
 

Instructions for use

Title Design and Numerical Evaluation of Cascade-Type Thermoelectric Modules

Author(s) Fujisaka, Takeyuki; Sui, Hongtao; Suzuki, Ryosuke O.

Citation Journal of Electronic Materials, 42(7), 1688-1696
https://doi.org/10.1007/s11664-012-2400-3

Issue Date 2013-01-26

Doc URL http://hdl.handle.net/2115/57798

Rights The final publication is available at link.springer.com

Type article (author version)

File Information Fujisaka_ICT2012_Manuscript_ver8.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


 1 

Design and Numerical Evaluation of Cascade-

Type Thermoelectric Modules 

Takeyuki Fujisaka, Hongtao Sui, and Ryosuke O. Suzuki 

Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan 

TEL: +81-11-706-6341 

FAX: +81-11-706-6342 

fujisaka@eng.hokudai.ac.jp 

 

Abstract 

Thermoelectric (TE) generation performance can be enhanced by stacking several TE modules (so-

called cascade-type modules). This work presents a design method to optimize the cascade structure for 

maximum power output. A one-dimensional model was first analyzed to optimize the TE element 

dimensions by considering the heat balance including conductive heat transfer, Peltier heat, and Joule 

heat, assuming constant temperatures at all TE junctions. The number of p-n pairs was successively 

optimized to obtain maximum power. The power output increased by 1.24 times; from 12.7 W in a 

conventional model to 15.7 W in an optimized model. Secondly, a two-dimensional numerical calculation 

based on the finite volume method was used to evaluate the temperature and electric potential 
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distributions. Voltage-current characteristics were calculated, the maximum power output was evaluated, 

and the efficiencies of two possible models were compared to select the optimal design. The one-

dimensional analytical approach is effective for a rough design, and the multi-dimensional numerical 

calculation is effective for evaluating the dimensions and performance of a cascade-type TE module in 

detail. 

 

Keywords 

Thermoelectric generation, cascade module, numerical simulation, optimization, heat 

transfer 

NOMENCLATURE 

T Temperature (K) 

Qh Heat transfer rate from heat source to hot surface of cascade 

module (W) 

Qc Heat transfer rate from cold surface of cascade module to heat 

sink (W) 

P Output power of cascade module (W) 

 Conversion efficiency (-); = P/Qh 
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n Number of p-n pairs in single stage module (-) 

m Number of stages in multi-stage cascade module (-) 

d Leg length of TE element (m) 

a Cross-sectional area of TE element (m
2
) 

l Ratio of a to d (m); = a/d 

S Relative Seebeck coefficient (V K
-1

) 

 Electric resistivity (m) 

 Thermal conductivity (W m
-1 

K
-1

) 

K Thermal conductance (W K
-1

) 

R Electric resistance () 

RL External load () 

I Current (A) 

E Electromotive force (V) 

V Electric potential (V) 

J Current density (A m
-2

) 
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Subscript 

i i th stage from hot side in multi-stage cascade module 

Superscripts 

p p-type material 

n n-type material 

1 INTRODUCTION 

Thermoelectric (TE) generation based on the Seebeck effect can directly convert heat 

into electricity. A TE generation system has the advantage of not requiring a large-scale 

system and has been studied as a way to recover unused heat, such as waste heat from 

automobiles [1], fuel cells [2], and marine engines [3], as well as solar heat [4,5]. 

However, the conversion efficiency of TE generation systems is generally low. 

TE generation efficiency is determined by the working temperature and material 

properties, and the TE power is generally proportional to the square of the temperature 

difference. However, conventional single-stage TE modules operating under large 

temperature difference conditions cannot effectively convert heat to power because 
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there are no TE materials that maintain a good performance over a wide temperature 

range. 

The performance can be enhanced by stacking several TE modules (so-called cascade 

modules) [6-8]. The cascade TE generation efficiency can be increased by using 

materials suitable for the working temperature range. Another method to improve the 

efficiency is to optimize the module structure parameters, such as the TE element size 

and number of p-n pairs. 

Harman [6] derived a general expression for the overall efficiency of multi-stage 

cascade modules and the optimal p-n pair number ratio in a two-stage module for a 

given intermediate junction temperature by using a one-dimensional (1D) heat balance 

model. In a practical module construction, Zhang et al. [7] indicated that cascade TE 

generators using TE oxides have a high potential for heat recovery from high-

temperature waste. Funahashi [8] fabricated cascade modules consisting of oxide and 

Bi2Te3 modules and indicated experimentally that cascade structures are effective for 

high efficiency. Kaibe et al. [9] showed that the efficiency is as high as 10% using TE 

silicide and Bi2Te3. Although cascade design has been the subject of some research for 

an extended time, the optimal structure remains elusive and understudied. 
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The purpose of this work is to optimize the cascade module structure and highlight 

the key design points. Calculation results of cascade structures using 1D analytical and 

two-dimensional (2D) numerical calculations of the temperature distribution are 

presented. The TE element dimensions and number of p-n pairs were firstly optimized 

through the 1D analysis to obtain the maximum power output, and this was followed by 

numerical calculations based on the finite volume method to optimize the TE element 

sizes and evaluate the efficiencies of the two possible models proposed in the 1D 

analysis. 

 

2 MODELING 

2.1 ONE-DIMENSIONAL ANALYTICAL MODEL AND EVALUATION 

PROCEDURE 

Figure 1 illustrates a cascade module consisting of m stages. It is assumed that the 

input heat on the top surface, Qh, is transferred to a heat sink without any energy loss, 

such as that caused by thermal or electric contact resistance, and that the thermal 

resistance of the electric insulators can be ignored. The heat balance equations [6, 10] 

are written as 
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where Ki(Ti–1–Ti), SiTiI, and (1/2)RiI
2
 represent the heat conduction, Peltier heat, and 

Joule heat, respectively, of one p-n pair. The terms Ki and Ri are  
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In order to maximize the conversion efficiency under constant temperature conditions, 

the optimal relationship between li
p
 and li

n
 [6, 10] is given by 
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Thus, using Eq. (4), Eq. (2) and (3) can be rewritten as 
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It is noteworthy that the variable parameter related to the TE element dimensions is only 

li
p
, and li

n
 is automatically determined by Eq. (4). 

A practical assumption is taken here that all modules are connected electrically in 

series because a series circuit has the advantage that the number of output electric leads 

is reduced to only two and that the heat loss from the leads can be minimized compared 

with parallel and individual connections. The current and electromotive force are then 

given by 

 
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It is assumed that Qh, Qc, T0, ..., Tm, l1
p
, ..., lm

p
, and n1, ..., nm are variables in the m-stage 

cascade model. The number of free variables then totals 3m + 3, while the number of 

parameters is fixed at m + 1 in Eq. (1). Therefore, 2m + 2 of these 3m + 3 variables can 

be freely set as target values. Although the junction temperatures T0, ..., Tm are generally 

unknown, they were fixed as target temperature assumptions in this work. In addition, 

n1, ..., nm and Qh were fixed as external variables. Under these conditions, l1
p
, ..., lm

p
 and 

Qc were solved by applying Eq. (1). When each stage of a cascade module is connected 

electrically in series, the optimization of number of p-n pairs is needed to optimize the 
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relation between electromotive force and internal resistance of a module in order to 

enhance the conversion efficiency. Of course the optimal dimensions of TE elements 

depend on the number of p-n pairs, and these two parameters need to be optimized 

simultaneously. 

The output power of the module is defined as 

IEQQP  ch

  

(9) 

and the maximum power Pmax [10] is given by 
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where the external resistance is optimized. The power was calculated by repeatedly 

varying n1, ..., nm in order to find optimal values. In practice, the variation in the number 

of pairs brings out some complicated issues such as arrangement of TE elements and 

size of empty space between the elements, which affect heat transfer rate Qh or Qc. 

However, those issues that should be considered in two- or three-dimensional model are 

neglected because one-dimensional heat transfer model is considered in this section. 
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2.2 NUMERICAL MODEL AND EVALUATION PROCEDURE 

In the 1D model, only the heat balance at the junctions is considered, and we have no 

knowledge about the temperature or current density distribution inside the TE materials 

because a differential equation for the heat conduction is not included. Taking energy 

conservation inside a control volume into consideration, the heat conduction equation 

under steady-state conditions [11] is written as 

  0
2

 STT JJ

  

(11) 

where the first, second, and third terms represent the heat conduction, Joule heat 

generated by the current along the control volume, and heating or cooling generated by 

the Thomson effect, respectively. The current density J is related to the electric 

potential and temperature as [11] 

TSV J

  

(12) 

where the first term on the right-hand side is the voltage drop due to Ohm’s law, and the 

second term is the increase in voltage generated by the Seebeck effect. The following 

differential equation can be derived from Eq. (12) by applying charge conservation 

under steady-state conditions (·J=0). 
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The temperature and electric potential distributions can be obtained by solving the 

simultaneous differential equations of Eq. (11) and (13). However, it is extremely 

difficult to find an analytical solution, except for the simplest conditions. In this work, 

the equations were solved numerically based on the finite volume method by modifying 

the commercial software ANSYS FLUENT. The detailed algorithm and method for 

applying the TE numerical model to FLUENT were reported in Ref. [11, 12], and the 

TE model was demonstrated in previous studies [3, 13]. However, the numerical model 

here is not completely consistent with Ref. [11]. The transport equations were solved for 

user-defined scalars (UDSs) in FLUENT, which can then be used to solve Eq. (12). One 

UDS is used to represent Eq. (13) in this work, while two UDSs were used in Ref. [11] 

to represent the two terms on the right-hand side of Eq. (12). 

Figure 2 shows the workflow of the numerical calculation. After giving the initial 

values such as the temperature and electric potential distributions and the boundary 

conditions, the terms induced by thermoelectric phenomena were evaluated. 

Subsequently, Eq. (11) and (13) were solved, and temperature and electric potential 
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distributions were obtained. By updating the source terms and boundary conditions with 

the results, FLUENT iterates the procedure until the solution converges. 

 

3 RESULTS AND DISCUSSION 

3.1 ONE-DIMENSIONAL ANALYTICAL EVALUATION 

In this section, we focus on three-stage (m = 3) cascade modules. Table 1 shows the 

TE material combinations that our team intends to apply to practical TE modules [8, 10, 

14-17]. Cases 1 and 2 are recently obtained experimental data, and Case 3 is the ideal 

target data. In the 1D analytical calculations, the temperature dependencies of the TE 

properties are ignored. Using these three examples, we attempted to optimize the TE 

material dimensions and number of p-n pairs. The thermal conditions were set to Qh = 

400 kW/m
2
, T0 = 1200 K, T1 = 800 K, T2 = 500 K, and T3 = 300 K. In addition, n2 and 

n3 were varied and n1 = 100 for all calculations. 

Figures 3 (a), (b), and (c) show contour plots of the efficiency against n2 and n3 for 

Cases 1, 2, and 3, respectively. There is a clear optimal set of n2 and n3 for the 

corresponding n1 value. Cases 1-A, 2-A, and 3-A indicate the traditional cascade 
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module design (n1 = n2 = n3), and Cases 1-B, 2-B, and 3-B are the optimized conditions 

found in this work. Table 2 summarizes the results for the optimized conditions. 

Comparing Cases 1-B, 2-B, and 3-B, it is clear that the optimal condition depends on 

the TE material combination. When materials with a higher performance are used, the 

optimization procedure becomes crucial and is effective in enhancing the conversion 

efficiency. Additionally, the optimization of the TE element dimensions (l1
p
, l2

p
, and l3

p
) 

is needed to obtain the target temperature distribution. Therefore, in designing a cascade 

module, it is not satisfactory to simply select high-performance TE materials; the 

structure should also be designed with the optimal length, cross-sectional area, and 

number of p-n pairs. 

 

3.2 TWO-DIMENSIONAL NUMERICAL EVALUATION 

In the 1D analytical procedure, both the number of p-n pairs and the TE element 

dimensions were optimized. However, the dimension optimization is not ideal because, 

although l is optimized, both a and d are not individually determined. In order to 

optimize these parameters, a two- or three-dimensional analysis is effective. 
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In this section, we focus on two-stage (m = 2) cascade modules to simplify the 

problem. A temperature range of 300–800 K is assumed for comparison with the 1D 

results, and Case 1 is used. In the numerical analysis, we also include electrodes and 

insulators made of copper (0.2 mm thick) and alumina (0.6 mm thick), respectively. 

Their properties are taken from Ref. [18]. Both thermal and electric contact resistances 

are ignored. The arrangement of p-n elements and the size of empty space between the 

elements were determined and fixed by reference to a commercial TE module. 

3.2.1 Comparison of the models 

Before optimizing a and d, we compare the numerical results with the 1D results by 

taking Module A (a conventional structure; n1 = n2 = 2) as an example. The optimized 

TE element dimensions from the 1D analysis are l1
p
 = 0.450 mm and l2

p
 = 0.744 mm. 

Figure 4 shows the voltage-current and power-current characteristics of Module A 

calculated using both the 1D analytical model and the 2D numerical model. The 

maximum power results of the analytical and numerical models are 73.5 mW and 68.1 

mW, respectively. To discuss this difference, we examine the calculated temperature 

and electric potential distributions in both models. 
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Figure 5 shows the temperature, electric potential, and current density distributions 

for Module A when maximum power is generated. The surface temperatures T11 and 

T12 of the insulator are shown in Fig. 5 (a) as a function of the horizontal position x. 

The temperature is homogeneously distributed along the x direction, as shown in the 

contour plot; however, T11 and T12 are not completely constant due to the difference in 

the thermal conductivities of the TE elements and the Peltier effect that generates and 

absorbs heat according to the current at the junctions. The voltage drop caused by the 

current through electrodes is negligible, as shown in Fig. 5 (b), although the current 

density increases at the electrodes. 

The temperature difference between T11 and T12 (T11–T12) was approximately 5 K, 

which is not identical to that obtained in the 1D model because, in that calculation, the 

thermal resistance in the insulators was ignored, and it was assumed that no 

temperature difference exists inside the insulators. Although the insulators are thin and 

have a thermal conductivity that is 10 times higher than the TE materials, the TE 

power is sensitive to the temperature difference and drops drastically even if the 

temperature difference between both sides of the TE element decreases slightly due to 

the thermal resistance of the insulators. Therefore, it is important to minimize the 



 16 

thermal resistance by reducing the insulator thickness and using insulators with a 

higher thermal conductivity. 

3.2.2 Optimization of the cross-sectional area and leg length 

Figure 6 shows the power obtained at n1 = 2 as a function of n2; Module A 

corresponds to n2 = 2. The maximum power is obtained at n2 = 6, where l1
p
 = 0.462 mm 

and l2
p
 = 0.220 mm. Based on these 1D results, two possible structures (Module B and 

Module C), which are equivalent in the 1D analysis, were constructed numerically. The 

first stage was fixed at n1 = 2 as the hot side of the two modules. Both models use six p-

n pairs in the second stage (n2 = 6), but the first and second stages of Module B have the 

same width, while the two stages have different widths in Module C. 

Figure 7 shows the temperature, electric potential, and current density distributions in 

Module B, and Fig. 8 shows the corresponding results in Module C. Table 3 lists the 

dimensions of these modules and their performance. 

Module C exhibited a higher power than that of Module B, and we focus on the 

surface temperatures T11 and T12 of the intermediate insulators in Modules B and C to 

study this difference in detail. The temperature difference was approximately 5 K in 

Module B, as in the case of Module A, while only a small temperature difference was 
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calculated in Module C; T11 in Module C was lower than that of both Modules A and B. 

Because the heat transfer area of the intermediate insulator in Module C is larger than 

those of Modules A and B, the heat transfer rate from the hot to cold side is increased. 

As a result, E1 in Module C was higher than that in Module B, as shown in Table 3. 

Furthermore, in Module C, it was found that the temperature at the hot side of the 

second stage, T12, exceeded the target temperature of 500 K. Thus, E2 in Module C was 

also higher than that in Module B, although T12 decreases with increasing distance from 

the module center in the x direction. These high E1 and E2 values in Module C resulted 

in the higher power.  

From this, we can conclude that the 1D heat transfer model was highly simplified, but 

partly reasonable, especially when each cascade module stage has a uniform width (e.g., 

Modules A and B). However, we should also consider the thermal resistance of the 

insulator to analyze the module performance in more detail. 

As listed in Table 3, the power of Modules B and C is superior to that of Module A, 

but it is difficult to differentiate between Modules B and C as their performance will 

depend on the operating conditions and circumstances. 

Module B has an advantage of a compact structure; if there is surplus heat, it would 

be better to fabricate a larger number of modules for the TE generating system without 
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using a large amount of material per module. Furthermore, it is possible that Module B 

achieves a higher power because the thermal resistance of the insulators can be reduced 

in this design. 

Module C will be effective when the cooling capability is limited because the cooling 

surface area in the second stage is larger than that of Module B. In this work, 

calculations were performed under a constant temperature condition, which assumes 

that an ideal heat sink with an infinitely large heat capacity is used. Considering the 

practical limitations in the cooling capacity, however, the temperature at the cold side 

may rise above the target temperature in the case of a small cooling area, as in Modules 

A and B. 

Module C is thus the most practical for the purposes of obtaining the highest power 

from the heat source with a finite heat capacity. It is necessary that we have to optimize 

the cascade structure to the given external circumstances including the heat source size, 

heat sink, and material properties. Numerical simulation is one effective method for 

optimizing the module structure in detail. 
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CONCLUSIONS 

This work reported a calculation method and results for the optimization of cascade 

structures and compared 1D analytical and 2D numerical calculations. 

The TE material dimensions and number of p-n pairs were optimized using 1D 

analysis, and the optimal condition depended on the particular combination and 

performance of the TE materials. When TE materials with a higher performance were 

used in the cascade module, the optimization procedure became crucial and was 

effective in enhancing the conversion efficiency. 

Numerical calculations based on the finite volume method were used to evaluate the 

efficiencies of two possible modules, Modules B and C, which are equivalent in the 1D 

analysis. The powers of Modules B and C were calculated to be 93.6 mW and 98.4 mW, 

respectively, and were superior to that of Module A (P = 68.1 mW). The characteristics 

of the two models were examined. 

We emphasized the importance of module design as well as development of TE 

materials. It is expected that this work will encourage to open up new application areas 

which recover unused heat, in particular, over a wide temperature range such as 1200-

300 K. 
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Table 1  Choice of thermoelectric materials for three-stage cascade-type modules 

Table 2  Optimized parameters and their performance 
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Figure Captions 

Fig. 1  Illustration of a cascade-type thermoelectric module 

Fig. 2  Workflow of the numerical calculation 

Fig. 3  Contour plots of the efficiency against the number of p-n pairs of the second and third stages in a 

three-stage module at n1 = 100; (a) Case 1, (b) Case 2, and (c) Case 3 

Fig. 4  Voltage-current and power-current characteristics of Module A calculated using a one-

dimensional analytical model (1D) and numerical model (2D) 

Fig. 5  (a) Temperature profile, (b) electric potential profile, and (c) current density profile of Module A 

Fig. 6  Power as a function of the number of p-n pairs of the second stage in a two-stage cascade module 

at n1 = 2 

Fig. 7  (a) Temperature profile, (b) electric potential profile, and (c) current density profile of Module B 

Fig. 8  (a) Temperature profile, (b) electric potential profile, and (c) current density profile of Module C 
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Table 1  Choice of thermoelectric materials for three-stage cascade-type modules 

 Temperature range Case 1 Case 2 Case 3 

Ca3Co4O9 (p) 1200–800 K ZT = 0.45 ZT = 0.45 ZT = 0.71 

Ba8Al16Si30 (n) 1200–800 K ZT = 0.40 ZT = 0.40 ZT = 0.47 

MnSi1.73 (p) 800–500 K ZT = 0.27 ZT = 0.27 ZT = 0.52 

Mn3Si4Al3 (n) 800–500 K ZT = 0.15 – ZT = 0.56 

TiS2 (n) 800–500 K – ZT = 0.29 – 

Bi2Te3 (p) 500–300 K ZT = 0.93 ZT = 0.93 ZT = 0.93 

TiS2 (n) 500–300 K ZT = 0.16 ZT = 0.16 – 

SrTiO3 (n) 500–300 K – – ZT = 1.0 
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Table 2  Optimized parameters and their performance 

Case n1 n2 n3 l1
p
 (mm) l2

p
 (mm) l3

p
 (mm) I (A) P (W)  (%) 

1-A 100 100 100 0.491 0.440 0.722 0.447 6.37 7.97 

1-B 100 95 299 0.501 0.470 0.212 0.409 7.77 9.72 

2-A 100 100 100 0.489 0.425 0.717 0.456 6.75 8.43 

2-B 100 100 297 0.501 0.431 0.212 0.410 8.10 10.1 

3-A 100 100 100 0.486 0.380 0.781 0.784 12.7 15.9 

3-B 100 114 275 0.517 0.333 0.201 0.670 15.7 19.6 
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Table 3  Dimensions of modules and their performance 

 n1 n2 d1 (mm) d2 (mm) I (A) E1 (mV) E2 (mV) P (mW)  (%) 

Module A 2 2 3.07 1.27 0.491 59.0 79.7 68.1 4.40 

 1D analysis 2 2 – – 0.510 61.0 83.0 73.5 4.59 

Module B 2 6 2.99 1.43 0.397 84.8 151 93.6 6.04 

Module C 2 6 2.99 4.29 0.407 86.7 155 98.4 6.21 

1D analysis 2 6 – – 0.412 88.0 157 101 6.31 
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Fig. 1  Illustration of a cascade-type thermoelectric module 

  



 27 

 

Fig. 2  Workflow of the numerical calculation 
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Fig. 3  Contour plots of the efficiency against the number of p-n pairs of the second and third stages in a 

three-stage module at n1 = 100; (a) Case 1, (b) Case 2, and (c) Case 3 
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Fig. 4  Voltage-current and power-current characteristics of Module A calculated using a one-

dimensional analytical model (1D) and numerical model (2D) 
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Fig. 5  (a) Temperature profile, (b) electric potential profile, and (c) current density profile of Module A 
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Fig. 6  Power as a function of the number of p-n pairs of the second stage in a two-stage cascade module 

at n1 = 2 
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Fig. 7  (a) Temperature profile, (b) electric potential profile, and (c) current density profile of Module B 
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Fig. 8  (a) Temperature profile, (b) electric potential profile, and (c) current density profile of Module C 

 

 


