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The Hubbard model in D dimensions, with the on-site repulsion U and the transfer integral between nearest neighbors
−t/

√
D, is studied on the basis of the Kondo-lattice theory. If U/|t|�1, |n−1|. |t|/(DU), where n is the number

of electrons per unit cell, and D is so small that |J |/D�kBTc, where J =−4t2/U and Tc is 0 K for D=1 and is the
highest critical temperature among possible ones for D≥2, a low-T phase where Tc <T �|J |/(kBD) is a frustrated
electron liquid. Since the liquid is stabilized by the Kondo effect in conjunction with the resonating-valence-bond (RVB)
mechanism, it is simply the RVB electron liquid; in one dimension, it is also the Tomonaga-Luttinger liquid. The Kondo
energy of the RVB liquid is kBTK = O(|J |/D); its effective Fermi energy is O(kBTK). A midband appears on the
chemical potential between the upper and lower Hubbard bands; the Hubbard gap is a pseudogap. As regards the density
of states per unit cell of the midband, its bandwidth is O(kBTK) or O(|J |/D), its peak height is O(1/U), and its
spectral weight is O

ˆ

t2/(DU2)
˜

. Since the midband almost disappears in the Heisenberg limit, the RVB electron liquid
in the Heisenberg limit is simply the RVB spin liquid. The RVB electron and spin liquids adiabatically continue to each
other. Since local moments form in a high-T phase where T & TK, the high-T phase is simply the Mott insulator.

1. Introduction
A strong electron correlation is one of the most important

issues in condensed-matter physics. The Hubbard model is
one of the simplest effective Hamiltonians for studying the
correlation. The Hubbard model in the Heisenberg limit is
equivalent to the Heisenberg model. In the Heisenberg model
on the triangular lattice, the resonating-valence-bond (RVB)
mechanism is crucial for the stabilization of a frustrated spin
liquid, in which no symmetry is broken; the frustrated spin
liquid is simply the RVB spin liquid.1 The RVB mechanism
is crucial for not only the triangular lattice but also other types
of lattice in sufficiently low dimensions, and in not only the
Heisenberg model but also the Hubbard model.2 If no sym-
metry is broken in a strongly correlated electron liquid, the
electron liquid is frustrated, as the RVB spin liquid. If a frus-
trated electron liquid is stabilized by the RVB mechanism, it
is simply an RVB electron liquid. It is interesting to study
how crucial the RVB mechanism is for the stabilization of a
frustrated electron liquid in low dimensions, particularly the
Tomonaga-Luttinger (TL) liquid in one dimension.3, 4

The Hubbard model in one dimension is of particular in-
terest, because no symmetry is broken in it,5 and the Bethe-
ansatz solution is available for it.6 We consider the thermody-
namic limit of N →+∞ and L→+∞, where N and L are
the numbers of electrons and unit cells, respectively. Accord-
ing to the Bethe-ansatz solution,6 if the on-site repulsion U is
nonzero once, a gap opens in the spectrum of a single-particle
excitation in the half-filled ground state with N =L; however,
no gap opens in any non-half-filled ground state with N 6=L.
When T = 0 K, if and only if N = L, a metal-insulator (MI)
transition occurs at U = 0 as a function of U . Since no sym-
metry is broken, the MI transition is never due to a broken
symmetry. Lieb and Wu argue that the MI transition at U =0
is the Mott transition.6 On the other hand, it is expected that
the Mott transition will be possible only at a sufficiently large
U such that U is as large as the bandwidth, or U = O(|t|),
where |t| is the strength of the transfer integral between near-
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est neighbors, because it is due to the strong electron correla-
tion.7–10

If U/|t| � 1, the gap εG(U) given by the Bethe-ansatz so-
lution is as large as the Hubbard gap;8, 9 εG(U) = U −O(|t|).
However, εG(U) is so singular at U = 0 as a function of U that
it cannot be expanded in terms of U , as the ground-state en-
ergy.11 If U/|t|� 1, the gap is extremely small. It is doubtful
whether the extremely small gap for U/|t| � 1 is the Hub-
bard gap. Therefore, it is doubtful whether the MI transition
at U = 0 in one dimension is the Mott transition.

Unless U/|t| = +∞, the residual entropy per unit cell is
zero or infinitesimal, depending on N and L,12 in the thermo-
dynamic limit; the third law of thermodynamics holds for any
finite U/|t|, even for the insulating ground state with N =L.
On the other hand, if U/|t|=+∞, the half-filled ground state
is the prototype of the Mott insulator in not only one dimen-
sion but also higher dimensions; its residual entropy is kB ln 2
per unit cell. According to Brinkman-Rice theory,10 the Mott
transition occurs at Uc=O(|t|) and the T -linear specific-heat
coefficient diverges as U → Uc−0. If no symmetry is bro-
ken even for U ≥Uc, the divergence means that the residual
entropy per unit cell is nonzero for U ≥ Uc, or for the insu-
lating ground state. In a previous paper,13 it is argued that if
the ground state is the Mott insulator with no symmetry bro-
ken, the third law of thermodynamics is broken in it. In the
present paper, the insulating ground state in one dimension is
called Lieb and Wu’s insulator in order to distinguish it from
the Mott insulator.

The number of electrons N is a natural variable in the
canonical ensemble. If N = L, the ground state is Lieb and
Wu’s insulator; if N 6= L, it is the TL liquid.3, 4 On the other
hand, the chemical potential µ is a natural variable in the
grand canonical ensemble. The average number of electrons
per unit cell as a function of µ is denoted by n(µ); it cor-
responds to N/L. The Bethe-ansatz solution is given for the
Hubbard model on a bipartite lattice, which is symmetric un-
der the particle-hole transformation for a particular chemical
potential µ0; n(µ0)=1 for any T . If |µ−µ0|<(1/2)εG(U), it
is expected that the ground state will be Lieb and Wu’s insu-
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lator and n(µ)=1 for it. If |µ−µ0|≥(1/2)εG(U), the ground
state is the TL liquid; and n(µ) 6=1 for any T ≥0 K. If T >0 K
once, even if n(µ) = 1, metallic configurations with N 6= L
more or less contribute to physical properties statistically av-
eraged in the grand canonical ensemble; thus, in-gap states
have to appear even if the ground state is an insulator. An in-
sulator in which a complete gap opens is possible only on the
line of T = 0 K and |µ−µ0|<(1/2)εG(U) in the T -µ phase
plane. If T is sufficiently low and |µ−µ0|≥(1/2)εG(U), the
TL liquid is stabilized. The phase in the region of T >0 K and
|µ−µ0|<(1/2)εG(U) is an intermediate phase. It is interest-
ing to study whether the intermediate phase is insulating or
metallic, and how crucial the RVB mechanism is for the sta-
bilization of the intermediate phase as well as the TL liquid.

All the single-single site terms are rigorously considered
in the supreme single-site approximation (S3A).14–17 The
Kondo-lattice theory (KLT) is a perturbative theory based on
S3A to include multisite terms18–20 and is also a 1/D expan-
sion theory, where D is the dimensionality. The RVB mecha-
nism is a multisite effect and is a higher-order effect in 1/D.
The present paper is an extension of previous study;13, 21 the
RVB mechanism is explicitly considered on the basis of KLT.
The main purpose of the present paper is to show that the RVB
liquid can be stabilized in sufficiently low dimensions owing
to the Kondo effect in conjunction with the RVB mechanism;
the RVB liquid in one dimension is also the TL liquid, or the
RVB-TL liquid. The present paper is organized as follows:
Preliminary is given in Sect. 2. KLT is reviewed in Sect. 3.
The RVB liquid is studied on the basis of KLT in Sect. 4. Dis-
cussion is given in Sect. 5. Conclusions are given in Sect. 6. A
sum rule is proved in Appendix A. An application of the sum
rule is given in Appendix B. An equality is proved in Ap-
pendix C. It is examined in Appendix D whether, if symmetry
breaking is ignored, S3A is rigorous in the limit 1/D → 0.

2. Preliminary
2.1 Hubbard model

We consider the Hubbard model in D dimensions, i.e., on
a chain, square, cubic, or hypercubic lattice:

H = εd

∑
iσ

niσ − t√
D

∑
〈ij〉σ

d†iσdjσ + U
∑

i

ni↑ni↓, (2.1)

where d†iσ and diσ are the creation and annihilation operators
of an electron with spin σ on the ith unit cell, niσ = d†

iσdiσ,
εd is the band center, −t/

√
D is the transfer integral between

nearest neighbors and t>0 is assumed, 〈ij〉 stands for a pair
of nearest neighbors, and U is the on-site repulsion. The num-
ber of unit cells is L. The thermodynamic limit L→+∞ is
assumed. The periodic boundary condition is assumed. When
U =0, the dispersion relation of an electron is given by

E(k) = εd − 2tϕD(k), (2.2)

where k = (k1, k2, · · · , kD) is the wave number, and

ϕD(k) =
1√
D

D∑
ν=1

cos(kνa), (2.3)

where a is the lattice constant. Because of the factor 1/
√

D in
the transfer integral, the effective bandwidth of E(k) is O(|t|)
for any D; the absolute bandwidth is 4

√
D|t|.

The number of electrons per unit cell is given by n(µ) =〈
N

〉
/L, where N =

∑
iσ d†iσdiσ and 〈· · · 〉 stands for the ther-

mal average in the grand canonical ensemble. If the chemical
potential µ lies at

µ0 = εd + (1/2)U, (2.4)

the Hubbard model is symmetric and half-filled; n(µ0)=1 for
any T .

2.2 Bethe-ansatz solution for one dimension
2.2.1 Effect of O(1/L) due to electron correlation

We consider one dimension. Since [H,N ] = 0, a many-
body eigenstate is specified by the number of electrons N :
N |Nα〉= N |Nα〉 and H |Nα〉= ENα |Nα〉, where α is a
set of quantum numbers. In the thermodynamic limit, an infi-
nite number of bosonic excitations, which do not change N ,
are possible, so that many-body eigenvalues ENα are contin-
uously distributed in the range of

ENg ≤ ENα < +∞, (2.5)

where ENg is the energy of the ground state or the ground-
state multiplet, or |Ng〉. There is no upper limit for ENα.

Many-body eigenstates in the presence of a thermal and/or
electron reservoir are more or less different from those in the
absence of it. We assume that this difference can be ignored.

We assume that T = 0 K in the canonical ensemble. The
retarded Green function in the site representation is given by

R
(N)
ijσ (ε + i0) =

1
vN

∑
g

R
(Ng)
ijσ (ε + i0), (2.6)

where the summation is over the ground-state multiplet and
vN is its degeneracy, and

R
(Nα)
ijσ (z)=

∑
β

{〈
Nα

∣∣aiσ

∣∣(N+1)β
〉〈

(N+1)β
∣∣a†

jσ

∣∣Nα
〉

z −
[
E(N+1)β − ENα

]
+

〈
Nα

∣∣a†
jσ

∣∣(N−1)β
〉〈

(N−1)β
∣∣aiσ

∣∣Nα
〉

z −
[
ENα−E(N−1)β

] }
. (2.7)

The site-diagonal Green function is given by

R(N)
σ (ε + i0) =

1
vN

∑
g

∫ +∞

−∞
dε′

DNg(ε′)
ε + i0 − ε′

, (2.8)

DNα(ε)=
∑

β

∣∣〈(N+1)β
∣∣a†

iσ

∣∣Nα
〉∣∣2δ[ε−E(N+1)β+ENα

]
+

∑
β

∣∣〈(N−1)β
∣∣aiσ

∣∣Nα
〉∣∣2δ[ε−ENα+E(N−1)β

]
. (2.9)

Neither R
(N)
σ (ε + i0) nor DNα(ε) depends on the unit cell.

The density of states per unit cell is given by

ρN (ε) =− 1
π

ImR(N)
σ (ε+ i0) =

1
vN

∑
g

DNg(ε). (2.10)

Two types of Fermi level are defined: µ+(N)=E(N+1)g−
ENg for the addition of an electron and µ−(N) = ENg −
E(N−1)g for the removal of an electron. According to the
Bethe-ansatz solution,6 if N 6= L,

[
µ+(N) − µ−(N)

]
→ 0

as L → +∞. No gap opens in ρN 6=L(ε). The ground state
is the TL liquid for any non-half filling.3, 4 Either ρN 6=L(ε) or
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DN 6=Lα(ε) is more or less nonzero for any ε.22

On the other hand, if and only if N = L,

εG(U) = µ+(L) − µ−(L) (2.11)

is nonzero even in the limit L → +∞; µ±(L) = µ0 ±
(1/2)εG(U). Then, εG(U) is simply a gap in ρL(ε). The half-
filled ground state is Lieb and Wu’s insulator. It is easy to see
that ρL(ε) = 0 and DLg(ε) = 0 for |ε−µ0| < (1/2)εG(U).
We define ∆ELα = ELα −ELg. If ∆ELα < (1/2)εG(U),
then DLα(ε) = 0 for |ε − µ0| < (1/2)εG(U) − ∆ELα,
but DLα(ε) > 0 for |ε − µ0| ≥ (1/2)εG(U)−∆ELα. If
∆ELα ≥ (1/2)εG(U), then DLα(ε) > 0 for any ε. Thus,
DLα(ε)>0 at least for certain α’s, regardless of ε.

As a function of N , ρN (ε) is discontinuous between N =
L and N = L ± 1, or between Lieb and Wu’s insulator and
the TL liquid. This discontinuous behavior is different from
the continuous behavior between Wilson’s band insulator and
metal. The opening of εG(U) and the discontinuous behav-
ior of ρN (ε) are different appearances of an effect due to
the difference in electron correlation between N = L and
N = L±1. The effect is an effect of O(1/N) or O(1/L) due
to electron correlation.

2.2.2 Rigidity of Lieb and Wu’s insulator
If many-body eigenstates of the Bethe-ansatz solution are

used, the thermal Green function is given by

Rijσ(iεl) =
∑
Nα

pNα(T )R(Nα)
ijσ (iεl + µ), (2.12)

where εl = (2l + 1)πkBT , with l being an integer, R
(Nα)
ijσ (z)

is defined by Eq. (2.7), µ is the chemical potential, and

pNα(T ) =
exp[−(ENα − µN)/(kBT )]∑

N ′α′

exp[−(EN ′α′ − µN ′)/(kBT )]
. (2.13)

The site-diagonal thermal Green function is given by

Rσ(iεl) =
∑
Nα

pNα(T )
∫ +∞

−∞
dε′

DNα(ε′)
iεl + µ − ε′

. (2.14)

The density of states per unit cell is given by

ρµ(ε)=− 1
π

ImRσ(ε+i0)=
∑
Nα

pNα(T )DNα(ε+µ). (2.15)

The average number of electrons per unit cell is given by

n(µ) =
1
L

∑
Nα

pNα(T )N =
∫ +∞

−∞
dε

ρµ(ε)
eε/(kBT ) +1

. (2.16)

We assume that |µ − µ0| < (1/2)εG(U). If T = 0 K,

ρµ(ε) = ρL(µ + ε). (2.17)

Then, ρµ(ε) = 0 for |ε+µ−µ0|< (1/2)εG(U). The ground
state is Lieb and Wu’s insulator. It follows that

Rσ(ε + i0) = − 1
π

∫ +∞

−∞
dε′

ρL(µ + ε′)
ε − ε′ + i0

. (2.18)

Since ρL(ε) does not depend on µ, neither ρµ(ε − µ) nor
Rσ(ε − µ + i0) depends on µ. Lieb and Wu’s insulator is
rigid against the movement of µ,23 as Wilson’s band insulator.
This is simply because many-body eigenstates in the absence
of a reservoir are used and the reservoir effect is only implic-

itly treated through the statistical average or the probability
function pNα(T ). The relevance of this treatment is critically
examined in Sect. 5.2.

The static homogeneous charge susceptibility or the com-
pressibility is given by

χc(0, 0) = dn(µ)/dµ. (2.19)

Because of the rigidity, χc(0, 0) = 0 for |µ − µ0| <
(1/2)εG(U), or for Lieb and Wu’s insulator.

2.2.3 Discontinuous MI transition at T = 0 K
We assume that T = 0K in the grand canonical ensemble.

An MI transition occurs at µ=µ0±(1/2)εG(U) as a function
of µ. If |µ−µ0|< (1/2)εG(U), the ground state is Lieb and
Wu’s insulator and no Fermi surface exists. Since no density
wave appears, no folding of the Brillouin zone occurs. The
absence of the Fermi surface means that its volume or size
is absolutely zero in either the particle or hole picture.24 If
|µ−µ0|> (1/2)εG(U), the ground state is the TL liquid and
the Fermi surface exists. According to the Fermi-surface sum
rule,25, 26 the sizes of the Fermi surface are 2|kF|=(π/a)n(µ)
and 2|kF|=(π/a)[2−n(µ)] in the electron and hole pictures,
respectively, where kF is the Fermi wave number in each pic-
ture. For example, if µ = µ0 +(1/2)εG(U)− 0+, the size of
the Fermi surface is zero in either picture and ρµ(ε) = 0 for
−εG(U)<ε<0. If µ=µ0+(1/2)εG(U) + 0+, the size of the
Fermi surface is 2|kF|= π/a in either picture and ρµ(ε) > 0
even for −εG(U) < ε < 0. These discontinuous behaviors
mean that the MI transition is discontinuous.

The compressibility χc(0, 0) is also discontinuous at µ =
µ0±(1/2)εG(U) at least in the limit U/|t|→+∞, as studied
below. As preliminary, we consider many-body eigenstates in
the limit U/|t| → +∞. If N ≤ L, no double occupancy at a
unit cell is allowed. Every many-body eigenstate is specified
by the set of N pairs of wave number and spin, {kσ}= {k1σ1,
k2σ2, · · · , kNσN}. Its eigenfunction is the direct product of
the charge part, which is a single Slater determinant of non-
interacting N spinless fermions, and the spin part, which is a
product of spin functions of noninteracting N spins:

|N{kσ}〉=
∑
{xs}

Φ{kσ}({xs}) a†
x1s1

a†
x2s3

· · · a†
xNsN

|0〉 , (2.20)

Φ{kσ}({xs})= 1√
N !

∑
P

(−1)P
N∏

i=1

1√
L

eikPi
xi

N∏
j=1

χσj(sj),

(2.21)

where |0〉 is the vacuum where no electron exists, {xσ} ={
(x1, s1), (x2, s2), · · · , (xN , sN )

}
with 0≤ x1 < x2 < · · ·<

xN ≤ La is the set of the position and spin coordinates of
N electrons, P = (P1, P2, · · · , PN ) is an N -permutation,
(−1)P = 1 for an even P while (−1)P = −1 for an odd P ,
and χσ(s) is the spin function for S = 1/2. Its eigenenergy is
given by E{kσ}=

∑N
i=1 E(ki). If N =L, the spinless fermion

band is completely filled and the electron state is the proto-
type of the Mott insulator. If N 6= L, the spinless fermion
band is partially filled and the electron state is an exotic metal
such that a complete charge-spin separation occurs in it and
its ground-state degeneracy is 2N . If the hole picture is taken,
a similar argument is possible for N ≥ L.

We consider the limit U/|t| → +∞ in the grand canoni-
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cal ensemble. If n(µ) = 1, which corresponds to N = L,
χc(0, 0) = 0. If n(µ) ' 1 but n(µ) 6= 1, which corre-
sponds to N ' L but N 6= L, χc(0, 0) ∝ 1/|1 − n(µ)|.
Thus, χc(0, 0) diverges as n(µ)→1, i.e., χc(0, 0) diverges as
µ→µ0±(1/2)εG(U) ± 0; this divergence is due to the band-
edge van Hove singularity in the one-dimensional dispersion
relation of the noninteracting spinless fermion. The compress-
ibility χc(0, 0) is discontinuous at µ=µ0±(1/2)εG(U) as a
function of µ at least in the limit U/|t|→+∞.

If U/|t| is finite and n(µ) ' 1 but n(µ) 6= 1, the Fermi
surface as large as 2|kF| ' (π/a) exists in either the particle
or hole picture. The existence of such a large Fermi surface
implies that χc(0, 0) is more or less nonzero. Moreover, the
divergence of χc(0, 0) in the limit U/|t|→+∞ implies that
the increase in χc(0, 0) occurs as µ → µ0±(1/2)εG(U)±0
at least for a sufficiently large U/|t|. It is interesting to
determine whether χc(0, 0) continuously becomes zero as
µ → µ0± (1/2)εG(U) ± 0 or discontinuously becomes zero
at µ = µ0±(1/2)εG(U), and whether χc(0, 0) increases as
µ→µ0±(1/2)εG(U)±0.

2.2.4 In-gap states at T > 0 K
We assume that T > 0 K. Then, pNα(T ) defined by Eq.

(2.13) is more or less nonzero. If N 6= L, DNα(ε) defined
by Eq. (2.9) is nonzero; even if N = L, DLα(ε) > 0 for cer-
tain α’s, regardless of ε. The density of states ρµ(ε) given by
Eq. (2.15) is more or less nonzero,22 even for |ε+µ−µ0|<
(1/2)εG(U). It is straightforward to show that the density of
states is also more or less nonzero in the canonical ensemble.

The gap opens only in the exactly half-filled case at T =
0 K. If the filling is non-half or T > 0 K once, the effect
of O(1/L) disappears or becomes insufficient for the gap to
open, in either the canonical or grand canonical ensembles.

3. Kondo-Lattice Theory
3.1 Single-site properties of the Hubbard model
3.1.1 Mapping to the Anderson model

In Sect. 3, we review KLT,18–21 and reformulate it in a form
appropriate for the present study. We assume that T > Tc,
where Tc is 0 K for D=1 and is the highest critical tempera-
ture among possible ones for D≥2. If T >Tc, ρµ(ε) is more
or less nonzero at least for |ε|< |t|,22 and even in one dimen-
sion. The fact that ρµ(ε) is necessarily nonzero for T >Tc is
crucial in the present study.

If T >Tc , no symmetry is broken and no gap opens; thus,
there is no doubt on the validity of the perturbative treatment
in terms of U based on the Feynman-diagram method.27 We
consider a connected and irreducible Feynman diagram for a
physical property. The diagram is composed of electron lines,
each of which stands for Rijσ(iεl), and interaction lines, each
of which stands for U . The site-diagonal Riiσ(iεl) is simply
denoted by Rσ(iεl). If only site-diagonal Rσ(iεl)’s appear in
the diagram, it is a single-site diagram; if at least a site-off-
diagonal Ri 6=j σ(iεl) appears in the diagram, it is a multisite
diagram. The diagram can be classified into a single-site or
multisite diagram. The physical property is decomposed into
the single-site term, which is the sum of all the single-site
diagrams, and the multisite term, which is the sum of all the
multisite diagrams.

The self-energy in the site representation is defined by

Rijσ(iεl) = R
(0)
ijσ(iεl)+

∑
i′j′

R
(0)
ii′σ(iεl)Σi′j′σ(iεl)Rj′jσ(iεl),

(3.1)

where Σijσ(iεl) is the self-energy and

R
(0)
ijσ(iεl) =

1
L

∑
k

eik·(Ri−Rj)
1

iεl + µ − E(k)
(3.2)

is the Green function for U = 0; Ri is the position of the ith
unit cell. The self-energy Σijσ(iεl) is decomposed into the
single-site δijΣσ(iεl) and the multisite ∆Σijσ(iεl):

Σijσ(iεl) = δijΣσ(iεl) + ∆Σijσ(iεl). (3.3)

The single-site Σσ(iεl) does not depend on the unit cell.
The site-diagonal Rσ(iεl) and the single-site Σσ(iεl) are

local properties. It is possible to map them to their corre-
sponding local properties of an appropriate impurity model.
The appropriate impurity model is the Anderson model.18–20

We consider the Anderson model defined by

H̃ = ε̃d

∑
σ

ndσ +
∑
kσ

Ec(k)c†kσckσ + Ũnd↑nd↓

+
1
L̃

∑
kσ

(
Vkc†kσdσ + V ∗

k d†σckσ

)
, (3.4)

where ndσ =d†σdσ , ε̃d is the level of d electrons, Ec(k) is the
dispersion relation of conduction electrons, Ũ is the on-site
repulsion, L̃ is the number of unit cells, and Vk is the hy-
bridization matrix between conduction and d electrons. In the
present paper, the temperature of the reservoir for the Ander-
son model is denoted by T̃ and treated as a parameter inde-
pendent of T for the Hubbard model. The Green function for
d electrons is given by

G̃σ(iε̃l) =
1

iε̃l + µ̃ − ε̃d − Σ̃σ(iε̃l) − Γ̃(iε̃l)
, (3.5)

Γ̃(iε̃l) =
1
π

∫ +∞

−∞
dε′

∆(ε′)
iε̃l − ε′

, (3.6)

∆(ε)=−ImΓ̃(ε+i0)=
π

L̃

∑
k

|Vk|2δ
[
ε+µ̃−Ec(k)

]
, (3.7)

where ε̃l = (2l+1)πkBT̃ , with l being an integer, and Σ̃σ(iε̃l)
is the self-energy for d electrons. The Anderson model is es-
sentially uniquely characterized by the four parameters T̃ , Ũ ,
ε̃d − µ̃, and ∆(ε); none of the arbitrariness of ε̃d, µ̃, Vk, or
Ec(k) is crucial. The four parameters have to be determined
to satisfy an appropriate mapping condition.

Since Σ̃σ(iε̃l) is a local term, only Ũ and G̃σ(iε̃l) appear
in any Feynman diagram for Σ̃σ(iε̃l) of the Anderson model;
only U and Rσ(iεl) appear in any Feynman diagram for the
single-site Σσ(iεl) of the Hubbard model. Provided that

T = T̃ , U = Ũ , (3.8a)

Rσ(iεl) = G̃σ(iε̃l) (3.8b)

are satisfied, it immediately follows that

Σσ(iεl) = Σ̃σ(iε̃l). (3.9)
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Equation (3.8) is the appropriate mapping condition. At least

εd − µ = ε̃d − µ̃ (3.10)

has to be satisfied in order that Eq. (3.8b) can be satisfied.
Then, it immediately follows that20

∆(ε) = Im
[
Σ̃σ(ε + i0) + 1/Rσ(ε + i0)

]
. (3.11)

If all of Eqs. (3.8a) and (3.10), and

∆(ε) = Im [Σσ(ε + i0) + 1/Rσ(ε + i0)] (3.12)

are satisfied, Eqs. (3.9) and (3.11) are satisfied. We can sub-
stitute Eq. (3.12) for Eq. (3.11). The set of Eqs. (3.8a), (3.10),
and (3.12) is the mapping condition; Eq. (3.12) is a practical
mapping condition because the others are simple.

It should be noted that ∆(ε) given by Eq. (3.12) depends on
the temperature T of the reservoir for the Hubbard model. The
mapped Anderson model itself includes T as a parameter.

There is no doubt on the possibility that, if the Hubbard
model is solved once, the four parameters T̃ , Ũ , ε̃d − µ̃, and
∆(ε) of the Anderson model can be uniquely determined from
the mapping condition. All pairs of corresponding properties
are exactly equal to each other between the Hubbard and An-
derson models; e.g., Σσ(ε+ i0) = Σ̃σ(ε+ i0), Rσ(ε+ i0) =
G̃σ(ε + i0), n(µ) = ñ(µ̃), ρµ(ε) = ρ̃(ε), and so on, where
ñ(µ̃) =

〈
nd↑ +nd↓

〉
and

ρ̃(ε) = −(1/π)ImG̃σ(ε + i0). (3.13)

If µ = µ0, the Anderson model is also symmetric.
The Green function for the Hubbard model in the wave-

number representation is given by

Gσ(iεl, k) =
1
L

∑
ij

e−ik·(Ri−Rj)Rijσ(iεl)

=
1

iεl + µ − E(k) − Σσ(iεl, k)
, (3.14)

Σσ(iεl, k) = Σσ(iεl) + ∆Σσ(iεl, k), (3.15)

∆Σσ(iεl, k) =
1
L

∑
ij

e−ik·(Ri−Rj)∆Σijσ(iεl). (3.16)

Here, Σσ(iεl, k), Σσ(iεl), and ∆Σσ(iεl, k) are the total,
single-site, and multisite self-energies, respectively.

The theory reviewed and reformulated above is KLT.18–21

Multisite terms have to be self-consistently considered with
the Anderson model to be mapped. If no multisite term is con-
sidered in KLT, it is reduced to S3A.14–17 Either the dynami-
cal mean-field theory28, 29 (DMFT) or the dynamical coherent-
potential approximation30 (DCPA) is also S3A.

3.1.2 Nonzero and finite ∆(ε) of the Anderson model
The purpose of Sect. 3.1.2 is to show that if T > Tc,

0 < ∆(ε) < +∞ (3.17)

has to be satisfied in any self-consistent solution of KLT, in
which ρµ(ε)>0 is necessarily satisfied. We refer to a previous
paper.21 We define two real functions:

Yn(ε) =
1
L

∑
k

Sn
1 (ε, k)

S2
1(ε, k) + S2

2(ε, k)
, (3.18a)

Zn(ε) =
1
L

∑
k

Sn
2 (ε, k)

S2
1(ε, k) + S2

2(ε, k)
, (3.18b)

where S1(ε,k) = Re[1/Gσ(ε + i0,k)] and S2(ε,k) =
Im[1/Gσ(ε+i0, k)]. It follows that

Y0(ε) = Z0(ε), (3.19)

Rσ(ε + i0) = Y1(ε) − iZ1(ε), (3.20)

Z1(ε) = πρµ(ε) > 0, (3.21)

Y2(ε) + Z2(ε) = 1. (3.22)

Since either of

1
L

∑
k

[x+S1(ε,k)]2

S2
1(ε,k)+S2

2(ε,k)
= Y0(ε)x2+2Y1(ε)x+Y2(ε),

(3.23a)

1
L

∑
k

[x+S2(ε,k)]2

S2
1(ε,k)+S2

2(ε,k)
= Y0(ε)x2+2Z1(ε)x+Z2(ε),

(3.23b)

cannot be negative for any real x,31 it follows that

− Y 2
1 (ε) + Y0(ε)Y2(ε) ≥ 0, (3.24a)

− Z2
1 (ε) + Z0(ε)Z2(ε) ≥ 0. (3.24b)

The perturbative analysis in terms of U is useful for U/|t|�1;
that in terms of J = −4t2/U based on KLT is useful for
U/|t| � 1, as demonstrated in Sect. 4. In either analysis,
it is easy to find terms that give a nonzero contribution to
ImΣσ(ε + i0) or Im∆Σσ(ε + i0, k), provided that T > 0 K
and ρµ(ε)>0. If T > Tc, then ρµ(ε) > 0, so that

0 < −ImΣσ(ε + i0) < −ImΣσ(ε + i0, k). (3.25)

Then, Y1(ε) is finite and Z1(ε) is nonzero and finite, so that

0 < Y 2
1 (ε) + Z2

1 (ε) < +∞. (3.26)

First, we show that ∆(ε) cannot be positively divergent. If
Eq. (3.20) is used, Eq. (3.12) can be described as

∆(ε) = ImΣσ(ε+ i0)+Z1(ε)/
[
Y 2

1 (ε)+Z2
1 (ε)

]
. (3.27)

In general, ImΣσ(ε + i0) ≤ 0. According to Eq. (3.21) or
(3.26), Z1(ε)/

[
Y 2

1 (ε)+Z2
1 (ε)

]
< +∞. Then, ∆(ε)<+∞.

Next, we show that ∆(ε) has to be nonzero and positive. If
Eq. (3.22) is used, Eq. (3.27) can be described as

∆(ε) = X(ε)/
[
Y 2

1 (ε) + Z2
1 (ε)

]
, (3.28)

X(ε) = ImΣσ(ε + i0)
[
Y 2

1 (ε) + Z2
1 (ε)

]
+ Z1(ε)

[
Y2(ε) + Z2(ε)

]
. (3.29)

According to Eqs. (3.18b) and (3.25),

Z1(ε) > −ImΣσ(ε + i0)Z0(ε). (3.30)

According to Eqs. (3.19), (3.29), and (3.30),

X(ε) > −ImΣσ(ε + i0)
{[
−Y 2

1 (ε) + Y0(ε)Y2(ε)
]

+
[
−Z2

1 (ε) + Z0(ε)Z2(ε)
]}

. (3.31)

According to Eqs. (3.24), (3.25), and (3.31), it follows that
X(ε)>0. According to X(ε)>0 and Eqs. (3.26) and (3.28),
it follows that ∆(ε) > 0. Thus, Eq. (3.17) has to be satisfied.



6 J. Phys. Soc. Jpn. 83, 124703 (2014) Fusayoshi J. OHKAWA

Since ∆(ε)<+∞, Γ̃(ε+i0) can have no pole on the real axis
in any self-consistent solution of KLT for T >Tc.

3.1.3 Polarization and vertex functions in the spin channel
Here, we refer to previous papers.32–34 The bosonic en-

ergy is denoted by ωl = 2lπkBT , with l being an integer. In
the wave-number representation, the irreducible polarization
function πs(iωl, q) in the spin channel is decomposed into the
single-site πs(iωl) and the multisite ∆πs(iωl, q):

πs(iωl, q) = πs(iωl) + ∆πs(iωl, q). (3.32)

The single-site πs(iωl) is equal to the local π̃s(iωl) of the
Anderson model: πs(iωl)= π̃s(iωl). The spin susceptibilities
of the Anderson and Hubbard models are given by

χ̃s(iωl) = 2π̃s(iωl)/[1 − Uπ̃s(iωl)], (3.33a)

χs(iωl, q) = 2πs(iωl, q)/[1 − Uπs(iωl, q)], (3.33b)

respectively. Here, the conventional factor (1/4)g2µ2
B is not

included, where g is the g factor and µB is the Bohr magneton.
The susceptibility χ̃s(iωl) of the Anderson model includes no
contribution from the polarization of conduction electrons.

The Kondo temperature or energy is defined by[
χ̃s(0;T )

]
T̃=0 K

= 1/
[
kBTK(T )

]
, (3.34)

where T̃ = 0 K means that the temperature of the reservoir
for the Anderson model is the absolute zero Kelvin; T of the
reservoir for the Hubbard model or the parameter T is ex-
plicitly shown because χ̃s(0;T ) and TK(T ) depend on T .
Although this definition of TK is different from Wilson’s35

by a numerical factor, kBTK is still a measure of the mag-
nitude of stabilization energy. Since ρ̃(ε) = ρµ(ε) > 0 and
0<∆(ε)<+∞ for T >Tc, kBTK >0 and never kBTK =0 in
any self-consistent solution of KLT for T >Tc.

The formulation so far is valid for any finite U/|t|. The
formulation in the following part is only valid for U/|t| � 1.
If U/|t| � 1, then kBTK/U � 1;

χ̃s(iωl) = O[1/(kBTK)], (3.35a)

χs(iωl, q) = O[1/(kBTK)], (3.35b)

for T . TK and |ωl| . kBTK. According to Eqs. (3.33) and
(3.35), Uπ̃s(iωl) = 1 + O(kBTK/U), Uπs(iωl, q) = 1 +
O(kBTK/U), and U2∆πs(iωl, q) = O

[
(kBTK/U)0

]
. Then,

U [1 − Uπ̃s(iωl)] = 2/χ̃s(iωl), (3.36)

χs(iωl, q) =
χ̃s(iωl)

1 − (1/4)Is(iωl, q)χ̃s(iωl)
, (3.37)

for T . TK and |ωl| . kBTK, where

Is(iωl, q) = 2U2∆π(iωl, q). (3.38)

Here, the terms of O(kBTK/U) are ignored.
Equation (3.37) is consistent with the physical picture of

Kondo lattices that local spin fluctuations interact with each
other with an intersite exchange interaction; Is(iωl, q) is the
intersite exchange interaction. The Néel temperature TN is de-
termined from Eq. (3.37):

TN = max
[
TN(q)

]
, (3.39a)

where TN(q) as a function of q is defined by[
1 − (1/4)Is(0, q)χ̃s(0)

]
T=TN(q)

= 0. (3.39b)

According to the definition of Tc, if Eq. (3.39) gives TN, Tc ≥
TN; if not, Tc ≥ 0 K.

The reducible and irreducible three-point vertex functions
in the spin channel are decomposed into single-site and mul-
tisite terms. The single-site terms can be mapped to the local
vertex functions of the mapped Anderson model. If they are
denoted by Λ̃s(iεl, iεl+iωl′ ; iωl′) and λ̃s(iεl, iεl+iωl′ ; iωl′),

Λ̃s(iεl, iεl + iωl′ ; iωl′) =
λ̃s(iεl, iεl + iωl′ ; iωl′)

1 − Uπ̃s(iωl′)
. (3.40)

If Eq. (3.36) is used,

Uλ̃s(iεl, iεl + iωl′ ; iωl′) =
2

χ̃s(iωl′)
Λ̃s(iεl, iεl + iωl′ ; iωl′).

(3.41)

3.2 Perturbation scheme to include multisite terms
3.2.1 Unperturbed state

In the Anderson model of Eq. (3.4), the Fermi surface of
the conduction band is defined by µ̃ = Ec(kF), where kF is
the Fermi wave number. According to Eq. (3.7), ∆(0) > 0 is
a sufficient condition for the existence of the Fermi surface.
According to Eq. (3.17), the Fermi surface exists. Then, the
ground state of the Anderson model is the normal Fermi liq-
uid because of the Kondo effect. The normal Fermi liquid is
characterized by nonzero TK(T ), which depends on T of the
reservoir for the Hubbard model, or the parameter T . For con-
venience, T̃ of the reservoir for the Anderson model is treated
as being independent of the parameter T , although eventually
T̃ = T has to be assumed. In the following part, we assume
that 0 K ≤ T̃ . TK(T ) and Tc < T � TK(T ), and the
parameter T is explicitly shown.

We introduce an infinitesimal Zeeman energy into the An-
derson model: H̃Z = −h̃(nd↑ − nd↓), where h̃ = 0+. The
self-energy can be expanded in such a way that36–38

Σ̃σ(ε+i0; T )=Σ̃0(T )+
[
1−φ̃1(T )

]
ε+σ

[
1−φ̃s(T )

]
h̃

− i
[
φ̃21(T )ε2+φ̃22(T )(kBT̃ )2

]
/
[
π∆(0;T )

]
− φ̃2(T )ε2/

[
π∆(0;T )

]
+ · · · . (3.42)

In general, φ̃1(T )≥1, φ̃s(T )≥1, φ̃21(T )≥0, φ̃22(T )≥0, and
φ̃2(T ) R 0; if µ = µ0, φ̃2(T ) = 0. If Ũ/

[
π∆(0;T )

]
& 1 and

ñ(µ̃)'1, φ̃1(T )�1, φ̃21(T )�1, and φ̃22(T )�1.
For convenience, we define three ratios:

W̃s(T ) = φ̃s(T )/φ̃1(T ), (3.43a)

W̃21(T ) = φ̃21(T )/φ̃2
1(T ), (3.43b)

W̃22(T ) = φ̃22(T )/φ̃2
1(T ). (3.43c)

Any of them is O(1), even if Ũ/
[
π∆(0; T )

]
& 1. The ra-

tio W̃s(T ) is nothing but the Wilson ratio.35 If ∆(ε;T ) does
not depend on ε, W̃s(T ) = 2 in the s-d model or the s-d
limit of the Anderson model.35–37 Thus, it is expected that,
if Ũ/[π∆(0; T )] & 1 and ñ(µ̃) ' 1, then W̃s(T ) ' 2 for the
mapped Anderson model, whose ∆(ε; T ) depends on ε.

The Fermi-liquid relation is available for the normal Fermi
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liquid.25, 26, 36–38 If T̃ = 0 K and no polarization of conduc-
tion electrons occurs, the static susceptibility of the Anderson
model is given by

χ̃s(0;T ) = 2φ̃s(T )ρ̃(0; T ), (3.44)

where ρ̃(0;T ) is the density of states of the Anderson model.
If ∆(ε;T ) depends on ε, the polarization of conduction elec-
trons occurs, in general; the static susceptibility of the Ander-
son model is approximately given by Eq. (3.44). Since TK(T )
is defined by Eq. (3.34), it follows that

1/ρ̃(0; T ) ' 2φ̃s(T )kBTK(T ) ' 4φ̃1(T )kBTK(T ). (3.45)

Since an electron liquid in the Hubbard model can be char-
acterized by ρµ(0;T ) = ρ̃(0;T ), φ̃1(T ), and kBTK(T ),
Eq. (3.45) is useful in the present paper.

The bosonic energy for T̃ is denoted by ω̃l = 2πlkBT̃ , with
l being an integer. According to the Ward relation,39

Λ̃s(iε̃l, iε̃l + iω̃l′ ; iω̃l′ ; T ) = 1− lim
h→0

d

dh̃

∑
σ

σ

2
Σ̃σ(iε̃l; T ),

(3.46)

for ω̃l′ = 0. According to Eqs. (3.42) and (3.46),

Λ̃s(iε̃l, iε̃l + iω̃l′ ; iω̃l′ ; T ) = φ̃s(T ), (3.47)

for ω̃l′ = 0 and |εl|/(kBTK) → 0. According to Eqs. (3.41)
and (3.47),

Uλ̃s(iε̃l, iε̃l + iω̃l′ ; iω̃l′ ; T ) = 2φ̃s(T )/χ̃s(iω̃l′ ; T ), (3.48)

for ω̃l′ = 0 and |εl|/(kBTK) → 0.
Every single-site property depends on the parameter T . If

Tc < T � TK(T ), the parameter T dependence is so small
that it can be ignored, except in the case of D = 2 and n(µ) '
1, as discussed in Sect. 5.3. In the following part, T̃ = T is
assumed, and the parameter T is not shown.

If Eq. (3.42) is used, the Green function is given by

Gσ(iεl,k) = (1/φ̃1)gσ(iεl,k), (3.49a)

gσ(iεl,k)=
1

iεl +µ∗−[E(k)+∆Σσ(iεl, k)]/φ̃1−γ̃K(iεl)
,

(3.49b)

µ∗ =
(
µ − Σ̃0

)
/φ̃1, (3.49c)

γ̃K(iεl) =−i
εl

|εl|
[
W̃21(iεl)2+W̃22(kBT )2

] φ̃1

π∆(0)
. (3.49d)

In Eq. (3.49b), h̃ and −φ̃2ε
2/

[
π∆(0)

]
are ignored. The Green

function given here is accurate for |εl| � kBTK and T � TK;
it can be approximately used for |εl| . kBTK and T . TK

with sufficient accuracy.
If φ̃1 � 1, the density of states ρ̃(ε) of the Anderson

model has a three-peak structure with the Kondo peak be-
tween two subpeaks; the bandwidth and spectral weight of the
Kondo peak are O(kBTK) and 1/φ̃1, respectively.36, 37 Since
ρµ(ε) = ρ̃(ε), the density of states ρµ(ε) of the Hubbard
model also has a three-peak structure with a midband between
the upper and lower Hubbard bands, or within the Hubbard
gap that is a pseudogap; the bandwidth and spectral weight of
the midband are also O(kBTK) and 1/φ̃1, respectively. In this
case, the Green function given by Eq. (3.49) can only describe
the midband but the upper or lower Hubbard band.

Equation (3.49b) can also be described as

gσ(iεl, k) = g(0)
σ (iεl, k) + (1/φ̃1)∆Σσ(iεl, k)gσ(iεl,k),

(3.50)

g(0)
σ (iεl, k) =

1
iεl + µ∗ − (1/φ̃1)E(k) − γ̃K(iεl)

. (3.51)

In KLT, g(0)
σ (iεl, k) is the unperturbed Green function, which

is determined using the mapped Anderson model; then, the
multisite ∆Σσ(iεl,k) of the Hubbard model has to be self-
consistently calculated with the mapped Anderson model to
satisfy the mapping condition given in Sect. 3.1.1.

3.2.2 Superexchange interaction
We assume that U/|t| � 1. The intersite Is(iωl, q) given

by Eq. (3.38) can be decomposed into three terms:

Is(iωl, q) = Js(iωl, q) + JQ(iωl, q) − Λ(iωl, q). (3.52)

Here, Js(iωl, q) is the superexchange interaction, which
arises from the virtual exchange of a pair excitation of an
electron in the upper Hubbard band and a hole in the lower
Hubbard band,32, 33 and JQ(iωl, q) is an exchange interaction
due to the virtual exchange of an electron-hole pair excitation
within the midband.40, 41 The last term or −Λ(iωl, q) is the
sum of all the remaining terms, or the so-called mode-mode
coupling term; because it suppresses magnetic instability, it is
defined in such a way that the minus sign appears for it.

We refer to previous papers32, 33 to derive the superex-
change interaction. The band splits into the upper and lower
Hubbard bands. Since Hubbard’s theory is under the single-
site approximation (SSA),8, 9 it can be approximately used to
describe the high-energy properties of the Anderson model;
the local Green function is given by

G̃σ(iεl) =
1

iεl + µ − εd + σh̃ − Σ̃σ(iεl)
(3.53a)

=
1 − ñ−σ

(
µ, h̃

)
iεl + µ − εd

+
ñ−σ

(
µ, h̃

)
iεl + µ − εd − U

, (3.53b)

for |εl| � kBTK, where ñσ

(
µ, h̃

)
is the number of local-

ized electrons with spin σ in the presence of the infinitesimal
Zeeman energy h̃; in Eq. (3.53b), h̃’s in the denominators are
ignored because they are not crucial. It follows that

χ̃s(0) = lim
h̃→0

d

dh̃

[
ñ↑

(
µ, h̃

)
− ñ↓

(
µ, h̃

)]
. (3.54)

According to Eqs. (3.41), (3.46), (3.53), and (3.54),

Uλ̃s(iεl, iεl + iωl′ ; iωl′) = − 1
G̃2

σ(iεl)

×
(

1
iεl + µ − εd

+
1

iεl + µ − εd − U

)
, (3.55)

for ωl′ = 0 and |εl| � kBTK.
Since the superexchange interaction is a second-order ef-

fect in −t/
√

D, according to Eq. (3.38),

Js(iωl, q) =
1
L

∑
〈ij〉

eiq·(Ri−Rj)J〈ij〉(iωl), (3.56)
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J〈ij〉(iωl)=2kBT
∑
l′

U2λ̃2
s(iεl′, iεl′+iωl; iωl)

(
−t/

√
D

)2

× R2
iiσ(iεl′)R2

jjσ(iεl′ + iωl). (3.57)

If Eq. (3.53) is used for Riiσ(iεl) and Eq. (3.55) is used for
Uλ̃s(iεl′ , iεl′+iωl; iωl), its static part between nearest neigh-
bors is given by J〈ij〉(0) = J/D, where

J = −4t2/U. (3.58)

This is simply given in previous papers32, 33 and is in agree-
ment with that derived from the conventional theory.42

Since J〈ij〉(ω + i0) is analytical in the upper-half complex
plane, J〈ij〉(iωl) can be generally described as

J〈ij〉(iωl) =
J

D

∫ +∞

0

dxXJ (x)
(

1
iωl +x

− 1
iωl−x

)
, (3.59)

where XJ(x) satisfies∫ +∞

0

dx
XJ(x)

x
=

1
2
. (3.60)

Since XJ(x) has a peak at x ' U , it is assumed that XJ(x) =
(1/2)Uδ(x − U). Then,

Js(iωl, q) =
2J√
D

ϕD(q)
U

2

(
1

iωl +U
− 1

iωl−U

)
, (3.61)

where ϕD(q) is defined by Eq. (2.3). In the static limit
|ωl|/U → 0, Eq. (3.61) is reduced to

Js(iωl, q) =
2J√
D

ϕD(q) =
2J

D

D∑
ν=1

cos(qνa). (3.62)

The superexchange interaction Js(iωl, q) is of higher or-
der in 1/D for almost all q’s and is of the zeroth order in
1/D only for particular q’s, e.g., q’s on the line between
(π/a)(0,±1, · · · ,±1) and (π/a)(±1,±1, · · · ,±1).

3.2.3 Mutual interaction due to spin fluctuations
The mutual interaction due to spin fluctuations is given by

Γsf(iωl, q; iεl1 , iεl2) = U2λ̃s(iεl1 , iεl1 + iωl; iωl)

× λ̃s(iεl2 , iεl2 − iωl;−iωl)

× [χs(iωl, q) − χ̃s(iωl)] , (3.63)

where iεl1 and iεl2 are the energies of incoming electrons,
iεl1 + iωl and iεl2 − iωl are those of outgoing electrons, and
iωl is the transfer energy. Since the single-site part is consid-
ered in the unperturbed state, it is subtracted in Eq. (3.63) in
order to avoid double counting. It follows that33, 40, 41

χs(iωl, q) − χ̃s(iωl) = (1/4)χ̃2(iωl)I∗s (iωl, q), (3.64)

I∗s (iωl, q) =
Is(iωl, q)

1 − (1/4)Is(iωl, q)χ̃s(iωl)
. (3.65)

If Eq. (3.48) is used, it follows that

Γsf(iωl, q; iεl1 , iεl2) = φ̃2
sI

∗
s (iωl, q), (3.66)

for |ωl| . kBTK, |εl1 | . kBTK, and |εl2 | . kBTK. The
single-site φ̃s appears as a type of three-point vertex function.

If the mapped Anderson model is solved and the single-site
Σ̃σ(iεl) and χ̃s(iωl) are given, the multisite ∆Σσ(iεl,k) and
∆π(iωl, q) can be perturbatively calculated in terms of the

intersite Is(iωl, q) on the basis of KLT. Since the single-site
terms are considered in the Anderson model, only multisite
terms have to be considered in order to avoid double count-
ing. The intersite Is(iωl, q) has to be treated as a bare intersite
exchange interaction, and the single-site φ̃s has to be treated
as a bare vertex function; I∗s (iωl, q) is the renormalized inter-
site exchange interaction, which is enhanced or screened by
intersite spin fluctuations, depending on q.

The intersite Is(iωl, q) is of higher order in 1/D for almost
all q’s except for particular q’s; e.g., Is(0, Q), where Q is
the ordering wave number determined using Eq. (3.39), is of
the zeroth order in 1/D and corresponds to the conventional
Weiss mean field. Thus, KLT is a perturbative theory in terms
of Is(iωl, q) and also a 1/D expansion theory.

4. RVB Liquid in Low Dimensions
4.1 RVB self-energy

We assume that

U/|t|�1, |n(µ)−1|�1, Tc<T �|J |/(kBD). (4.1)

We consider only the superexchange interaction Js(iωl, q) in
the intersite Is(iωl, q). There are two types of self-energy
of the first order in Js(iωl, q): the Hartree-type and Fock-
type self-energies. Since the Hartree-type self-energy is in-
cluded in the conventional Hartree term, which is one of the
single-site terms and is considered in the unperturbed state, it
should not be considered in order to avoid double counting.
The Fock-type self-energy is given by43

∆Σ(RVB)
σ (iεl,k) =

kBT

L

∑
l′pσ′

φ̃2
s

1
4
Js(iεl − iεl′ , k − p)

×
(
σσσ′

·σσ′σ
)
Gσ′(iεl′ , p), (4.2)

where σ = (σx, σy, σz) is the Pauli matrix. What is consid-
ered for the Fock-type self-energy is simply the RVB mecha-
nism.44 We call it the RVB self-energy.

If Eqs. (3.49) and (3.61) are used, it follows that

∆Σ(RVB)
σ (iεl,k) = φ̃1

3
4
W̃ 2

s

J

D
ΞD(iεl)ϕD(k), (4.3)

where W̃s is the Wilson ratio, J = −4t2/U , and

ΞD(iεl) =
1
L

∑
p

ϕD(p)

{
1
2
U

[
f−(U)gσ(iεl + U, p)

− f−(−U)gσ(iεl − U, p)
]

− 1
π

∫ +∞

−∞
dεf+(ε)

1
2
U

(
1

iεl− ε+U
− 1

iεl− ε−U

)

× Imgσ(ε+ i0, p)

}
, (4.4)

where gσ(ε + i0, p) is given by Eq. (3.49b) and

f±(ε) = 1/
[
eε/(kBT ) ± 1

]
. (4.5)

It is easy to confirm that

lim
|εl|/U→+∞

∆Σ(RVB)
σ (iεl, k) = 0, (4.6)

which is crucial to prove the sum rule in Appendix A. In the
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static limit |εl|/U → 0, ΞD(iεl) is simply given by

ΞD =
1
L

∑
p

ϕD(p)
∫ +∞

−∞
dεf+(ε)

(
− 1

π

)
Imgσ(ε+i0, p). (4.7)

If |εl|/U � 1, Eq. (4.7) can be used for ΞD(iεl) with suffi-
cient accuracy. Then,

∆Σ(RVB)
σ (iεl,k) = φ̃1

3
4
W̃ 2

s

J

D
ΞDϕD(k). (4.8)

If Eq. (3.62) is used instead of Eq. (3.61), Eq. (4.8) is simply
derived instead of Eq. (4.3).

4.2 Parameters characterizing the RVB liquid
If Eq. (4.8) is used, Eq. (3.49b) is simply given by

gσ(iεl, k) =
1

iεl + µ∗ − ξ(k) − γ̃K(iεl)
, (4.9)

where µ∗ and γ̃K(iεl) are given by Eqs. (3.49c) and (3.49d),
respectively,

ξ(k) = −2t∗ϕD(k), (4.10)

t∗ = t
[
(1/φ̃1) + 2cJ |t|/(DU)

]
, (4.11)

cJ = (3/4)W̃ 2
s ΞD. (4.12)

The density of states at the chemical potential is given by

ρµ(0) =− 1
πL

∑
k

1
φ̃1

Imgσ(+i0, k) = O

(
1

φ̃1|t∗|

)
. (4.13)

From Eqs. (3.45) and (4.13), it follows that

kBTK = O(|t∗|). (4.14)

Electrons in the midband can be described by µ∗, t∗ or kBTK,
φ̃1, and cJ . In principle, they have to be self-consistently eval-
uated with each other as a function of T and µ to satisfy the
mapping condition given in Sect. 3.1.1. However, they can be
approximately evaluated, as studied below.

According to the Fermi-surface sum rule,25, 26

n(µ) =
2
L

∑
k

∫ +∞

−∞
dεf+(ε)δ

[
ε + µ∗ − ξ(k)

]
, (4.15)

for T = 0 K. If T = 0 K and n(µ) = 1, then µ∗ = 0,
which is required by the particle-hole symmetry. Then, |Ξ1| =
1/π = 0.31831 · · · , |Ξ2| = 2

√
2/π2 = 0.28658 · · · , · · · , and

|Ξ∞| = 1/(2
√

π) = 0.283095 · · · ; i.e., |ΞD| ' 1/3 for any
D. If Tc < T � TK, Eq. (4.15) can be approximately used,
but with sufficient accuracy. If n(µ) ' 1, it follows that

|µ∗| � |t∗|, |ΞD| ' 1/3, cJ ' 1. (4.16)

If |ΞD| = 1/3 and W̃s = 2 are assumed, then cJ = 1.
The asymptotic behavior of 1/φ̃1 as U/|t|→+∞ is stud-

ied in Appendix B: If n(µ) = 1, 1/φ̃1 = O
[
t2/(DU2)

]
, as

shown in Eq. (B·11). According to Gutzwiller’s theory,45–47 if
U/|t| → +∞ and |n(µ) − 1| � 1, 1/φ̃1 = O(|n(µ)− 1|). If
U/|t|�1 and |n(µ)−1|�1, it is reasonable to assume that

1/φ̃1 = max
{
O

[
t2/(DU2)

]
, O

[
|n(µ) − 1|

]}
. (4.17)

4.3 Possible types of electron liquid
If Eq. (4.1) is satisfied, the spectral weight of the midband,

which is 1/φ̃1, is much smaller than unity, and the bandwidth

of the midband, which is O(|t|∗), is much smaller than the
bare bandwidth, which is O(|t|). We consider four typical
cases of Eq. (4.1), where t2/(DU2) � |t|/(DU). First, we
consider the case of

t2/(DU2) � |t|/(DU) . |n(µ) − 1|, (4.18)

where n(µ) 6=1 is assumed. According to Eq. (4.18) together
with Eqs. (4.11), (4.13), (4.14), and (4.17),

1/φ̃1 = O(|n(µ) − 1|), (4.19a)

ρµ(0) = O(1/|t|), (4.19b)

kBTK = O
[
|t| · |n(µ) − 1|

]
. (4.19c)

The single-site effect considered by Gutzwiller’s theory is
more crucial than the RVB mechanism; ρµ(0) weakly in-
creases as U increase. If |t|/(DU)�|n(µ)−1|, the electron
liquid is simply that given by Gutzwiller’s theory,45–47 which
is under SSA. If n(µ) is kept constant, ρµ(0) is constant as a
function of U under SSA, as will be discussed later in Sect.
5.1; thus, ρµ(0) for such a large U is almost constant as a
function of U and as large as that for U = 0.

Second, we consider the case of

t2/(DU2) . |n(µ) − 1| . |t|/(DU), (4.20)

where n(µ) 6=1 is also assumed; U in this case is smaller than
that considered in the first case, if n(µ) 6= 1 are the same as
each other between the two cases. It follows that

1/φ̃1 = O
(
|n(µ) − 1|

)
, (4.21a)

O(1/U) < ρµ(0) < O(1/|t|), (4.21b)

kBTK = O
[
t2/(DU)

]
= O

(
|J |/D

)
. (4.21c)

The RVB mechanism is crucial and the electron liquid is the
RVB liquid. Since the single-site effect becomes more and
more relatively crucial to the RVB mechanism as U increases,
ρµ(0) increases as U increases.

Third, we consider the case of

|n(µ) − 1| . t2/(DU2) � |t|/(DU), (4.22)

where n(µ) 6= 1 or n(µ) = 1 is assumed; if n(µ) 6= 1 are the
same as each other between this case and the first or second
case, U in this case is smaller than that considered in the first
or second case. It follows that

1/φ̃1 = O
[
t2/(DU2)

]
, (4.23a)

ρµ(0) = O(1/U), (4.23b)

kBTK = O
[
t2/(DU)

]
= O(|J |/D). (4.23c)

The RVB mechanism is crucial and the electron liquid is
a typical type of RVB liquid. The density of states ρµ(0)
becomes smaller as U increases. Particularly if n(µ) = 1,
ρµ(0)→0 as U/|t|→+∞. According to Eq. (3.12),

∆(ε) = −
∣∣ImΣσ(ε + i0)

∣∣ + 1/[πρµ(ε)], (4.24)

for ε such that ReRσ(ε + i0)=0. Since ReRσ(+i0)=0 for
µ = µ0 and ImΣσ(+i0) → 0 as T → 0 K, ∆(0)=O(U).

According to the considerations of the above three cases,
the RVB mechanism is crucial, provided that

|n(µ) − 1| . |t|/(DU). (4.25)
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If n(µ) 6=1 is kept constant, ρµ(0) is not a monotonous func-
tion of U ; ρµ(0) as a function of U is minimal at approxi-
mately U such that |n(µ)−1|=t2/(DU2). If n(µ)=1, ρµ(0)
is a monotonously decreasing function of U : ρµ(0) ∝ 1/U .

Last, we consider a particular case of Eq. (4.22): the
Heisenberg limit of U/|t| → +∞ with J = −4t2/U and
n(µ)=1 kept constant. It follows that 1/φ̃1 → 0, ρµ(0)→ 0,
and kBTK =O(|J |/D). Although the bandwidth of the mid-
band is nonzero and finite, either its spectral weight or den-
sity of states is infinitesimal. The RVB electron liquid in the
Heisenberg limit is the most typical type of RVB electron liq-
uid; it is a quasi-spin liquid, or simply the RVB spin liquid.

4.4 Metallic conductivity in the Heisenberg limit
We consider magnetic impurities:

H′ = −
∑
iσσ′

J ′
i

(
σσσ′

· S′
i

)
d†iσdiσ′ , (4.26)

where S′
i is an impurity spin at the ith unit cell. We consider

an ensemble for J ′
i such that J ′

i is positive, zero, or nega-
tive and is completely random from unit cell to unit cell and
from sample to sample in the ensemble:

〈〈
J ′

i

〉〉
=0,

〈〈
J ′

iJ
′
j

〉〉
=

δij

〈〈
|J ′

i |
2〉〉,

〈〈
J ′

i1
J ′

i2
J ′

i3

〉〉
=0, and so on, where 〈〈· · · 〉〉 stands

for the ensemble average. The translational symmetry is re-
stored by the ensemble average. In the following part, the dou-
ble thermal-ensemble average is simply called an average.

Assuming that |J ′
i | � kBTK for any i, we treat impu-

rity scattering in the Born approximation. The average self-
energy Σσ(iεl) due to the impurity scattering is given by self-
consistently solving the following two equations:

Σσ(iεl) = φ̃2
sS

′(S′ + 1)δij

〈〈
|J ′

i |
2
〉〉 1

L

∑
k

1
φ̃1

gσ(iεl,k),

(4.27)

gσ(iεl, k) =
1

iεl +µ∗−ξ(k)− γ̃K(iεl)− (1/φ̃1)Σσ(iεl)
,

(4.28)

where S′ is the magnitude of impurity spins, gσ(iεl,k) is the
average Green function multiplied by φ̃1, which corresponds
to gσ(iεl,k) given by Eq. (3.49b) or (4.9), and γ̃K(iεl) is
given by Eq. (3.49d). The average conductivity is given by48

σxx(ω) =
~
iω

[
Kxx(ω + i0) − Kxx(0)

]
, (4.29)

where

Kxx(iωl)=
1

LaD

∫ β

0

dτeiωlτ
〈
eτ(H−µN )ĵx e−τ(H−µN )ĵx

〉
=

e2

~2

(2t)2

DaD−2
Πxx(iωl), (4.30)

where β = 1/(kBT ), ĵx = −(e/~)
∑

kσ[(∂/∂k1)E(k)]n̂k,
with n̂kσ =(1/L)

∑
ii′ eik·(Ri−Ri′ )d†

iσdi′σ , and

Πxx(iωl) =
1
L

∑
kp

∑
σσ′

sin(k1a) sin(p1a)
∫ β

0

dτeiωlτ

×
〈
eτ(H−µN ) n̂kσ e−τ(H−µN ) n̂pσ′

〉
. (4.31)

Here, 〈· · · 〉 stands for the average. In order to satisfy the Ward
relation,39 the ladder type of vertex correction due to the su-

perexchange interaction has to be considered; the vertex cor-
rection due to the impurity scattering to be considered is also
of the ladder type, but it vanishes. Then,

Πxx(iωl) =
1
φ̃2

1

2πxx(iωl)
1 + 3W̃ 2

s Jπxx(iωl)/(4D)
, (4.32)

where W̃s is the Wilson ratio and

πxx(iωl) =−kBT

L

∑
nk

sin2(kxa)gσ(iεl, k)gσ(iεl + iωl, k).

(4.33)

The ω-linear term of Kxx(ω + i0) or Πxx(ω + i0) con-
tributes to the static conductivity σxx(0). It follows that

dΠxx(iωl)
d(iωl)

=
(2/φ̃2

1)
[
dπxx(iωl)/d(iωl)

][
1 + 3W̃ 2

s Jπxx(iωl)/(4D)
]2 . (4.34)

If Eq. (C·6) is used, it is easy to show that[
1 + 3W̃ 2

s Jπxx(0)/(4D)
]
φ̃1t

∗ = t, (4.35)

with t∗ given by Eq. (4.11). Then, it follows that

σxx(0) =
e2

~2

(2t∗)2

DaD−2
Sxx(0), (4.36)

where Sxx(0)=(2~/i)
[
(d/dω)πxx(ω + i0)

]
ω=0

, or

Sxx(0)=
2~
πL

∑
k

sin2(k1a)
∫ +∞

−∞
dε

[
−f+(ε)

dε

][
Imgσ(ε+i0,k)

]2

.

(4.37)

If 2 sin2(k1a) = 1 − cos(2k1a) is used and the term that
includes cos(2k1a) is ignored, it follows that

Sxx(0) =
~
π

∫ +∞

−∞
dE

[
φ̃1ρµ(E)

]∫ +∞

−∞
dε

[
−f+(ε)

dε

]

×

[
Im

1
ε−E−γ̃K(ε+i0)−

(
1/φ̃1

)
Σσ(ε+i0)

]2

. (4.38)

We define two relaxation times, τK and τs, by

~
2τK

=
∫ +∞

−∞
dε

[
−df+(ε)

dε

]
Im

[
−γ̃K(ε + i0)

]
=

(
π2

3
W̃21 + W̃22

)
φ̃1

π∆(0)
(kBT )2 , (4.39)

~
2τs

=
∫ +∞

−∞
dε

[
−df+(ε)

dε

]
1
φ̃1

Im
[
−Σσ(ε + i0)

]
, (4.40)

respectively. If −i~/(2τK) and −i~/(2τs) are used for γ̃K(ε+
i0) and (1/φ̃1)Σσ(ε+i0), respectively, and the energy depen-
dence of ρµ(E) is ignored in Eq. (4.38), it follows that

σxx(0) =
e2

~2

8|t∗|2

DaD−2

φ̃1ρµ(0)
(1/τK) + (1/τs)

. (4.41)

Since |t∗|=O(|J |/D) and φ̃1ρµ(0)=O(1/|t∗|), σxx(0) is
nonzero even in the limit 1/φ̃1 → 0; ρµ(0)→ 0 in the limit
1/φ̃1 → 0. In an absolutely clean system, ~/τs=0. If no sym-
metry is broken or no complete gap opens even at T =+0 K in
the absolutely clean system, σxx(0) diverges as T → 0 K be-
cause 1/τK→0 as T →0 K. If the impurity scattering is suffi-
ciently weak, the RVB electron liquid shows metallic conduc-
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tivity at a sufficiently low T such that kBTc<kBT �|J |/D in
not only three dimensions or higher but also, if the Anderson
localization49 can be ignored, one and two dimensions, and
even in the Heisenberg limit, in which ρµ(0) → 0.

4.5 Adiabatic continuation
In the Heisenberg limit, the Hubbard model is reduced to

HS = Lεd−
1
2

J

D

∑
〈ij〉

(Si ·Sj)−2
∑

i

J ′
i (Si ·S′

i) , (4.42)

where the Hilbert space is constrained within the subspace
where no empty or double occupancy is allowed, and Si =
(1/2)

∑
σσ′ σσσ′

d†
iσdiσ′ . The last term in Eq. (4.42) is the

impurity term given by Eq. (4.26). Since Si’s satisfy the com-
mutation relation for spin within the constrained Hilbert sub-
space, if the impurity term is excluded, HS is the Heisen-
berg model. The local gauge symmetry does not exist in the
Hubbard model but exists in the Heisenberg model:

[
H, ni↑+

ni↓
]
6= 0 and

[
HS , ni↑ + ni↓

]
= 0 for any i.

The role of the superexchange interaction is dual: the cause
and suppression of magnetic instability. Since no suppression
occurs in infinite dimensions, the mean-field approximation is
rigorous for the Heisenberg model in infinite dimensions; the
Néel temperature is as high as TN=|J |/(2kB) in not only the
Heisenberg model but also the Heisenberg limit of the Hub-
bard model, as will be shown later in Eq. (5.15). The Néel
temperature TN is suppressed by two mechanisms: critical
spin fluctuations and the RVB mechanism.1 The RVB mech-
anism stabilizes or prefers an unordered electron liquid in the
Hubbard model and an unordered spin liquid in the Heisen-
berg model, rather than the Néel state. The stabilization en-
ergy due to the RVB mechanism is O(|J |/D) per pair of near-
est neighbors or per unit cell; the RVB mechanism is O(1/D).
If D is sufficiently small such that no TN exists or, if it exists,
TN � |J |/(DkB), electron and spin liquids in the Hubbard
and Heisenberg models at T such that TN <T �|J |/(DkB)
are the RVB electron and spin liquids, respectively.

The local gauge symmetry is a peculiar symmetry such that
it cannot be spontaneously broken nor restored.50 In the re-
duction of the Hubbard model into the Heisenberg model,
the local gauge symmetry is not spontaneously restored but is
forced to be restored by constraining the Hilbert space within
the subspace. The difference in the local gauge symmetry be-
tween two phases can never deny the possibility of the adia-
batic continuation between them, as discussed below.

The relationship between the Hubbard and Heisenberg
models is similar to that between the Anderson and s-d mod-
els. In the s-d limit, the Anderson model is reduced to the
s-d model. The local gauge symmetry does not exist in the
Anderson model but exists in the s-d model. The density of
states for d electrons can be defined in the Anderson model.
If it is denoted by ρ̃(ε), ρ̃(ε) > 0 at least for a sufficiently
small ε, which means that low-energy single-particle exci-
tations are possible, as in the Hubbard model. On the other
hand, ρ̃(ε) cannot be defined in the s-d model, which means
that no single-particle excitation is possible, as in the Heisen-
berg model. On the other hand, according to Nozières’ the-
ory,51 it is possible to describe the spin liquid in the s-d model
as the normal Fermi liquid. The Fermi-liquid theory for the
spin liquid in the s-d model is exactly equivalent to that for

the Fermi liquid in the Anderson model in the s-d limit.36, 37

Thus, the spin liquid in the s-d model adiabatically continues
to the Fermi liquid in the Anderson model.

The conductivity of the RVB spin liquid is zero, but that of
the RVB electron liquid can be divergent at T = +0 K even
in the Heisenberg limit if no impurity exists and no symmetry
is broken even at T = +0 K, as studied in Sect. 4.4. This ex-
treme difference in the conductivity cannot exclude the possi-
bility of the adiabatic continuation between the RVB spin and
electron liquids either, as discussed below.

The strength of magnetic impurities can be used as an adi-
abatic parameter. Here, it is assumed that −∞ < J ′

i < +∞
and 0 <

〈〈
|J ′

i |
2〉〉

< +∞. Clean and dirty limits are defined
by the limit

〈〈
|J ′

i |
2〉〉 → 0 and the limit

〈〈
|J ′

i |
2〉〉 → +∞, re-

spectively. In the dirty-limit Hubbard model, an electron is
localized almost within a unit cell, so that the local gauge
symmetry is almost restored and the conductivity is almost
zero. It is certain that every physical property of the dirty-
limit Hubbard model in the Heisenberg limit is the same as
that of the dirty-limit Heisenberg model. Thus, the electron
state in the dirty-limit Hubbard model in the Heisenberg limit
and the spin state in the dirty-limit Heisenberg model adiabat-
ically continue to each other.

According to the scaling theory for the Anderson localiza-
tion,49 there is no critical point between the metallic and insu-
lating phases, or between the itinerant and localized states, or
between the clean and dirty limits; there is also no lower limit
of the metallic conductivity or minimum metallic conductiv-
ity. Therefore, the RVB electron liquid in the clean-limit Hub-
bard model adiabatically continues to the electron state in the
dirty-limit Hubbard model. It is obvious that the RVB spin liq-
uid in the clean-limit Heisenberg model adiabatically contin-
ues to the spin state in the dirty-limit Heisenberg model. Thus,
the RVB electron liquid in the clean-limit Hubbard model and
the RVB spin liquid in the clean-limit Heisenberg model adi-
abatically continue to each other.

5. Discussion
5.1 Nature of the Mott insulator

Either the Mott insulator or Lieb and Wu’s insulator com-
petes with the RVB liquid. It is desirable to examine its na-
ture in order to confirm that the RVB liquid is stable against
it. Here, we examine the nature of the Mott insulator. We as-
sume that U/|t|�1 and µ=µ0, unless otherwise noted.

If T > Tc, no symmetry is broken. The Kondo energy
kBTK is the energy scale of quantum spin fluctuations in the
RVB liquid as well as a measure of its stabilization energy:
kBTK = O

[
t2/(DU)

]
.52 We assume that D is so small that

Tc�TK. If T is so low that Tc<T �TK, quantum spin fluc-
tuations are more dominant than thermal spin fluctuations, the
entropy is small, and electrons are itinerant. The RVB liquid
is stabilized in the low-T phase of Tc < T � TK in suffi-
ciently low dimensions. If T is so high that T �TK, thermal
spin fluctuations are more dominant than quantum spin fluc-
tuations, the entropy is as large as kB ln 2 per unit cell, and
electrons behave as local moments. Since the high-T phase
where T �TK behaves as an insulator, it is simply the Mott
insulator. An MI transition or crossover occurs at T 'TK as a
function of T between the RVB liquid and the Mott insulator.
Then, a high-T phase where T &TK, rather than T �TK, is
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also the Mott insulator. If D is so large that Tc &TK, a high-
T phase where T >Tc is the Mott insulator because T &TK.
The Mott insulator is stabilized as a high-T phase with a large
entropy in low or high dimensions, while the RVB liquid is
stabilized as a low-T phase with a small entropy only in suffi-
ciently low dimensions. The Mott insulator and the RVB liq-
uid never contradict each other.

If T ≤ Tc, the symmetry is broken, except for one dimen-
sion. If Tc & TK, not only the Néel state but also the type of
insulator proposed by Slater53 is possible below Tc in a multi-
band model, as will be discussed later in Sect. 5.5.

Since the RVB mechanism is a multisite effect, it never ap-
pears under S3A; it is expected that kBTK=0 will be possible
for U/|t| � 1. Since any type of the conventional Weiss mean
field is also a multisite effect, it never appears under S3A; no
symmetry can be broken. It is expected that the Mott insulator,
which is a high-T phase with a large entropy, will be possible
even at T =0 K under S3A.

According to a numerical study29 based on DMFT or S3A,
the Mott insulator is possible even at T = 0 K. An MI tran-
sition with hysteresis occurs below the critical temperature
T0. The hysteresis is characterized by two transition lines of
Uc1(T ) and Uc2(T ) in the T -U phase diagram. The model
used in the numerical study is different from that used in
the present study. If the absolute bandwidth is denoted by
W , Uc1(T ) ' W , Uc2(T ) ' W , and Uc1(T ) < Uc2(T )
for T < T0; Uc1(T0) = Uc2(T0). When U increases, an MI
transition occurs at U = Uc2(T ); when U decreases, it oc-
curs at U = Uc1(T ). The insulating phase at T = 0 K for
U ≥Uc1(0 K) or U ≥Uc2(0 K), depending on the decreasing
or increasing process of U , is a typical type of the Mott insu-
lator, i.e., the Mott insulator in which a complete gap opens.

According to our previous paper,13 either under or beyond
S3A, a complete gap opens if and only if Σ̃σ(ε + i0) and/or
Γ̃(ε + i0) of the Anderson model has a pole at ε = 0; when
µ=µ0, e.g., a gap as large as ε0 opens if and only if

Σ̃σ(ε+i0)=
U

2
+

|λΣ|
ε+i0

− 1
π

[∫ −ε0/2

−∞
dε +

∫ +∞

+ε0/2

dε

]
ImΣ̃σ(ε+i0)

ε−ε+ i0
,

(5.1a)

Γ̃(ε+i0)=
|λΓ|
ε+i0

− 1
π

[∫ −ε0/2

−∞
dε +

∫ +∞

+ε0/2

dε

]
ImΓ̃(ε+i0)
ε− ε+ i0

, (5.1b)

with |λΣ| > 0 or |λΓ| > 0, are satisfied. If |λΣ| > 0, or if
Σ̃σ(ε + i0) has a pole at ε = 0, kBTK = 0 and the residual
entropy of the Hubbard model is kB ln 2 per unit cell. If λΣ =
0 and |λΓ| > 0, or if only Γ̃(ε + i0) has a pole at ε = 0, the
residual entropy is zero; the argument in our previous paper13

that if |λΓ|>0 then |λΣ| has to be nonzero is irrelevant.
Since Γ̃(ε + i0) can have no pole at ε = 0 under S3A,13

Σ̃σ(ε+ i0) has to have a pole at ε=0 for the Mott insulator at
T = 0 K. Then, kBTK =0 and the residual entropy is kB ln 2
per unit cell, i.e., the third law of thermodynamics is broken.
The Mott insulator at T = 0 K has to be regarded as a high-T
phase rather than a low-T phase. Either under or beyond S3A,
the Mott insulator can be stabilized only as a high-T phase
with a large entropy but can never be stabilized as a low-T
phase with a small entropy, even if it is stabilized at T = 0 K.

If symmetry breaking is ignored, it is easy to extend the
analysis based on KLT to T ≤ Tc, except for T = 0 K. If

T > 0 K, ρµ(ε) > 0 even if the ground state is an insulator.
Then, kBTK =O

[
t2/(DU)

]
. If T &TK, the Mott insulator is

stabilized; if 0 K<T �TK, the RVB liquid is stabilized. An
MI transition or crossover occurs at T 'TK as a function of
T between them. The analysis for T > 0 K never denies the
possibility that ρµ(0)=0 for T =0 K, i.e., the ground state is
an insulator.54

Since no higher-order term in 1/D is included in S3A,
strictly speaking, it is not a theory for 1/D → 0 but a the-
ory for exactly 1/D =0. It should be determined whether, if
symmetry breaking is ignored, S3A is equivalent to KLT in
the limit 1/D→ 0 and rigorous in the limit 1/D→ 0.

Beyond S3A, or in KLT, kBTK = O
[
t2/(DU)

]
is more or

less nonzero. In the limit of 1/D → 0 followed by T → 0 K,
T � TK and the Mott insulator is stabilized; the numerical
study29 based on DMFT or S3A is consistent with KLT. In
the limit of T → 0 K followed by 1/D→ 0, T �TK and the
RVB liquid is stabilized; the numerical study is inconsistent
with KLT. The inconsistency means or implies that S3A is not
rigorous in the limit 1/D → 0.

In the limit U/|t| → 0, if T is so low that kBT � |t|, a
metal is stabilized, because kBTK = O(|t|) and T � TK. In
the limit U/|t|→+∞, if T is nonzero, the Mott insulator is
stabilized, because kBTK =O[t2/(DU)]→0 as U/|t|→+∞
and T � TK. If T is nonzero and sufficiently low such that
0 < kBT � |t|, an MI crossover or transition occurs as a
function of U . Since kBTK =O[t2/(DU)] is nonzero for any
|t|/U > 0 unless 1/D = 0, it is expected that no transition
but only a crossover will occur beyond S3A. If this expecta-
tion is true, the transition in the numerical study29 is incon-
sistent with the crossover beyond S3A. Against the expecta-
tion, we assume that a transition is possible at a sufficiently
low T beyond S3A. We consider the model used in the nu-
merical study; its absolute bandwidth, which is finite, is also
denoted by W , as in the discussion above. The Kondo en-
ergy is given by kBTK =O[W 2/(DU)] in the limit T →0 K.
Since no transition is possible as a function of T at least in
the limit U/W → 0, a critical point has to exist in the T -U
phase diagram. If hysteresis exists, Uc1(+0 K)<Uc2(+0 K);
if not, Uc1(+0 K)=Uc2(+0 K). Since kBTK=O[W 2/(DU)]
is more or less nonzero for any W/U > 0 unless 1/D = 0,
Uc2(T ) → +∞ as T → 0 K for any finite D; i.e., at least
Uc2(+0 K) is infinite beyond S3A, regardless of whether hys-
teresis exists or not. In the numerical study, on the other
hand, hysteresis appears and either Uc1(0 K) or Uc2(0 K) is
finite and O(W ),55 as discussed above. The finite Uc2(0 K)
or Uc2(+0 K) in the numerical study is inconsistent with the
infinite Uc2(+0 K) beyond S3A. The T -U phase diagram of
the numerical study is inconsistent with that beyond S3A, re-
gardless of whether an MI crossover or transition occurs be-
yond S3A. This finding also means or implies that S3A is not
rigorous even in the limit 1/D→0.

We consider an electron state in the limit T → 0 K, never
at T = 0 K. If kBTK > 0, the electron state is a metal. Thus,
ImΣσ(+i0, k) → 0 as T → 0 K. Then,

ρµ(0) =
1
L

∑
k

δ
[
µ − E(k) − ReΣσ(+i0, k)

]
, (5.2a)
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and, according to the Fermi-surface sum rule,25, 26

n(µ) =
1
L

∑
kσ

θ
[
µ − E(k) − ReΣσ(+i0, k)

]
, (5.2b)

where θ(x) = (1+x/|x|)/2. Under S3A or SSA, the self-
energy Σσ(+i0, k) does not depend on k. It is easy to show
that ρµ(0) is constant as a function of U if n(µ) is kept con-
stant; ρµ(0) is simply given by that for U = 0. The constant
ρµ(0) as a function of U is a property peculiar to the metal-
lic phase under SSA. If the Mott transition occurs, the de-
crease in ρµ(0) with increasing U is necessarily discontinu-
ous from the constant ρµ(0) of the metal to the zero ρµ(0)
of the Mott insulator. On the other hand, if the RVB mecha-
nism is considered and if Eq. (B·11) or 1/φ̃1=O[t2/(DU)] is
used, ∆Σ(RVB)

σ (+i0, k) ∝ (1/D)0UϕD(k).56 If U/|t| � 1,
the dispersion of E(k) can be ignored in Eq. (5.2). Then,
ρµ(0) = O(1/U) for µ = µ0 or n(µ) = 1. The continuous
decrease in ρµ(0) with increasing U is a property peculiar to
the RVB liquid with the half filling. The inconsistency in the
U dependence of ρµ(0) between under and beyond S3A also
means or implies that S3A is not rigorous even in the limit
1/D→0.

Any of the three inconsistencies discussed above between
the numerical study29 and the present paper is simply be-
cause the RVB mechanism cannot be considered under S3A
but can be considered beyond S3A. Beyond S3A, kBTK =
O

[
t2/(DU)

]
is nonzero. If the Mott insulator in which a com-

pletely opens, which is characterized by kBTK=0, is possible
at T = 0 K under S3A, S3A is not necessarily equivalent to
KLT in the limit 1/D→0 nor necessarily rigorous in the limit
1/D → 0. The rigorousness of S3A in the limit 1/D → 0 is
examined in Appendix D.

5.2 Nature of Lieb and Wu’s insulator
If the fact that ρµ(0) > 0 for T > 0 K is seriously consid-

ered, the RVB-TL liquid is stabilized in the low-T phase of
0 K < T � |J |/kB in one dimension; the possibility is not
denied that ρµ(0) = 0 for T = 0 K, i.e., the ground state is
an insulator.54 According to the treatment in Sect. 2.2.2, the
ground state for |µ−µ0|<(1/2)εG(U) in the grand canonical
ensemble is simply Lieb and Wu’s insulator itself, which is
given by the Bethe-ansatz solution for the canonical ensem-
ble. Here, we examine the nature of this insulator. We assume
that D=1, T =0 K, and U/|t|�1, unless otherwise noted.

If the Bethe-ansatz solution is used, it is possible to deter-
mine all the physical properties in the grand canonical ensem-
ble with essentially the same treatment as that in Sect. 2.2.2,
in principle; then, it is also possible to determine the mapped
Anderson model, in principle. We assume that the Anderson
model is determined and solved. Since a complete gap opens
in Lieb and Wu’s insulator and its residual entropy per unit
cell is zero or infinitesimal in the thermodynamic limit, the
scenario that λΣ=0 and |λΓ|>0 in Eq. (5.1) is only possible
for the insulator: Σ̃σ(ε+i0) is analytic at ε=0, but Γ̃(ε+i0)
has a pole at ε=0, or just on µ. If the insulator is rigid against
the movement of µ, as discussed in Sect. 2.2.2, the pole of
Γ̃(ε+i0) moves as µ moves. If µ 6=µ0, Γ̃(ε+i0) has a pole at
ε 6=0 on the real axis. Since ∆(ε)=−ImΓ̃(ε+i0), as shown in
Eq. (3.7), ∆(ε)=0 for ε'0. If so, there is no Fermi surface in
the Anderson model, so that the ground state of the Anderson

model is not the normal Fermi liquid and Σ̃σ(ε+i0) is not an-
alytic at ε=0. There is inconsistency between the possibility
and rigidity of Lieb and Wu’s insulator.

Three explanations are possible for this inconsistency: One
is the pinning of the chemical potential, as in Wilson’s in-
sulator. If not only the long-range Coulomb interaction but
also the formation of an electric double layer between Wil-
son’s insulator and its reservoir is considered, the gap cen-
ter is pinned to the chemical potential of the reservoir. If a
similar or different type of pinning is possible between Lieb
and Wu’s insulator and its reservoir, it is possible that the
band center εd is adjusted in such a way that the gap center
µ0 = εd+(1/2)U is pinned to the chemical potential of the
reservoir. However, it seems plausible that there is no appro-
priate pinning mechanism in one dimension. Another is that
Lieb and Wu’s insulator is so singular that it cannot be treated
by KLT. Either the gap function or the ground-state energy
is singular at U = 0 as a function of U .6, 11 This means that
Lieb and Wu’s insulator cannot be treated by a simple per-
turbation in terms of U . If the gap-opening or Eq. (5.1) is as-
sumed from the beginning,27 KLT may treat Lieb and Wu’s
insulator for µ = µ0; however, KLT can never treat Lieb and
Wu’s insulator for µ 6= µ0. In other words, the Bethe-ansatz
solution for Lieb and Wu’s insulator may be a self-consistent
solution of KLT for µ = µ0 but can never for µ 6= µ0. This
finding means or implies that Lieb and Wu’s insulator is un-
stable or impossible in the grand canonical ensemble, at least
for µ 6= µ0. Then, the most probable explanation is that the
ground state for |µ−µ0|< (1/2)εG(U) is not Lieb and Wu’s
insulator itself, which is an eigenstate of N , but an electron
state that is no eigenstate of N , a type of insulator different
from Lieb and Wu’s insulator or simply the RVB-TL electron
liquid in the limit T →0 K. Not only an excited state but also
the ground state has to be nonrigid against the movement of
µ in the grand canonical ensemble, except for Wilson’s band
insulator; the ground state can be nonrigid at least if it is more
or less a linear combination or mixture of different N states,
e.g., because of an electron reservoir.

We assume the explicit presence of an electron reservoir in
D ≥ 1 dimensions. A many-body eigenstate is no eigenstate
of N . We define the efficiency of the reservoir by57

δN =
√
〈(N − 〈N 〉)2〉. (5.3)

It is plausible that δN � 1 and δN/L → 0 as L → +∞,
if the reservoir is appropriate. If more or less δN > 0, 〈N〉
can be not only an integer but also an irrational number; 〈N〉
is continuous as a function of µ. If no symmetry breaking
occurs, it is likely that the nature of electron correlation is
continuous as a function of the continuous variable 〈N〉; then,
it is unlikely that there exists a critical deviation δNc from
the half filling such that the ground state is an insulator for
|〈N 〉 −L| < δNc but is a metal for |〈N 〉 −L| > δNc. This
argument implies that neither Lieb and Wu’s insulator nor the
Mott insulator in which a complete gap opens is possible.

In our previous paper,21 the reservoir effect is considered
with a simple model in D≥1 dimensions in which the transla-
tional symmetry is restored by the ensemble average. If sym-
metry breaking is ignored, the Green function is given by

Gσ(iεl, k)=
1

iεl+µ−E(k)−Σσ(iεl,k)−ΓR(iεl)
, (5.4)
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where ΓR(iεl) is due to hybridization with the reservoir. From
the mapping condition, it follows that21

∆(ε) ≥ −ImΓR(ε+ i0). (5.5)

If the reservoir is appropriate, −ImΓR(ε+ i0)=+0+. Since
∆(ε) is nonzero, kBTK has to be more or less nonzero and the
single-site Σ̃σ(ε+i0) has to be more or less normal. If ∆(0)<
+∞ is assumed, it is easy to extend the analysis in Sect. 4 to
this model, regardless of T . If |n(µ)− 1| . |t|/(DU), e.g.,
the ground state is the RVB liquid with kBTK = O(|J |/D),
ρµ(0)=O(1/U), and ∆(0)=O(U); the eventual ∆(0) is con-
sistent with the assumption of ∆(0)<+∞. The liquid is not
rigid against the movement of µ; e.g., the three-peak structure
with the midband between the Hubbard bands varies with µ.
Since ∆(ε)>0 for T =0 K is no assumption, it is definite that
the Mott insulator at T =0 K in which a complete gap opens is
impossible. It is reasonable that the Mott insulator at T =0 K
is unstable even against the infinitesimal ΓR(ε+ i0), because
it is infinitely degenerate. Since ∆(0)<+∞ or Γ̃(ε+i0) with
no pole at ε = 0 for T = 0 K is assumed, the possibility can-
not be denied that an MI transition occurs at T =0 K and the
ground state is an insulator in which the third law of thermo-
dynamics holds. The insulator, if possible, has to be a mixture
of different N states and cannot be Lieb and Wu’s insulator
itself, which is an eigenstate of N ; it is desirable to determine
the critical δNc defined above and the critical µ correspond-
ing to Nc/L in order to confirm that either the transition or
insulator at T =0 K is actually possible, although either is of
no physical significance.54

If the reservoir is appropriate, the modification of many-
body eigenstates of the Bethe-ansatz solution by the reservoir
has to be small. It is, therefore, expected that

n [µ0 ± (1/2)εG(U)] = 1 ± O(δN/L), (5.6a)[
χc(0, 0)

]
|µ−µ0|<(1/2)εG(U)

=O
[
(δN/L)/εG(U)

]
, (5.6b)

regardless of the ground state. If δN > 0 once, metallic con-
figurations with N 6= L contribute to any statistical average
in the grand canonical ensemble. It is expected that more or
less ρµ(0) > 0 regardless of T . If so, it is easy to extend the
analysis for T > 0 K in Sect. 4 to T = 0 K. The ground state
is the RVB-TL liquid even for |µ − µ0|< (1/2)εG(U); it has
to be simply that in the limit T → 0 K. If Eq. (5.6) is sat-
isfied, many physical properties of the liquid cannot depend
on µ: e.g., n(µ) = 1, χc(0, 0) = 0,58 kBTK = O(|J |/D),
ρµ(0) = O(1/U), and so on. Few properties can depend on
µ: e.g., the three peak structure with the midband between the
Hubbard bands. The liquid is not rigid against the movement
of µ. It is expected that the physical properties of the liquid
will be the same as those of Lieb and Wu’s insulator, expect
for those closely related to the itineracy of electrons. On the
other hand, the possibility cannot be denied that ρµ(0) = 0
even for δN > 0. In this case, the ground state is a type of
insulator different from Lieb and Wu’s insulator, because it
cannot be rigid against the movement of µ. It is desirable to
determine which is the ground state for |µ−µ0|<(1/2)εG(U)
in the grand canonical ensemble, Lieb and Wu’s insulator, a
type of insulator different from it, or the RVB-TL liquid,54

particularly in the explicit presence of a realistic and appropri-
ate electron reservoir, in which there is no translational sym-
metry, δN�1, and δN/L→0 as L→+∞.

5.3 RVB liquid in low dimensions
If U/|t| � 1 in sufficiently low-D dimensions, Tc �

|J |/(kBD) can be satisfied. The low-T phase of Tc < T �
|J |/(kBD) is mainly studied in the present paper. Since ρµ(0)
of this phase is necessarily more or less nonzero, there is no
doubt that KLT can treat the phase, even if KLT cannot treat
Lieb and Wu’s insulator itself. If |n(µ)− 1|. |t|/(DU), the
RVB liquid is stabilized in the low-T phase.

First, we consider one dimension, for which Tc = 0 K.
The RVB liquid in one dimension is also the RVB-TL liq-
uid. The intermediate phase with |µ− µ0| ≤ (1/2)εG(U) is
also simply the RVB-TL liquid. Since Eq. (5.6) has to be sat-
isfied in the limit T → 0 K, n(µ) → 1 and χc(0, 0) → 0 as
T →0 K for the intermediate phase; n(µ)'1 and χc(0, 0)'0
for the phase at T > 0 K. On the other hand, if |µ− µ0| >
(1/2)εG(U), χc(0, 0) is nonzero regardless of T . It is ex-
pected that a metal-metal (MM) transition or crossover will
occur at µ ' µ0 ± (1/2)εG(U) as a function of µ between
the RVB-TL liquid with nonzero χc(0, 0) and the intermedi-
ate phase with zero or small χc(0, 0); if an MM crossover
occurs, the crossover has to be very sharp at a sufficiently low
T and almost a transition in the limit T → 0 K. It is also ex-
pected that the conductivity of the intermediate phase will be
metallic or of a bad metal due to 2kF and 4kF fluctuations pe-
culiar to one dimension but never of an activation type whose
activation energy is O [εG(U)]. It is expected that the physical
properties of the intermediate phase will be almost the same
as those of Lieb and Wu’s insulator in the canonical ensemble,
except for those closely related to the itineracy of electrons.

We consider the Heisenberg limit at T =+0 K. If only the
RVB self-energy is considered beyond S3A, the spectrum of
a single-particle excitation of the RVB-TL liquid is given by

ξ(k) = cJJ cos(ka) − µ∗, (5.7)

where cJ ' 1 and µ∗ = 0. The spectrum of an electron-hole
pair excitation is given by

ω(q) = ξ(k + q) − ξ(k)

= cJ |J |
{
cos[(k + q)a] − cos(ka)

}
, (5.8)

where cos[(k + q)a]>0 and cos(ka) < 0. Then,

cJ |J sin(qa)| ≤ ω(q) ≤ 2cJ |J sin(qa/2)|. (5.9)

In the Heisenberg limit, low-energy charge fluctuations are
almost completely depressed; thus, the pair excitation ω(q) is
almost a spin excitation. The spin-excitation spectrum ω(q)
in the Hubbard model is similar to the spin-excitation spec-
trum in the Heisenberg model.59 The similarity of the spin-
excitation spectrum is evidence of the adiabatic continuation
between the RVB-TL electron and spin liquids.

According to previous papers,60–62 the spin liquid in the
Heisenberg model is the TL spin liquid; i.e., it is the RVB-TL
spin liquid. This is also evidence of the adiabatic continuation
between the RVB-TL electron and spin liquids.

The ground-state energy of Lieb and Wu’s insulator as a
function of a complex z = t/U has no singularity at z = 0.11

This fact means or implies that Lieb and Wu’s insulator adi-
abatically continues to the RVB-TL spin liquid; if so, the in-
sulator also adiabatically continues to the RVB-TL electron
liquid. It is certain that the RVB mechanism is also crucial
for the stabilization of Lieb and Wu’s insulator. The RVB-TL
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electron liquid in the intermediate phase in the grand canon-
ical ensemble and Lieb and Wu’s insulator in the canonical
ensemble are never contradictory to each other. The similar-
ity and difference between them have to be similar to those
between the RVB-TL electron and spin liquids.

Next, we consider two dimensions. The Hubbard model on
the square lattice is also of particular interest; no symmetry
can be broken at T > 0 K,5 ρµ(ε) for U = 0 diverges log-
arithmically as ε → 0 because of the saddle-point van Hove
singularity peculiar to two dimensions, and the Fermi sur-
face for U = 0 shows a perfect nesting for q = Q, where
Q = (±1,±1)(π/a), in the half-filled case. We assume that
U/|t|�1 and µ=µ0.

The static susceptibility of the Anderson model is approx-
imately given by Eq. (3.44): χ̃s(0;T ) ' 4φ̃1ρµ(0). If T is
nonzero, the logarithmic divergence of φ̃1ρµ(ε) as ε → 0 is
suppressed by the imaginary part of the self-energy. Since the
suppression disappears in the limit T → 0 K, it is expected
that χ̃s(0; T )→+∞ as T →0K.63 The Fermi surface shows
a sharp nesting for Q, at least for 0 K< T �|J |/(2kB). The
superexchange interaction Js(0, q) is maximum at q = Q.
Thus, the half-filled ground state is presumably the Néel state
with the ordering vector Q. The low-T phase of 0 K< T �
|J |/(2kB) is the RVB electron liquid in the critical region.

We consider the T dependence of the static homogeneous
susceptibility; it can be described as

1/χs(0, 0; T ) = 1/χs(0, Q; T )

+ (1/4)
[
∆s + ∆Q(T ) − ∆Γ(T )

]
, (5.10)

∆s = Js(0, Q) − Js(0, 0) = 4|J |, (5.11)

∆Q(T ) = JQ(0, Q; T ) − JQ(0, 0; T ), (5.12)

∆Γ(T ) = ΛΓ(0, Q;T ) − ΛΓ(0, 0; T ), (5.13)

from Eq. (3.37). The T dependence of ∆s can be ignored. It
is expected that an anomaly will appear in χs(0, 0; T ) of the
RVB liquid in the critical region, as discussed below.

As preliminary, we consider D dimensions. According to
previous papers,33, 40 if µ lies in the vicinity of one of the
band edges and ρµ(ε) has a sharp peak in the vicinity of µ,
JQ(0, q; T ) is ferromagnetic; i.e., JQ(0, 0; T ) is positively
large and JQ(0, 0; T ) increases almost linearly against T as
T → 0 K. On the other hand, if µ lies around the band cen-
ter and the Fermi surface shows a sharp nesting, it is an-
tiferromagnetic; i.e., JQ(0, QN; T ) is positively large and
JQ(0, QN; T ) increases almost linearly against T as T →0 K,
where QN is the nesting wave number. The T dependence of
JQ(0, q; T ) is a mechanism of the Curie-Weiss (CW) law, as
will be discussed later in Sect. 5.4.

We consider two dimensions. The Fermi surface shows a
sharp nesting for Q=(±1,±1)(π/a), so that JQ(0,Q; T ) is
positively large at T � |J |/(2kB) and JQ(0, Q; T ) increases
as T → 0 K. The density of states ρµ(ε) has a logarithmic
peak at the band center, so that JQ(0, 0; T ) is also positive
at T � |J |/(2kB) and JQ(0, 0;T ) increases as T → 0 K.
Since both µ and the peak of ρµ(ε) are at the band center,
the nesting effect is larger than the logarithmic-peak effect.
Then, ∆Q(T ) > 0 and the T dependence of JQ(0, Q; T ) is
much stronger than that of JQ(0, 0; T ). The T dependence
of ∆Q(T ) is large; ∆Q(T ) increases as T → 0 K. The Néel

temperature TN cannot be nonzero because of critical fluc-
tuations, or Λ(0, q;T ); this means that the T dependence of
Λ(0, q; T ) is large. In general, the q dependence of the mode-
mode coupling term Λ(0, q; T ) is small. Then, ∆Γ(T ) has
to be small and the T dependence of the small ∆Γ(T ) is
also small. In the critical region, the CW law is suppressed
by Λ(0, q; T ), and χs(0, Q; T ) is almost constant as a func-
tion of T . Thus, according to Eq. (5.10), the T dependence
of 1/χs(0, 0; T ) resembles that of ∆Q(T ). Since ∆Q(T ) in-
creases as T →0 K, 1/χs(0, 0; T ) increases as T →0 K, i.e.,
χs(0, 0; T ) decreases as T →0 K. The decrease in or suppres-
sion of χs(0, 0; T ) as T →0 K also occurs in the Heisenberg
model on the square lattice.64, 65 This similarity of the sup-
pression of χs(0, 0; T ) is evidence of the adiabatic continua-
tion between the RVB electron and spin liquids.

It is easy to extend the study in the present paper to a differ-
ent type of Hubbard model, i.e., one on a different symmetry
or type of lattice and/or with not only t between nearest neigh-
bors but also t′, t′′, and so on between other neighbors. The
superexchange interaction appears between not only nearest
neighbors but also other neighbors: J ∝|t|2/U , J ′∝|t′|2/U ,
J ′′∝|t′′|2/U , and so on. Since the RVB mechanism is of the
first order in the superexchange interaction, the eventual sta-
bilization energy or kBTK is the sum of the contributions of
J , J ′, J ′′, and so on. Since kBTK is nonzero for a finite D, the
same qualitative conclusion as that for the Hubbard model of
Eq. (2.1) can be drawn for a different type of Hubbard model.

The most interesting extension is that to the triangular lat-
tice. If T > 0 K, no symmetry is broken.5 The electron state
at 0 K<T �|J |/(DkB) in the Hubbard model is a frustrated
electron liquid, and the spin state at 0 K < T � |J |/(DkB)
in the Heisenberg model is the RVB spin liquid proposed by
Fazekas and Anderson.1 We propose that the frustrated elec-
tron liquid in the Hubbard model is simply the RVB electron
liquid, and that the RVB electron and spin liquids in the Hub-
bard and Heisenberg models on the triangular lattice adiabat-
ically continue to each other.

In three dimensions and higher, it is possible that TN �
|J |/(DkB), at least, if frustration or quasi-low dimensionality
is sufficient in the Hubbard and Heisenberg models. If TN�
|J |/(DkB), it is interesting to study how magnetic properties
at TN < T � |J |/(DkB) resemble each other between an
electron liquid in the Hubbard model in the strong-coupling
region, which is the RVB electron liquid, and a spin liquid in
the Heisenberg model, which is the RVB spin liquid.

5.4 Itinerant electrons versus local moments
Electrons behave as local moments at T � TK, or local

moments form at T � TK. We consider the half-filled case
in infinite dimensions or in the limit 1/D → 0 as the most
typical case. Assuming that T > TN, where TN is the Néel
temperature to be determined, we consider χs(0, q) given by
Eq. (3.37) with Is(0, q) given by Eq. (3.52). As 1/D → 0,
kBTK =O(|J |/D) → 0 and Λ(0, q)→0, because they are of
higher order in 1/D. Since T/TK →+∞, JQ(0, q)→ 0 and
χ̃s(0)=1/(kBT ). Then,

χs(0, q) = 1/
[
kBT − (1/4)Js(0, q)

]
, (5.14)

TN = Js(0, Q)/(4kB) = |J |/(2kB), (5.15)
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where Q=(±1,±1, · · · ,±1)(π/a). The static susceptibility
χs(0, q) obeys the CW law of local-moment magnetism due
to the T dependence of the single-site χ̃s(0). Both χs(0, q)
and TN are in agreement with those in the mean-field approx-
imation for the Heisenberg model. These agreements are rea-
sonable because either the 1/D expansion theory or the mean-
field approximation is rigorous in the limit 1/D→0.

If T > TN and T � TK, χs(0, q) is approximately given
by Eq. (5.14) even for a finite D. If T � TK, local moments
form in either low or high dimensions.

The Kondo energy kBTK is also the energy scale of quan-
tum spin fluctuations. If T � TK, the ensemble of elec-
trons or spins behaves as a liquid, i.e., an electron or spin
liquid. If T � TK, electrons or spins behave as local mo-
ments. Itinerant-electron magnetism and local-moment mag-
netism are characterized by TN �TK and TN �TK, respec-
tively. In sufficiently low dimensions, TN�TK and itinerant-
electron magnetism appears in either an electron model such
as the Hubbard model or a spin model such as the Heisenberg
model. Magnetism in the RVB electron or spin liquid is a typ-
ical type of itinerant-electron magnetism. In sufficiently high
dimensions, TN �TK and local-moment magnetism appears
in either an electron or spin model. Magnetism in infinite di-
mensions is a typical type of local-moment magnetism.

According to Eqs. (3.37) and (3.52), the possible mecha-
nisms of the CW law are only the T dependences of χ̃s(0),
JQ(0, q), and Λ(0, q). According to the self-consistent renor-
malization theory (SCR) of spin fluctuations,66–68 the mode-
mode coupling term becomes smaller as T decreases in cer-
tain cases. If Λ(0, q) deceases linearly against T as T de-
creases, the T dependence of Λ(0, q) gives the CW law; the q
dependence of Λ(0, q) has to be small. If critical fluctuations
develop as T decreases, Λ(0, q) increases as T decreases and
the T dependence of Λ(0, q) suppresses the CW law, as in the
Hubbard model on the square lattice. It is interesting to ex-
amine which occurs because of Λ(0, q) in each actual system,
the CW law or the suppression of the CW law.

If TN �TK and TN < T �TK, JQ(0, q) increases almost
linearly as T deceases in the two cases of q =0 and q =QN

discussed above. The T dependence of JQ(0, q) gives the CW
law of itinerant-electron magnetism,33, 40 which holds only for
particular q’s in the vicinity of the ordering wave number. If
TN �TK and T >TN , the T dependence of χ̃s(0) gives the
CW law of local-moment magnetism, in which the Curie con-
stant does not depend on q but the Weiss temperature depends
on q, as shown in Eq. (5.14).

Either the mechanism due to the T dependence of JQ(0, q)
for particular q’s or that of the single-site χ̃s(0) for any q
is of the zeroth order in 1/D. The mechanism due to the T
dependence of Λ(0, q) is of higher order in 1/D.

5.5 Metal-insulator transitions in actual compounds
In a multiband model, not only antiferromagnetic order but

also orbital order is possible. We assume that Tc � TK, where
Tc is the critical temperature of antiferromagnetic or orbital
order. If T > Tc, then T � TK, the entropy is O(kB ln 2)
per unit cell, and the static susceptibility obeys the CW law of
local-moment magnetism. The paramagnetic phase at T > Tc

is simply the Mott insulator. The ordered phase at T ≤ Tc

is the Néel state of local moment magnetism or the type of
insulator proposed by Slater.53

It is possible that TK substantially depends on the symme-
try or type of lattice and the lattice constant. An MI transition
is possible in conjunction with such a lattice effect on TK as
a function of an appropriate parameter, such as T , n(µ) or
doping, pressure, substitution, and so on, between a high-TK

metallic phase with TK � T on a type of lattice and a low-TK

insulating phase with TK . T on a different type of lattice or
the same type of lattice but with a different lattice constant.
If the antiferromagnetic or orbital order appears in the low-
TK insulating phase, it is the Néel state of local moment mag-
netism or the type of insulator proposed by Slater;53 if not, it is
the Mott insulator. It is expected that this type of MI transition
can explain MI transitions observed in many compounds.69

Similarly, an MM or insulator-insulator (II) transition is also
possible as a function of an appropriate parameter due to the
dependence of TK on the parameter in conjunction with the
lattice effect.

5.6 Normal state for studying low-T ordered phases
The RVB electron liquid studied in the present research

is simply the normal state at T > Tc for studying possi-
ble low-T ordered phases at T ≤ Tc, such as the Néel state
of itinerant-electron magnetism, which is of the zeroth order
in 1/D, and an anisotropic superconducting state, which is
of higher order in 1/D, and so on. The normal state pro-
posed by Anderson2 for high-temperature superconductivity
in cuprate oxides has to be the RVB electron liquid studied
in the present paper, rather than an exotic Fermi liquid. The
study in the present research confirms the relevance of the nor-
mal state assumed in a previous theory of high-temperature
superconductivity in cuprate oxides70–73 and in previous theo-
ries of itinerant-electron ferromagnetism33 and antiferromag-
netism;74, 75 the Kondo energy or the effective Fermi energy
in the previous theories has to be understood as that enhanced
by the RVB mechanism, if the mechanism is crucial.

6. Conclusions
The Hubbard model is studied. Every irreducible physical

property of the Hubbard model is decomposed into single-
site and multisite properties. The single-site property can be
mapped to a local property of the Anderson model that is
self-consistently determined to satisfy the mapping condition.
Every single-site property is equal to its corresponding prop-
erty of the Anderson model. Certain local properties that are
not single-site properties are also equal to their corresponding
properties of the Anderson model; e.g., the density of state per
unit cell of the Hubbard model, which is denoted by ρµ(ε), is
equal to that of the Anderson model.

In the field theory, the superexchange interaction arises
from the virtual exchange of a pair excitation of an electron
in the upper Hubbard band and a hole in the lower Hubbard
band. If the on-site repulsion is U and the transfer integral
between nearest neighbors is −t/

√
D, where D is the dimen-

sionality, the exchange interaction constant between nearest
neighbors is J/D, where J = −4t2/U . This J is in agree-
ment with that given by the conventional derivation. The su-
perexchange interaction is a multisite effect and is a higher-
order effect in 1/D.

The Kondo-lattice theory (KLT) is a perturbative theory
based on the mapping to the Anderson model to include mul-
tisite terms in terms of intersite mutual interactions. Its un-
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perturbed state is constructed through the mapping to the An-
derson model; in principle, all the single-site terms are rigor-
ously considered in it. The Kondo temperature or energy, TK

or kBTK, is defined through the Anderson model. If TK>0 K
and T is so low that T � TK, the unperturbed state is the
normal Fermi liquid. Since every single-site term is of the ze-
roth order in 1/D and multisite terms are of higher order in
1/D except for certain types of the conventional Weiss mean
field, KLT is also the 1/D expansion theory.

Since a gap never opens at a nonzero temperature T such
that T >Tc, where Tc is 0 K for D=1 and is the highest criti-
cal temperature among possible ones for D≥2, the density of
states ρµ(ε) is more or less nonzero at T >Tc. If more or less
ρµ(ε)> 0 or ρµ(0)> 0 is seriously considered, kBTK is also
more or less nonzero. Nonzero kBTK and ρµ(0) have to be
self-consistently determined with multisite effects to satisfy
the mapping condition.

Exactly and almost half-filled cases in the strong-coupling
region of U/|t|�1 in the grand canonical ensemble are stud-
ied on the basis of KLT. The number of electrons per unit cell
is denoted by n. If |n−1|.|t|/(DU), the resonating-valence-
bond (RVB) mechanism is crucial. The Fock-type self-energy
due to the superexchange interaction is the RVB self-energy.
The Kondo energy is substantially enhanced by the RVB self-
energy, so that kBTK =O(|J |/D). If the dimensionality D is
so mall that kBTc�|J |/D, the low-T phase of Tc< T �TK

is the RVB electron liquid, which is stabilized by the Kondo
effect in conjunction with the RVB mechanism; the RVB elec-
tron liquid in one dimension is also the Tomonaga-Luttinger
(TL) liquid or the RVB-TL liquid. The density of states ρµ(ε)
of the RVB electron liquid has a three-peak structure with a
narrow midband between the upper and lower Hubbard bands,
which corresponds to the three-peak structure with the Kondo
peak between two subpeaks in the Anderson model. The mid-
band is on the chemical potential within the Hubbard pseudo-
gap. The bandwidth of the midband is O(kBTK), O(|J |/D),
or O[t2/(DU)]; its spectral weight is O

[
t2/(DU2)

]
per unit

cell; and ρµ(0) = O(1/U). Since the midband almost disap-
pears in the Heisenberg limit, the RVB electron liquid in the
Heisenberg limit is a quasi-spin liquid. The quasi-spin liquid
shows metallic conductivity.

According to previous studies of the Kondo effect, the lo-
cal electron liquid in the Anderson model and the local spin
liquid in the s-d model adiabatically continue to each other,
although the local gauge symmetry does not exist in the An-
derson model but exists in the s-d model. According to the
scaling theory for the Anderson localization, if no symmetry
breaking occurs at a metal-insulator transition, the metallic
and insulating phases adiabatically continue to each other. On
the basis of these previous studies and the study in the present
paper, it is proposed that the RVB electron liquid in the Hub-
bard model and the RVB spin liquid in the Heisenberg model
adiabatically continue to each other, although the local gauge
symmetry does not exist in the Hubbard model and the con-
ductivity of the RVB electron liquid is metallic, while the lo-
cal gauge symmetry exists in the Heisenberg model and the
conductivity of the RVB spin liquid is zero.

If T & TK, thermal spin fluctuations are more dominant
than quantum spin fluctuations, local moments forms, and the
entropy is as large as kB ln 2 per unit cell. The high-T phase
where T &TK is the Mott insulator. The Mott insulator, which

is a high-T phase with a large entropy, never contradicts the
RVB liquid, which is a low-T phase with a small entropy.

According to the Bethe-ansatz solution, the half-filled
ground state in the canonical ensemble in one dimension is
Lieb and Wu’s insulator. The insulating ground state never
contradicts the RVB-TL liquid at 0 K < T � |J |/kB in the
grand canonical ensemble. It is desirable to determine which
is the half-filled ground state in the grand canonical ensemble
in one dimension, Lieb and Wu’s insulator, a type of insulator
different from it, or the RVB-TL liquid.

Appendix A: Sum Rule for ∆(ε)

We consider

F (ε+ i0)=
[
ε+µ− εd−Σσ(ε+ i0)

]
−1/Rσ(ε+ i0).

(A·1)

According to the mapping condition of Eq. (3.12),

ImF (ε + i0) = −∆(ε). (A·2)

Since ∆Σσ(ε + i0, k) → 0 as ε → ±∞,

lim
ε→±∞

F (ε + i0) = (2t2/ε) + O
(
1/ε2

)
. (A·3)

Since F (ε + i0) is analytic in the upper-half complex plane,
according to Eqs. (A·2) and (A·3),∫ +∞

−∞
dε∆(ε) = 2πt2. (A·4)

Appendix B: Theoretical Constraint for 1/φ̃1

B.1 Lower limit of 1/φ̃1

We assume that U/|t|�1, µ=µ0, and Tc <T �TK. The
density of states ρµ(ε) has a symmetric three-peak structure
with the midband between the Hubbard bands.

We consider the contribution from the midband to the inte-
gration in Eq. (A·4). According to Eq. (3.42), |ImΣσ(+i0)|=
O

(
φ̃1kBT 2/TK

)
; it can be ignored for T �TK. According to

Eq. (4.24), since ReRσ(+i0) = 0, ∆(0) = 1/[πρµ(0)]. Ac-
cording to Eqs. (3.45) and (4.23c), 1/ρµ(0) = O

(
φ̃1kBTK

)
and kBTK=O

[
t2/(DU)

]
, respectively. Then,

∆(0) = O
[
(φ̃1t

2)/(DU)
]
. (B·1)

Since φ̃1 � 1, ∆(0) is large; ∆(ε) has to have a peak at ε = 0
in order to satisfy Eq. (A·4). Since the peak width is O(kBTK)
or O[t2/(DU)] and the peak height is given by (B·1), the con-
tribution from the midband is as large as∫ +O(kBTK)

−O(kBTK)

dε∆(ε) = O
[
φ̃1t

4/(DU)2
]
. (B·2)

According to the sum rule of Eq. (A·4), Eq. (B·2) has to be
smaller than 2πt2. Then,

1/φ̃1 ≥ O[t2/(DU)2]. (B·3)

We consider the contribution from the Hubbard bands to the
integration in Eq. (A·4). Since ρµ(ε)=−(1/π)ImRσ(ε + i0)
has peaks at ε ' ±U/2, ReRσ(ε + i0) = 0 for ε = ε± '
±U/2. The peak height and bandwidth are ρµ(ε±)=O(1/|t|)
and WH=O(|t|), respectively.9 According to Eq. (4.24), since∣∣ImΣσ(ε± + i0)

∣∣=O(|t|), ∆(ε±)=O(|t|). The contribution
from the Hubbard bands is as large as ∆(ε±)WH = O

(
t2

)
,

which is consistent with Eq. (A·4).
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B.2 Asymptotic behavior of 1/φ̃1

We consider ∆(ε) defined by Eq. (3.7). It is given in terms
of Vk and Ec(k). Within KLT, it can be assumed without the
loss of generality that Vk is constant: Vk = V . Then,

∆(ε) = π|V |2ρc(ε), (B·4)

ρc(ε) =
1
L̃

∑
k

δ [ε + µ̃ − Ec(k)] . (B·5)

According to the sum rule of Eq. (A·4),

π|V |2 = 2t2. (B·6)

In the s-d or Heisenberg limit of U/|t| → +∞, with J =
−4t2/U kept constant, the Anderson model can be mapped to
the s-d model with the s-d exchange interaction constant of

J̃s-d = −4|V |2/U = −(8/π)(t2/U). (B·7)

The dimensionless coupling constant is given by

g̃(ε) = J̃s-dρ̃c(ε) = −[4/(πU)]∆(ε). (B·8)

If g̃(ε) is constant as a function of ε, TK is given by

kBTK = Wce
−1/|g̃(0)|, (B·9)

in the most-divergent approximation,76 where Wc is a half of
the conduction bandwidth.

The energy dependence of g̃(ε) has to be seriously con-
sidered in the mapped s-d model. According to the scaling
theory for the s-d model,35, 77 high-energy processes substan-
tially renormalize fixed-point or eventual low-energy proper-
ties, but they can cause no symmetry breaking. Thus, whether
the eventual kBTK is zero or nonzero depends on whether the
bare g̃(0) is zero or nonzero. If g̃(0) > 0, the eventual kBTK

is nonzero; if g̃(0) = 0, the eventual kBTK is zero.
According to Eqs. (B·1) and (B·8), it follows that

|g̃(0)| = O
[
φ̃1t

2/
(
DU2

)]
. (B·10)

If |g̃(0)| → 0 as U/|t| → +∞, it is inconsistent with
nonzero kBTK in the Heisenberg limit; if |g̃(0)| → +∞
as U/|t| → +∞, it is inconsistent with Eq. (B·3). Since
kBTK = O

(
|J |/D

)
, according to Eq. (B·9), g̃(0) has to be

the zeroth order in 1/D. Since |g̃(0)| has to be nonzero and
finite in the limit of either U/|t| → +∞ or 1/D→0,

1/φ̃1 = O
[
t2/(DU2)

]
. (B·11)

Appendix C: Proof of an Equality
There is a useful relationship between ΞD defined by Eq.

(4.7) and πxx(0) defined by Eq. (4.33), as studied below. In
the presence of magnetic impurities,

ΞD = − 1
πL

∑
k

ϕD(k)
∫ +∞

−∞
dεf+(ε)Imgσ(ε + i0, k)

= −
√

D

πL

∑
k

cos(k1a)
∫ +∞

−∞
dεf+(ε)Imgσ(ε + i0, k),

(C·1)

πxx(0) =
2

πL

∑
k

sin2(k1a)
∫ +∞

−∞
dεf+(ε)

[
Imgσ(ε + i0, k)

]
×

[
Regσ(ε + i0, k)

]
. (C·2)

Equation (C·1) is also given in the integration form by

ΞD =
√

DaD

π(2π)D

∫ +π/a

−π/a

dk1 · · ·
∫ +π/a

−π/a

dkD cos(k1a)

×
∫ +∞

−∞
dεf+(ε)Imgσ(ε + i0, k). (C·3)

By the partial integration of Eq. (C·3) with respect to k1,

ΞD = 2t∗
aD

π(2π)D

∫ +π/a

−π/a

dk1 · · ·
∫ +π/a

−π/a

dkD sin2(k1a)

×
∫ +∞

−∞
dεf+(ε)

[
Imgσ(ε+ i0, k)

][
Regσ(ε+ i0,k)

]
. (C·4)

This is also given in the sum form by

ΞD = 2t∗
2

πL

∑
k

sin2(k1a)
∫ +∞

−∞
dεf+(ε)

[
Imgσ(ε+ i0, k)

]
×

[
Regσ(ε+ i0, k)

]
. (C·5)

It immediately follows that

ΞD = 2t∗πxx(0). (C·6)

Appendix D: On the Rigorousness of S3A
Not only all the single-site terms but also four types of

the conventional Weiss mean field, which are multisite terms,
are of the zeroth order in 1/D: spin density wave or mag-
netism and orbital order,78 which are possible for U/|t|> 0,
and charge density wave and isotropic s-wave or BCS su-
perconductivity, which are possible for U/|t| < 0. All the
other multisite terms are of higher order in 1/D. Since S3A
can treat no conventional Weiss mean field or no symmetry
breaking, S3A is not necessarily rigorous even in the limit
1/D→0; it is expected that S3A will be rigorous in the limit
1/D → 0, if the Hilbert space is constrained within the sub-
space where no symmetry is allowed to be broken. The pur-
pose of this Appendix is to examine whether S3A is rigorous
in the limit 1/D → 0 within the Hilbert subspace. We con-
sider the Hubbard model of Eq (2.1); the absolute bandwidth
of it is 4

√
D|t|. We denote φ̃1 under S3A by φ̃S3A, φ̃S3A(T ),

or φ̃S3A(D, T ), depending on necessity or sufficiency; φ̃1 is
used for that beyond S3A or that of KLT.

If n(µ) 6= 1, the Mott insulator at T = 0 K is impossible
either under or beyond S3A; 1/φ̃S3A >0 and 1/φ̃1 >0. Since
1/φ̃1→1/φ̃S3A>0 as 1/D → 0, S3A is equivalent to KLT in
the limit 1/D→0 and rigorous in the limit 1/D→0 within the
Hilbert subspace. Then, the key issue is whether the Mott in-
sulator is possible at T =0 K for the half filling. In the follow-
ing part, we assume the half filling in the canonical or grand
canonical ensemble: N =L or n(µ)=1.

There is a well-known scenario for the Mott insulator and
transition, which is based on previous studies.7–10 If the ab-
solute bandwidth is 4

√
D|t|, the ground state is a metal for

U .4
√

D|t| and is the Mott insulator at least for U >4
√

D|t|.
If T =0 K, e.g., the Mott transition occurs at U '4

√
D|t| as

a function of U . A complete gap opens in the Mott insulator
at T =0 K; the gap is as large as U−4

√
D|t|. The numerical

study,29 which is under S3A, confirms this scenario; in addi-
tion, it shows that hysteresis appears in the Mott transition. On
the other hand, the study in Sect. 5.1, which is beyond S3A,
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shows that what is stabilized in the nonzero and low-T phase
of 0 K<T � |J |/(kBD) for U/|t|�1 is not the Mott insu-
lator but the RVB liquid. The scenario is not relevant beyond
S3A, at least for 0 K<T � |J |/(kBD). Since the RVB mech-
anism, which appears only beyond S3A, is never considered
in any stage or aspect of the scenario, it is expected that the
scenario will be relevant only under S3A, even if it is relevant.
In the following part, we assume that U >4

√
D|t|.

If the Mott insulator is possible at T = 0 K in the canon-
ical ensemble, it is possible only for N = L but never for
N 6= L. If so, and if the reservoir effect is only implicitly
treated through the statistical average, the Mott insulator is
also possible at T =0 K in the grand canonical ensemble; the
insulator is rigid against the movement of µ. However, since
the single-site Σσ(ε+i0) has to have a pole at ε=0 or just on
µ, as discussed in Sect. 5.1, the Mott insulator cannot be rigid
against the movement of µ. If the Mott insulator at T = 0 K
is possible, there is inconsistency between its possibility and
rigidity. The inconsistency means or implies that the Mott in-
sulator at T =0 K is impossible at least in the grand canonical
ensemble, even if it is possible in the canonical ensemble. The
critical argument given above is almost in parallel with that
given in Sect. 5.2 against the possibility of Lieb and Wu’s in-
sulator. In the following part, we assume the grand canonical
ensemble.

The Mott insulator at T =0 K is infinitely degenerate.13 In
general, the ground state that is infinitely degenerate is unsta-
ble even against an infinitesimal perturbation; the third law of
thermodynamics is mainly based on this fact. It is doubtful
whether the Mott insulator at T = 0 K is stable, particularly
in the explicit presence of an electron reservoir. This critical
argument can be confirmed at least in the simple reservoir
model, as studied in Sect. 5.2.

Either of the two critical arguments above casts doubt that
the well-known scenario is not relevant for T = 0 K, even
under S3A. We do not exclude another scenario that the Mott
insulator is impossible at T =0 K, even under S3A.

If T >0 K, more or less ρµ(0)>0; the single-site Σσ(ε+i0)
can have no pole on the real axis and can be expanded in
the form of Eq. (3.42). Thus, more or less 1/φ̃S3A(T ) > 0
for T > 0 . If the ground state is the Mott insulator under
S3A, 1/φ̃S3A(T ) → 0 as T → 0 K and 1/φ̃S3A(0 K) = 0. If
the ground state is a metal under S3A, 1/φ̃S3A(T ) > 0 for
T ≥ 0 K. On the other hand, if the RVB mechanism is con-
sidered, 1/φ̃1=O[t2/(DU2)], as shown in Eq. (B·11). As the
asymptotic behavior of 1/φ̃1 as U/|t| → +∞ and 1/D → 0
beyond S3A, it is reasonable to assume that

1/φ̃1 = max
{
O

[
t2/(DU2)

]
, 1/φ̃S3A(T )

}
. (D·1)

We call the limit of 1/D → 0 and T → 0 K a double limit.
The issue to be studied is simply whether the double limit is
unique; S3A for T =0 K corresponds to the limit of 1/D→0
followed by T →0 K beyond S3A.

First, we assume that the Mott insulator is possible at
T = 0 K under S3A, following the well-known scenario:
1/φ̃S3A(T )→0 as T →0 K. If the double limit is taken in such
a way that t2/(DU2)� 1/φ̃S3A(T ) is kept satisfied, KLT is
reduced to S3A; the Mott insulator is stabilized. If the double
limit is taken in such a way that t2/(DU2) � 1/φ̃S3A(T )
and t2/(DU2) � kBT are kept satisfied, KLT is not re-
duced to S3A; the RVB liquid is stabilized. The liquid is

an extremely bad metal with kBTK(T ) = O[t2/(DU)] → 0,
1/φ̃1 = O[t2/(DU2)] → 0, and ρµ(0) = O(1/U) > 0. Since
there is a slight difference between the two types of limit, the
double limit is not unique. Thus, S3A is not necessarily equiv-
alent to KLT in the limit 1/D → 0 nor necessarily rigorous
even in the limit 1/D→0 within the Hilbert subspace.

Next, we assume that the Mott insulator is impossible
at T = 0 K under S3A, against the well-known scenario:
1/φ̃S3A(D, T ) > 0 for T ≥ 0 K. We consider, e.g., the case
of T = 0 K. According to Eq. (D·1), a crossover Dc is de-
fined by t2/(DcU

2)=1/φ̃S3A(Dc, 0 K); if φ̃S3A(D, 0 K) de-
pends on the reservoir efficiency δN defined by Eq. (5.3), Dc

also depends on it, as will be discussed later. If D�Dc, the
ground state is the RVB liquid; kBTK(0 K) = O[t2/(DU)]
and ρµ(0) = O(1/U). If D � Dc, the ground state is the
normal Fermi liquid in which the RVB mechanism is not cru-
cial; kBTK(0 K) = O

[
|t|/φ̃S3A(D, 0 K)

]
and ρµ(0) is sim-

ply given by that for U = 0. As a function of U , ρµ(0) is
not monotonous and is minimal at approximately U such that
t2/(DU2)=1/φ̃S3A(D, 0 K); as a function of D, ρµ(0) is al-
most constant for D.Dc, an increasing function for D such
that D&Dc but not D�Dc, and almost constant for D�Dc.
It is easy to show that the double limit is unique. Thus, S3A
is equivalent to KLT in the limit 1/D→0 and rigorous in the
limit 1/D→0 within the Hilbert subspace.

If the reservoir effect is only implicitly treated through the
statistical average, δN =0 for T =0 K, unless the ground state
is degenerate between different N states. If the Mott insulator
is possible at T =0 K for δN =0 under S3A, 1/φ̃S3A(0 K)>0
for δN >0 and 1/φ̃S3A(0 K)→0 as δN →0 in the presence
of an electron reservoir. If so, the crossover Dc depends on
δN in such a way that Dc→+∞ as δN→0; S3A is rigorous
in the limit 1/D→0 within the Hilbert subspace for δN >0
but not for δN =0.

We conclude this Appendix. Two critical arguments are
given against the possibility of the Mott insulator at T =0 K,
in addition to those given in Sect. 5. Whether S3A is rigor-
ous in the limit 1/D→ 0 within the constrained Hilbert sub-
space where no symmetry is allowed to be broken depends on
whether the Mott insulator is possible at T =0 K for the half
filling under S3A. If possible, S3A is not necessarily rigorous;
if not, S3A is rigorous. It is desirable to determine whether the
Mott insulator is possible at T =0 K under S3A, or the third
law of thermodynamics can be broken under S3A, particularly
in the explicit presence of an electron reservoir.
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