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Abstract: Nonlinear propagation of focused axisymmetrically-polarized
ultrashort optical pulses along the optic axis in a uniaxial crystal is in-
vestigated experimentally and theoretically. The energy transfer between
an azimuthally-polarized pulse and a radially-polarized pulse is observed.
To analyze the nonlinear propagation, a general paraxial equation with a
third-order nonlinearity for axisymmetrically-polarized pulses in a uniaxial
crystal is derived and the extended Stokes parameters (ESPs) based on cylin-
drical coordinates are newly-introduced. The simulation results by using
this equation, providing the calculated ESPs, well explain our experimental
observations: 1) the energy transfer is attributed to the four-wave-mixing
effect, reflecting the overlapping between the axisymmetrically polarized
modes, 2) the variations of the polarization defined from the ESPs are
clarified to be affected by the self- and the cross-phase modulations, which
make the effective propagation length long or short.

© 2014 Optical Society of America

OCIS codes: (050.4865) Optical vortices; (190.4380) Nonlinear optics, four-wave mixing;
(190.3270) Kerr effect.
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1. Introduction

Axisymmetrically-polarized modes, such as a radially-polarized (RP) mode and an
azimuthally-polarized (AP) mode, have attracted considerable attention for application to laser
processing [1–6], spectroscopy of a ring shaped material [7], super-resolution microscopy [8],
particle acceleration [9], laser trapping [10], and telecommunications [11, 12]. They have
annular-shaped intensity profile owing to the polarization singularity in the beam center. More-
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over, tightly focused with high numerical aperture (NA) lenses, the radially- and azimuthally-
polarized beams have respectively longitudinal electric and magnetic field components around
the foci where their spot sizes are beyond the diffraction limit [13].

The axisymmetrically-polarized modes can be decomposed into the left-circularly polarized
(LCP), right-handed optical vortex (OV) |s = +1〉|l = −1〉 and the right-circularly polarized
(RCP), left-handed OV |s = −1〉|l = +1〉 [14]. Here indices s and l are respectively the spin
angular momentum (SAM) and the orbital angular momentum (OAM) of light per photon in h̄
units. The OAM originates in the phase ramp exp(ilφ) (φ is azimuthal angle) of OV around the
phase singular point [15]. Superpositions of a RP mode and an AP mode express any axisym-
metrically polarized modes because the |s =+1〉|l =−1〉 or the |s =−1〉|l =+1〉 OV mode is
expressed as a superposition of a RP mode and an AP mode.

The preceding study [1] shows the generation and the separation of a RP pulse and an AP
pulse from an |s = +1〉|l = −1〉 (|s = −1〉|l = +1〉) OV pulse with their linear propagation
along the optic axis in a uniaxial crystal. The separation is ascribed to the phenomenon that the
RP and the AP modes undergo different refractive indices of the crystal and thus have different
focal points [1]. Such scheme using a uniaxial crystal is suited for ultrashort axisymmetrically-
polarized pulse generation because the bandwidth is broader than those in other method using
a photonic-crystal axially-symmetric polarizer/waveplate [16] and a liquid-crystal polarization
converters [17]. While [1] and [18–23] investigated only the linear effect by inputting a CW
beam or a diverging pulse into a uniaxial crystal, the nonlinear effects such as Kerr and four-
wave-mixing (FWM) effects have not been well investigated so far. In particular, the nonlinear
effects by axisymmetrically-polarized pulses in the ultrafast regime, which are crucial for ap-
plications using them, have not been substantially studied.

In the present paper, we experimentally and theoretically investigate ultrashort pulse propa-
gation in a uniaxial crystal through the nonlinear effects between a RP mode and an AP mode.
To analyze the experimental results, we derive a general paraxial equation with a third-order
nonlinearity for axisymmetrically-polarized pulses in a uniaxial crystal and newly introduce
the extended Stokes parameters (ESPs) based on cylindrical coordinates. Comparing the ex-
perimental and the simulation results, we clarify the nonlinear coupling mechanism between
axisymmetrically-polarized ultrashort optical pulses in a uniaxial crystal.

The paper is organized as follows. In section 2.1, we first formulate the nonlinear wave equa-
tion for the propagation of the axisymmetrically-polarized modes in a uniaxial crystal. To char-
acterize the non-uniform spatial polarization, we also introduce the ESPs based on cylindrical
coordinates and the degree of polarization (DOP) in section 2.2. Some preliminary simula-
tions for the linear propagation case are demonstrated in section 2.3. The experimental setup
is summarized in section 3.1. The main findings are given in section 3.2, which describe the
experimental results. In section 4, in terms of the ESPs and the modified DOP, we address the
nonlinear coupling effects between the axisymmetrically-polarized pulses in the crystal. Com-
parison between the experimental and simulation results is also commented on in section 4.
Finally, section 5 summarizes the conclusion.

2. Theoretical formulation

2.1. Wave equation

In order to obtain a wave equation in a uniaxial crystal, we suppose that the electric flux density
D is described as

D(r, t) = εE(r, t)+PNL(r, t). (1)

Here, ε is the permittivity tensor, where εxx = εyy = εo (the ordinary permittivity), εzz = εe (the
extraordinary permittivity) and εi j = 0 (i �= j) [20], E is the real electric field and PNL is the
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real nonlinear polarization. All field variables are functions of position r = (x,y,z) and time t.
For a many-cycle optical pulse propagating along the optic axis with small beam diver-

gence (NA � 0.1), the real electric field and the real nonlinear polarization can be written
as E(r, t) = Re[Ẽ(r)exp[i(kz−ωt)]] and PNL(r, t) = Re[P̃NL(r)exp[i(kz−ωt)]], respectively.
Here Ẽ, P̃NL, k = ω/c, ω and c are the complex slowly-varying amplitude vector, the complex
slowly-varying nonlinear polarization vector, the propagation constant, the angular frequency
and the velocity of light in vacuum, respectively. This approximation works in pulses whose
duration is over ∼100 fs for a wavelength ∼800 nm (where ω ∼ 1015 s−1) [24]; in addition, our
theoretical model here is applicable to pulses with temporally Gaussian- or hyperbolic-secant-
shaped envelopes. We consider the χ(3) nonlinearity of trigonal (3m, −3m, 32) and hexagonal
(622, 6mm, 6/mmm, −6m2) crystals [25], which is assumed to be instantaneous. The transverse
nonlinear polarization P̃NL

⊥ (r, t) = (P̃x, P̃y) can be written by

P̃x(r, t) = 2εononE
2

[(|Ẽx|2 + γ|Ẽy|2
)

Ẽx +(1− γ)Ẽ∗
x Ẽ2

y

]
, (2)

P̃y(r, t) = 2εononE
2

[(
γ|Ẽx|2 + |Ẽy|2

)
Ẽy +(1− γ)Ẽ∗

y Ẽ2
x

]
, (3)

where no is the ordinary refractive index and nE
2 is the nonlinear refractive index. The param-

eter γ is the ratio of the self-phase modulation (SPM) to the cross-phase modulation (XPM);
accordingly, the FWM terms, the last terms in Eqs. (2) and (3), have the coefficients of 1− γ .
They are defined by

no,e = (εo,e/ε0)
1/2 , (4)

nE
2 no

8
3
= χ(3)

xxxx, (5)

γnE
2 no

8
3
= χ(3)

xxyy + χ(3)
xyxy = 2χ(3)

xxyy. (6)

Here χ(3)
i jkl = χ(3)

i jkl(−ω;ω,ω,−ω) is a degenerate third-order nonlinear susceptibility tensor, ε0

is the vacuum permittivity. We consider the beam propagation along the optic axis of a uniaxial
crystal. Hence, the axial components Ẽz and P̃z are assumed to remain so small that they can be
neglected [24].

With Ẽ and P̃NL, the following wave equation is acquired from the Maxwell’s equations:

−∇2(Ẽeikz)+∇[∇ · (Ẽeikz)]+ k2εẼeikz =−k2

ε0
P̃NLeikz. (7)

Since ∇ · (D̃eikz) = 0,

∇ · (Ẽeikz) = eikz
(

1− εo

εe

)
∇⊥ · Ẽ⊥− eikz 1

εe
∇⊥ · P̃NL

⊥ , (8)

where P̃NL
⊥ = (P̃x, P̃y). Here we apply the paraxial approximation to Eq. (7). The paraxial wave

equation is

2ik0no∂zẼ⊥+∇2
⊥Ẽ⊥−

(
1− εo

εe

)
∇⊥(∇⊥ · Ẽ⊥)+

k2

ε0
P̃NL
⊥ = 0. (9)

We treat ∂ 2
z Ẽ⊥ and ε−1

e ∇⊥(∇⊥ · P̃NL
⊥ ) as enough smaller than (1− εo/εe)∇⊥(∇⊥ · Ẽ⊥) in this

approximation.
To analyze propagation of an axisymmetrically-polarized beam, we introduce the RP com-

ponent Ẽr and the AP component Ẽφ which are defined by the transverse electric field Ẽ⊥ as,

Ẽ⊥ =

(
Ẽx

Ẽy

)
= Ẽrer + Ẽφ eφ . (10)
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Here, er and eφ are the radial and azimuthal bases, respectively:

er =

(
cosφ
sinφ

)
, eφ =

(−sinφ
cosφ

)
, (11)

where φ is the azimuthal angle arctan(y/x). Hence, for the axisymmetrically-polarized beam,
Eq. (9) is modified to

2ikno∂zẼr =−n2
o

n2
e

(
∂ 2

r +
1
r

∂r − 1
r2

)
Ẽr −2k2n0nE

2

[(|Ẽr|2 + γ|Ẽφ |2
)

Ẽr +(1− γ)Ẽ2
φ Ẽ∗

r

]
,

(12)

2ikno∂zẼφ =−
(

∂ 2
r +

1
r

∂r − 1
r2

)
Ẽφ −2k2n0nE

2

[(
γ|Ẽr|2 + |Ẽφ |2

)
Ẽφ +(1− γ)Ẽ2

r Ẽ∗
φ
]
. (13)

In the absence of nonlinearity (nE
2 → 0), the wave equation can be diagonalized with the RP

and AP bases. The RP and AP modes are therefore eigenmodes in the linear propagation; hence
these modes independently propagate with different beam divergence [1]. In contrast, the RP
and the AP modes are no longer eigenmodes in nonlinear propagation because of the XPM
and FWM effects. The XPM and the FWM effects bring phase modulation and energy transfer
between the RP and AP modes, respectively.

2.2. Extended Stokes parameters based on cylindrical coordinates

Although the higher-order Stokes parameters [26] can describe an axisymmetrically-polarized
state, they are suitable for a uniform, but not for a non-uniform axisymmetrically-polarization
state. This indicates that the higher-order Stokes parameters cannot be applied to the propaga-
tion of multi-axisymmetrically polarized modes in a uniaxial crystal. In the present subsection,
we accordingly introduce the new parameters for describing non-uniform axisymmetrically-
polarized beams. These parameters are brought in as a natural extension of the conventional
Stokes parameters [27], and are described by integrals of them with respect to the beam cross
section and time:

SE
0 (z) =

∫∫ 〈|Er|2 + |Eφ |2
〉

dxdy =
∫∫

S0dxdy,

SE
1 (z) =

∫∫ 〈|Er|2 −|Eφ |2
〉

dxdy =
∫∫

(S1 cos(2φ)+S2 sin(2φ))dxdy,

SE
2 (z) =

∫∫ 〈
E∗

r Eφ +ErE
∗
φ
〉

dxdy =
∫∫

(−S1 sin(2φ)+S2 cos(2φ))dxdy,

SE
3 (z) =−i

∫∫ 〈
E∗

r Eφ −ErE
∗
φ
〉

dxdy =
∫∫

S3dxdy (14)

where the symbol 〈· · · 〉 and Si = Si(r) (i = 0,1,2,3) represent the time average and the conven-
tional Stokes parameters at r = (x,y,z), respectively. Figure 1 shows typical axisymmetrically
polarized modes on the Poincaré sphere for the normalized ESPs (S̃E

i = SE
i /SE

0 (i = 1− 3)).
Axisymmetrically polarized modes can be expressed by the points in the Poincaré sphere for
the normalized ESPs. It is noted that, unlike higher-order Stokes parameters [26], the ESPs can
define the degree of polarization (DOP) VE as

V E(z) =

[(
SE

1 (z)
)2

+
(
SE

2 (z)
)2

+
(
SE

3 (z)
)2
]1/2

SE
0 (z)

. (15)
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s=+1  l=-1 Optical Vortex

s=-1  l=+1 Optical Vortex
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S2
E E

~

~ ~

Fig. 1. Poincaré sphere corresponding to the ESPs based on cylindrical coordinates and
typical axisymmetrically polarized states (blue points).

The physical meaning of V E is a measure in uniformity of an axisymmetrically polarized state;
V E = 1, 0 <V E < 1, and V E = 0 represent the perfect polarized, partially-polarized and unpo-
larized states, respectively. In order to exclude the unpolarized state in time domain from VE,
we introduce the modified DOP by ESPs,

V E
space(z) =

[(
SE

1 (z)
)2

+
(
SE

2 (z)
)2

+
(
SE

3 (z)
)2
]1/2

∫∫
S0(r)V (r)dxdy

, (16)

where S0(r)V (r) = [(S1(r))2 +(S2(r))2 +(S3(r))2]1/2 is the amount which is proportional to
the time-averaged temporally-perfect-polarized intensity at the position r.

The detail of ESPs, such as expressions of generalized ESPs, the Pancharatnam-Berry phase
of the ESPs, will be reported elsewhere.

2.3. ESPs and DOP in linear propagation case

To analyze the nonlinear propagation of axisymmetrically polarized beam, understanding of
its linear propagation is a crucial first step. Here we consider the transverse electric field
Ẽ⊥(r,φ ,z ≤ 0) consisting of a RP LG1

0 and an AP LG1
0 (LGm

p is referred as |l = m〉 Laguerre-
Gauss mode with a radial index p) in a uniaxial crystal, which is given by the following equa-
tion:

Ẽ⊥(r,φ ,z ≤ 0) =
(
Arer +Aφ eφ

) r
w0σ2(z)

exp

(
− r2

w2
0σ(z)

)
, (17)

where w0 = (2z0/k)1/2 is the waist of the beam in vacuum, σ(z) is described by 1− i[(z−
zF)/z0] [21], zF is the focal position in the absence of the crystal, and z0 is the Rayleigh length.
The beam is focused on one of the facets (z = 0) of c-cut uniaxial crystal (z ≥ 0).

The solution to Eqs. (12) and (13) in the linear case (nE
2 → 0) inside the uniaxial crystal

(z ≥ 0) is therefore

Ẽ⊥(r,φ ,z ≥ 0) = Ar
r

w0σ2
r (z)

exp

(
− r2

w2
0σr(z)

)
er +Aφ

r

w0σ2
φ (z)

exp

(
− r2

w2
0σφ (z)

)
eφ , (18)

where σi(z) = 1− i(z/zi − zF/z0) (i = r, φ ) with zr = (ε2
e /εo)

1/2z0 and zφ = (εo)
1/2z0 [19, 21,

22].
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Fig. 2. (a) Trajectories of linear propagations in positive (α > 0) uniaxial crystals on a plane
of the second and third normalized ESPs. Blue points indicate initial states. (b) DOP V E

space
as a function of the propagation length z̃ = |α |z/(z0no) (α = 0.237; calcite at 800 nm) in
the linear propagation case [Eq. (22)].

The normalized ESPs and the modified DOP from ESPs are therefore

S̃E
1 (z̃)=

|Ar|2 −|Aφ |2
|Ar|2 + |Aφ |2 = const., (19)

S̃E
2 (z̃)=4

[
1− (S̃E

1 )
2]1/2 · (4− z̃2)cosδrφ +4sgn(α)z̃sinδrφ

(4+ z̃2)2 , (20)

S̃E
3 (z̃)=4

[
1− (S̃E

1 )
2]1/2 · (4− z̃2)sinδrφ −4sgn(α)z̃cosδrφ

(4+ z̃2)2 , (21)

V E
space(z̃) =

{
[
1− (S̃E

1 )
2]
(

4
4+ z̃2

)2

+(S̃E
1 )

2

}1/2

, (22)

where z̃ = |α|z/zφ is standardized propagation length, α = (εe−εo)/εe [20] is birefringence of
the uniaxial crystal, sgn is the signum function, and δrφ is the phase difference between Ar and
Aφ defined by A∗

r Aφ = |ArAφ |eiδrφ .
From Eq. (19), S̃E

1 is constant in the linear propagation case where the RP and the AP modes
are eigenmodes. Thus, only S̃E

2 and S̃E
3 provide the propagation. Figure 2(a) depicts typical

trajectories on the S̃E
2 and S̃E

3 plane in the linear propagation cases. The trajectories gradually
change their curvature with the standardized propagation length z̃; they depend on only initial
polarization distribution, being independent of the focus position zF. In particular, the change
of S̃E

3 expresses an interaction between an |s =−1〉|l =+1〉 OV mode and an |s =+1〉|l =−1〉
OV mode, which is called the optical spin-orbit coupling [28] or optical spin-to-orbital angular
momentum conversion [29, 30]. The coupling conserves the total angular momentum of photon
j = s+ l . Another highly important feature of the trajectories is that they penetrate the surface
of the Poincaré sphere. This is clearly seen from Eq. (22), which shows V E

space decrease with
the propagation distance z̃, as depicted in Fig. 2(b). The decrease in VE

space is attributed to the
decrease in the overlap between the RP and the AP modes with different beam divergences.
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3. Experiment

3.1. Experimental setup

Figure 3(a) shows the experimental setup for the nonlinear propagation of axisymmetrically-
polarized pulses. The light source used is a Ti:sapphire laser amplifier (center wavelength
800 nm, pulse duration ∼ 25 fs, and repetition rate 1 kHz) . A pulse with a duration of ∼120 fs
after a 800±5 nm bandpass filter (BP), is converted to an |s =+1〉|l =−1〉 OV pulse by pass-
ing through a quarter-wave plate (QWP1) and a spiral phase plate (SPP). This |s=+1〉|l =−1〉
OV pulse is focused on one of the surfaces of a 2 mm- or 5 mm-thick c-cut calcite crystal (CR)
by a convex lens L1. We refer to the surface (z = 0) and the other surface (z = L) as the input
surface and the output surface, respectively. Since the NA and Rayleigh length of the input
beam are respectively ∼0.02 and z0 = 0.5 mm, |Ẽz| is quite small enough to be neglected [13].
After propagating along the optic axis of the crystal, the beam is collimated by another con-
vex lens L2. By using a quarter-wave plate (QWP2) or half-wave plate (HWP), linearly x-,
y-, +45◦-, −45◦-polarized, and left- and right-circularly polarized beams [Fig. 3(b) left], af-
ter passing through a polarizing beam splitter (PBS), are guided to a charge-coupled-devise
(CCD) camera and their intensity profiles are recorded so that the ESPs can be derived from the
conventional Stokes parameters (S1(x,y),S2(x,y),S3(x,y)) [31] by using Eqs. (14) [Fig. 3(b)
middle and right]. To enhance the properties of the nonlinear propagation, we move the focal
position zF (in the absence of CR) [Fig. 3(a)]. This enables us to control the beam overlapping,
thereby the amount of the energy transfer between a RP mode and an AP mode, which will
be mentioned in sections 3.2 and 4. We here define two typical focal position zA

F,out and zR
F,out,

where the focus of the AP mode is at output facet and that of the RP mode is at output facet,
respectively [Fig. 3(c)].

3.2. Experimental results

To analyze the nonlinear propagation of |s = +1〉|l = −1〉 OV pulses in a uniaxial crystal, we
derive the changes of S̃E

1 and V E
space from the linear values

ΔS̃E
1 = S̃E

1 − S̃E,Linear
1 , (23)

ΔV E
space =V E

space −V E,Linear
space . (24)

We can investigate the FWM effect giving energy transfer between the RP and AP modes,
through ΔS̃E

1 . In addition, the SPM and XPM effects can be analyzed through ΔVE
space since

the phase modulation effects involving beam-divergence change modify beam overlap of these
modes.

The experimentally-obtained ΔSE
1 and ΔV E

space are respectively plotted in Figs. 4(a), 4(b) and
4(c), 4(d), as functions of the focal position zF. The cyan, orange and green bars in Fig. 4
correspond to the focus positions where the focus of the input beam is at the input facet of
crystal (zF = 0), that of the AP mode is at the output facet of crystal (zF = zA

F,out) and that of the
RP mode is at the output facet of crystal (zF = zR

F,out), respectively [Fig. 3(c)]. From Eq. (18),

the relationships between zA,R
F,out and crystal length L are

nozA
F,out = 1.65zA

F,out = L,
n2

e

no
zR
F,out = 1.33zR

F,out = L, (25)

for calcite crystals at 800 nm [32]. Intensity dependent peaks of ΔSE
1 appear at zF � 1mm in

both the 2 mm- and 5 mm-thick calcite [Figs. 4(a) and 4(b)]. The maximum values ΔSE,max
1 at

these peaks are proportional to the input pulse energy. The positive value of ΔS̃E
1 reflects the
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Fig. 3. (a) Setup for nonlinear propagation of axisymmetrically polarized pulses. BP, a
bandpass filter; QWP1,2, quarter-wave plates; HWP, a half-wave plate; SPP, a spiral phase
plate (l =−1); L1,2, convex lenses; CR, a nonlinear crystal (a 2 mm- or 5 mm-thick c-
cut calcite crystal); PBS, a polarizing beam splitter; ND, a neutral density filter. zF is the
relative position between the input surface of CR and the focal point of the input beam
(without CR). (b) The flow chart to obtain the ESPs. x, y, +45◦ and −45◦ represent intensity
distributions of linearly x-, y-, +45◦-, −45◦-polarized components, respectively. LCP and
RCP represent intensity distributions of LCP and RCP components, respectively. Spatial-
dependent, conventional Stokes parameters (S1(x,y),S2(x,y),S3(x,y)) obtained from these
six intensity profiles provide ESPs. (c) Schematic definitions of zF, zA

F,out and zR
F,out. The

red, green and orange lines stand for the beam paths of |s = +1〉|l = −1〉 OV, the RP and
AP modes, respectively.

energy transfer from the AP mode to the RP mode. The energy transfer occurs in the region
of −1 � zF � 2mm for the 2 mm calcite and −1 � zF � 3mm for the 5 mm-thick calcite. In
Figs. 4(c) and 4(d), positive and negative peaks of ΔVE

space appear at zF = 0 mm and zF = zA
F,out,

respectively. The heights of these peaks are also proportional to the energy of the input pulses.
These experimental results will be analyzed and compared with the simulation results in section
4.

4. Discussion

Since the difference of the group delay between the AP and the RP pulses is estimated to be
about 5 fs after propagation in 5 mm-thick calcite, the temporal delay between these pulses can
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Fig. 4. Experimental results. ΔS̃E
1 after the nonlinear propagation of (a) 2mm(� 4z0) and

(b) 5mm(� 10z0) c-cut calcite. ΔV E
space after the nonlinear propagation of (c) 2mm and (d)

5mm c-cut calcite. Each graph has results for two pulse energy: 0.39 μJ and 0.81 μJ. The
cyan bars represent the focus position where the focus of the input beam is at the input facet
(zF = 0). The orange and green bars correspond to the focus positions zF where the foci of
the AP and the RP modes are at the output facet, respectively.

2mm
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zF

Crystal
Thickness

AP RP

zF=0 zF=zF,out
A zF=zF,out

A(a) (b) (c)(2mm) (5mm)

Fig. 5. Trajectories for |s = +1〉|l = −1〉 OV (red line), RP mode (green line) and AP
mode (orange line) inputs. (a) The focus of input beam corresponds to the input facet of
the crystals (zF = 0mm). The focus of the AP mode corresponds to the output facet of (b)
2 mm-thick CR (zF ∼ 1.2mm) and (c) that of 5 mm-thick CR (zF ∼ 3.0mm).

be neglected in our experiments. Variations of ΔS̃E
1 and ΔV E

space as functions of zF in Fig. 4 are
therefore ascribed to a change in spatial overlap or relative focus positions between the AP and
the RP pulses.

Figure 5 schematically describes the focus positions of the AP and the RP pulses with various
zF (the focal position (in the absence of the crystal) relative to the input crystal surface). In the
region of 0 � zF � zA

F,out, the RP and AP modes considerably overlap each other. The relative
distance between the foci of the AP and the RP pulses increases with an increase in zF owing
to the crystal anisotropy. The spatial overlap therefore decreases with an increase in zF.

#211988 - $15.00 USD Received 13 May 2014; revised 24 Jun 2014; accepted 24 Jun 2014; published 2 Jul 2014
(C) 2014 OSA 14 July 2014 | Vol. 22,  No. 14 | DOI:10.1364/OE.22.016903 | OPTICS EXPRESS  16912



0

-0.03

0.03

0.1

0

(a) (b)

(c) (d)
S

1E
~

Δ
Δ

Normalized Focus Position zF/z0

0 4 8 120 4 8 -4

nE
2 =0.10
=0.05nE

2

z=4z0 z= z0z=10z=4z0

V s
p

a
c
e

E

kz0

kz0

Fig. 6. Simulation results for focus position dependence of ΔS̃E
1 and ΔV E

space at two stan-
dardized crystal lengths. (a) and (c) z = 4z0; (b) and (d) z = 10z0 (γ = 2/3). The cyan bars
represent the focus position where the input beam is at the input facet (zF = 0). The orange
and green bars correspond to the focus positions zF where the foci of the AP and the RP
modes are at the output facet, respectively.

To make sure that the spatial overlap mainly gives the variations of ΔS̃E
1 and ΔV E

space, we
perform simulations, for simplicity, on the assumption that the input transverse electric field
Ẽ⊥(r,φ ,z ≤ 0) is described by Eq. (17) (See Appendix for the detail of the simulations). Fig-
ures 6(a)–6(d) show ΔS̃E

1 and ΔV E
space as a function of the focal position zF at propagation dis-

tances of z = 4z0 (∼ 2mm) and z = 10z0 (∼ 5mm). The experimental results (Fig. 4) agree with
these simulation results.

The experimental and simulation results show that ΔS̃E
1 has positive peaks and its peak

heights increase with increasing pulse energy in the region of 0 � zF � zA
F,out, where the RP

and AP modes well overlap each other. The observed pulse energy dependence of ΔS̃E
1 indi-

cates the energy transfer from an AP pulse to a RP pulse in the terms of the FWM effect, which
is well explained by Eqs. (12) and (13). In these wave equations only the terms (1− γ)Ẽ2

φ Ẽ∗
r

and (1− γ)Ẽ2
r Ẽ∗

φ give energy transfer between the AP and RP pulses, depending on the pulse
energy and the spatial overlap between them.

Nonlinear DOP change ΔV E
space mainly reflects the SPM and FWM effects. Equation (22)

shows that V E
space depends on the propagation length z̃ = |α|z/(z0no); V E

space monotonically de-
crease with z̃, as shown in Fig. 2(b). The SPM and FWM effects induce wide beam diver-
gence in the region of zF � 0 or narrow beam divergence in the region of zF � 0. This induced
wide or narrow divergence makes the effective optical propagation length long or short, giving
ΔV E

space < 0 or ΔV E
space > 0, respectively, from the monotonical decreasing of VE

space on z̃. The
negative peaks at zF = zA

F,out (orange lines) in Figs. 4(c) and 4(d), and Figs. 6(c) and 6(d) are
also explained by the SPM and XPM effects. They make the focal length shorter at zF = zA

F,out,
thereby giving the longer effective optical propagation length and the decrease in ΔVE

space.

In the experiment, the pulse contains not only a LG−1
0 mode but also LG−1

p�=0 modes. The
higher-p LG mode undergoes the larger Gouy phase shift [33]. We have carried out numerical
simulations in the case where Ẽ⊥(r,φ ,z ≤ 0) is expressed by the mixed mode with p = 0,1 and
2, whose results resembling the experimental results somewhat better than those with an only

#211988 - $15.00 USD Received 13 May 2014; revised 24 Jun 2014; accepted 24 Jun 2014; published 2 Jul 2014
(C) 2014 OSA 14 July 2014 | Vol. 22,  No. 14 | DOI:10.1364/OE.22.016903 | OPTICS EXPRESS  16913



p = 0 mode. This implies that p �= 0 submodes contribute the nonlinear propagation.

5. Conclusion

In conclusion, we have experimentally and theoretically investigated nonlinear propagation of
axisymmetrically-polarized ultrashort optical pulses along the optic axis in a uniaxial crystal
under the condition that a circularly-polarized optical-vortex pulse is focused into the crystal.
The energy transfer between an AP pulse and a RP pulse through FWM effect was observed. To
analyze the experimental results, we have derived a general paraxial equation with a third-order
nonlinearity for axisymmetrically-polarized pulses in a uniaxial crystal and have newly intro-
duced the extended Stokes parameters, ESPs, based on cylindrical coordinates. The simulation
results providing the ESPs, well explain our experimental results. One of the distinct results is
the energy transfer between the axisymmetrically polarized modes, which is attributed to the
FWM effect. The change of ΔS̃E

1 , the energy transfer from the AP to the RP pulses can be uti-
lized as an all-optical ultrafast switch for vector-vortex-mode-division multiplexing in optical
communications. We can control the transfer direction by using a positive uniaxial crystal in-
stead of a negative crystal (See Appendix). This phenomenon occurs in any crystals which have
non-diagonal χ(3) nonlinearity and uniaxial refractive indices in transparent wavelength region
(for calcite, its transparent region is from 0.24 to 2.2 μm [32]). However, in case that the pulse
duration is shorter than ∼ 100 fs for a wavelength of ∼ 800 nm, the correction of the slowly-
varying envelope approximation (or higher-order approximation) is required. Furthermore, the
DOP defined from the ESPs is measured as a function of the focal position and is clarified to
be affected by the SPM and XPM, which make the effective propagation length long or short.
Thus, the nonlinear interaction in a uniaxial crystal modifies the axisymmetrically-dependent
polarization distribution and has potential to obtain an axisymmetrically-full Poincaré state
[34].

Appendix

In our simulation in section 4, we employ the Runge-Kutta and pseudo-spectrum methods for z-
and r-differentiations, respectively. Since wave equations, Eqs. (12) and (13), have off-diagonal
components, the split-step Fourier method cannot be used here [24]. With z̃ = z/z0 and r̃ =
r/w0, we normalize the wave equations as follows:

∂z̃Ẽr = i

{
no

4n2
e

(
∂ 2

r̃ +
1
r̃

∂r̃ − 1
r̃2

)
Ẽr + kz0nE

2

[
(|Ẽr|2 + γ|Ẽφ |2)Ẽr +(1− γ)Ẽ2

φ Ẽ∗
r

]
}
, (26)

∂z̃Ẽφ = i

{
1

4no

(
∂ 2

r̃ +
1
r̃

∂r̃ − 1
r̃2

)
Ẽφ + kz0nE

2

[
(γ|Ẽr|2 + |Ẽφ |2)Ẽφ +(1− γ)Ẽ2

r Ẽ∗
φ
]
}
. (27)

Equations (26) and (27) (or (12) and (13)) are invariance under a permutation such that no →
n2

e/no, Ẽr → Ẽφ and Ẽφ → Ẽr. This permutation gives the birefringence-sign inversion and a
swap of the electric field components, Ẽr and Ẽφ . The energy transfer direction is therefore
determined by the sign of the anisotropy of the crystal. Hence, we can control or switch the
transfer direction by using a positive uniaxial crystal instead of a negative crystal.

In the experiment, we used a spiral phase plate to generate |s =+1〉|l =−1〉 OV pulses from
|s = +1〉|l = 0〉 Gaussian pulses. The generated beam Ẽ(gen)(er + ieφ ) is consequently not an
LG−1

0 beam but is generally expressed by a superposition of LG−1
p beams with all radial indices

p:

Ẽ(gen) = A(gen)
∞

∑
p=0

π1/2(2p−1)!!
2(p+1)(2p)!!

u−1p, (28)
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where A(gen) is a constant coefficient. Equation (28) is obtained by using Laguerre series ex-
pansion [35]. The function ump denotes the LGm

p mode given by [33]

ump =

( √
2r

w0|σ(z)|

)|m|
L|m|

p

(
2r2

w2
0|σ(z)|2

)
1

|σ(z)| exp

(
− r2

w2
0σ(z)

+ imφ − iΨG(z)

)
, (29)

where L|m|
p is the generalized Laguerre polynomial and ΨG(z) is the Gouy phase defined by

ΨG(z) = (2p+ |m|+1)arctan(z/z0). (30)

The simulations in section 4 are conducted on the assumption that the input transverse elec-
tric field Ẽ⊥(r,φ ,z ≤ 0) is described by Eq. (17) (the dominant mode (p = 0) in Eq. (28)).
We assume that the absolute value of the fundamental mode is normalized so that the maxi-
mum of the absolute value of the input beam at its focus is unity (Ar =−iAφ = [exp(1)/2]1/2 in
Eq. (17)). Calculations were done under the condition that kz0nE

2 = 0.1, γ = 2/3, the wavelength
of OV is 800 nm, and a calcite (no = 1.64,ne = 1.48 [32]) is used as a nonlinear crystal.
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