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3a clustering in excited states of *C
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(Received 2 October 2014; revised manuscript received 4 November 2014; published 29 December 2014)

The a-cluster states of '°C are investigated by using antisymmetrized molecular dynamics. It is shown that
two different types of a-cluster states exist: triangular and linear-chain states. The former has an approximate
isosceles triangular configuration of « particles surrounded by four valence neutrons occupying the sd shell,
while the latter has the linearly aligned o particles with (sd)?(pf)? neutrons. It is found that the structure of
the linear-chain state is qualitatively understood in terms of the 3/2_ and 1/2_° molecular orbits as predicted by
molecular-orbital model, but there exists a non-negligible '°Be + o + 2n correlation. The bandhead energies of
the triangular and linear-chain rotational bands are 8.0 and 15.5 MeV, and the latter is close to the *“He +'?>Be and
%He +'°Be threshold energies. It is also shown that the linear-chain state becomes the yrast state at J™ = 10*
with E, = 27.8 MeV owing to its very large moment of inertia comparable with hyperdeformation.

DOI: 10.1103/PhysRevC.90.064319

I. INTRODUCTION

The excited states of atomic nuclei, especially those of
light nuclei, show strong « clustering, and many different
types of a-cluster structure appear as the excitation energy
increases [1-5]. In particular, the linear-chain configuration of
three o particles (three linearly aligned « particles) suggested
by Morinaga [6] has long been an important and interesting
subject because of its exotic structure and large deformation,
equivalent to hyperdeformation. The Hoyle state (05 state of
12C) was the first candidate of the linear chain, but later it
turned out that it does not have the linear-chain configuration
but consists of loosely coupled 3« particles with dilute
gaslike nature [7-10]. In turn, the instability of the linear-
chain configuration against the bending motion (deviation
from linear alignment) was pointed out and the bent-armed
configuration was predicted by the antisymmetrized molecular
dynamics (AMD) [11] and Fermionic molecular dynamics
(FMD) calculations [12].

The interest in the linear-chain state is reinforced by the
unstable nuclear physics, because the addition of the valence
neutrons will increase the stability of «-cluster structure
by their gluelike role. For example, 2w«-cluster structures
of Be isotopes are assisted by valence neutrons that are
well described in terms of the molecular orbits [13-18].
Naturally, we expect that the linear-chain configurations of
3 clusters can be stabilized by the assistance of valence
neutrons in neutron-rich C isotopes. Indeed, there are a number
of studies to theoretically predict and experimentally search
for the linear-chain states in neutron-rich carbon isotopes
[19-27]. Among C isotopes, '°C is a very interesting and
important nucleus as the most promising candidate of the stable
linear-chain state, because its stability against the bending
motion was pointed out by molecular-orbital model calculation
[19]. Assuming a 3« cluster core and 3/2_, 1/2, and 1/2
molecular orbits of valence neutrons, it was shown that the
linear-chain configuration with valence neutrons occupying
(3/2; (1 /2;)2 molecular orbits is stable. Therefore, it is
very important and interesting to investigate the linear-chain
state in '°C without an a priori assumption on the cluster
core and valence neutron orbits. Furthermore, in addition to
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the linear-chain configuration, triangular configurations of 3«
particles are also suggested in the neighboring nuclei such as
13C and '*C [26-29]. Therefore, it is also interesting to search
for an analogous state in '°C.

For this purpose, we discuss 3a cluster states in '°C based
on AMD, which has been successfully applied to the studies
of the clustering in unstable nuclei [17,18,30-32]. Our aim
in the present study is twofold. The first is to search for
and show the linear chain and other cluster states in '°C
without an a priori assumption on the structure and to test
the stability against the bending motion. We show that two
different types of the 3« cluster states exist, triangular and
linear-chain configurations. It is also shown that the valence
neutron orbits are qualitatively understood in terms of the
molecular orbits, and the linear-chain configuration is stable
with the help of those valence neutrons. The second aim is to
provide a quantitative and reliable prediction of their properties
for the experimental survey. We predict the bandhead states of
the triangular and linear-chain bands at 8.0 and 15.5 MeV,
and the J™ = 10" state of the linear-chain configuration
becomes the yrast state at J” = 10" with E, = 27.8 MeV
owing to its very large moment of inertia comparable with
hyperdeformation.

II. THEORETICAL FRAMEWORK

A. Variational calculation and generator coordinate method

The microscopic A-body Hamiltonian used in this study is
written as

A A Z
H=) {0+ 0.6+ ) 0c)) = fems (D
i=l

i<j i<j

where the Gogny D1S interaction [33] is used as an effective
nucleon-nucleon interaction 9, and the Coulomb interaction
D¢ is approximated by a sum of seven Gaussians. The center-
of-mass (c.m.) kinetic energy #. . is exactly removed.

The intrinsic wave function ®;,, of the system is represented
by a Slater determinant of single-particle wave packets, and
we employ the parity-projected wave function " as the
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variational wave function,

1+ 7P,

o7 = chints Gine = Alo1,02, .. .,04}, (2)

where ¢; is the single-particle wave packet which is a direct
product of the deformed Gaussian spatial [34], spin (x;), and

isospin (&;) parts,
S o, (ra Zis \’ "
o2 o \/E Xl 1

o=x,y,2

@i(r) = exp {-

Xi = aixs +bix,, & = proton or neutron. 3)
In this study, we focus on the positive-parity states of '°C.
The parameters Z;, a;, b;, and v, are optimized by the
variational calculation explained below. To investigate 3¢
cluster states, we first perform the variational calculation with
the constraint on the quadrupole deformation parameter S.
In this calculation, we do not impose a constraint on the
parameter y, and hence, thus-obtained wave functions have
y values that give the largest binding energies for given values
of B. As shown in the next section, we have obtained the
linear-chain configuration located at (8,y) = (1.10,0) as well
as the triangular configuration. We performed another varia-
tional calculation to test its stability against bending motion
(deviation from the linear alignment of 3« clusters). Namely,
starting from the above mentioned linear-chain configuration,
we gradually increased the parameter y keeping g = 1.10
by applying the constraints on 8 and y simultaneously. This
calculation generates the energy curve of the linear-chain
configuration as function of y.

After the variational calculation, the eigenstate of the total
angular momentum J is projected out from the wave functions
CD;L obtained by variational calculations,

2J +1
q)X;rKl - 87T

/dQ W (QR(Q)DT. 4)
Here, DJ{“((Q) is the Wigner D function and ﬁ(Q) is the
rotation operator. The integrals over three Euler angles €2 are
evaluated numerically. Then, we perform generator coordinate
method (GCM) by employing the quadrupole deformation
parameter 8 as the generator coordinate. The wave functions
QDIJW’;Q are superposed,

J J
Wik = gk @ik )

where the coefficients g, and eigenenergies E’T are
obtained by solving the Hill-Wheeler equation [35],

ZHIzzK”gK’t’a - EJ+ZNK1K’z’nga’ (6)
i'K’ 'K’
Hiliew = {®ariil A @) ™
Niixw = {®aii| Do) ®

The wave functions W3 that describe the ground and excited
states of '6C are called GCM wave function in the following.
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B. Single-particle orbits

To investigate the motion of the valence neutrons around
the core nucleus, we calculate the neutron single-particle
orbits of the intrinsic wave function. We first transform the
single-particle wave packet ¢; of each optimized intrinsic wave
function ®; to the orthonormalized basis,

€]

Here, X, and c;, are the eigenvalues and eigenvectors of the
overlap matrix B;; = (¢;|¢;). Using this basis, the Hartree-
Fock single-particle Hamiltonian is derived,

A
hap = (@ulf1@p) + Z PaPy|On + 0clOp0y — @y @p).
y=1

I e 800 o o

+5 2 <wy¢a|¢;¢ﬁ8—;|wyws —&y).  (10)
y,6=1

The eigenvalues €, and eigenvectors fus of hog give the
single-particle energies and the single-particle orbits, ¢; =
Z?:l Jus@a. To discuss the properties of the single-particle
levels, we also calculate the amount of the positive-parity
component,

= |(¢)A

b1, )

and angular momenta in the intrinsic frame,

JG+ D = B17218s), il = (sl i2les),  (12)

I+ 1) = (GIP1ds), 1l =\ (§sIP1dy).  (13)

III. RESULTS AND DISCUSSIONS

A. 3« clustering and valence neutron configurations
on the energy curve

Figure 1 shows the energy curves as functions of quadrupole
deformation parameter 8 for J* = 0% states obtained by the
variational calculation with the constraint on the parameter
B. The filled symbols show the energy minimum for given
values of 8, and on this energy curve, three different structures
appear, which are shown by circles, triangles, and boxes. These
structures are also obtained as the local energy minima above
the lowest energy states and are shown by open symbols.
It is also noted that there are other local energy minima
with different structures above the energy curve. They do not
have cluster structure and are not shown in Fig. 1, but are
included as the basis wave function of the GCM calculation.
We first discuss three different structures with and without
clustering that appear on the energy curve by referring their
density distributions (Fig. 2) and the properties of valence
neutron orbits (Table I). The lowest energy configuration
shown by circles is prolately deformed and has the minimum at
E = —110.4MeV and (B,y) = (0.44,0). As seen in its proton
and valence neutron density distribution [Figs. 2(a) and 2(b)],
it has no pronounced clustering, and four valence neutrons
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FIG. 1. (Color online) The energy curve of the J™ = 0" states
as functions of quadrupole deformation parameter B obtained by
the angular momentum projection. Filled symbols show the energy
minimum states for given values of B, while open symbols show
local energy minima. There appear three different structures shown
by circles, triangles, and boxes (see text). Dashed lines show the
thresholds energies for 1n, 2n, and cluster decays.

have an approximate (0p; /2)2(Od5 /2)2 configuration that is also
confirmed from the properties of neutron single-particle orbits
listed in Table I, entries (a) and (b). Namely the first two
valence neutrons occupy the orbit (a) with negative parity,
j ~1/2and [ =~ 1, and the last two neutrons occupy the orbit
(b) with positive parity, j >~ 5/2 and ! ~ 2. The deviation from
the spherical pj/, and ds,, orbits owes to prolate deformation
of this state. Different from the AMD results by Kanada-En’yo
[36] in which the different proton and neutron deformation
of 1°C was discussed (i.e., the proton is oblately deformed,

PHYSICAL REVIEW C 90, 064319 (2014)

TABLE 1. The properties of valence neutron orbits shown in
Fig. 2. Each column shows the single-particle energy ¢ in MeV,
the amount of the positive-parity component p*, and the angular
momenta [see Egs. (11)—(13)].

Orbit 3 p* J |1 l IL: |
(a) —8.24 0.00 0.75 0.51 1.05 0.97
(b) —5.23 0.99 221 0.51 1.80 0.38
(c) —5.74 0.99 2.31 1.96 1.93 1.63
(d) -3.29 0.98 2.33 1.88 2.07 1.83
(e) —5.32 0.13 2.09 1.49 1.72 0.99
®) —4.18 0.03 2.89 0.53 2.72 0.18

while the neutron is prolately deformed), the present result
shows that the both proton and neutron are prolately deformed
in the ground state. This difference may be attributed to the
difference of the effective interaction used in this study and
Ref. [36]. It is known that the deformation of the '°C strongly
depends on the effective interaction. For example, the Skyrme
Hartree-Fock + BCS calculation with SGII interaction [37]
reports the almost degenerated prolate and oblate minima,
while the relativistic mean-field + BCS calculation using the
parameter set of PC-F1 [38] reports the triaxial deformation.
As deformation increases, another valence neutron con-
figuration appears and it induces 3« clustering. A triaxially
deformed 3« cluster configuration shown by triangles appears
around B = 0.7 and has the local energy minimum at E =
—102.2MeV and (8,y) = (0.70,41). At the energy minimum,
this configuration has 3« cluster core of an approximate

10
(a) (c) ©)
5
. @ c o)
-5
E -10
= 01 () (d) (f)
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(e}
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FIG. 2. (Color online) The density distribution of the ground (a,b), triangular (c,d), and linear-chain (e,f) configurations at their energy
minima. The contour lines show the proton density distributions and are common to the upper and lower panels. The color plots show the
single-particle orbits occupied by four valence neutrons. The lower panels show the most weakly bound two neutrons, while the upper panel

show the other two valence neutrons.

064319-3



T. BABA, Y. CHIBA, AND M. KIMURA

isosceles triangular configuration with 3.2-fm long sides and
2.3-fm short side [Figs. 2(c) and 2(d)], which is the origin
of the triaxial deformation, and an approximate (0ds)*
configuration (2hw excitation) of valence neutrons is con-
firmed from Table I. It is also notable that |j,| of valence
neutron orbits deviate from half-integer value because of axial
symmetry breaking caused by the triangular configuration.
Thus, by increasing the nuclear deformation, the valence
neutron configuration changes and it triggers the clustering of
the core nucleus. This feature is common to the well-known 2«
clustering of Be isotopes and theoretically predicted clustering
in O, F, and Ne [30-32] isotopes.

Further increase of nuclear deformation realizes the exotic
cluster configuration with the linear alignment of 3« particles,
which is denoted by boxes. This configuration has a local
minimum at £ = —93.9 MeV and (8,y) = (1.10,0), whose
energy is very close to the “He +'?Be and ‘He +'°Be cluster
thresholds, and the ratio of deformation axis is approximately
equal to 3:1. As clearly seen in Figs. 2(e) and 2(f), a linearly
aligned 3o cluster core is accompanied by four valence
neutrons whose configuration may be roughly understood as
(1p)*(0f)?, although the deviation from ordinary spherical
shell is fairly large due to very strong deformation. An
alternative and more appropriate interpretation of the valence
neutron configuration is given by the molecular orbits. Namely,
the valence neutron orbits are in good accordance with the
3/2; and 1/2 orbits [19] that are the linear combinations of
the p orbits around « clusters as illustrated in Fig. 3. Indeed,
the density distribution and properties of these orbits shown in
Fig. 2 are in very good agreement with those of the molecular-
orbital model. It is also noted that the (3/27)%(1/2;)* config-
uration was not obtained in this study, and hence the present
results support the instability of (3/2;)*(1/2;)* configuration
and stability of (3/27)%(1/2;)* configuration.

Thus, concerning the linear-chain configuration of 16C, the
present calculation yielded qualitatively the same conclusion
with the molecular-orbital model. However, it is worthwhile
to focus on the quantitative differences. The linear-chain
configuration obtained in this study has parity asymmetric
structure and shows a '°Be + « + 2n like correlation, which
is analogous to '’Be + « correlation in '*C reported by Suhara
et al. [39]. Namely, the 3/2_ orbit has non-negligible parity
mixing (p* = 0.13) and is localized between the left and
center « clusters showing similar structure to 10Be. Indeed,

3/2; 1/2- 1/2,
SR8 e
=0 Pt = =0
lj= = 3/2 lj=| = 1/2 lj=| = 1/2
) =1 ] =1 2] =0

FIG. 3. The schematic figure showing the 3/2_,1/2_, and 1/2;
molecular orbits introduced in Ref. [19]. If the system has axial
symmetry and the effect of the spin-orbit interaction is negligible,
these orbits are the eigenstates of J, and I..
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owing to the gluelike role of the 3/2_ orbit, the distance
between the left and center « clusters (3.5 fm) is shorter
than that between the right and center (3.8 fm). On the other
hand, the 1/2 orbit has almost no parity mixing (p* = 0.03)
and distributes around the entire system to bond '°Be and «
clusters. Therefore, this state can be alternatively interpreted
as '"Be + « clusters accompanied by two covalent neutrons
in 1/2 orbit. This interpretation may explain why the
excitation energy of the linear-chain configuration is much
lower than that predicted by the molecular-orbital model and
located in the vicinity of the ®He +'Be and “He +'’Be
thresholds. It is evident that the parity projection plays a crucial
role to yield this asymmetric internal structure, because we
only obtain parity-symmetric intrinsic wave functions if we
do not perform parity projection.

B. Stability of the linear-chain state

One of the main concerns about the linear-chain configura-
tion is its stability against the bending motion, and we confirm
it by investigating its response to y deformation.

Starting from the linear-chain configuration shown in
Figs. 2(e) and 2(f), we gradually increased y but kept B
constant by using the constraint on 8 and y . Thus the obtained
energy curve of the linear-chain configuration with J* = 0%
as function of y is shown in Fig. 4. It is almost constant for
small value of y and has the minimum at y = 3.1 deg but
rapidly increases for larger values of y. Then, including all
the basis wave functions, we performed a GCM calculation
to obtain the excitation spectrum and band structure, which
are discussed in the next subsection. Here, we focus on the
bandhead state of the linear-chain band (OgL state) to see the
stability against y deformation. For this purpose, we calculated
the overlap between the O;r state and the basis wave function
with y deformed linear-chain configuration defined as

O(y) = [(W(0H)0" () . (14)

Here, \p(();r) and <I>°+(y) denote the GCM wave function of
the O; state and the basis wave function with y deformed
linear-chain configuration shown in Fig. 4. The calculated
overlap shown by the solid line in Fig. 4 has its maximum
value 0.92 at y = 3.1 deg and falls off very quickly as y

-60 1.0
— 10.8
=~ -70 m energy (J®=0") u

— overlaj

= P 1062
2 g
5 -80 5
£ 047

-90 r

LN ] " mppun®" 02
—1000 ]'0 0

4 6
v (degrees)

FIG. 4. (Color online) The boxes show the energy of the linear-
chain configuration with J™ = 0" as function of quadrupole defor-
mation parameter y. The solid line shows the overlap between the
linear-chain state (0;r state) and the basis wave functions.
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FIG. 5. (Color online) The calculated and observed positive-parity energy levels of '°C up to J*

12* states. Open boxes show the

observed states with the definite spin-parity assignments, and other symbols show the calculated result. The filled circles, triangles, and lines
show the ground, triangular, and linear-chain bands, while lines show the states without cluster structure.

increases. Therefore the wave function of the linear-chain state
is well confined within a region of small y and hence stable
against the bending motion. Further extensive investigation of
the stability of the linear-chain state including other carbon
isotopes will be discussed in our forthcoming paper.

C. Excitation spectrum

Figure 5 shows the spectrum up to J™ = 12 state obtained
by the GCM calculation including whole-basis wave functions.
We classified the obtained states as the “ground band,”
“triangular band,” “linear-chain band,” and other noncluster
states based on their B(E2) strengths and the overlap with
the basis wave functions. Table II shows the member states of
these bands with small angular momenta.

TABLE II. Excitation energies (MeV) and proton and neutron
root-mean-square radii (fm) of several member states of the ground
band, triangular band, and linear-chain band. Numbers in the
parentheses are the observed data.

Band Jr E, rp rn
Ground of 0.0 2.61 2.84
2f 1.3 (1.77) 2.60 2.83
4 3.9 (4.14) 2.56 277
Triangular 07 8.0 2.75 3.09
K™ =0* 22' 9.4 2.74 3.08
4 127 2.76 3.06
Triangular 2¢ 10.1 2.74 3.08
K™ =2% 3; 11.7 2.74 3.07
4+ 13.7 2.74 3.08
Linear chain 07 15.5 3.54 3.71
24 15.9 3.14 3.27
2 16.3 3.38 3.54
4 17.6 322 3.38
4, 17.8 321 3.39

The member states of the ground band shown by circles in
Fig. 5 are dominantly composed of the basis wave functions
with (sd)? configuration on the energy curve. The ground state
has the largest overlap with the basis wave function shown in
Figs. 2(a) and 2(b) that amounts to 0.95, and the calculated
binding energy is —110.6 MeV, which nicely agrees with the
observed value (—110.8 MeV). The excitation energies of the
2] and 4 states are also reasonably described. However, our
result considerably overestimates the observed B(E2;2{ —
OT) strength reported by experiments [40—44] that ranges from
0.92 to 4.2 ¢> fm*. There have been many discussions about
the possible hindrance [36,37,44] of B(E2), and in the case of
the AMD study [36], the origin of the hindrance was attributed
to the different proton and neutron deformation. On the other
hand, the present results does not describe it as mentioned
before, and it leads to the overestimation of B(E?2) (Table III).

Owing to its triaxial deformed shape, the triangular con-
figuration generates two rotational bands built on the 0;
and 27 states. We call them K™ = 0" and 2" bands in the
following, although the mixing of the K quantum number
in their GCM wave functions [Eq. (5)] is not negligible.
Compared to the linear-chain state, these bands have less
pronounced clustering and « clusters are considerably dis-
torted; therefore the bandhead energies are well below the
cluster thresholds. The member states have large overlap with
the basis wave function shown in Figs. 2(c) and 2(d), which
amount to, for example, 0.93 in the case of the O; state.
However, the member states with larger angular momentum
with J7 > 57 are fragmented into several states due to the
coupling with other noncluster configurations. The fragmen-
tation gets stronger as the angular momentum increases, and
hence the member states with J™ > 9 and band terminal
are unclear. Due to larger deformation of the triangular
states, the inter- and intraband B(E?2) strengths between the
K™ = 0" and K™ = 2% bands are enhanced compared to the
ground band.

The linear-chain configuration generates a rotational band
built on the 07 state at 15.5 MeV that is close to the “He +'>Be
and SHe +'°Be threshold energies. The bandhead state 0¢ has
the largest overlap with the basis wave function shown in
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TABLE III. The calculated intra- and interband B(E2; J; — Jj)
(e? fm*) strengths for low-spin member states of the ground, trian-
gular, and linear-chain bands. Transitions less than 5 e? fm* are not
shown.

Ji = Jf B(E2; J; — Jy)
Ground — ground 2F - of 6.0
4f - 2f 5.1
Triangular 25— 05 10.9
K™ =0"—> K™ =0* 4F — 27 15.7
Triangular 37— 2! 17.9
K™ =2"— K" =2% 4t — 37 9.5
4t — 2f 6.2
Triangular 28— 07 6.9
K™ =2"—> K™ =0* 37— 2f 10.4
37— 4f 8.3
Linear chain — linear chain 25 — 07 589
2/, > 0 182.4
4t — 28 114.3
4t — 2§, 70.8
4, — 25 29.5
a5, — 24 158.0

Figs. 2(e) and 2(f), which amounts to 0.92, but the member
states with J™ = 2%, 4%, and 6* are fragmented into two
states due to the coupling with other noncluster basis wave
functions. For example, the 2 and 27, states respectively
have 0.30 and 0.65 overlaps with the basis wave function of
Figs. 2(e) and 2(f). By averaging the excitation energies of the
fragmented member states, the moment of inertia is estimated
as h/23 = 112 keV. Because of this strong deformation com-
parable with hyperdeformation, the member states have huge
intraband B(E?2) values that are larger, in order of magnitude,
than those in other bands. Naturally, as the angular momentum
increases, the excitation energy of the linear-chain state is
lowered relative to other structures, and the J* = 10T member
state at £, = 27.8 MeV becomes the yrast state. Unlike the
triangular band, the high-spin member states with J* > 8% are
not fragmented and the band structure looks rather clear. Since
the excitation energy of the high-spin state with linear-chain

PHYSICAL REVIEW C 90, 064319 (2014)

configuration is relatively lower than others, the coupling with
the noncluster states and hence the fragmentation of the states
may be hindered. Thus, we predict the stable linear-chain
configuration with molecular orbits whose bandhead energy
is around “He +'?Be and ®He +'°Be thresholds. Owing to
its large moment of inertia, the J” = 10" member state
becomes an yrast state. Those suggest that the linear-chain
band might be populated in the *He +'?Be and He +'°Be
reaction channels.

IV. SUMMARY

We have studied 3o cluster states of '°C based on the
AMD calculations. By the variational calculation with the
constraint on the quadrupole deformation parameter g, it was
found that two different 3« cluster states appear, depending
on the magnitude of the deformation and the valence neutron
configurations. The triangular configuration of 3« clusters is
accompanied by the valance neutrons in a (sd)* configuration,
while the linear-chain configuration has the valence neutrons
with a (sd)*(pf)? configuration. From the analysis of the
neutron single-particle orbits, it is shown that the valence
neutron orbits of the linear-chain configuration is understood
well in terms of molecular orbits and it is qualitatively
in good accordance with the (3/2;)*(1/2;)* configuration
suggested by molecular-orbital model. We also pointed out
parity asymmetry of the linear-chain configuration that origi-
nates in '°Be + « + 2n cluster nature. The GCM calculation
demonstrated that the wave function of the linear-chain state
is well confined within a region of small y, and hence, it
is stable against bending motion. We predict the presence of
rotational bands associated with 3« cluster states. In particular,
the linear-chain band is built in the vicinity of the “He +'?Be
and ®He+'°Be thresholds energies, and the J* = 10* state
becomes a yrast state.
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