------------|------------|---------------|----|

- 323 the calcification of Daphnia magna. Limnol. Oceanogr. 44, 2011-2017.
- Aoki, J., 1990. Soil Animals of Japan: Manual with Keys and Illustrations (in Japanese).
- 325 Tokai University Press, Tokyo.
- 326 Baba, M., Kato, M., Sugiura, T., Kobayashi, H., 2004. Calcium accumulation alleviates
- 327 soil acidification in Japanese cedar (*Cryptomeria japonica*) stands. Soil Sci.
- 328 Plant Nutr. 50, 403-411.

329 Bardgett, R.D., Wardle, D.A., 2010. Aboveground-Belowground Linkages. Biotic

- 330 Interactions, Ecosystem Processes and Global Change. Oxford university
- 331 press, Oxford.
- 332 Berg, B., McClaugherty, C., 2003. Plant litter: Decomposition, Humus Formation and
- 333 Carbon Sequestration. Springer, Berlin.
- Binkley, D. Fisher R.F., 2013. Ecology and Management of Forest Soils 4<sup>th</sup> ed.
- 335 Wiley-Blackwell, New York.
- 336 D'Amore, D.V., Hennon, P.E., Schaberg, P.G., Hawley, G.J., 2009. Adaptation to

| 337 | exploit nitrate in surface soils predisposes yellow-cedar to climate-induced            |
|-----|-----------------------------------------------------------------------------------------|
| 338 | decline while enhancing the survival of western redcedar: A new hypothesis.             |
| 339 | Forest Ecol. Manag. 258, 2261-2268.                                                     |
| 340 | Dijkstra, F.A., Smits, M.M., 2002. Tree species effects on calcium cycling: The role of |
| 341 | calcium uptake in deep soils. Ecosystems 5, 385-398.                                    |
| 342 | Driscoll, C.T., Lawrence, G.B., Bulger, A.J., Butler, T.J., Cronan, C.S., Eagar, C.,    |
| 343 | Lambert, K.F., Likens, G.E., Stoddard, J.L., Weathers, K.C., 2001. Acidic               |
| 344 | deposition in the northeastern United States: Sources and inputs, ecosystem             |
| 345 | effects, and management strategies. Bioscience 51, 180-198.                             |
| 346 | Escher, N., Käch, B., Nentwig, W., 2000. Decomposition of transgenic Bacillus           |
| 347 | thuringiensis maize by microorganisms and woodlice Porcellio scaber                     |
| 348 | (Crustacea: Isopoda). Basic Appl. Ecol. 1, 161-169.                                     |
| 349 | Forestry Agency, 2011. 2011 Forestry Census. Forestry Agency, Tokyo.                    |
| 350 | Glötzner, J., Ziegler, A., 2000. Morphometric analysis of the calcium-transporting      |
| 351 | sternal epithelial cells of the terrestrial isopods Ligia oceanica, Ligidium            |
| 352 | hypnorum, and Porcellio scaber during molt. Arthropod Struct. Dev. 29,                  |

| 353 | 241-257.                                                                                 |
|-----|------------------------------------------------------------------------------------------|
| 354 | Greenaway, P., 1985. Calcium balance and molting in the crustacea. Biol. Rev. 60,        |
| 355 | 425-454.                                                                                 |
| 356 | Groffman, P.M., Fisk, M.C., 2011. Calcium constrains plant control over forest           |
| 357 | ecosystem nitrogen cycling. Ecology 92, 2035-2042.                                       |
| 358 | Groffman, P.M., Fisk, M.C., Driscoll, C.T., Likens, G.E., Fahey, T.J., Eagar, C., Pardo, |
| 359 | L.H., 2006. Calcium additions and microbial nitrogen cycle processes in a                |
| 360 | northern hardwood forest. Ecosystems 9, 1289-1305.                                       |
| 361 | Hågvar, S., Abrahamsen, G., 1990. Microarthropoda and Enchytraeidae (Oligochaeta)        |
| 362 | in naturally lead-contaminated soil - a gradient study. Environ. Entomol. 19,            |
| 363 | 1263-1277.                                                                               |
| 364 | Hessen, D.O., Alstad, N.E.W., Skardal, L., 2000. Ca limitation in Daphnia magna. J.      |
| 365 | Plankton Res. 22, 553-568.                                                               |
| 366 | Hotopp, K.P., 2002. Land snails and soil calcium in central Appalachian Mountain         |
| 367 | Forest. Southeast Nat. 1, 27-44.                                                         |

| 368 | Ikeda, H., Homma, K., Kubota, K., 2005. Biotic and abiotic factors affecting the            |
|-----|---------------------------------------------------------------------------------------------|
| 369 | structures of ground invertebrate communities in Japanese cedar dominant                    |
| 370 | forests. Eur. J. For. Res. 8, 1-13.                                                         |
| 371 | Juice, S.M., Fahey, T.J., Siccama, T.G., Driscoll, C.T., Denny, E.G., Eagar, C., Cleavitt,  |
| 372 | N.L., Minocha, R., Richardson, A.D., 2006. Response of sugar maple to                       |
| 373 | calcium addition to Northern Hardwood Forest. Ecology 87, 1267-1280.                        |
| 374 | Kaneko, N., Kofuji, R., 2000. Effects of soil pH gradient caused by stemflow                |
| 375 | acidification on soil microarthropod community structure in a Japanese red                  |
| 376 | cedar plantation: An evaluation of ecological risk on decomposition. J. For.                |
| 377 | Res. 5, 157-162.                                                                            |
| 378 | Kihira, T., Yoshida, S., Hironishi, M., Miwa, H., Okamato, K., Kondo, T., 2005.             |
| 379 | Changes in the incidence of amyotrophic lateral sclerosis in Wakayama,                      |
| 380 | Japan. Amyotroph. Lateral. Sc. 6, 155-163.                                                  |
| 381 | Kiilsgaard, C.W., Greene, S.E., Stafford, S.G., 1987. Nutrient concentrations in litterfall |
| 382 | from some western conifers with special reference to calcium. Plant Soil 102,               |
| 383 | 223-227.                                                                                    |

| 384 | Kloeppel, B.D., Abrams, M.D., 1995. Ecophysiological attributes of the native Acer       |
|-----|------------------------------------------------------------------------------------------|
| 385 | saccharum and the exotic Acer platanoides in urban oak forests in                        |
| 386 | Pennsylvania, USA. Tree Physiol. 15, 739-746.                                            |
| 387 | Likens, G.E., Bormann, F.H., 1970. Chemical analyses of plant tissue from the Hubbard    |
| 388 | Brook Ecosystem in New Hampshire. Yale Univ. Sch. For. Bull. 79, 1–25.                   |
| 389 | Likens, G.E., Driscoll, C.T., Buso, D.C., 1996. Long-term effects of acid rain: Response |
| 390 | and recovery of a forest ecosystem. Science 272, 244-246.                                |
| 391 | Likens, G.E., Driscoll, C.T., Buso, D.C., Siccama, T.G., Johnson, C.E., Lovett, G.M.,    |
| 392 | Fahey, T.J., Reiners, W.A., Ryan, D.F., Martin, C.W., Bailey, S.W., 1998.                |
| 393 | The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41,                     |
| 394 | 89-173.                                                                                  |
| 395 | Mattson, W.J., 2012. The Role of Arthropods in Forest Ecosystems (Proceedings in Life    |
| 396 | Sciences). Springer, Berlin.                                                             |
| 397 | McLaughlin, S.B., Wimmer, R., 1999. Tansley Review No. 104 - Calcium physiology          |
| 398 | and terrestrial ecosystem processes. New Phytol. 142, 373-417.                           |
| 399 | Minocha, R., Long, S., Thangavel, P., Minocha, S.C., Eagar, C., Driscoll, C.T., 2010.    |

| 400 | Elevation dependent sensitivity of northern hardwoods to Ca addition at                |
|-----|----------------------------------------------------------------------------------------|
| 401 | Hubbard Brook Experimental Forest, NH, USA. Forest Ecol. Manag. 260,                   |
| 402 | 2115-2124.                                                                             |
| 403 | Morrison, I.K., 1985. Effect of crown position on foliar concentrations of 11 elements |
| 404 | in Acer Saccharum and Betula Alleghaniensis trees on a till soil. Can. J.              |
| 405 | Forest Res. 15, 179-183.                                                               |
| 406 | Myrold, D.D., 1990. Effect of Acidic Deposition on Soil Organisms. In Mechanisms of    |
| 407 | Forest Response to Acidic Deposition. Lucir A.A. and Haines S.G. (eds.),               |
| 408 | Springer, New York, pp. 163-187.                                                       |
| 409 | Nezat, C.A., Blum, J.D., Driscoll, C.T., 2010. Patterns of Ca/Sr and Sr-87/Sr-86       |
| 410 | variation before and after a whole watershed CaSiO3 addition at the Hubbard            |
| 411 | Brook Experimental Forest, USA. Geochim. Cosmochim. Ac 74, 3129-3142.                  |
| 412 | O'hanlon, R.P., Bolger, T., 1999. The importance of Arcitalitrus dorrieni (Hunt)       |
| 413 | (Crustacea: Amphipoda: Talitridae) in coniferous litter breakdown. Appl. Soil          |
| 414 | Ecol. 11, 29-33.                                                                       |
| 415 | Ohta, T., Niwa, S., Hiura, T., 2014. Calcium concentration in leaf litter affects the  |

| 416 | abundance and survival of crustaceans in streams draining warm-temperate                 |
|-----|------------------------------------------------------------------------------------------|
| 417 | forests. Freshw. Biol. 59, 748-760.                                                      |
| 418 | Potter, K.M., Conkling, B. L., 2012. Forest health monitoring: 2008 national technical   |
| 419 | report. Gen. Tech. Rep. SRS-158. Asheville, NC: U.S. Department of                       |
| 420 | Agriculture Forest Service, Southern Research Station. 179 p.                            |
| 421 | R Development Core Team, 2011. R: A Language and Environment for Statistical             |
| 422 | Computing. R Foundation for Statistical Computing, Vienna, Austria.                      |
| 423 | Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., |
| 424 | Chorover, J., Chadwick, O.A., Hale, C.M., Tjoelker, M.G., 2005. Linking                  |
| 425 | litter calcium, earthworms and soil properties: a common garden test with 14             |
| 426 | tree species. Ecol. Lett. 8, 811-818.                                                    |
| 427 | Sakata, T., 2000. The assay of nitrate nitrogen in the soil extract using the UV         |
| 428 | absorbance (in Japanese). Jpn. J. For. Environment. 42, 53-55.                           |
| 429 | Skeldon, M.A., Vadeboncoeur, M.A., Hamburg, S.P., Slum, J.D., 2007. Terrestrial          |
| 430 | gastropod responses to ecosystem-level calcium manipulation a northern                   |
| 431 | hardwood forest. Can J. Zool. 85, 994-1007.                                              |

| 432 | Springett, J.A., Syers, J.K., 1984. Effect of pH and calcium content of soil on          |
|-----|------------------------------------------------------------------------------------------|
| 433 | earthworm cast production in the laboratory. Soil Biol. Biochem. 16,                     |
| 434 | 185-189.                                                                                 |
| 435 | Swift, M.J., Heal, O.W., Anderson, J.M., 1979. Decomposition in Terrestrial              |
| 436 | Ecosystems. Backwell, Oxford.                                                            |
| 437 | Tateishi, M., 1976. The Muro Group in the southwestern part of the Muro Belt of the      |
| 438 | Shimanto Terrain (in Japanese). J. Geol. Soc. Jpn. 82, 395-407.                          |
| 439 | Tsutsumi, T., 1987. Material Cycling in Forest (in Japanese). University of Tokyo Press, |
| 440 | Tokyo.                                                                                   |
| 441 | Ueno, S., Kurosawa, Y., Sato, M., 1985. The Coleoptera of Japan in color, vol. II (in    |
| 442 | Japanese). Hoikusha Press, Osaka.                                                        |
| 443 | Warby, R.A.F., Johnson, C.E., Driscoll, C.T., 2009. Continuing acidification of organic  |
| 444 | soils across the north-eastern USA: 1984–2001. Soil Sci. Soc. Am. J. 73,                 |
| 445 | 274–284.                                                                                 |
| 446 | Wardle, D.A., Yeates, G.W., Barker, G.M., Bonner, K.I., 2006. The influence of plant     |
| 447 | litter diversity on decomposer abundance and diversity. Soil. Biol. Biochem.             |

## 448 38, 1052-1062.

| 449 | Widden, P., Hsu, D., 1987. Competition between Trichoderma Species - Effects of       |
|-----|---------------------------------------------------------------------------------------|
| 450 | Temperature and Litter Type. Soil Biol. Biochem. 19, 89-93.                           |
| 451 | Xue, L., Luo, S., 2002. Seasonal changes in the nutrient concentrations of leaves and |
| 452 | leaf litter in a young Cryptomeria japonica stand. Scand. J. Forest Res. 17,          |
| 453 | 495-500.                                                                              |
| 454 | Ziegler, A., Hagedorn, M., Ahearn, G.A., Carefoot, T.H., 2007. Calcium translocations |
| 455 | during the moulting cycle of the semiterrestrial isopod Ligia hawaiiensis             |
| 456 | (Oniscidea, Crustacea). J. Comp. Physiol. B 177, 99-108.                              |
| 457 | Zimmer, M., 2002. Nutrition in terrestrial isopods (Isopoda: Oniscidea): an           |
| 458 | evolutionary-ecological approach. Biological Reviews 77, 455-493.                     |
| 459 |                                                                                       |
| 460 |                                                                                       |
| 461 |                                                                                       |
| 462 |                                                                                       |
| 463 |                                                                                       |

|     | r ······                       | - (              |               | ,          |                 |                 | - 2            | ,              | -         |   |
|-----|--------------------------------|------------------|---------------|------------|-----------------|-----------------|----------------|----------------|-----------|---|
| 466 | last colu                      | mn:              | **            | <i>P</i> < | < 0.0           | )1, i           | n.s.           | P              | > 0.      | 0 |
| 467 | ss between<br>an' niots        |                  |               |            |                 |                 |                |                |           |   |
| 468 | ant difference<br>and 'everyre |                  |               | P = 0.08)  |                 |                 |                |                |           |   |
| 469 | Signific<br>'redar'            | n.s.             | n.s.          | n.s. (     | *               | n.s.            | n.s.           | * *            | **        |   |
| 470 | een3                           | 0.845            | 0.036         | 0.085      | 0.112           | ) ± 30.483      | ± 1.880        | 0.081          | ± 0.473   |   |
| 471 | evergr                         | 7.80 ±           | 10.60 ±       | 3.58 ±     | 0.43 ±          | 201.00          | 14.15          | 0.82 ±         | 14.13     |   |
| 472 | en2                            | .569             | 0.023         | 0.226      | .413            | ± 47.917        | 3.641          | .113           | 0.638     |   |
| 473 | evergre                        | 7.47 ± (         | 0.64 ± (      | 4.55±(     | 1.06 ± (        | 257.24          | 19.0±3         | 1.01 ± (       | 13.52 ±   |   |
| 474 | een1                           | ± 1.240          | 0.045         | 0.182      | 0.183           | 8 ± 28.232      | 1.908          | 0.099          | ± 0.775   |   |
| 475 | everg                          | 11.70            | 0.53 ±        | 4.26 ±     | 0.63 ±          | 139.5           | 9.90 ±         | 0.73 ±         | 14.27     |   |
| 476 |                                | 1.560            | 057           | 217        | 971             | 58.206          | 079            | 047            | 1.140     |   |
| 477 | cedar3                         | 10.28 ± 1        | 0.57 ± 0.     | 5.20 ± 0.  | 2.21 ± 0.       | 174.65 ±        | 9.90 ± 3.      | 0.58 ± 0.      | 17.36 ± 1 |   |
| 478 |                                | 0.561            | .064          | .143       | .349            | E 33.999        | .770           | .059           | 0.781     |   |
| 479 | cedar2                         | 11.04 ±          | 0.63±0        | 4.81 ± 0   | <b>1.83 ± 0</b> | 117.63 ±        | 6.76 ± 1       | 0.52±0         | 17.00 ±   |   |
| 480 |                                | 527              | 125           | 66         | 56              | 23.188          | 823            | 121            | 066       |   |
| 481 | cedar1                         | 10.42 ± 0        | 0.62 ± 0.0    | 4.34 ± 0.1 | 1.81 ± 0.2      | 154.03 ±        | 10.33 ± 1      | 0.39 ± 0.0     | 15.89 ± 1 |   |
| 482 |                                |                  |               |            | (b/gm)          |                 |                |                |           |   |
| 483 |                                | ayer (g)         | (6/6)         |            | calcium         | (b/bu           | (b/bu)         |                |           |   |
| 484 | Plot name                      | Mass of litter l | Water content | Нd         | Exchangeable    | Total carbon (i | Total nitrogen | Nitrate (mg/g) | C:N ratio |   |

464 Table 1 Soil properties (mean  $\pm$  SE) at each plot. Significant differences between cedar 465 plantations (cedar) and evergreen broad-leaved forests (evergreen) are denoted in the 466 last column: \*\*P < 0.01, n.s. P > 0.05 (likelihood ratio tests).

## 485 Table 2 Abundance (5 traps<sup>-1</sup> 12 days<sup>-1</sup>; mean $\pm$ SE) of ground-dwelling

- 486 macroinvertebrates sampled by pitfall traps. 'cedar' and 'evergreen' mean cedar
- 487 plantation and evergreen broad-leaved forest.

|                             | cedar           | everareen       |
|-----------------------------|-----------------|-----------------|
| Gastropoda                  | 0.67 + 0.67     |                 |
| Oligochaeta                 | 0.07 ± 0.07     | 0.00 ± 0.00     |
| Haplotaxida                 | 0.33 + 0.33     | 0 00 + 0 00     |
| Diplopoda                   | 0.00 ± 0.00     | 0.00 1 0.00     |
| Polydesmida                 |                 |                 |
| Paradoxosomatidae           | $0.00 \pm 0.00$ | 3.33 ± 1.76     |
| Xystodesmidae               | 0.00 - 0.00     | 0.000 =0        |
| Xystodesmus sp.             | 0.33 + 0.33     | 0.00 + 0.00     |
| Julida                      | 0.00 - 0.00     | 0.000 - 0.000   |
| Julidae                     |                 |                 |
| Anaulaciulus sp.            | $0.00 \pm 0.00$ | 0.33 ± 0.33     |
| Arachnida                   |                 |                 |
| Araneae                     | 4.00 ± 0.58     | 4.00 ± 1.00     |
| Crustacea                   |                 |                 |
| Amphipoda                   |                 |                 |
| Talitridae                  | 4.33 ± 0.88     | $0.00 \pm 0.00$ |
| Isopoda                     |                 |                 |
| Ligiidae                    |                 |                 |
| Ligidium japonicum          | 4.67 ± 0.88     | $0.00 \pm 0.00$ |
| Armadillidae                |                 |                 |
| Venezillo sp.               | 0.67 ± 0.33     | 0.33 ± 0.33     |
| Insecta                     |                 |                 |
| Archaeognatha               |                 |                 |
| Machilidae                  | 0.33 ± 0.33     | 0.33 ± 0.33     |
| Orthoptera                  |                 |                 |
| Rhaphidophoridae            | 0.00 ± 0.00     | 0.67 ± 0.33     |
| Lepidoptera (larva)         | 2.33 ± 0.88     | $2.00 \pm 0.00$ |
| Hymenoptera                 |                 |                 |
| Formicidae                  |                 |                 |
| Pachycondyla chinensis      | $0.67 \pm 0.67$ | $0.00 \pm 0.00$ |
| Aphaenogaster famelica      | $0.33 \pm 0.33$ | $1.00 \pm 1.00$ |
| Paratrechina flavipes       | $0.33 \pm 0.33$ | $0.67 \pm 0.67$ |
| Formica hayashi             | 1.00 ± 0.58     | 0.33 ± 0.33     |
| Camponotus obscuripes       | 0.00 ± 0.00     | 0.67 ± 0.67     |
| Coleoptera (larva)          | 0.00 ± 0.00     | 0.67 ± 0.67     |
| Coleoptera (adult)          |                 |                 |
| Geotrupidae                 |                 |                 |
| Phelotrupes laevistriatus   | $0.33 \pm 0.33$ | $0.33 \pm 0.33$ |
| Phelotrupes auratus         | $0.33 \pm 0.33$ | $0.00 \pm 0.00$ |
| Scarabaeidae                |                 |                 |
| Paneius parvulus            | $0.00 \pm 0.00$ | $0.33 \pm 0.33$ |
| Onthophagus nitidus         | $0.33 \pm 0.33$ | $0.67 \pm 0.67$ |
| Staphylinidae               |                 |                 |
| Bolitobius sp.              | $0.33 \pm 0.33$ | $0.33 \pm 0.33$ |
| Staphylininae               | $0.00 \pm 0.00$ | $0.33 \pm 0.33$ |
| Carabidae                   |                 |                 |
| Carabus iwawakianus         | $0.00 \pm 0.00$ | $0.67 \pm 0.67$ |
| Chiaenius costiger          | $0.67 \pm 0.67$ | $0.00 \pm 0.00$ |
| Stomis prognathus           | $0.00 \pm 0.00$ | $0.33 \pm 0.33$ |
| Pterostichus (Rhagadus) sp. | 0.33 ± 0.33     | 1.33 ± 0.88     |
| Rupa japonica               | 1.00 ± 0.58     | $0.33 \pm 0.33$ |
| Synuchus picicolor          | $0.00 \pm 0.00$ | 0.33 ± 0.33     |

Fig. 1 Concentration (mean  $\pm$  SE) of exchangeable calcium in soil in each plot. White and black bars indicate evergreen broad-leaved forests (evergreen) and cedar plantations (cedar), respectively. Significant differences between vegetation types are denoted by different letters (likelihood ratio tests, *P* < 0.05).

493

Fig. 2 Abundance (mean ± SE) of Talitridae (a) and *Ligidium japonicum* (b) in each plot
by the hand-sorting method. White and black bars indicate evergreen broad-leaved
forests (evergreen) and cedar plantations (cedar), respectively.

497

498 Fig. 3 Canonical correspondence analysis (CCA) ordination of soil invertebrate

499 community composition in 12 subplots by the pitfall trap method. Explanatory variables

500 selected by forward selection are shown as arrows: Ca, exchangeable calcium

501 concentration and Litter, mass of the litter layer. White and black symbols indicate

subplot scores (mean  $\pm$  SE) of evergreen broad-leaved forests (evergreen) and cedar

503 plantations (cedar), respectively. Invertebrate taxa are abbreviated by alphabets: G,

504 Gastropoda; H, Haplotaxida; P, Paradoxosomatidae; Xs, *Xystodesmus* sp.; As,

505 Anaulaciulus sp.; A, Araneae; T, Talitridae; Lj, Ligidium japonicum; Vs Venezillo sp.;

506 L, Lepidoptera (larva); Pc, Pachycondyla chinensis; Af, Aphaenogaster famelica; Pf,

507 Paratrechina flavipes; Fh, Formica hayashi; Co, Camponotus obscuripes; C,

508 Coleoptera (larva); Pp, Panelus parvulus; On, Onthophagus nitidus; Pl, Phelotrupes

509 laevistriatus; Pa, Phelotrupes auratus; Bs, Bolitobius sp.; St, Staphylininae; Ci,

510 Carabus iwawakianus; Cc, Chlaenius costiger; Sp, Stomis prognathous; Ps,

| 511 | Pterostichus (Rhagadus) sp.; Rj, Rupa japonica; Syp, Synuchus picicolor; M,  |
|-----|------------------------------------------------------------------------------|
| 512 | Machilidae; R, Rhaphidophoridae. Taxa indicated by boldface are crustaceans. |
| 513 |                                                                              |
| 514 |                                                                              |
| 515 |                                                                              |
| 516 |                                                                              |
| 517 |                                                                              |
| 518 |                                                                              |
| 519 |                                                                              |
| 520 |                                                                              |
| 521 |                                                                              |
| 522 |                                                                              |
| 523 |                                                                              |
| 524 |                                                                              |
| 525 |                                                                              |
| 526 |                                                                              |
| 527 |                                                                              |
| 528 |                                                                              |
| 529 |                                                                              |
| 530 |                                                                              |
| 531 |                                                                              |
| 532 |                                                                              |



Ohta et al. Fig. 2



555 Ohta et al. Fig. 3

