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Free energy of cluster formation and a new scaling relation

for the nucleation rate
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VInstitute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
2Institute for Computational Science, University of Ziirich, 8057 Ziirich, Switzerland

(Received 20 January 2014; accepted 29 April 2014; published online 20 May 2014)

Recent very large molecular dynamics simulations of homogeneous nucleation with (1 — 8) x 10°
Lennard-Jones atoms [J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 139,
074309 (2013)] allow us to accurately determine the formation free energy of clusters over a wide
range of cluster sizes. This is now possible because such large simulations allow for very precise
measurements of the cluster size distribution in the steady state nucleation regime. The peaks of
the free energy curves give critical cluster sizes, which agree well with independent estimates based
on the nucleation theorem. Using these results, we derive an analytical formula and a new scaling
relation for nucleation rates: InJ'/n is scaled by In S/n, where the supersaturation ratio is S, 7 is
the dimensionless surface energy, and J' is a dimensionless nucleation rate. This relation can be
derived using the free energy of cluster formation at equilibrium which corresponds to the surface
energy required to form the vapor-liquid interface. At low temperatures (below the triple point),
we find that the surface energy divided by that of the classical nucleation theory does not depend
on temperature, which leads to the scaling relation and implies a constant, positive Tolman length
equal to half of the mean inter-particle separation in the liquid phase. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4875803]

. INTRODUCTION

The nucleation process of supersaturated vapors into lig-
uids (or solids) has been studied for a long time, however,
there is still a serious gap in our understanding. The classi-
cal nucleation theory (CNT)'~? is a very widely used model
for describing nucleation and provides the nucleation rates as
a function of temperature, supersaturation ratio, and macro-
scopic surface tension of a condensed phase. However, sev-
eral studies have found that the CNT fails to explain the nu-
cleation rates observed in experiments.*"'> For example, the
error is the order of 10" ~2° for argon.'* !> In addition to lab-
oratory experiments, numerical simulations of molecular dy-
namics (MD) or Monte Carlo (MC) simulations showed that
the nucleation rates obtained by numerical simulations are
significantly different from predictions by the CNT.'*38 Un-
til now several modifications to the CNT were proposed. It
was also noted that several nucleation rate data sets exhibited
empirical temperature scalings.**~> Although there have been
significant advances in the theoretical models, a quantitatively
reliable theoretical model does not yet exist.

Recently, Diemand et al.’’ presented large-scale MD
simulations of homogeneous vapor-to-liquid nucleation of (1
— 8) x 10° Lennard-Jones atoms, covering up to 1.2 us
(5.6 x 107 steps). The simulations cover a wide range of tem-
peratures and supersaturation ratios. This study measured var-
ious quantities such as nucleation rates, critical cluster sizes,
and sticking probabilities of vapor molecules, and it was suc-
cessful in quantitatively reproducing argon nucleation rates at
the same pressures, supersaturations, and temperatures as in
the SNN (Supersonic Nozzle Nucleation) argon experiment. '
Here we use these MD results to determine the free energies
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of cluster formation (Sec. III) and their scaling (Sec. 1IV),
which is expected to be of use in the construction of a high-
precision nucleation model.

Il. EMPIRICAL SCALING RELATIONS

Hale and Thomason*? suggested that the nucleation rate
J obtained by MC simulations using LJ molecules was scaled
by In S/(T./T — 1)'° over a range of J = (10* — 10")cm™> s~!
which corresponds to (10730 —107)o 377!, where T, T, o,
and t are the temperature, critical temperature, a parameter of
length (=3.405 A), and a time unit (=2.16 ps). Figure 1 shows
that nucleation rates obtained by the MD and MC simulations
for LJ molecules and experimental results for argon as a func-
tion of InS/T./T — 1) and InS/(T./T — 1)'3. The scaling
by In S/(T./T — 1)'3 works for MC simulations over a limited
range, however, the nucleation rates obtained by all MD sim-
ulations and some experiments are rather scaled by In S/(T./T
— '3, The fitting function is logJ = 17.5In S/(T/T — n'3
— 51. This linear, empirical scaling relation seems to work
well over a surprisingly wide range of nucleation rates,
J = (1073 — 100 37~! for the MD data and the NPC
(Nucleation Pulse Chamber) experiment,'* but not for the
MC simulations. Interestingly, a different scaling relation,
InS/AT./T — 1)*? has been found from experimental nucle-
ation rates for several different substances such as water,*!
toluene,® and nonane.” Our results suggest the scaling rela-
tion depends on the substance type.

However, linear empirical scaling relations contradict
one of the most basic, general expectations from nucle-
ation theory: according to the nucleation theorem, the size
of the critical cluster i, is determined by the derivative

© 2014 AIP Publishing LLC
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FIG. 1. Nucleation rates obtained by the MD simulations with LJ molecules
and the experimental results for argon as a function of (a) In S/(Tc/T — nis
and (b) In S/(T./T — 1)'3. The results for various supersaturation ratios S and
temperatures 7% (=kT/e in the Boltzmann constant k and the depth of the
LJ potential €) obtained by the large-scale MD simulations®’ and the previ-
ous ones'®31:30 are shown by the filled circles and the crosses, respectively.
The results for MC simulations*? are shown with square markers, where the
temperatures are 7% = 0.7, 0.5, 0.419, and 0.335. The triangles show the
experimental results for argon.'*'5 We adopt T, = 1.312¢/k (or 151 K) in
the simulations (or experiments). In (b) the fitting function (solid line) for J
[0 =371 is given by logJ = 17.5In S/(T./T — 1)!3 — 51.

d(In J)/d(In S).3"-*3 These empirical scalings therefore imply a
constant critical cluster size i, at each temperature over a wide
range in J. The corresponding free energy functions would
need to peak at exactly the same size over a wide range in S
and J, which seems impossible to achieve with any reason-
ably smooth surface energy function. Instead of a linear rela-
tion, one would instead expect some downward curvature in
Fig. 1, which is consistent with the MD data points alone, but
not in combination with the NPC experiment.

lll. RECONSTRUCTING THE FORMATION FREE
ENERGY FROM MD SIMULATIONS

We now derive the free energies of cluster formation
directly from MD results and compare them with predic-
tions from three widely used models: In the (modified) clas-
sical nucleation theory CNT (or MCNT) and in the semi-
phenomenological (SP) model,®!! the free energies AG; are,
respectively,

AG; Nt

= —ilnS + ni*, 1)

AG; mcNT

o = (@~ DnS+ nG**—1), and  (2)

AG; sp
kT

where S = P|/P, is the supersaturation ratio of monomers us-
ing the saturated vapor pressure P, and the partial pressure of
monomers Pj, n, and & are temperature-dependent quantities

=—(—-DInS+nG*P =D+ -1, 3)
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which can be fixed from the condensed phase surface tension,
bulk density, and the second virial coefficient.®3” Note that
the CNT assumes large cluster sizes, it is not expected to work
for small clusters and its AG; does not vanish ati = 1, i.e., for
monomers.

The formation free energy of a cluster is directly related
to the equilibrium size distribution 7, (i):

n(1)
! ("e(i)) ’ @

31,36,37

AG;
kT

where n(1) is the number density of the monomers.
For small subcritical clusters (i < i,), the steady state size
distribution n(i), which can be measured in MD simulations,
agrees very well with the equilibrium size distribution 7,(i),'®
which lets us obtain AG; for small clusters.'®30:36-38 Qp-
taining the full free energy landscape, including the crucial
region around the critical sizes, requires a more sophisti-
cated method, which takes the difference between steady state
and equilibrium size distributions into account. A first proce-
dure of this kind was proposed by Wedekind and Reguera**
based on mean first passage time (MFPT) method. In princi-
ple it allows a full reconstruction based on a large number of
small simulations, each one is run until it produces one nu-
cleation event. However, the observation of one event does
not demonstrate that the simulations are really sampling the
assumed steady state nucleation regime, the passage times
might include some initial lag time and a significant transient
nucleation phase, which precedes the steady state regime.*
Both time-scales become quite large for LJ vapor-to-liquid
nucleation at low temperatures.>’

Our recent, very large scale nucleation simulations allow
very precise measurements of the cluster size distribution dur-
ing a clearly resolved steady state nucleation regime and un-
der realistic constant external conditions.’” Here we present
a new method to obtain the full free energy landscape from
these steady state size distributions: The nucleation rate is the
net number of the transition from i-mers to i + 1-mers and
given by

J =R ()nG)— R (G + DnG + 1), 5)

where R (i) is the transition rate from a cluster of i molecules,
i-mer, to (i+1)-mer per unit time, i.e., the accretion rate, and
R~ (i) is the transition rate from i-mer to (i-1)-mer per unit
time, i.e., the evaporation rate of i-mer. R (i) is given by
R*(i) = an(1)vp(4mr2i*?), where « is the sticking proba-
bility, vy, is the thermal velocity, «/kT /2mm, and ry is the
radius of a monomer, (3m/4m p)"? where m is the mass of
a molecule and py, is the bulk density. The evaporation rate
is obtained from the principle of detailed balance in thermal
equilibrium:

R™(i + Dne(i + 1) = RT()ne(). (6)

From Egs. (5) and (6), the nucleation rate is given by
0 1 -1
J= _ ~ R (i )n.(i,)Z, 7
> oD (ime(is) (7

i=1

with the Zeldovich factor, Z.
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FIG. 2. (a) AG;(S)/(kT) as a function of i, where T* = kT/e = 0.6 and
S = 16.9 (T6n80 in Table IIT in Diemand et al.’”). The dashed line shows
AGi(S)/(kT) at S = 1. (b) The equilibrium number density of i-mers 7 (i)
[o=3] (solid curve) and the steady number density obtained by the simula-
tion n(i) [0 ~3] (circles).

From Egs. (5) and (6), we obtain

ne(i) _ ne —1) < _ J )‘ ®
n@)  n@i—1) RtG—DnGi -1/

Equation (8) is a recurrence relation and enables us to ob-
tain n.(i) if J, n(i), and n.(i — 1) are known.® Fig. 2 shows
ne(i), n(i), and AG;(S) derived by Eq. (8) for a typical exam-
ple (T* = kT/e = 0.6 and S = 16.9 which corresponds to the
case T6n80 in Table IIT in Diemand et al.>’). AGi(S = 1) is a
surface term corresponding to the work required to form the
vapor-liquid interface. From Eq. (8), we obtain AG;(S = 1):

AGi(S=1)=AG(S)+({@—-DkTInS, ©)

using the dependence of the supersaturation in the theories
except the CNT. Fig. 2 also shows AG;(S = 1).

The surface terms of free energy AG;(S = 1) at various
temperatures and supersaturation ratios obtained by MD sim-
ulations are shown in Figure 3, where we evaluated R (i)
using « obtained by the MD simulations (Table III in Die-
mand et al.). From Figure 3, we confirm AG;(S = 1) depends
only on temperature, which implies that the volume term in
Egs. (2) and (3) works very well.

The peaks of the free energy curves give critical cluster
sizes which agree very well with those from the nucleation
theorem (see Fig. 7). Since the nucleation rates, which enter
into the nucleation theorem, do not depend on the detailed
cluster definition, this good agreement provides a robust con-
firmation, that the simple Stillinger criterion used here’%-3’
gives realistic cluster size estimates. An earlier study?' found
that critical sizes based on the Stillinger definition are up to
a factor 2 larger than independent estimates from the nucle-
ation theorem. This contradiction can be resolved by a de-
tailed comparison with other MD simulations at very similar
conditions:*® Using the initial supersaturations Sy in the nu-
cleation theorem (as in Ref. 31) instead of the actual supersat-
uration S during the simulation,*® leads one to underestimate
the critical sizes by up to a factor of 1.8, which eliminates the
discrepancy reported in Ref. 31.

J. Chem. Phys. 140, 194310 (2014)
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FIG. 3. AG;i(S = 1) as a function of i for various temperatures. At each
temperature, we show AG;(S = 1) obtained by the different values of the
supersaturation ratio. The circles show the critical clusters derived by the
maximum of AG;(S) for various supersaturation ratios S. We can confirm
AG;(S = 1) depends on only T.

IV. ANEW SCALING FOR NUCLEATION RATES

Fig. 4 shows the surface energy AG;(S = 1) divided by
that of the CNT, AG;(S = 1)/(i*3kT), as a function of i~1/3,
The theoretical evaluations are also shown in Fig. 4. The sim-
ulation results agree with the SP model at 0.5 = i~!/3 < 1,
but deviate from the model for larger clusters of i3 < 0.5.
Surprisingly, AG;(S = 1)/(ni¥*kT) is almost the same for all
results obtained by 11 MD simulations for temperatures be-
low the triple point. This indicates that AGy(S = 1)/(ni*3kT)
is a function of i and independent of the temperature. From
the fitting of the results, we obtain

AG;i(S=1 . .
# = f(i) = A1 —i~'P), (10)

where A = 1.28. The fitting function is also shown by the
dotted-dashed line in Fig. 4. Equation (10) implies a constant,
positive Tolman length of § = 0.5ry and the constant A sets
an effective normalisation factor for the planar surface energy
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FIG. 4. (a) AG;(S = 1)/(ni¥3kT) as a function of i~ at kT/e < 0.6. Results
obtained from 11 MD simulations are plotted with symbols: different sym-
bols indicate the MD results starting from different supersaturation ratios. We
find that they are universal, which implies that AG;(S = 1)/(ni?3kT) is in-
dependent of temperature for (7 < 0.6). From the fitting, we obtain AG;(S
= 1)/(ni?PkT) = 1.28(1 — i~'3) (the dotted-dashed line). The results by
the SP (dotted lines) and MCNT (dashed line) are also shown. AG;(S
= 1)/(i¥3kT) = 1 in the CNT. (b) The same as (a) but for all temperatures.

(or the surface area), if we interpret AG;(S=1)/(ni*3kT)
= a,-y,-/(471r§y), where y; = y[1 — 28/(rpi")] and a; are
the surface tension and surface area of the cluster and y is
the planar surface tension. Equation (10) could be a promis-
ing candidate for an accurate nucleation theory, in which A
is temperature independent below the triple point. Our result
indicates that at low temperatures the Tolman relation is valid
even for very small clusters including 2-30 atoms.

McGraw and Laaksonen*®#7 obtained AG; of large clus-
ters (i < 50) with density functional calculations. They found
that the deviation of AG; from the CNT is temperature de-
pendent, but independent of the cluster size. Figure 5 shows
the difference of AG;(S = 1) between MD results and the
CNT, ie.,, AG;(S=1) — AG,cnr(S=1) as a function of i.
We find these differences are nearly constant around i ~ 10
for each temperature. But they increase with the size for i
> 20. According to McGraw and Laaksonen,*’ on the other
hand, [AG;(S=1) — AG;cnt(S=1)]/(nkT) are calculated
to be —2.46, —3.26, and —4.88 for 7* = 0.6, 0.8, and 1.0,
respectively.

Using Eq. (10), the critical cluster i, is obtained by

An 3
: <3lnS) +

from the following relation:

, (1)

InS 2
204 i P f0 + 2P 1) =0, (12)
n

J. Chem. Phys. 140, 194310 (2014)
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FIG. 5. The difference in AG;(S = 1) between MD results and the CNT
divided by nkT, [AG;(S=1) — AG; cnT(S=1)]/(nkT) as a function of i at
various temperatures. Different symbols indicate the MD results starting from
different supersaturation ratios. The results of McGraw and Laaksonen*’ are
also shown by dotted lines for 7* = 0.6, 0.8 and 1.0. The right vertical axis
shows the value of the difference between the MD results and the MCNT,
[AG; — AG; mcNt]/(nkT), which is valid for any value of S.

where we have assumed that the molecular volume is far
smaller in the liquid phase than in the gas phase. The detailed
derivation is given in the Appendix.

We also derive the analytical formula for the nucleation
rate:

InJ' =In[aZi?*]+ G, + DInS —infG),  (13)

where J' is a dimensionless nucleation rate defined by
J' = J/(4mring,vm) with the saturated number density of
monomers ngy, ( = n(1)/S) and the Zeldvich factor is given by

z= Lz [AN G oy (14)
3 b4
Fig. 6 shows the nucleation rate as a function of In S obtained
by the MD simulations and the analytical formula. We find
good agreements between the analyses and the simulations
for the various temperatures and supersaturation ratios.

E7 110
—10F 3
10 o n ~
- 3103
T g 3 &
‘?; 10°20F E @,
> E ® new MD 1. 10
- X previous MD —: 10
= A experiment
10_30 £ 1 | E: M(F 1 1 B
10 15

InS

FIG. 6. The nucleation rate as a function of the supersaturation ratio. The
analytical formula for the nucleation rates is shown by solid lines. The re-
sults for various temperature and supersaturation ratios by the large-scale MD
simulations®” and the previous ones®!:3¢ are shown by the filled circles and
the crosses, respectively. The results for MC simulations** are shown by the
squares, where the temperature is 7* = 0.5. The triangles show the experi-
mental results for argon.!* 13



194310-5 Tanaka et al.

60r (a)
, 40r
1* L
f T
~ . 0%
c ) ® 05
I - rorperment | - 08 |]
L / u] MPC 1.0 4
| I T 4 T I I | | | N N N T N Y O I | | | N T N T N T I |
0.1 0.2 0.3 04
InS/n

FIG. 7. We propose that (a) the size of critical cluster and (b) InJ'/n are de-

termined only by In S/, where J' = J /(47 rgnfat v ). The analytical formula

obtained by our model are shown by the solid lines. Panel (a) shows that
the critical clusters sizes derived from the maximum of AG;(S) (filled cir-
cles) and from the nucleation theorem (open circles, int in Diemand et alTy
agree very well with each other and also with our analytical model. In (b),
the results for various temperature and supersaturation ratios by the large-

scale MD simulations®’ and the previous ones!®313¢ are shown by the filled

circles and the crosses, respectively. The results for MC simulations*? are

shown with square markers. The triangles show the experimental results for

Our finding that AG;(S = DI(pi?3kT) is independent of
the temperature leads to a scaling relation. Equation (12) in-
dicates that i, is a function of only In S/5. Thus from Eq. (13)
InJ'/n is determined only by In S/, neglecting a term includ-
ing Zeldovich factor which is smaller than the other terms.
Fig. 7 shows the size of critical clusters and InJ'/n obtained
by MD and MC simulations and experiments as a function
of InS/n. We confirm that InJ'/n is scaled by In S/n almost
perfectly for MD simulations, at 7% < 0.6. At high temper-
atures (T* > 0.8), InJ'/n deviates from the scaling relation.
This would come from the deviation of f{i), i.e., (i) depends
on T at T* > 0.8 (see Fig. 4(b)). Fig. 7 shows this scaling
also works for one SNN experiment (7* = 0.3) and the MC
simulations at 7% = 0.5 and 0.7, although some MC data and
experiments deviate from the scaling relation.

V. SUMMARY AND CONCLUSIONS

We derived for the first time the formation free energy of
a cluster over a wide range of cluster sizes and temperatures
from recent very large-scale MD simulations. The peaks of
the free energy curves give critical cluster sizes, which agree
well with independent estimates based on the nucleation theo-
rem. This implies that the simple Stillinger criterion used here
gives realistic cluster size estimates.

At low temperatures the free energies show a universal
deviation from the CNT, which allows us to derive a new
scaling relation for nucleation: In J'/n is scaled by In S/n. This
scaling relation predicts the critical cluster size very well. The
relation can be explained from a surface energy required to
form the vapor-liquid interface and implies a constant, pos-
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itive Tolman length of § = 0.5ry. Generally, AG;(S = 1) is
written as the surface energy multiplied by the surface area,
a;y;. In the theory, the cluster is always assumed to be spher-
ical and has the same density as the bulk liquid (with a few
exceptions*®4%). However, our analyses of cluster properties
show larger surface areas (Angélil et al.>°). The higher nor-
malisation (A >~ 1.28 in Eq. (10)) of AG;(S) relative to the
models might be caused by these larger surface areas. The
scaling relation and the relation between the cluster proper-
ties and AG; should be investigated in more detail for various
materials.
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APPENDIX: RADIUS OF CRITICAL CLUSTER

The general expression for the minimum work AG(r) re-
quired to form a cluster of radius r, is given by’

Vi
AG(r) = U—l‘[mm) — ug(PY] — (P — PYVi + aiyi,

(AD)

where 11 and j1, are the chemical potentials of liquid and gas,
Py and P, are the pressures of metastable liquid and gas, and
v and Vi(= iy, = 4mr3/3) are the molecular volume of lig-
uid and the volume of a cluster, respectively. Using u(Pe)
= pg(Pe) and pu(P) — pu(Pe) = vi(P — Pe), we obtain

Vi
AG(r) = U—:mg(Pe) + (P — Po) — p1g(Py)]

—(P = POV + a;y;,

\%
= v_l[,ug(Pe) - Mg(Pg)] + (Pg — PoVi+aiyi,

Vi . v
—[g(Pe) — (Pl +i(S — DKT — + a;,
U] Vg
(A2)

where v, is the molecular volume in the gas phase. For
the case v < vg, the second term on the right-hand side of
Eq. (A2) is negligible. Assuming a;y; = 4w’y , we obtain the
formula for the critical radius ., called the Kelvin relation®?
from dAG(r)/dr = 0:
2y v
Ap’
where A = w(Pg) — pg(Pe) =kTIn S.

From Eq. (10), the result from MD simulations shows

(A3)

VFer =

ajy; = 4nr’Ay(1 —ro/r), (A4)
thus we obtain the following relation at r = r¢;:
4rr2 A
TR g Ay — drrgAy = 0. (A5)

Ul
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From Eq. (AS), 7 is given by
A A

vu (L [y Arn

Al v Ay

; (A6)

Ter =

which corresponds to Eq. (11).
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