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ABSTRACT 33 

 34 

Many studies have shown the effects of aboveground plant species on soil organisms 35 

due to differences in litter quality. However, the calcium concentration in soil has 36 

received less attention as a controlling factor of soil invertebrate communities, despite 37 

its being an essential element for many animals, especially crustaceans. Litter of 38 

Japanese cedar (Cryptomeria japonica) plantations, which account for 19% of the 39 

forested area in Japan, has a higher calcium concentration compared to other taxa such 40 

as broad-leaved trees. We predicted that C. japonica plantations affect soil invertebrates 41 

by altering calcium availability. We compared soil properties including exchangeable 42 

calcium concentration and soil invertebrate communities between C. japonica 43 

plantations and natural broad-leaved forests. Exchangeable calcium was significantly 44 

higher in soil from cedar plantations than in that from broad-leaved forests. The 45 

invertebrate community composition differed between the two forest types and was best 46 

explained by the exchangeable calcium concentration. In particular, two major taxa of 47 

soil crustaceans (Talitridae and Ligidium japonicum) were found only in cedar 48 



plantations. Our results suggest that calcium concentrations in soil are altered in C. 49 

japonica plantations and that this affects soil invertebrate communities. 50 

 51 
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Introduction 65 

 66 

   Soil organisms can be affected by differences in aboveground vegetation (Bardgett 67 

and Wardle 2010), often driven by the quality of the litter types (Swift et al. 1979; Berg 68 

and McClaugherty 2003). Differences in litter quality among plant species can influence 69 

the chemical properties of soil and act as determinants of the community structure of 70 

soil invertebrates (Widden and Hsu 1987; Wardle et al. 2006). Because calcium is a 71 

major structural component of the proteins forming animals, ambient calcium 72 

concentration related to the animal densities in calcium poor environment (Alstad et al. 73 

1999; Hessen et al. 2000; Ohta et al. 2014). Similarly, soil calcium concentrations can 74 

have an important influence on soil invertebrate communities (Springett and Syers 75 

1984). For example, the abundance of some soil invertebrates increase with the 76 

available soil calcium concentration (Hotopp 2002; Reich et al. 2005; Skeldon et al. 77 

2007). Global pattern of soil calcium concentration is governed by geological change, 78 

acid deposition and annual precipitation (Potter and Conkling 2012; Binkley and Fisher 79 

2013). For example, low rainfall areas (central North America) tend to have grater soil  80 



calcium than humid Eastern United States (Potter and Conkling 2012). Calcium 81 

availability and cycling in regional scale are governed by numerous factors including 82 

forest vegetation dynamics, atmospheric deposition, soil mineral weathering, and losses 83 

due to leaching (Likens et al. 1998; McLaughlin and Wimmer 1999; Dijkstra and Smits 84 

2002). However, much research over the last half century has focused on the leaching of 85 

calcium due to acid deposition (Likens et al. 1996; Driscoll et al. 2001), with much less 86 

emphasis on other factors, such as changes in forest vegetation, even though the calcium 87 

concentration in leaf litter varies greatly among tree species. 88 

   Litter of members of the Cupressaceae has a higher concentration of calcium 89 

compared with other plant families (Kiilsgaard et al. 1987; Ohta et al. 2014). In this 90 

study, we focused on Japanese cedar (Cryptomeria japonica, Cupressaceae) because its 91 

leaf litter contains ~3% calcium (Xue and Luo 2002; Baba et al. 2004), more than three 92 

times the amount in many other taxa, such as fir (Abies spp.) and many broad-leaved 93 

trees (Kiilsgaard et al. 1987; Reich et al. 2005; Ohta et al. 2014). Japanese cedar 94 

plantations cover 12% of the total land area and 19% of the forested area in Japan 95 

(Forestry Agency 2011). Because soil organic matter in forests is derived mainly from 96 



plant litter, the chemical properties of litter affect soil chemical properties (Reich et al. 97 

2005). Indeed, the soil in Japanese cedar plantations has a calcium content that is three 98 

to four times higher than that in evergreen broad-leaved forests in some parts of Japan 99 

(Tsutsumi 1987; Ohta et al. 2014). Ohta et al. (2014) showed that the calcium 100 

concentration in soil and streams, and the density and survival of dominant aquatic 101 

crustaceans, were significantly higher in C. japonica plantations compared with 102 

evergreen broad-leaved forests. However, Ohta et al. (2014) did not assess the effects of 103 

forest vegetation on soil animal community through alteration of calcium availability. 104 

Soil crustaceans that are frequently dominant decomposers in soil systems (O'hanlon 105 

and Bolger 1999), and contain large amount of calcium in their body (Greenaway 1985). 106 

Terrestrial crustaceans mainly take calcium from their food (e.g. leaf litter) and soil 107 

water. Therefore, we anticipate that the calcium concentration in litter affects the 108 

community structure of soil organisms in calcium-poor environment. 109 

   Addition of inorganic calcium often increases soil pH (Likens et al. 1996; Driscoll 110 

et al. 2001; Warby et al. 2009), and therefore, higher calcium concentrations in soil due 111 

to differences in forest vegetation are also likely to increase soil pH (Reich et al. 2005). 112 



Alteration of soil pH also causes changes in the abundance of soil invertebrates (Hågvar 113 

1990; Myrold 1990; Kaneko and Kofuji 2000). Therefore, plantations of C. japonica 114 

may affect the community structure of soil invertebrates via increased soil pH. 115 

   We examined the effect of Japanese cedar (C. japonica) plantations on the 116 

community structure of soil invertebrates, particularly the density of crustaceans. We 117 

conducted field surveys in six plots that differed in surrounding forest vegetation. We 118 

predicted (1) that the calcium concentration and soil pH would be higher in C. japonica 119 

plantations compared to evergreen broad-leaved forests, and (2) that crustacean density 120 

would be higher in C. japonica plantations than in evergreen broad-leaved forests. 121 

 122 

Methods 123 

 124 

Study area 125 

 126 

   We conducted field surveys in the Wakayama Experimental Forest of Hokkaido 127 

University (33°40’N, 135°40’E; 428 ha; annual mean temperature: 15.2ºC) on the 128 



Southern Kii Peninsula of Japan. The geological structure in this region consists of 129 

sandstone and mudstone formed during the middle Tertiary (Tateishi 1976). Because of 130 

the highly acidic soil and high annual rainfall (~4000 mm), the area is extremely poor in 131 

calcium (Kihira et al. 2005). The forest soils are extremely thin, nearly exposing the 132 

bedrock. Japanese cedar was planted in much of the area beginning in the 1960s, and 133 

remnant natural evergreen broad-leaved forests are patchy. 134 

   We established a sampling plot (50 × 50 m) in each of six different catchments of 135 

the Wakayama Experimental Forest. The plots were located on relatively flat forest 136 

floors and separated by 0.2–1.5 km. Three of the six catchments were mostly covered 137 

by evergreen broad-leaved forests ‘evergreen’, and the other three were covered by 138 

Japanese cedar plantations ‘cedar’. Forests in the ‘evergreen’ plots were dominated by 139 

Quercus acuta, Quercus myrsinifolia, Quercus sessilifolia, Neolitsea aciculata, Eurya 140 

japonica, and Machilus thunbergii (Ohta et al. 2014). The C. japonica trees in the 141 

‘cedar’ plots were planted 30–82 years prior to this study. Calcium concentration in the 142 

litter of C. japonica (3.4%) is about three times higher than in the evergreen 143 

broad-leaved species (0.8–1.5%) at this study site (Ohta et al. 2014). Carbon, nitrogen, 144 



phosphorus, and magnesium concentrations do not differ significantly among the 145 

species, whereas potassium is about three times lower in C. japonica compared to the 146 

broad-leaved species (Ohta et al. 2014). 147 

 148 

Sampling 149 

 150 

On 24 July 2012, we collected five samples at each plot from the litter and soil layers 151 

using core samplers (soil layer: 50 mm in diameter and 50 mm in height, litter layer: 152 

113 mm in diameter and 40 mm in height) to measure soil chemical properties and mass 153 

of the litter layer. To determine the soil crustacean density, we established five sampling 154 

quadrats separated by over 10 m in each plot. We collected crustaceans within the 155 

sampling quadrats (25 × 25-cm) to a depth of 3 cm (including litter and surface soil 156 

layers) on 17 May and 21 September 2013. Soil crustaceans were separated from soil by 157 

hand-sorting and placed in 99% ethanol. To examine the community structure of 158 

ground-dwelling macroinvertebrates, we established two subplots (20 × 20 m) in each 159 

plot. We collected ground-dwelling invertebrates using five pitfall traps (8 cm in 160 



diameter and 6 cm in depth) per subplot. We placed the pitfall traps in each subplot ~2 161 

m apart on 17 May, 19 July, 19 October, and 18 November 2013, and collected them 3 162 

days later. We counted and identified all invertebrates found in the traps at least to the 163 

ordinal level following Aoki (1999) and Ueno et al. (1985). 164 

 165 

Sample processing 166 

 167 

   To measure soil nitrate and exchangeable calcium, we shook (160 rev min–1) a 0.5 g 168 

(air-dried mass) subsample of each soil sample in 100 ml of 1 M KCl solution for 1 h, 169 

filtered the sample through filter paper (No. 5C; Advantec, Tokyo, Japan), and then 170 

stored the suspension at –30ºC until analysis. We analyzed the soil extracts for calcium 171 

and nitrate concentration per unit air-dried mass using an inductively coupled plasma 172 

(ICP) atomic emission spectrometer (ICPE-9000; Shimadzu, Kyoto, Japan) and the 173 

absorptiometric method (Sakata 2000). We placed a 5-g (air-dried mass) subsample of 174 

each soil sample in 25 ml 1 M KCL and measured the pH using a pH meter (TOA-DKK, 175 

HM-30V; TOA Electronics, Tokyo, Japan). We dried soil subsamples in a drying oven 176 



at 60ºC for 24 h and then analyzed 50-mg dried soil samples for carbon and nitrogen 177 

concentrations per dry mass using a CN analyzer (Sumigraph NC-900; Sumika 178 

Chemical Analysis Service, Osaka, Japan). We dried a 1-g fresh subsample at 60ºC for 179 

48 h to calculate the soil water content as the difference in mass before and after 180 

desiccation. 181 

 182 

Statistical analysis 183 

 184 

   The soil properties (mass of the litter layer, water content, pH, C:N ratio, 185 

exchangeable calcium, total carbon, total nitrogen, and nitrate concentration) were fit to 186 

linear mixed models with forest vegetation type as a fixed factor and plot identity as a 187 

random factor. The statistical significance of the effect of the fixed factor in each model 188 

was evaluated by a likelihood ratio test (α = 0.05). 189 

   We performed canonical correspondence analysis (CCA) to explore the 190 

relationships between the soil invertebrate composition and soil properties. The 191 

invertebrate data from the five pitfall traps on all four sampling dates were pooled for 192 



each subplot. Before conducting the CCA ordination, the abundance data for each taxon 193 

were standardized to unit variance, and the most important explanatory variables from 194 

all soil properties were determined by forward stepwise selection based on Akaike’s 195 

information criteria and Monte Carlo permutation tests. All statistical analyses were 196 

conducted with R version 2.9.2 software (R Development Core Team 2011). 197 

 198 

Results 199 

 200 

   Soil exchangeable calcium concentration (likelihood ratio test: χ2 = 9.13, d.f. = 1, P 201 

= 0.002) and C:N ratio (likelihood ratio test: χ2 = 8.90, d.f. = 1, P = 0.003) were 202 

significantly higher, and nitrate concentration (likelihood ratio test: χ2 = 8.53, d.f. = 1, P 203 

= 0.003) was significantly lower in ‘cedar’ than ‘evergreen’. In particular, soil in ‘cedar’ 204 

plots had ~2.5 times more exchangeable calcium than the ‘evergreen’ plots (Table 1, 205 

Fig. 1). The other soil properties including the mass of litter layer that was selected 206 

explainatory variable in community composition of soil invertebrates did not differ 207 

significantly between the forest types although soil pH was marginally higher in ‘cedar’ 208 



than ‘evergreen’ (likelihood ratio test: χ2 = 3.05, d.f. = 1, P = 0.08). We found two taxa 209 

of crustaceans, Talitridae (Amphipoda) and Ligidium japonicum (Isopoda: Ligiidae) in 210 

‘cedar’ plots by hand-sorting, but we found no crustaceans in ‘evergreen’ plots (Fig. 2). 211 

Abundances of Talitridae and L. japonicum did not differ significantly among ‘cedar’ 212 

plots between the two sampling months (generalized linear models assuming Poisson 213 

distribution and likelihood ratio tests: P > 0.05). 214 

   Crustaceans, spiders, ants, beetles, lepidopteran larvae, and millipedes accounted for 215 

23, 19, 9, 19, 10, and 9%, respectively, of the total invertebrates captured by pitfall traps 216 

(Table 2). Crustaceans (mainly Talitridae and L. japonicum) dominated the 217 

ground-dwelling invertebrate communities in ‘cedar’ plots, while they were remarkably 218 

scarce, and millipedes (Paradoxosomatidae) and beetles were relatively abundant in 219 

‘evergreen’ plots. Talitridae and L. japonicum were only collected in ‘cedar’ plots using 220 

pitfall traps, and a few individuals of Venezillo sp. (Isopoda: Armadillidae) were 221 

collected not only in ‘cedar’ but also ‘evergreen’ plots (Table 2). Taxonomic 222 

compositions of ground invertebrates differed distinctively between ‘cedar’ and 223 

‘evergreen’ plots (Table 2, Fig. 3). From all the soil properties, exchangeable calcium 224 



concentration and mass of the litter layer explained the most variation among the 12 225 

subplots in invertebrate community composition as determined through the forward 226 

selection process of CCA. The first and second axes explained 17.17 and 14.04%, 227 

respectively, of the variation in community composition (Monte Carlo permutation test: 228 

P < 0.05). The CCA ordination showed that community composition in the ‘cedar’ plots 229 

was distinctively different from that in the ‘evergreen’ plots along the first CCA axis, 230 

which corresponded to the gradient of exchangeable calcium concentration, and the 231 

‘cedar’ plots had much lower variation than the ‘evergreen’ plots (Fig. 3). 232 

Compositional difference within ‘evergreen’ was distinctively indicated by second axis, 233 

which weakly correlated with mass of litter layer (Fig. 3). Talitridae and L. japonicum 234 

had large negative values on the first axis, and their high abundance characterized the 235 

‘cedar’ community. 236 

 237 

Discussion 238 

 239 

   Our results show that forest vegetation might affect the community structure of soil 240 



invertebrates by altering calcium availability. Our field survey showed that soil 241 

exchangeable calcium was ~2.5 times higher and soil pH was not significantly higher in 242 

C. japonica plantations compared with that in evergreen broad-leaved forests (these 243 

partly supported prediction 1). The major taxa of soil crustaceans (Talitridae and L. 244 

japonicum) were found only in C. japonica plantations, whereas only a few individuals 245 

of a minor crustacean species (Venezillo sp.) occurred in broad-leaved forests 246 

(supporting prediction 2). The community structure of soil invertebrates varied with 247 

forest vegetation types, and calcium in the soil layer was the most important 248 

environmental variable explaining the variation in community composition (supporting 249 

prediction 2). Furthermore, both intra- and inter-plot variation in the soil invertebrate 250 

community structure in C. japonica plantations were lower than in natural broad-leaved 251 

forests, suggesting that the homogeneous environment created by the monoculture 252 

plantation caused a large decrease in micro- and local-scale β-diversity of soil 253 

invertebrates. This might be caused by uniform increase in the abundance of Talitridae 254 

and L. japonicum in C. japonica plantations and difference in the mass of litter layer 255 

within ‘evergreen’ plots (Table 1, Fig. 3). 256 



   The difference in calcium concentration in leaf litter produces significant 257 

differences in soil calcium (Morrison 1985; Kloeppel and Abrams 1995). In fact, Ohta 258 

et al. (2014) showed that the calcium concentration in C. japonica litter was about three 259 

times higher than that of dominant evergreen broad-leaved trees in Wakayama 260 

Experimental Forest. We found that total calcium in the litter layer and 261 

water-extractable calcium in the soil at ‘cedar’ sites were three to four times higher than 262 

at ‘evergreen’ sites. These results support our finding that calcium supplied by C. 263 

japonica litter increased the calcium concentration in the soil of our study plots. 264 

   Field manipulations at the Hubbard Brook Experimental Forest in the northeastern 265 

United States indicated that adding CaSiO3 to a catchment area increased calcium 266 

concentrations in soil (Juice et al. 2006; Minocha et al. 2010; Nezat et al. 2010) and 267 

altered the community structure of terrestrial snails, which have high demand for 268 

calcium (Skeldon et al. 2007). Hotopp (2002) showed that the abundance of sugar 269 

maple, a calciphilic species (Likens and Bormann 1970), was positively correlated with 270 

terrestrial snail density. As in snails, crustaceans must ingest a lot of calcium 271 

(Greenaway 1985). Because terrestrial crustaceans lose 20% of their body calcium 272 



through exuviae (Ziegler et al. 2007), they need adequate calcium to calcify their 273 

exoskeleton rapidly after exuviation. Terrestrial crustaceans in soil get calcium from 274 

soil water and litter (Greenaway 1985; Glötzner and Ziegler 2000). Therefore, the 275 

‘cedar’ plots, which have high calcium levels in their litter and soil layers, are well 276 

suited for the survival of crustaceans (Figs. 1, 2). Indeed, both natural and artificial C. 277 

japonica forests in central Japan have high densities of crustaceans (Ikeda at al. 2005). 278 

   Calcium addition to acidic soil increases soil pH (Groffman et al. 2006; Groffman 279 

and Fink 2011). However, our result showed the soil pH was not significantly higher in 280 

C. japonica plantations that increase the calcium concentration of the soils (Table 1). 281 

Although previous studies showed soil pH may also affect the structure of invertebrate 282 

communities by altering forest vegetation (e.g. Kaneko and Kofuji 2000), forward 283 

selection of the CCA analysis selected exchangeable soil calcium concentration and not 284 

pH in our result. Calcium concentration may have a greater impact on the community 285 

structure of soil invertebrates in our study site. 286 

   The litter of other members of Cupressaceae, such as Chamaecyparis and 287 

Sequoiadendron, also have high calcium content comparable to that of C. japonica 288 



(Kiilsgaard et al. 1987; D’Amore et al. 2009). This might mean change in soil system 289 

through difference in calcium concentration in leaf litter is caused in other forest types. 290 

Furthermore, Reich et al. (2005) showed that exchangeable calcium in soils and the 291 

density of earthworms were significantly higher in forests dominated by Acer 292 

pseudoplatanus and Tilia cordata compared to forests dominated by Larix and Pinus, 293 

even though calcium concentrations were ~40% lower in the litter of A. pseudoplatanus 294 

and T. cordata than in C. japonica. This implies that the change in soil systems is 295 

caused by the alteration of forest vegetation with low calcium content relative to C. 296 

japonica. 297 

   Soil crustaceans, such as Talitridae and L. japonicum, are powerful litter 298 

decomposers (Zimmer 2002). Their existence influences litter decomposition rates 299 

(O’Hanlon and Bolger 1999), and their abundance can lead to increased turnover rates 300 

of organic matter. Furthermore, soil crustaceans affect the dynamics of organic matter 301 

by incorporating organic material from the forest floor into deeper soil horizons 302 

(Mattson 2012) and may also enhance microbial biomass (Escher et al. 2000). Reich et 303 

al. (2005) showed that plantations of tree species with high calcium concentrations in 304 



their litter cause an increase in exchangeable soil calcium and earthworm densities. 305 

Therefore, especially in calcium-poor environments, transformation of forest vegetation 306 

might change the densities of key decomposers such as crustaceans and earthworms, 307 

thereby affecting the decomposition rates of soil organic matter and nutrient dynamics. 308 
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Table 1 Soil properties (mean ± SE) at each plot. Significant differences between cedar 464 

plantations (cedar) and evergreen broad-leaved forests (evergreen) are denoted in the 465 

last column: **P < 0.01, n.s. P > 0.05 (likelihood ratio tests). 466 
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Table 2 Abundance (5 traps-1 12 days-1; mean ± SE) of ground-dwelling 485 

macroinvertebrates sampled by pitfall traps. ‘cedar’ and ‘evergreen’ mean cedar 486 

plantation and evergreen broad-leaved forest. 487 

 488 

���������� cedar evergreen 
Gastropoda 0.67 ± 0.67 0.00 ± 0.00 
Oligochaeta 

Haplotaxida 0.33 ± 0.33 0.00 ± 0.00 
Diplopoda 

Polydesmida 
Paradoxosomatidae 0.00 ± 0.00 3.33 ± 1.76 
Xystodesmidae 

Xystodesmus sp. 0.33 ± 0.33 0.00 ± 0.00 
Julida 

Julidae 
Anaulaciulus sp. 0.00 ± 0.00 0.33 ± 0.33 

Arachnida 
Araneae 4.00 ± 0.58 4.00 ± 1.00 

Crustacea 
Amphipoda 

Talitridae 4.33 ± 0.88 0.00 ± 0.00 
Isopoda 

Ligiidae 
Ligidium japonicum 4.67 ± 0.88 0.00 ± 0.00 

Armadillidae 
Venezillo sp. 0.67 ± 0.33 0.33 ± 0.33 

Insecta 
Archaeognatha 

Machilidae 0.33 ± 0.33 0.33 ± 0.33 
Orthoptera 

Rhaphidophoridae 0.00 ± 0.00 0.67 ± 0.33 
Lepidoptera (larva) 2.33 ± 0.88 2.00 ± 0.00 
Hymenoptera 

Formicidae 
Pachycondyla chinensis 0.67 ± 0.67 0.00 ± 0.00 
Aphaenogaster famelica 0.33 ± 0.33 1.00 ± 1.00 
Paratrechina flavipes 0.33 ± 0.33 0.67 ± 0.67 
Formica hayashi 1.00 ± 0.58 0.33 ± 0.33 
Camponotus obscuripes 0.00 ± 0.00 0.67 ± 0.67 

Coleoptera (larva) 0.00 ± 0.00 0.67 ± 0.67 
Coleoptera (adult) 

Geotrupidae 
Phelotrupes laevistriatus 0.33 ± 0.33 0.33 ± 0.33 
Phelotrupes auratus 0.33 ± 0.33 0.00 ± 0.00 

Scarabaeidae 
Panelus parvulus 0.00 ± 0.00 0.33 ± 0.33 
Onthophagus nitidus 0.33 ± 0.33 0.67 ± 0.67 

Staphylinidae 
Bolitobius sp. 0.33 ± 0.33 0.33 ± 0.33 
Staphylininae 0.00 ± 0.00 0.33 ± 0.33 

Carabidae 
Carabus iwawakianus 0.00 ± 0.00 0.67 ± 0.67 
Chlaenius costiger 0.67 ± 0.67 0.00 ± 0.00 
Stomis prognathus 0.00 ± 0.00 0.33 ± 0.33 
Pterostichus (Rhagadus) sp. 0.33 ± 0.33 1.33 ± 0.88 
Rupa japonica 1.00 ± 0.58 0.33 ± 0.33 

��������Synuchus picicolor 0.00 ± 0.00 0.33 ± 0.33 



Fig. 1 Concentration (mean ± SE) of exchangeable calcium in soil in each plot. White 489 

and black bars indicate evergreen broad-leaved forests (evergreen) and cedar plantations 490 

(cedar), respectively. Significant differences between vegetation types are denoted by 491 

different letters (likelihood ratio tests, P < 0.05). 492 

 493 

Fig. 2 Abundance (mean ± SE) of Talitridae (a) and Ligidium japonicum (b) in each plot 494 

by the hand-sorting method. White and black bars indicate evergreen broad-leaved 495 

forests (evergreen) and cedar plantations (cedar), respectively. 496 

 497 

Fig. 3 Canonical correspondence analysis (CCA) ordination of soil invertebrate 498 

community composition in 12 subplots by the pitfall trap method. Explanatory variables 499 

selected by forward selection are shown as arrows: Ca, exchangeable calcium 500 

concentration and Litter, mass of the litter layer. White and black symbols indicate 501 

subplot scores (mean ± SE) of evergreen broad-leaved forests (evergreen) and cedar 502 

plantations (cedar), respectively. Invertebrate taxa are abbreviated by alphabets: G, 503 

Gastropoda; H, Haplotaxida; P, Paradoxosomatidae; Xs, Xystodesmus sp.; As, 504 

Anaulaciulus sp.; A, Araneae; T, Talitridae; Lj, Ligidium japonicum; Vs Venezillo sp.; 505 

L, Lepidoptera (larva); Pc, Pachycondyla chinensis; Af, Aphaenogaster famelica; Pf, 506 

Paratrechina flavipes; Fh, Formica hayashi; Co, Camponotus obscuripes; C, 507 

Coleoptera (larva); Pp, Panelus parvulus; On, Onthophagus nitidus; Pl, Phelotrupes 508 

laevistriatus; Pa, Phelotrupes auratus; Bs, Bolitobius sp.; St, Staphylininae; Ci, 509 

Carabus iwawakianus; Cc, Chlaenius costiger; Sp, Stomis prognathous; Ps, 510 



Pterostichus (Rhagadus) sp.; Rj, Rupa japonica; Syp, Synuchus picicolor; M, 511 

Machilidae; R, Rhaphidophoridae. Taxa indicated by boldface are crustaceans. 512 
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Ohta et al. Fig. 2 543 
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Ohta et al. Fig. 3 555 
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