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SIMPLE-ROOT BASES FOR SHI ARRANGEMENTS

TAKURO ABE AND HIROAKI TERAO

Abstract. In his affirmative answer to the Edelman-Reiner conjecture, Yoshi-

naga proved that the logarithmic derivation modules of the cones of the ex-
tended Shi arrangements are free modules. However, we know very little about
the bases themselves except their existence. In this article, we prove the unique
existence of two distinguished bases which we call the simple-root basis plus

(SRB+) and the simple-root basis minus (SRB−). They are characterized by
nice divisibility properties relative to the simple roots.

1. Introduction

Let V be an ℓ-dimensional Euclidean space. Let Φ be an irreducible (crystal-
lographic) root system in the dual space V ∗. Fix a set Φ+ of positive roots
throughout this article. For any α ∈ Φ+ and j ∈ Z, the affine hyperplane

Hα,j := {x ∈ V | α(x) = j}

is a parallel translation of Hα := Hα,0. The arrangement A(Φ) := {Hα | α ∈ Φ+}
is called the crystallographic arrangement of the type Φ.

Definition 1.1. Let k ∈ Z>0. An extended Shi arrangement Shik of the type
Φ is an affine arrangement defined by

Shik := Shik(Φ+) := {Hα,j | α ∈ Φ+, j ∈ Z, −k + 1 ≤ j ≤ k}.

The extended Shi arrangements for k = 1 were introduced by J.-Y. Shi [12, 13] in
his study of the Kazhdan-Lusztig representation theory of the affine Weyl groups.
For k ≥ 1, they were studied in [14, 6] among others. Recall that the cone [10,
Definition 1.15]

Sk := Sk(Φ+) := cShik

over Shik is a central arrangement in an (ℓ + 1)-dimensional Euclidean space
E := Rℓ+1. (Let z be the last coordinate of E and embed V into E as the affine
hyperplane defined by z = 1.) Let S(E∗) be the symmetric algebra of the dual
space E∗ of E. Let Der(S(E∗)) denote the S(E∗)-module of derivations of S(E∗)
to itself:

Der(S(E∗)) := {θ : S(E∗) → S(E∗) | θ is R-linear and θ(fg) = fθ(g) + gθ(f)

for any f, g ∈ S(E∗)}.
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A derivation θ ∈ Der(S(E∗)) is said to be homogeneous of degree d if θ(α) is
a homogeneous polynomial of degree d for any α ∈ E∗ unless θ(α) = 0. Choose
αH ∈ E∗ with H = ker(αH) ∈ Sk. Define

D0(Sk) := {θ ∈ Der(S(E∗)) | θ(αH) ∈ αHS(E∗) for each H ∈ Sk, θ(z) = 0}.

In [8], Edelman and Reiner conjectured that D0(Sk) is a free S(E∗)-module for
each k ≥ 1. Yoshinaga verified this conjecture in [20]. Thus the module D0(Sk)
has bases over S(E∗). However, we know very little about the bases other than
their existence and degrees. In this article, we prove the unique existence of two
distinguished homogeneous bases SRB+ and SRB− for D0(Sk) with the following
nice divisibility properties relative to the simple system ∆ := {α1, . . . , αℓ} ⊂ V ∗.

Theorem 1.2. Let h be the Coxeter number of Φ.
(1) There exists a homogeneous basis φ+

1 , . . . , φ
+
ℓ of the same degree kh for

D0(Sk) such that φ+
i (αj + kz) is divisible by αj + kz whenever i ̸= j. (This basis

is called a simple-root basis plus (SRB+).)
(2) There exists a homogeneous basis φ−

1 , . . . , φ
−
ℓ of the same degree kh for D0(Sk)

such that φ−
i is divisible by αi − kz for any i. (This basis is called a simple-root

basis minus (SRB−).)

This is an existence theorem. Actually we do not have a uniform method to
construct simple-root bases at this writing. The following is the uniqueness theorem
for the simple-root bases:

Theorem 1.3. (1) Suppose that φ+
1 , . . . , φ

+
ℓ form a simple-root basis plus. If

derivations ϕ+
1 , . . . , ϕ

+
ℓ are a homogeneous basis for D0(Sk) such that each ϕ+

i (αj+
kz) is divisible by αj + kz whenever i ̸= j, then there exist nonzero constants
c+1 , . . . , c

+
ℓ satisfying ϕ+

i = c+i φ
+
i for any i.

(2) Suppose that φ−
1 , . . . , φ

−
ℓ form a simple-root basis minus. If derivations ϕ−

1 , . . . , ϕ
−
ℓ

are a homogeneous basis for D0(Sk) such that each derivation ϕ−
i is divisible by

αi − kz for any i, then there exist nonzero constants c−1 , . . . , c
−
ℓ satisfying ϕ−

i =

c−i φ
−
i for any i.

Only for k = 1, case-by-case constructions of the SRB− are given when the root
system is either of the type Aℓ, Bℓ, Cℓ, Dℓ or G2 in [16, 15, 9].

The organization of this article is as follows. In Section 2, we review a recent re-
finement [5] of Yoshinaga’s freeness criterion [20] before proving the two key results
(Propositions 2.4 and 2.6) which we apply in Section 3 when we prove Theorems
1.2 and 1.3. We also characterize the simple roots in terms of the freeness of
deleted/added Shi arrangements in Theorem 3.6. In Section 4, we will describe
a unique W -invariant derivation (k-Euler derivation) related to the Catalan ar-
rangement in terms of the SRB+. The 0-Euler derivation coincides with the classical
Euler derivation.

Acknowledgements. The first author is partially supported by JSPS Grants-
in-Aid for Young Scientists (B) No. 24740012. The second author is partially
supported by JSPS Grants-in-Aid, Scientific Research (A) No. 24244001.

2. Freeness criteria

In the rest of the article we use [10] as a general reference.
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Let C be a central arrangement in an (ℓ+1)-dimensional vector space E. Choose
αH ∈ E∗ with kerαH = H ∈ C. Let m be a multiplicity of C:

m : C → Z>0.

Let S(E∗) be the ring of polynomial functions on E. Define an S(E∗)-module

D(C,m) := {θ ∈ Der(S(E∗)) | θ(αH) ∈ α
m(H)
H S(E∗) for each H ∈ C}.

When D(C,m) is a free S(E∗)-module, we say that the multiarrangement (C,m) is
free. We say that C is a free arrangement if (C,1) is free. Here 1 indicates the
constant multiplicity whose value is equal to one. When (C,m) is free, exp(C,m)
of exponents denotes the set of degrees of homogeneous basis for D(C,m). We
simply write exp(C) instead of exp(C,1) if C is a free arrangement.

For a fixed hyperplane H0 ∈ C, define a multiarrangement (C′′, z), which we call
the Ziegler restriction [21], by

C′′ := {H0 ∩K | K ∈ C′ := C \ {H0}}, z(X) := |{K ∈ C′ | X = K ∩H0}|,

where C′′ is an arrangement in H0 and X ∈ C′′. For the intersection lattice L(C)
[10, Definition 2.1] of C and any Y ∈ L(C) define the localization CY of C at Y by
CY := {H ∈ C | Y ⊆ H}. Let us present a recent refinement of Yoshinaga’s freeness
criterion in [20]:

Theorem 2.1 ([5]). Suppose ℓ + 1 > 3. For a central arrangement C and an
arbitrary hyperplane H0 ∈ C, the following two conditions are equivalent:

(1) C is a free arrangement,
(2) (2-i) the Ziegler restriction (C′′, z) is free and (2-ii) CY is free for any Y ∈

L(C) such that Y ⊂ H0 with codimH0 Y = 2.

For a fixed hyperplane H0 ∈ C, we may choose a basis x1, x2, . . . , xℓ, z for E∗

so that the hyperplane H0 is defined by the equation z = 0. Then the Ziegler
restriction (C′′, z) is a multiarrangement in H0. Let

D0(C) := {θ ∈ D(C) | θ(z) = 0}.

Then

D(C) = SθE ⊕D0(C),
where θE is the Euler derivation. Note that D0(C) is a free S(E∗)-module if and
only if C is a free arrangement. When C is a free arrangement, let exp0(C) denote
the set of degrees of homogeneous basis for D0(C). Note that the set exp0(C) does
not depend upon the choice of H0. When we describe exp0(C), we will use the
notation an instead of listing a, . . . , a (n times). Let D0(C)p denote the vector
space consisting of the homogeneous derivations in D0(C) of degree p (and the zero
derivation).

Theorem 2.2 (Ziegler [21]). The Ziegler restriction map

res : D0(C) → D(C′′, z)

defined by setting z = 0 is surjective if C is a free arrangement.

The following theorem was proved in [4] using the shift isomorphism of Coxeter
multiarrangements:
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Theorem 2.3 ([4], Corollary 12). Let A be a Coxeter arrangement in an ℓ-
dimensional Euclidean space. For a {0, 1}-valued multiplicity m : A → {0, 1}
and an integer k > 0, the following conditions are equivalent:

(1) a multiarrangement (A,m) is free with exponents (e1, . . . , eℓ).
(2) a multiarrangement (A, 2k+m) is free with exponents (kh+e1, . . . , kh+eℓ).
(3) a multiarrangement (A, 2k−m) is free with exponents (kh−e1, . . . , kh−eℓ).

Now we go back to the situation in Section 1: let Φ,Φ+ and ∆ be an irreducible
root system, the set of postive roots, and the set of simple roots respectively. The
following two Propositions 2.4 and 2.6 are keys to our proofs of Theorems 1.2 and
1.3. They are dual to each other.

Proposition 2.4. For any subset Γ of the simple system ∆, the arrangement

B+
Γ := B+

Γ (Φ
+) := Sk ∪ {cHα,−k | α ∈ Γ}

is a free arrangement with

exp0(B+
Γ ) = ((kh+ 1)|Γ|, (kh)ℓ−|Γ|).

Proof. Case 1. When ℓ = 2, Φ is of the type either A2, B2 or G2. Then exp0(Sk) =
((kh)2) = (kh, kh) and ∆ = {α1, α2}. For an affine 2-arrangement A and an affine
line H0, define

A ∩H0 := {K ∩H0 | K ∈ A,K ̸= H0}.
Then, by directly counting intersection points, we get the following equalities:

|Shik ∩Hα,−k| = kh (α ∈ ∆),

|(Shik ∪ {Hα1,−k}) ∩Hα2,−k| = kh+ 1.

Thus we may verify the statement by applying the addition theorem [17] [10, The-
orem 4.49] to Sk for the types of A2, B2 and G2.

Case 2. Suppose that ℓ ≥ 3. We will apply Theorem 2.1 by verifying the two
conditions (2-i) and (2-ii).

(2-i) Note that the Ziegler restriction of B+
Γ to the hyperplane H∞ at infinity

coincides with (A(Φ), z+Γ ), where

z+Γ (Hα) = |{j | cHα,j ∈ B+
Γ }| =

{
2k + 1 if α ∈ Γ

2k otherwise
(α ∈ Φ+).

If Γ is empty, then z+Γ = z+∅ ≡ 2k. Note that Γ is linearly independent because it
is a set consisting of simple roots. Thus the arrangement

A(Γ) := {Hα | α ∈ Γ}
is a free (Boolean) subarrangement of A(Φ). Let χΓ be the characteristic function
of A(Γ) in A(Φ):

χΓ(Hα) =

{
1 if α ∈ Γ

0 otherwise
(α ∈ Φ+).

Since z+Γ = z+∅ + χΓ, we may apply Theorem 2.3 to conclude that (A(Φ), zΓ) is a

free multiarrangement with exponents ((kh+ 1)|Γ|, (kh)ℓ−|Γ|).
(2-ii) We will prove that (B+

Γ )Y is free for any Y ∈ L(B+
Γ ) such that Y ⊂ H∞ with

codimH∞ Y = 2. Define X to be the unique subspace of V such that X ∈ L(A(Φ))
and cX ∩H∞ = Y . Let X⊥ := {α ∈ V ∗ | α|X ≡ 0}. Then ΦX := Φ∩X⊥ is also a



SIMPLE-ROOT BASES FOR SHI ARRANGEMENTS 5

(not necessarily irreducible) root system in X⊥. The set of positive roots of ΦX is
induced from Φ+: Φ+

X = Φ+ ∩ΦX . It is not hard to see (e.g. [3, Lemma 3.1]) that

(Sk)Y = c
(
Shik(Φ+

X)× ∅X
)
,

where ∅X denotes the empty arrangement in X. Since dimX⊥ = 2, ΦX is either
of the type A1 ×A1, A2, B2 or G2.

Case 2.1. When ΦX is of the type A1 × A1, the arrangement Shik(Φ+
X) is a

product of two affine 1-arrangements. Thus any subarrangement of (Sk)Y is a free
arrangement. In particular, (B+

Γ )Y is a free arrangement.
Case 2.2. Suppose that ΦX is of the type either A2, B2 or G2. Suppose that

α ∈ ΦX is a simple root of Φ. Then α is also a simple root of ΦX because it cannot
be expressed as a sum of two positive roots of ΦX . Thus ΦX ∩Γ consists of simple
roots of ΦX . Therefore

(B+
Γ )Y = (Sk)Y ∪ {cHα,k | α ∈ ΦX ∩ Γ}

= c
((

Shik(Φ+
X) ∪ {Hα,k | α ∈ ΦX ∩ Γ}

)
× ∅X

)
is a free arrangement because of Case 1.

Now we apply Theorem 2.1 to complete the proof. □
Corollary 2.5. The vector space D0(B+

Γ )kh is (ℓ− |Γ|)-dimensional.

Proposition 2.6. For any subset Γ of the simple system ∆, the arrangement

B−
Γ := B−

Γ (Φ
+) := Sk \ {cHα,k | α ∈ Γ}

is a free arrangement with

exp0(B−
Γ ) = ((kh− 1)|Γ|, (kh)ℓ−|Γ|).

Proof. Case 1. When ℓ = 2, Φ is of the type either A2, B2 or G2. Let exp0(Sk) =
((kh)2) and ∆ = {α1, α2}. Then, by directly counting intersection points, we get
the following equalities:

|Shik ∩Hα,k| = kh (α ∈ ∆),

|(Shik \ {Hα1,k}) ∩Hα2,k| = kh− 1.

Thus we may verify the statement by applying the deletion theorem [17] [10, The-
orem 4.49] to Sk for the types of A2, B2 and G2.

The rest is exactly the same as the proof of Proposition 2.4 if one replaces B+
Γ ,

kh+1, H•,−k, 2k+1, ∪, z+Γ , z
+
Γ +χΓ with B−

Γ , kh− 1, H•,k, 2k− 1, \, z−Γ , z
−
Γ −χΓ

respectively. □
Corollary 2.7. The vector space D0(B−

Γ )kh−1 is |Γ|-dimensional.

3. Proof of main results

We will prove Theorems 1.2 and 1.3 in this section. Fix k ∈ Z>0 throughout in
the rest of this article. Consider

D(A(Φ), 2k) = {θ ∈ Der(S(V ∗)) | θ(α) ∈ α2kS(V ∗) for each α ∈ Φ+}.
In [20], Yoshinaga proved the Edelman-Reiner conjecture [8] by verifying the sur-
jectivity of the Ziegler restriction

res : D0(Sk) −→ D(A(Φ), 2k)
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defined by setting z = 0. Since the multiarrangement (A(Φ), 2k) is free with expo-
nents (kh, kh, . . . , kh) by [18], the central arrangement Sk is free with exponents
(1, kh, kh, . . . , kh). Thus the homogeneous part

res : D0(Sk)kh −→ D(A(Φ), 2k)kh

of degree kh of the Ziegler restriction map is a linear isomorphism.
We will first see that V and D(A(Φ), 2k)kh are W -isomorphic. Let F be the

field of quotients of S = S(V ∗) = R[x1, . . . , xℓ]. Recall a primitive derivation
D ∈ Der(F ) associated with A(Φ): D satisfies

D(Pj) =

{
c ∈ R× if j = ℓ ,

0 if 1 ≤ j ≤ ℓ− 1 .

Here P1, . . . , Pℓ are basic invariants of the invariant subring SW with

2 = degP1 < degP2 ≤ · · · ≤ degPℓ−1 < degPℓ = h.

Then the choice of D has the ambiguity of nonzero constant multiples.
Consider the Levi-Civita (or Riemannian) connection with respect to the stan-

dard and W -invariant inner product I (e.g., see [7, 3.6]):

∇ : Der(F )×Der(F ) −→ Der(F ), (ξ, η) 7→ ∇ξη.

Note that

∇ξη = ∇ξ

ℓ∑
i=1

fi(∂/∂xi) =
ℓ∑

i=1

ξ(fi)(∂/∂xi)

for ξ ∈ Der(F ) and η :=
∑ℓ

i=1 fi(∂/∂xi) ∈ Der(F ) because ∇ξ(∂/∂xi) = 0 for 1 ≤
i ≤ ℓ. Consider T := R[P1, . . . , Pℓ−1]-linear covariant derivative ∇D : Der(F ) →
Der(F ). By [2] it induces a T -linear bijection

∇D : D(A(Φ), 2k + 1)W −̃→D(A(Φ), 2k − 1)W (k > 0).

The covariant derivative ∇D was introduced by K. Saito (e.g. [11]) to study the
flat structure (or the Frobenius manifold structure) of the orbit space V/W . Let

θE :=
∑ℓ

i=1 xi(∂/∂xi) denote the Euler derivation. Since θE ∈ D(A(Φ), 1)W , one
has

∇−k
D θE ∈ D(A(Φ), 2k + 1)W

which plays a principal role in this section.
For any v ∈ V , there exists a unique derivation ∂v ∈ Der(S)0 of degree zero such

that

∂v(α) := ⟨α, v⟩ (α ∈ V ∗).

Thus we may identify V with Der(S)0 by the W -isomorphism

V −→ Der(S)0

defined by v 7→ ∂v.
Let Ω(S) be the S-module of regular one-forms:

Ω(S) = S(dx1)⊕ · · · ⊕ S(dxℓ).

Then Ω(S) =
⊕

p≥0 Ω(S)p is a graded S-module where

Ω(S)p :=

{
ℓ∑

i=1

fi dxi | fi ∈ Sp for 1 ≤ i ≤ ℓ

}
.
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We may identify V ∗ with Ω(S)0 as W -modules by the bijection α 7→ dα.
Recall the W -invariant dual inner product I∗ : V ∗ × V ∗ → R. Define a W -

isomorphism

I∗ : Ω(S)0 → Der(S)0

by (I∗(dα)) (β) := I∗(dα, dβ) (α, β ∈ V ∗).
When a W -isomorphism Ξ : Der(S)0 → D(A(Φ), 2k)kh is given, the new map

Θ∗ is defined by the diagram:

D0(Sk)kh

res

˜
��

D(A(Φ), 2k)kh

⟳

V ∗ = Ω(S)0
I∗

//

Ξ∗

˜
==|||||||||||||||||||

Θ∗ ⟳

GG�������������������������������������
W -iso.

Der(S)0 = V.

˜Ξ

aaCCCCCCCCCCCCCCCCCCCC

Θ⟳

WW/////////////////////////////////////W -iso.

Proposition 3.1. (1) For any primitive derivation D, define

ΞD : Der(S)0−→D(A(Φ), 2k)kh

by

ΞD(∂v) := ∇∂v∇−k
D θE (v ∈ V ).

Then ΞD is a W -isomorphism.
(2) Conversely, for any W -isomorphism Ξ : Der(S)0−̃→D(A(Φ), 2k)kh, there exists
a unique primitive derivation such that Ξ = ΞD.

Proof. (1) was proved by Yoshinaga in [19]. (See [18] also.) (2) follows from (1)
and Schur’s lemma. □

Remark 3.2. Note that the arrangement Sk is not W -stable. Therefore the ℓ-
dimensional vector space D0(Sk)kh is not naturally a W -module, while the ℓ-dimensional
vector spaces V and D(A(Φ), 2k)kh are both W -modules.

Proof of Theorem 1.2. Let ∆ = {α1, . . . , αℓ} be the set of simple roots. Then ∆ is a
basis for V ∗. Let {α∗

1, . . . , α
∗
ℓ} be the basis for V which is dual to ∆:

⟨
αi, α

∗
j

⟩
= δij

(Kronecker’s delta). Then ∂α∗
i
(αj) = δij . Fix a primitive derivation D and let

Ξ = ΞD.
(1) Define

(3.1) φ+
i := Θ(∂α∗

i
) (1 ≤ i ≤ ℓ).
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Then we have, for i ̸= j,[
res(φ+

i )
]
(αj) =

[
res(Θ(∂α∗

i
))
]
(αj) =

[
Ξ(∂α∗

i
)
]
(αj) = (∇∂α∗

i
∇−k

D θE)(αj)

= ∂α∗
i

((
∇−k

D θE
)
(αj)

)
∈ α2k+1

j S

because ∂α∗
i
(αj) = 0. Define Γ+

i := ∆ \ {αi}. Then we have the following commu-
tative diagram

D0(Sk)kh
res˜ // D(A(Φ), 2k)kh

D0(B+

Γ+
i

)kh
res˜ //

∪
D(A(Φ), z+

Γ+
i

)kh

∪
because of Proposition 2.4, Theorem 2.2 and the horizontal linear isomorphisms
in the diagram above. Since φ+

i ∈ D0(S
k)kh and res

(
φ+
i

)
∈ D(A(Φ), z+

Γ+
i

)kh,

we conclude that φ+
i ∈ D0(B+

Γ+
i

)kh by chasing the diagram above. Therefore the

derivations φ+
1 , . . . , φ

+
ℓ form an SRB+ because they form a basis for D0(Sk)kh and

each φ+
i (αj + kz) is divisible by αj + kz whenever i ̸= j.

(2) Define

(3.2) φ−
i := Θ∗(dαi)) (1 ≤ i ≤ ℓ).

Then we have

res(φ−
i ) = res (Θ∗(dαi)) = Ξ(I∗(dαi)) = ∇I∗(dαi)∇

−k
D θE .

Let si denote the orthogonal reflection with respect to αi. Since si(dαi) = −dαi,
we have

si(res(φ
−
i )) = −res(φ−

i ).

Express

res(φ−
i ) =

ℓ∑
p=1

fp∂α∗
p

(fp ∈ S).

Recall si(∂α∗
p
) = ∂α∗

p
whenever p ̸= i. Thus we have si(fp) = −fp whenever p ̸= i.

Therefore fp is divisible by αi whenever p ̸= i. We also know that

fi =
[
res(φ−

i )
]
(αi) = (I∗(dαi))

(
(∇−k

D θE)(αi)
)

is divisible by α2k
i because ∇−k

D θE(αi) is divisible by α2k+1
i . Therefore we conclude

that φ−
i is divisible by αi for any i. Define Γ−

i := {αi}. Then we have the following
commutative diagram

D0(Sk)kh
res˜ // D(A(Φ), 2k)kh

(αi − kz) ·D0(B−
Γ−
i

)kh−1
res˜ //

∪
αi ·D(A(Φ), z−

Γ−
i

)kh−1

∪
because of Proposition 2.6, Theorem 2.2 and the horizontal linear isomorphisms in
the diagram above. Since φ−

i ∈ D0(S
k)kh and

res
(
φ−
i

)
∈ αi ·D(A(Φ), z−

Γ−
i

)kh−1,
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we may conclude φ−
i ∈ (αi − kz) · D0(B−

Γ−
i

)kh−1 by chasing the diagram above.

Therefore the derivations φ−
1 , . . . , φ

−
ℓ form an SRB− because they form a basis for

D0(S−
k )kh and each φ−

i is divisible by αi − kz. □

Proof of Theorem 1.3. (1) Assume that φ+
1 , . . . , φ

+
ℓ form an SRB+. Then

φ+
i ∈ D0(B+

Γ+
i

)kh.

Thus (1) follows from

dimD0(B+

Γ+
i

)kh = 1

which is a consequence of Corollary 2.5 because |Γ+
i | = ℓ− 1.

(2) Assume that φ−
1 , . . . , φ

−
ℓ form an SRB−. Then

φ−
i ∈ (αi − kz)D0(B−

Γ−
i

)kh−1.

Thus (2) follows from the equality

dimD0(B−
Γ−
i

)kh−1 = 1

which is a consequence from Corollary 2.7 because |Γ−
i | = 1. □

Remark 3.3. We have just proved the existence of simple root bases. It is, however,
not easy to find an SRB± because the Ziegler restriction isomorphism

res : D0(Sk)kh−̃→D(A(Φ), 2k)kh

is hard to invert.

Example 3.4. Let Φ be a root system of the type A2. Let ∆ := {α1, α2} be a
simple system. The Coxeter number h is equal to 3. Let k = 1. In this case,

φ−
1 := −(1/2)(α1 − z)

{
α1(α1 + 2α2 − z)∂α∗

1
+ α2(α2 − z)∂α∗

2

}
,

φ−
2 := (1/2)(α2 − z)

{
α1(α1 − z)∂α∗

1
+ α2(2α1 + α2 − z)∂α∗

2

}
form an SBR- for D0(S1). They are the inverse images of

−(1/2)α1

{
α1(α1 + 2α2)∂α∗

1
+ α2

2 ∂α∗
2

}
,

(1/2)α2

{
α2
1 ∂α∗

1
+ α2(2α1 + α2)∂α∗

2

}
respectively by the Ziegler restriction isomorphism

res : D0(S1)3−̃→D(A(Φ), 2)3.

For k ≥ 2, the SRB± for the type A2 are explicitly obtained in [1]. For ℓ ≥ 2 and
k = 1, we need the Bernoulli polynomials to explicitly describe the SRB± for the
type Aℓ [16].

The derivations φ+
1 , . . . , φ

+
ℓ (or φ−

1 , . . . , φ
−
ℓ ) defined by (3.1) (resp. (3.2)) are

called the standard simple-root basis plus (SSRB+) (resp. standard simple-
root basis minus (SSRB−)). Both SSRB+ and SSRB− have no ambiguity
at all when a primitive derivation D is fixed. The following proposition gives a
relationship between the SSRB+ and the SSRB−:
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Proposition 3.5. Fix a primitive derivation D. Suppose that φ+
1 , . . . , φ

+
ℓ and

φ−
1 , . . . , φ

−
ℓ are the SSRB+ and the SSRB− respectively. Then

φ−
i =

ℓ∑
p=1

I∗(αi, αp)φ
+
p (1 ≤ i ≤ ℓ).

Proof. For each i, one has

φ−
i = Θ∗(dαi) = Θ(I∗(dαi)) = Θ(

ℓ∑
p=1

I∗(dαi, dαp)∂α∗
p
)

=

ℓ∑
p=1

I∗(dαi, dαp)Θ(∂α∗
p
) =

ℓ∑
p=1

I∗(αi, αp)φ
+
p .

□

The following proposition asserts that the simple roots can be characterized by
the freeness of an added/deleted Shi arrangement:

Theorem 3.6. Let α ∈ Φ+. Then
(1) the arrangement Sk ∪ {cHα,−k} is a free arrangement if and only if α is a
simple root, and
(2) the arrangement Sk \{cHα,k} is a free arrangement if and only if α is a simple
root.

Proof. (1) By Proposition 2.4, the “if part” is already proved. Assume that α ∈ Φ+

is a non-simple root. We will prove that Sk∪{cHα,−k} is not free. We may express
α = β1 + β2 with βi ∈ Φ+ (i = 1, 2). Let Hi be the hyperplane defined by
βi = 0 (i = 1, 2). Then X := H1 ∩H2 is of codimension two in V because of basic
properties of the root systems. As in the proof of Proposition 2.4, consider the two-
dimensional root system ΦX = Φ ∩X⊥. Note that ΦX is not of the type A1 × A1

because {α, β1, β2} ⊆ ΦX . Recall that the localization
(
Sk ∪ {cHα,−k}

)
Y

is free if

Sk ∪ {cHα,−k} is free. In the root system ΦX , α cannot be a simple root since α
is a sum of two positive roots β1 and β2. Thus we may assume that Φ is a two-
dimensional root system without loss of generality. In this case the arrangement
Sk ∪ {cHα,−k} is not free because of the addition theorem and the equality

|Shik ∩Hα,−k| = kh+ 1 (α ̸∈ ∆),

which can be verified by directly counting intersection points.
(2) Exactly the same as the proof of (1) if one replaces Proposition 2.4, ∪, kh+1,

H•,−k, addition theorem with Proposition 2.6, \, kh − 1, H•,k, deletion theorem
respectively. □

4. The k-Euler derivations

Let k ∈ Z≥0. An extended Catalan arrangement Catk of the type Φ is an
affine arrangement defined by

Catk := Catk(Φ+) := {Hα,j | α ∈ Φ+, j ∈ Z, −k ≤ j ≤ k}.

Its cone

Ck := Ck(Φ+) := cCatk
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was proved to be a free arrangement with

exp0(Ck) = (kh+ d1, kh+ d2, . . . , kh+ dℓ)

by Yoshinaga [20]. Here the integers d1, d2, . . . , dℓ are the exponents of the root
system Φ with

d1 ≤ d2 ≤ · · · ≤ dℓ.

Since 1 = d1 < d2, one has kh+ 1 < kh+ d2. Thus we know that D0(Ck)kh+1 is a
one-dimensional vector space.

Definition 4.1. We say that ηk is a k-Euler derivation if ηk is a basis for the
vector space D0(Ck)kh+1.

Note that the ordinary Euler derivation θE =
∑ℓ

i=1 xi(∂/∂xi) is a 0-Euler deriva-

tion because Cat0 = A(Φ). The choice of a k-Euler derivation has the ambiguity
of nonzero constant multiples.

Proposition 4.2. A k-Euler derivation is W -invariant, where the group W acts
trivially on the variable z.

Proof. Note that Ck is stable under the action of W unlike Sk. Since the W -
invariant derivation ∇−k

D θE is a basis for D(A(Φ), 2k + 1)kh+1, we obatin

D(A(Φ), 2k + 1)kh+1 = D(A(Φ), 2k + 1)Wkh+1.

Since the Ziegler restriction map

D0(Ck)kh+1
res˜ // D(A(Φ), 2k + 1)kh+1

is a W -isomorphism, we obtain

D0(Ck)kh+1 = D0(Ck)Wkh+1.

□

We may describe a k-Euler derivation as follows:

Theorem 4.3. Let φ+
1 , . . . , φ

+
ℓ be an SSRB+. The derivation

ηk :=
ℓ∑

i=1

(αi + kz)φ+
i

is a k-Euler derivation.

Proof. Note that B+
∆ is a subarrangement of Ck. Consider a commutative diagram

D0(B+
∆)kh+1

res˜ // D(A(Φ), z+∆)kh+1

D0(Ck)kh+1
res˜ //

∪
D(A(Φ), 2k + 1)kh+1.

∪
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Since (αi + kz)φ+
i ∈ D0(B+

∆)kh+1 for any i by Theorem 1.2 (1), we have ηk ∈
D0(B+

∆)kh+1. We also have

res
(
ηk
)
= res

(
ℓ∑

i=1

(αi + kz)φ+
i

)

=
ℓ∑

i=1

αiΞ(∂α∗
i
) =

ℓ∑
i=1

αi∇∂α∗
i
∇−k

D θE = ∇θE∇−k
D θE

= (kh+ 1)∇−k
D θE ∈ D(A(Φ), 2k + 1)kh+1.

Thus we may conclude that ηk ∈ D0(Ck)kh+1 by chasing the diagram above. □
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