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Using a geographical scale-free network to describe relations between people in a city, we explain both
superlinear and sublinear allometric scaling of urban indicators that quantify activities or performances of the
city. The urban indicator Y (N ) of a city with the population size N is analytically calculated by summing up all
individual activities produced by person-to-person relationships. Our results show that the urban indicator scales
superlinearly with the population, namely, Y (N ) ∝ Nβ with β > 1, if Y (N ) represents a creative productivity
and the indicator scales sublinearly (β < 1) if Y (N ) is related to the degree of infrastructure development. These
results coincide with allometric scaling observed in real-world urban indicators. We also show how the scaling
exponent β depends on the strength of the geographical constraint in the network formation.
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I. INTRODUCTION

Cities are often compared to living organisms with a
hierarchical organization consisting of cells, tissues, and
organs. Likewise, people in a city form groups, groups form
organizations serving certain functions, and interdependent
complex relationships between functional organizations sus-
tain the whole urban activities. Such similarities are found not
only in the correspondence between constituent elements of
cities and living organisms, but also in allometric scaling [1].
Similar to living organisms with the basal metabolic rate of an
animal proportional to the 3/4 power of its body mass M [2,3]
or the breathing rate (or heart rate) proportional to M−1/4 [4],
there are various quantities related to activities or performances
of cities such as urban road systems [5], night illuminations
[6], and size distribution of buildings [7] that are described by
power-law relations [8]. Power-law scaling has also been found
in the morphology and evolution of cities and argued from a
viewpoint of fractal cities [9–13]. In particular, it has been
elucidated that urban indicators quantifying city activities on
average scale with the population size in a power-law manner.
These include many creative productivities and infrastructure
volumes [14–17] such as the gross domestic product (GDP),
the number of patents, human online activities [18], prosocial
behaviors [19], quantities related to highway systems [20], the
number of crimes [21], the number of supply stations [22],
and emissions of CO2 [23] and NO2 [24]. There exist several
models explaining such allometric scaling behavior [25–28]
and fluctuations around average power-law relations [29–31].
These findings allow us to write an urban indicator Y as a
function of the population size N as

Y (N ) ∝ Nβ, (1)

where β is a scaling exponent. Bettencourt et al. [14–16] found
that an urban indicator representing a creative productivity,
such as the number of new patents, the GDP, the number of
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crimes, etc., obeys a superlinear scaling law (β > 1), while an
indicator related to the degree of infrastructure development,
such as the total length of electrical cables, the number of gas
stations, the total road surface, etc., scales sublinearly with the
population size (β < 1). Due to the nonlinear scaling (1), a
meaningful comparison between characteristics of individual
cities requires evaluation of deviations from this average
scaling behavior, instead of considering per capita quantity
Y (N )/N [28–31].

It is crucial to understand the reason why urban indicators
representing creative productivities scale superlinearly and
those corresponding to material infrastructures scale sublin-
early. Arbesman, Kleinberg, and Strogatz [25] proposed a
network model to explain superlinear scaling found in creative
productivities. They introduced hierarchical social distances
between nodes representing people in a city. A network
is formed by connecting nodes with the edge probability
decaying exponentially with the social distance. Assuming that
the individual productivity yielded by an edge increases ex-
ponentially with the social distance, the Arbesman-Kleinberg-
Strogatz (AKS) model gives superlinear scaling of creative
productivity Y (N ) if the total contribution from connected
node pairs separated by the social distance d is an increasing
function of d; otherwise the scaling is linear.

In order to explain both superlinear and sublinear scaling of
urban indicators, Bettencourt [26] has worked with four simple
assumptions. (i) Citizens explore the city fully to benefit from
it and the city develops in a way to make this possible. (ii) The
infrastructure network volume An grows in a decentralized
way in order to connect each addition of a new inhabitant,
namely, An ∝ Nr , where N is the number of people in the
city and r is the average distance between individuals. (iii)
The product of average social output and the volume spanned
by an individual’s movement is a constant of city size N , which
means that human effort is bounded. (iv) The urban indicator
Y (N ) related to a creative productivity is proportional to the
number of local social interactions. According to Bettencourt’s
model, the scaling exponent is given by β = 1 + δ for the
superlinearly scaled creative productivity and β = 1 − δ for
the sublinearly scaled infrastructure volume, where δ is a
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positive exponent that depends on the fractal dimension of
human travel paths.

Despite these two pioneering and suggestive theories, the
mechanism of urban scaling is not yet completely understood.
Although the AKS model [25] gives a possible explanation
of superlinear (or linear) scaling of creative productivities
and describes how the social structure (i.e., human relations)
affects the scaling exponent β, sublinear scaling for urban
indicators reflecting infrastructures has not been argued. On
the other hand, Bettencourt’s model [26] demonstrates both
superlinear and sublinear scaling for a creative productivity
and an infrastructure volume, respectively. However, it is not
clear how the social structure influences urban scaling because
this theory is based on a continuum model. Furthermore, the
scaling exponent β always appears symmetrically as β =
1 ± δ for superlinear and sublinear scaling, hence a variety of
real-world nonlinear urban scaling cannot be described by this
model. It is therefore important to explain consistently both
superlinear and sublinear scaling in the context of the relation
between the scaling behavior and the social structure in the
city. This enables us to create alternative ways to understand
the structure and function of cities.

In this paper we propose a model to account for urban
scaling by representing human relations in a city by a
geographical network in which nodes close to each other
are more likely to be connected. It is assumed that an urban
indicator Y (N ) is given by the sum of the activities produced
by individual connected node pairs and that the individual
activity yij depends on the Euclidean distance lij between
connected nodes i and j . We show that the urban indicator
scales superlinearly or linearly with the population size N

when the activity yij represents a creative productivity that is
an increasing function of the Euclidean distance lij and scales
sublinearly or linearly if yij decreases with lij as the strength
of the demand for infrastructure does. This result is consistent
with observed urban scaling phenomena. We also predict that
urban indicators representing either creative productivities or
infrastructures are proportional to the population size (i.e.,
linear scaling) if the geographical constraint in the network
formation is strong enough.

The paper is organized as follows. After presenting our
model in Sec. II, the urban scaling exponent β is analytically
calculated in Sec. III. Numerical confirmations for the ana-
lytical results are given in Sec. IV. We also show how the
exponent β depends on parameters characterizing our model.
Finally, we summarize our work in Sec. V.

II. MODEL

A. Geographical network model

It has been demonstrated that urban structure possesses a
self-similar property [9–13,32–35]. It is therefore meaningful
to explain urban scaling in a fractal-city framework, as
allometric scaling in living organisms has been modeled with
an idea of the fractal structure of living systems [3]. In order
to incorporate the fractal population density into the theory,
we adopt the geographical network model studied by Ref. [36]
to describe the social structure in a city. In this model, N

nodes embedded in an underlying Euclidean space, which

represent people in a city, are inhomogeneously distributed
such that their spatial distribution exhibits fractality with the
fractal dimension D. The Euclidean distance is defined for any
pair of nodes. The underlying Euclidean space has the linear
size L and is assumed to be large enough and isotropic from
any point such as a spherical surface [37]. Thus, the number
of nodes or the population size of the city is presented by

n(l) ∝ lD−1, (2)

where n(l)dl is the number of nodes within the distance
range of [l,l + dl] from a given node. Each node (person)
has its own ability or charm to attract others, such as wealth,
communication skills, or leadership. Many of the quantities
representing these personal characteristics follow fat-tail
distributions [38]. For example, the distribution functions of
measures of influence in cyberspace [39–41] and individual
professional performance [42] obey power-law forms, in
addition to the well-known Pareto distribution of income
[43,44]. In order to quantify such personal attractiveness, a real
continuous quantity x (referred to as attractivity hereafter) is
randomly assigned for each node according to the power-law
probability distribution function s(x) expressed by

s(x) ∝ x−α (x � xmin), (3)

where xmin must be positive. Since our theory does not
require the existence of the average 〈x〉 whereas s(x) must be
normalized, the exponent α can take any value in the range of
α > 1. It is natural to consider that two nodes spatially close to
each other and having large attractivity values are more likely
to be connected, thus two nodes i and j are connected if the
following condition is satisfied [36]:

xixj

lmij
> �, (4)

where lij denotes the Euclidean distance between the nodes
i and j , m (� 0) is a parameter controlling the strength of
the geographical constraint in the network formation, xi is
the attractivity of the node i, and � is a threshold value. For
m = 0, the network connectivity is determined only by the
attractivity regardless of node locations, whereas in the case
of an infinitely large m each node is connected to n� closest
nodes independently of the attractivity, where n� is a constant
determined by �. Similar network models have already been
studied [45–51] and the present model [36] is a straightforward
extension of these models, by introducing the parameter m and
the fractal dimension D.

Statistical properties of networks formed by the above
procedures have been studied previously in the mean-field
framework in which all nodes are statistically equivalent with
respect to their placements [36,50]. We briefly summarize
the results of these works here. First, the network exhibits
the scale-free property [52,53], that is, the number of edges
(degree) from a node is distributed in a power-law manner.
It has been shown that the distribution function P (k) of the
degree k of the present network model obeys

P (k) ∝ k−γ (5)
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for large k [36,50]. The exponent γ is related to the model
parameters D, α, and m through [36]

γ =
{

2 for D � dc

1 + dc

D
for D < dc,

(6)

where

dc = m(α − 1). (7)

This result shows that the degree distribution becomes more
homogeneous when the geographical constraint is enhanced
by increasing m [54]. This is because the network formed by
a large m value has a latticelike structure.

Second, the probability distribution function R(l) of the
edge length l is proportional to the average number of nodes
k(l)dl within the distance range of [l,l + dl] from a given node
that are connected to the node of the origin, averaged over all
the possible attractivity values and node arrangements. The
quantity k(l)dl is nothing but the average number of edges of
the length in the range of [l,l + dl] from a given node. These
are given by [36]

R(l) ∝ k(l) ∝
⎧⎨
⎩

lD−1 for l � ξ

lD−1

(
l

ξ

)−dc

for l > ξ,
(8)

where

ξ =
(

x2
min

�

)1/m

. (9)

The quantity ξ is the distance below which any two
nodes are connected regardless of the attractivity x. Here
we neglected a logarithmic correction term proportional to
lD−1(l/ξ )−dc ln(l/ξ ) in Eq. (8) for l > ξ because it does not
influence the asymptotic power-law behaviors of R(l) and k(l)
for large l. The probability of two nodes separated by the
Euclidean distance l to be connected by an edge is directly
obtained from Eq. (8). This probability g(l) is presented by
the ratio of k(l)dl to the number of nodes n(l)dl located at
a distance within the range of [l,l + dl] from a given node.
Since n(l) ∝ lD−1, the relation g(l) = k(l)/n(l) immediately
leads to

g(l) =
⎧⎨
⎩

1 for l � ξ(
l

ξ

)−dc

for l > ξ.
(10)

The power-law decay of g(l) for l > ξ is consistent with the
fact that the probability of two people separated by l to be
socially connected decreases with l in a power-law manner
[55–58]. The relation g(l) = 1 for l � ξ is obvious from the
meaning of the distance ξ .

Third, the average degree 〈k〉 can be controlled by tuning the
threshold �. The quantity 〈k〉 is averaged under fixed values of
D, α, and m. More precisely, the average degree in the present
model is defined as

〈k〉 = 1

N

N∑
i=1

∫∫
ki(r,x)p(r,x)d rdx, (11)

where ki(r,x) is the the degree of the node i in a specific net-
work where nodes have their coordinates r = (r1,r2, . . . ,rN )

and attractivities x = (x1,x2, . . . ,xN ) and p(r,x) represents
the joint probability of N nodes to have the coordinates r
and the attractivities x. Although the � dependence of 〈k〉
has been already studied [36], here we clarify not only the �

dependence but the N dependence of 〈k〉. The average degree
is obviously given by

〈k〉 =
∫ L

0
k(l)dl, (12)

where the linear size L of the city is related to the population
size N through N = ∫ L

0 n(l)dl, with n(l) given by Eq. (2).
Substituting Eq. (8) into Eq. (12), 〈k〉 can be calculated as

〈k〉 = c1

∫ ξ

0
lD−1dl + c2

∫ L

ξ

(
l

ξ

)−dc

lD−1dl

=
(

c1

D
− c2

D − dc

)
ξD + c2

D − dc
ξdcLD−dc , (13)

where c1 and c2 are irrelevant numerical coefficients. Here
we define a relation symbol ∝: to represent the relation A =
cx + c′y by A ∝: x + y if c and c′ are nonzero constants
independent of x and y. Using this notation, Eq. (13) can be
written as 〈k〉 ∝: ξD + ξdcLD−dc . Thus, the relation L ∝ N1/D

from Eq. (2) and Eq. (9) lead to

〈k〉 ∝: �−D/m + �−dc/mN1−dc/D. (14)

Therefore, we obtain

〈k〉 ∝
{
�−D/m for D � dc

�−dc/mN1−dc/D for D > dc
(15)

for a large enough value of N . We should note that the
average degree 〈k〉 for D > dc depends on N under a fixed
�. Consequently, if we keep 〈k〉 for D > dc constant for any
N , � must be changed as Nm(1/dc−1/D). Equations (14) and (15)
give the relation between different parameters of the model.
In this context, the degree k of a node is also related to the
attractivity x of the node. It is obvious from the connection
condition (4) that a node with a large attractivity must have
a large number of connections and vice versa. In fact, it has
been shown by Ref. [36] that the degree k is given by

k ∝: �−D/mxD/m + �−dc/mN1−dc/Dxdc/m, (16)

which leads, for large N , to k ∝ xD/m for D � dc and
k ∝ xdc/m for D > dc. These analytical results have been
numerically confirmed for uniform node sets in which nodes
are uniformly distributed in a two-dimensional space and for
fractal node sets in which nodes are placed in a fractal manner
[36].

The topology of networks formed by the above model [36]
depends on the model parameters m, α, and D. Since the
network topology is reflected in the distribution functions P (k)
and R(l) and in the average degree 〈k〉, it is meaningful to
summarize briefly how these statistical quantities are affected
by such parameters. From Eqs. (5), (6), and (8), P (k) and
R(l) depend on m and α only through dc. Therefore, the
parameters m and α influence both distribution functions in
a similar way. We see from these equations that P (k) and R(l)
become narrower with increasing m or α. On the other hand,
〈k〉 depends not only on dc but also on m as presented by
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Eq. (15). The average degree 〈k〉 is a decreasing function of
m for m < D/(α − 1) and turns to an increasing function for
m � D/(α − 1), while 〈k〉 decreases with α for α < 1 + D/m

and becomes constant for α � 1 + D/m. The increase of the
fractal dimension D makes both distribution functions broader
and enlarges 〈k〉.

B. Urban indicator

In order to clarify the scaling property of an urban indicator
Y (N ) quantifying activities in a city, we must relate Y (N ) to
relations between people in the city modeled by a geographical
network described above. Although actual urban performances
are sometimes produced by a cooperation between many
people in a group or an organization, we consider here that the
total urban performance stems from one-to-one relationships,
namely, from individual connected node pairs of people in the
network. Furthermore, we neglect nonlinear effects such as
interactions between individual node-pair activities creating
additional activities. These simplifications allows us to write
the urban indicator as

Y (N ) = 1

2

N∑
i,j

aij yij , (17)

where aij is the (i,j ) element of the adjacency matrix of the
network and yij is the individual activity between nodes i and
j .

As in the case of the AKS model [25] in which the individual
productivity is assumed to increase with the social distance d,
it is natural to consider that the individual activity yij depends
on the Euclidean distance lij between nodes i and j . Instead of
the exponential d dependence in the AKS model, we assume
a power-law dependence of yij on lij , i.e.,

yij ∝ l
η

ij , (18)

where the exponent η can take either positive or negative
values. If η is positive, longer-distance connections give rise
to higher activities. In this case, we can regard yij as a creative
productivity because distant individuals usually have different
experiences and values and the fusion of heterogeneous ideas
often leads to greater creativity compared to combinations
of homogeneous ideas. This interpretation is consistent with
the geographical network model presented in the previous
section. In the network model, a long-distance connection
is established only when two nodes have large attractivity,
namely, they are highly capable. Outputs by collaboration
between such talented individuals must be innovative. Since
we consider that yij between individuals close to each other is
always small even if xi and xj are very large, the individual
activity is not defined as a product of xi and xj in this
work, though a node pair with large xixj is likely to be
connected and gives large yij . Note that yij given by Eq. (18)
is influenced by the values of xi and xj through lij despite the
apparent independence from the attractivity and by defining
yij separately from the attractivity, we can explain both
superlinear and sublinear urban scaling in a unified way, as
we will show. Due to this definition of yij , networks must be
embedded in the Euclidean space in our model even for m = 0.

On the other hand, if η is negative and yij decreases with
lij , short-distance connections contribute more significantly

to the total urban indicator Y (N ) than long-distance ones.
In this case, the following consideration suggests that Y (N )
represents an infrastructure volume. The degree of infras-
tructure development depends on how strong the demand
for the infrastructure is. Since infrastructure facility, such as
electrical power cables, railway stations, or green open urban
spaces, provides services for inhabitants near the facility, the
social need for the infrastructure arises from local consensus
among neighboring residents in areas having no access to the
infrastructure. Thus, the consensus between residents close
to each other must be stronger than that between distant
ones. If we regard yij given by Eq. (18) with negative η as
the strength of the consensus between nodes i and j , Y (N )
provided by Eq. (17) quantifies the whole social need in the
city. Considering that infrastructure facilities are realized in
proportion to the social need, Y (N ) is proportional to the
infrastructure volume.

III. URBAN SCALING

Here we concentrate on the urban indicator averaged over
all possible cities with the same population size N but different
spatial arrangements of people. We consider the quantity

Y (N ) = 1

2

〈 N∑
i,j

aij yij

〉
c

, (19)

where 〈· · · 〉c denotes the average over network configurations
with different attractivity values and positions of nodes under
fixed values of D, α, m, and η. In the mean-field picture, we can
write Y (N ) = Nȳ/2, where ȳ is the node activity

∑
j aij yij

averaged over all nodes in possible network configurations.
Using the probability g(l) of a node to be connected by an edge
of the length l, the average urban indicator is then presented
by

Y (N ) ∝ N

∫ L

0
g(l)y(l)n(l)dl, (20)

where n(l)dl is, as defined below Eq. (2), the number of nodes
within the range of [l,l + dl] from a given node and y(l) is the
individual activity between nodes separated from each other by
the distance l. In this section we examine the scaling behavior
of Y (N ) by evaluating Eq. (20).

Substituting the relations y(l) ∝ lη from Eq. (18), Eq. (2)
for n(l), and Eq. (10) into Eq. (20), we have

Y (N )

N
∝:

∫ ξ

0
lηlD−1dl +

∫ L

ξ

(
l

ξ

)−dc

lηlD−1dl

∝: ξD+η + LD+η

(
L

ξ

)−dc

, (21)

where the symbol ∝: has been defined below Eq. (13). Here
we assumed

η > −D (22)

for the convergence of the integral at l = 0. This condition,
however, is not important due to the existence of the minimum
node-pair distance in actual spatial arrangements of people.
Since the linear size L is related to N through the relation

022803-4



SUPERLINEAR AND SUBLINEAR URBAN SCALING IN . . . PHYSICAL REVIEW E 90, 022803 (2014)

N = ∫ L

0 n(l)dl, Y (N ) is written as

Y (N )

N
∝: �−(D+η)/m + �−dc/mN1−(dc−η)/D, (23)

where the characteristic length ξ in Eq. (21) was replaced with
the threshold � by using Eq. (9). Equation (23) tells us how
the urban indicator scales with the population size N under a
fixed value of the threshold �.

In actual cities, the average number of acquaintances
corresponding to 〈k〉 is almost independent of N , though 〈k〉
depends on N if � is constant, as we remarked below Eq. (15).
Therefore, we must reveal the scaling behavior of Y (N ) under
a fixed value of 〈k〉 instead of a fixed �. In order to express
Y (N ) as a function of N and 〈k〉, taking into account the
argument below Eq. (15), we rewrite Eq. (15) as

(24a)

� ∝
⎧⎨
⎩

〈k〉−m/D for D � dc

〈k〉−m/dcNm(D−dc)/Ddc for D > dc. (24b)

In the case of D � dc, substitution of Eq. (24a) into
Eq. (23) yields

Y (N ) ∝: 〈k〉1+η/DN + 〈k〉dc/DN2+(η−dc)/D. (25)

This relation is valid for a large enough population size because
Eq. (24) derived from Eq. (15) holds for a large N . In this case,
one of two terms in Eq. (25) dominates Y (N ) depending on the
value of the exponent of N . If 2 + (η − dc)/D � 1, namely,
D � dc − η, the first term grows with N faster than the second
term and we have linear scaling of Y (N ), i.e.,

Y (N ) ∝ N for D � dc, D � dc − η. (26)

For D > dc − η, however, the second term of Eq. (25)
dominates Y (N ). Thus, Y (N ) scales as

Y (N ) ∝ N2+(η−dc)/D for dc − η < D � dc. (27)

On the other hand, for D > dc, substitution of Eq. (24b) into
Eq. (23) leads to

Y (N ) ∝: 〈k〉(D+η)/dcN [dc(2D+η)−D(D+η)]/Ddc + 〈k〉N1+η/D.

(28)

Similarly to the case of Eq. (25), the comparison between the
exponents [dc(2D + η) − D(D + η)]/Ddc and 1 + η/D gives

Y (N ) ∝ N [dc(2D+η)−D(D+η)]/Ddc for dc < D � dc − η (29)

and

Y (N ) ∝ N1+η/D for D > dc, D > dc − η. (30)

These relations provide nonlinear scaling of the urban indicator
Y (N ).

Summarizing the above results, the scaling exponent β in
Eq. (1) is given by

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for D � dc, D � dc − η (31a)

2 + η − dc

D
for dc − η < D � dc (31b)

2 + η

D
− D + η

dc
for dc < D � dc − η (31c)

1 + η

D
for D > dc, D > dc − η. (31d)

TABLE I. Urban scaling exponent β at the extreme values of the
model parameters.

Parameter Extreme value β

m 0 1 + η/D

∞ 1

α 1 1 + η/D

∞ 1

D 0 1 [for η � m(α − 1)]
∞ [for η > m(α − 1)]

∞ 1
η −D 1

∞ ∞

The exponent β can take any positive value by controlling
the four parameters D, α, m, and η. This implies that the urban
indicator in our model scales superlinearly (β > 1), linearly
(β = 1), or sublinearly (β < 1) with the population size N . It
is meaningful to know the exponent β in extreme situations.
Table I lists values (or forms) of β at the limiting values of
the four parameters calculated by Eq. (31). From the value of
β at m = 0, we see that superlinear or sublinear urban scaling
is realized depending on the sign of η even for networks
formed by a nongeographical mechanism. However, since
Y (N ) is defined through Euclidean distances between nodes,
this does not mean that networks do not need to be embedded
in Euclidean space. The urban indicator Y (N ) always obeys
linear scaling for large enough m, when the geographical
constraint in the network formation is very strong. Since the
network formed by a large m value has a latticelike structure
as mentioned below Eq. (7), the lengths of edges in the
network are almost constant. This is also confirmed by the
fact that the edge-length distribution R(l) given by Eq. (8)
becomes narrower as m increases. If edge lengths are constant,
individual node-pair activities given by yij ∝ l

η

ij are also
constant. Denoting this constant by y0, Eq. (19) gives Y (N ) =
N〈k〉y0/2, which leads to linear scaling. The exponent α close
to unity implies a very inhomogeneous distribution of the
attractivity. In this case, the network formation is governed
by xixj and the geographical effect becomes relatively weak.
Thus, we have the same result of β as that for m = 0. In
contrast, the infinite α makes the effect of the attractivity weak
and enhances relatively the geographical effect. Therefore,
we have the same result as that for the infinite m. Although
the situations of D = 0 and D → ∞ are unrealistic from the
viewpoint of real-world population densities, the exponent β

in these limiting cases is explained as follows. The divergent β

for η > m(α − 1) in the limit of D = 0 is reasonable because
the system must have very long edges to keep 〈k〉 constant and
Y (N ) increases rapidly with N . In addition, an infinitely large
value of D means that all nodes are the nearest neighbors of a
node and the consequent constant edge length leads the same
result as β for m → ∞. Furthermore, for the smallest value
of η equal to −D, the average node activity ȳ defined below
Eq. (19) is dominated by the shortest edge length lmin. The
quantity lmin is almost constant for any nodes and for any N

under the condition of the constant node density. Thus, Y is
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simply proportional to N . Finally, in the limit of η → ∞, yij

given by Eq. (18) becomes infinite and Y diverges even for a
finite N . Thus, β must be infinite.

Let us consider more precisely the range of values β can
take. The exponent β presented by Eq. (31a) obviously leads
to linear scaling of Y (N ). In this case, the exponent η can be
positive or negative. If η � 0, the condition for Eq. (31a) is read
as D � dc − η, namely, D + η � m(α − 1), while it becomes
D � dc [i.e., D � m(α − 1)] for η < 0. Next, β by Eq. (31b) is
always larger than 1 because (η − dc)/D is larger than −1 from
the condition dc − η < D. We should note that the condition
for Eq. (31b) requires η > 0. On the contrary, Eq. (31c) is
the case only when η < 0. Taking into account Eq. (22), η

in Eq. (31c) must satisfy −D < η < 0 actually. Since (D +
η)/dc � 1 for Eq. (31c), we have β � 1 + η/D. In addition,
the condition η > −D gives β > 0. Furthermore, β given
by Eq. (31c) is expressed as β = 1 + (D + η)(1/D − 1/dc).
Since D + η > 0 because of η > −D and (1/D − 1/dc) < 0
from dc < D, the value of β is less than 1. Therefore, the
exponent β presented by Eq. (31c) can take a value in the
interval 0 < β < 1. Finally, for Eq. (31d), η can be positive or
negative. If η � 0, obviously β � 1, whereas 0 < β < 1 for
−D < η < 0.

We can draw the phase diagram of our model from the above
arguments. Figure 1(a) shows the regions of three distinct

FIG. 1. Phase diagrams of our model in (a) D-η space with fixed
values of m and α and (b) m-η space with fixed values of D and α.
On the phase boundaries represented by thick lines, β is equal to 1
(linear scaling).

scaling behaviors in the parameter space of η and D under
fixed values of m and α and Fig. 1(b) demonstrates those
in the parameter space of η and m under fixed values of D

and α. The phase boundaries in Fig. 1(b) are translated from
Fig. 1(a) by using Eq. (7). These results clearly show that
superlinear scaling appears if η is positive and sublinear scaling
for negative η. Since the urban indicators Y (N ) constructed by
positive and negative η correspond to a creative productivity
and infrastructure, respectively, these analytical results are
consistent with urban scaling observed in the real world
[14]. Note that we have linear scaling (β = 1) on the phase
boundaries. Thus, the condition η = 0 always gives linear
scaling regardless of the values of other parameters. This is
reasonable because Y (N ) for η = 0 is nothing but the number
of edges M in the network and M is proportional to N when
〈k〉 is independent of N . The urban indicator that scales
linearly corresponds to individual human needs such as the
total number of houses.

Typical profiles of β given by Eq. (31) are presented in
Figs. 2 and 3. Figure 2 shows the η dependence of β for
various values of m under D = 2.0 and α = 2.0. It is verified
that superlinear scaling of Y (N ) requires η > 0 and sublinear
scaling is allowed only for η < 0. For any combination of m,
α, and D, the exponent β linearly increases with η if η is
large enough. The m dependence of β is depicted in Fig. 3(a)
for various values of η. This figure clearly demonstrates that

FIG. 2. Urban scaling exponent β as a function of η for several
values of m. The exponent α and the fractal dimension D are fixed
at α = 2.0 and D = 2.0. Horizontal dashed lines at β = 1 are guides
to the eye, which separate the superlinear scaling region from the
sublinear one.
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FIG. 3. (Color online) Profiles of the urban scaling exponent β as a function of m, D, and γ . (a) Plot of β versus m for various values of
η. The exponents α and D are fixed as α = 2.0 and D = 2.0. (b) Plot of β versus D for various combinations of m and η. The exponent α is
fixed at α = 2.0. (c) Plot of β versus γ for various positive values of η/D. The dashed line at β = 1 in each panel separates the superlinear
scaling region from the sublinear one. The inset of (c) shows the dc/D dependence of the exponent γ given by Eq. (6).

the urban indicator scales linearly with the population size
if m is large enough, as pointed out in the previous section.
The fact that β �= 1 at m = 0 shows that the geographical
constraint in the network formation is not a necessary for
nonlinear urban scaling, which does not mean, however, that
networks are not required to be embedded in the Euclidean
space to obtain nonlinear scaling of Y (N ). The exponent β

changes with the fractal dimension D as shown in Fig. 3(b).
In contrast to the m dependence, β depends nonmonotonically
on D. Although only results for η < dc are shown here, β

for η > dc monotonically decreases with D and diverges at
D = 0.

Since the exponent γ characterizing the scale-free property
of the network depends on dc and D as presented by Eq. (6), it
seems interesting to elucidate how the urban scaling exponent
β varies with γ . The model parameter dc giving γ = 2 for
a fixed D, however, is not uniquely determined if D � dc

[see the inset of Fig. 3(c)]. Thus, β for sublinear scaling that
requires D � dc cannot be related to γ . On the other hand,
there is a one-to-one correspondence between γ and dc for a
fixed D if D < dc that leads to superlinear or linear scaling.
In this case, from Eqs. (31a) and (31b), the exponent β is
expressed as

β =
⎧⎨
⎩

3 + η

D
− γ for 2 < γ < 2 + η

D

1 for γ � 2 + η

D
,

(32)

where η must be positive. The γ dependence of β for η > 0 and
γ > 2 is illustrated in Fig. 3(c). From this argument, we can
conclude that sublinear scaling is realized in a network with
γ = 2 and superlinear scaling appears for 2 < γ < 2 + η/D

in our model.
In this section we showed how the scaling exponent β

depends on the model parameters. The parameter dependence
of β points to important implications for real life scenarios. The
m (or α) dependence of β shows that urban scaling depends
on how strongly human relationships are restricted by a
geographical constraint. If we desire strong superlinear scaling
to realize a highly innovative city or strong sublinear scaling

for saving infrastructure development costs, for example, our
result suggests that will happen in cities with people having
heterogeneous personalities (small α) and communicating
widely at a distance with other people (small m). Urban scaling
is also influenced by the fractal dimension D that characterizes
where people live in a city. The population density distribution
is usually affected by the topographic factors in or surrounding
the city, such as rivers, mountains, or coast lines. The D

dependence of β offers some insights into the idea of a suitable
place (topographic condition) to build an efficient new city. Our
result shows that the maximum β (i.e., the most remarkable
superlinear scaling) is attained at D = dc for dc > η > 0 and
the minimum β (i.e., the most remarkable sublinear scaling) is
presented at D = dc − η for η < 0. Even in the case that the
topographic condition of the city has been already fixed, we
can enhance the superlinear or sublinear scaling behavior of the
city by controlling the fractal dimension D of the residential
area in the city. Regarding the η dependence of β, η must be
enlarged as much as possible to obtain remarkable superlinear
scaling, while there is a suitable value of η (= dc − D) for
realizing the most remarkable sublinear scaling.

IV. SIMULATION RESULTS

Let us confirm the above analytical results by numerical
simulations. First, we calculate the urban indicator Y as a
function of N for geographical networks with two different
kinds of node sets. One is the uniform node set with an integer
dimension and the other is the percolation node set with a
noninteger fractal dimension. In a network with the uniform
node set, N nodes are uniformly distributed at random in a
two-dimensional square space, which leads D = 2. The linear
size L of the square space is adjusted to keep the node density
constant independently of N . On the other hand, in a network
with the percolation node set, nodes are placed on sites of
the largest cluster of a site-percolation system formed in a
two-dimensional square lattice with the periodic boundary
conditions at the critical percolation probability pc = 0.593
[59]. The fractal dimension of the largest percolation cluster
at criticality is known to be D = 91/48 = 1.896 [59]. To keep
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the node density constant for various N (the number of sites
in the largest cluster), the lattice constant of the square lattice
is set to be unity. In both cases (i.e., uniform and percolation
node sets), the attractivity xi is assigned to each node according
to the distribution function (3) with α = 2.0 and xmin = 1.0.
The Euclidean distance lij between nodes i and j is measured
under periodic boundary conditions and the threshold value
� in Eq. (4) is chosen so that the average degree becomes
〈k〉 = 10.0. The urban indicator Y (N ) is calculated directly
from the definition (19). Figures 4(a) and 4(b) show the N

dependence of Y (N ) for various combinations of η and m

on a double logarithmic scale for networks with uniform
and percolation node sets, respectively. The longitudinal axis

FIG. 4. (Color online) Numerically calculated urban indicators
as a function of the population size (number of nodes) N . The
exponent α and the parameter xmin characterizing the attractivity
distribution given by Eq. (3) are chosen as α = 2.0 and xmin = 1.0.
The longitudinal axis indicates Y (N )/N rescaled by its value at
N = 1000. (a) Results for geographical networks with uniform node
sets (D = 2.0). Circles, triangles, squares, diamonds, and inverted
triangles are the results for (η = 0.5, m = 0), (η = 0.5, m = 2.2),
(η = −0.5, m = 4.0), (η = −0.5, m = 1.7), and (η = −0.5, m = 0),
respectively. Dashed lines through symbols from the top to the
bottom give the theoretically predicted slopes of β − 1 = 0.25, 0.155,
0.0, −0.132, and −0.25, respectively. (b) Results for geographical
networks with percolation node sets (D = 1.896). Circles, squares,
and inverted triangles are the results for (η = 0.5, m = 0), (η = −0.5,
m = 4.0), and (η = −0.5, m = 0), respectively. Dashed lines through
symbols from the top to the bottom give the theoretically predicted
slopes of β − 1 = 0.264, 0.0, and −0.264, respectively.

in each panel represents Y (N )/N rescaled by its value at
the minimum N (= 1000) to improve the legibility of the
results. Thus, an increasing, decreasing, or constant straight
line indicates superlinear, sublinear, or linear scaling of Y (N ),
respectively. Each symbol represents the result averaged over
1000 realizations with different node layouts and attractivity
assignments. In contrast to the case of the uniform node
set, it is difficult for the percolation node set to specify in
advance the number of nodes N in the largest cluster and
to average over different node configurations under the same
network size. In order to perform the averaging procedure
in the case of the percolation node set, we gathered 1000
samples of the largest critical clusters in which the numbers
of nodes lie within the range of ±1% centered on a desired
number of nodes among many clusters. Standard errors are
smaller than the size of symbols. Our numerical results clearly
show that Y (N ) obeys a power law with respect to N and
the slopes representing β − 1 agree, for both node sets, with
the theoretical predictions indicated by dashed lines. Triangles
(η = 0.5 and m = 2.2) and diamonds (η = −0.5 and m = 1.7)
in Fig. 4(a) slightly deviate from the corresponding theoretical
lines. These deviations are caused by the finite-size effect as
discussed below.

Next, we numerically fit values of β as a function of m and
compare the obtained results with the theoretical predictions.
Here we concentrate on the case of the uniform node set. In
order to examine the m dependence of β, values of the scaling
exponent β are estimated by the least-squares fit for numerical
data of Y (N ) within the range of 103 � N � 104. Results for
η = 0.5 and −0.5 are presented by closed circles and squares
in Fig. 5, respectively. Parameters other than η and m and
the computational conditions, such as the boundary conditions
and the number of realizations for the sample average, are the

FIG. 5. (Color online) Numerically calculated m dependence of
the exponent β. Circles and squares represent the results for η = 0.5
and −0.5, respectively. All the conditions other than m and η are the
same as those in Fig. 4. Solid lines give the theoretical predictions by
Eq. (31) for η = 0.5 and −0.5 (α = 2.0 and D = 2.0 for both lines).
The inset shows the relative error 	β/βth for η = −0.5 and m = 1.45
as a function of NLSF, around which the least-squares fit is performed
within a narrow window of N . The dashed line in the inset is a guide
to the eye.
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same as those for Fig. 4(a). Standard errors over samples are
smaller than the symbol size. Solid lines in Fig. 5 represent
the theoretical predictions given by Eq. (31) for η = 0.5 and
−0.5. Numerical results roughly coincide with the theoretical
curves. In particular, data for m > 4 and m < 1 agree quite
well with the theoretical curves. However, simulation results
near m = D/(α − 1) and (D + η)/(α − 1) that give the turnoff
points of β(m) (i.e., m = 2.0 and 2.5 for η = 0.5 and m = 2.0
and 1.5 for η = −0.5) deviate from the theoretical values. This
is due to the finite-size effect. In the analytical calculation of
the exponent β, we assume a large enough number of nodes to
determine the dominant terms of Eqs. (14), (25), and (28). If
two exponents of N in each of these equations becomes close
to each other (i.e., approaching the turnoff point), both terms
almost equally contribute to Y (N ) [or to 〈k〉 for Eq. (14)] and
Y (N ) for numerically accessible N does not obey a power
law anymore. In order to demonstrate that the deviation 	β

of numerically calculated β from its theoretical value βth near
the turnoff point is caused by the finite-size effect, we show
the network-size dependence of the relative error 	β/βth

in the inset of Fig. 5. To obtain this inset, we calculated
numerically Y (N ) for η = −0.5 and m = 1.45 within the
range of 103 � N � 105 and estimated β by the least-squares
fit for these data in relatively narrow windows of N around
NLSF. The result in the inset displays that the relative error
	β/βth decreases with increasing NLSF, which suggests
	β/βth = 0 in the large-network-size limit (N → ∞).

V. CONCLUSION

The origin of superlinear and sublinear scaling observed
in urban indicators has been analytically argued by modeling
the interrelationship of people in a city by a geographical
scale-free network. In this network model, nodes close to each
other are more likely to be connected than long distant nodes.
We assumed that the urban indicator Y of a city is given
by the sum of individual node-pair activities {yij } produced
by personal, one-to-one human relationships in the city and
yij is proportional to l

η

ij , where lij is the Euclidean distance
between directly connected nodes i and j . For a positive
or negative exponent η, the urban indicator represents a
creative productivity or a degree of infrastructure development,
respectively. We showed that the urban indicator obeys a power
law Y (N ) ∝ Nβ for a large enough population size N . The
exponent β is larger than or equal to one if η > 0, while
0 < β � 1 for η < 0, which implies that Y (N ) corresponding
to a creative productivity scales superlinearly or linearly with
respect to the population size N and it scales sublinearly or
linearly if Y (N ) is a quantity related to infrastructure. This
result coincides with the scaling behavior of real-world urban
indicators. It has been also found that Y (N ) is proportional
to N if networks are formed under a strong geographical

constraint. These results have been confirmed by numerical
simulations.

In our argument, nodes are assumed to be placed on a
D-dimensional Euclidean space and the geographical distance
plays a crucial role in understanding urban scaling. To interpret
Y (N ) under a negative η as a degree of infrastructure develop-
ment, the nodes must be arranged in a physical (geographic)
space. This condition, however, can be relaxed for superlinear
scaling. We can derive the same result for superlinear scaling
of Y (N ) even in the case that nodes are placed on a more
general metric space in which Eqs. (4) and (18) with the
abstract distance lij are a reasonable condition for the network
formation and a plausible relation for the individual activity,
respectively. For example, in a sociometric space with defined
social distances between nodes we can consider that nodes
socially close to each other are more likely to be connected and
a socially more distant node pair yields a higher productivity.
Therefore, the scaling exponent β is also presented by Eq. (31)
for η > 0, if Eqs. (4) and (18) with the social distance lij do
actually hold. We should note that in such a case D must be
the (fractal) dimension of the sociometric space.

Actual urban indicators of individual cities deviate from the
average values of Y (N ) expected from their population sizes.
Statistical properties of such fluctuations of Y (N ) have been
extensively studied in recent works [28–31]. In the present
work, no analysis of fluctuations is performed, nor is any
methodology to compute them given. Furthermore, the model
requires empirical validation with the actual set of parameters
used in order to be considered a useful tool to assess the
fluctuations of actual observed values on real cities; hence,
as it is presented here, although it represents an initial step
towards the understanding of these fluctuations, it cannot be
considered an actual benchmark.
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J. Kertész, and A.-L. Barabási, Proc. Natl. Acad. Sci. USA 104,
7332 (2007).

[55] D. Liben-Nowell, J. Nowak, R. Kumar, P. Raghavan, and A.
Tomkins, Proc. Natl. Acad. Sci. USA 102, 11623 (2005).

[56] L. Adamic and E. Adar, Soc. Netw. 27, 187 (2005).
[57] J. Goldenberg and M. Levy, arXiv:0906.3202.
[58] R. Lambiotte, V. D. Blondel, C. de Kerchove, E. Huens, C.

Prieur, Z. Smoreda, and P. Van Dooren, Physica A 387, 5317
(2008).

[59] D. Stauffer and A. Aharony, Introduction to Percolation Theory
(Taylor & Francis, London, 1994).

022803-10

http://dx.doi.org/10.1140/epjb/e2008-00251-5
http://dx.doi.org/10.1140/epjb/e2008-00251-5
http://dx.doi.org/10.1140/epjb/e2008-00251-5
http://dx.doi.org/10.1140/epjb/e2008-00251-5
http://dx.doi.org/10.1126/science.1151419
http://dx.doi.org/10.1126/science.1151419
http://dx.doi.org/10.1126/science.1151419
http://dx.doi.org/10.1126/science.1151419
http://dx.doi.org/10.1016/j.cities.2011.11.008
http://dx.doi.org/10.1016/j.cities.2011.11.008
http://dx.doi.org/10.1016/j.cities.2011.11.008
http://dx.doi.org/10.1016/j.cities.2011.11.008
http://dx.doi.org/10.1016/j.chaos.2007.01.130
http://dx.doi.org/10.1016/j.chaos.2007.01.130
http://dx.doi.org/10.1016/j.chaos.2007.01.130
http://dx.doi.org/10.1016/j.chaos.2007.01.130
http://dx.doi.org/10.1155/2010/194715
http://dx.doi.org/10.1155/2010/194715
http://dx.doi.org/10.1155/2010/194715
http://dx.doi.org/10.1155/2010/194715
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1016/j.respol.2006.09.026
http://dx.doi.org/10.1016/j.respol.2006.09.026
http://dx.doi.org/10.1016/j.respol.2006.09.026
http://dx.doi.org/10.1016/j.respol.2006.09.026
http://dx.doi.org/10.1140/epjb/e2008-00250-6
http://dx.doi.org/10.1140/epjb/e2008-00250-6
http://dx.doi.org/10.1140/epjb/e2008-00250-6
http://dx.doi.org/10.1140/epjb/e2008-00250-6
http://dx.doi.org/10.1103/PhysRevE.84.026113
http://dx.doi.org/10.1103/PhysRevE.84.026113
http://dx.doi.org/10.1103/PhysRevE.84.026113
http://dx.doi.org/10.1103/PhysRevE.84.026113
http://dx.doi.org/10.1016/j.physa.2011.02.013
http://dx.doi.org/10.1016/j.physa.2011.02.013
http://dx.doi.org/10.1016/j.physa.2011.02.013
http://dx.doi.org/10.1016/j.physa.2011.02.013
http://dx.doi.org/10.1086/250109
http://dx.doi.org/10.1086/250109
http://dx.doi.org/10.1086/250109
http://dx.doi.org/10.1086/250109
http://dx.doi.org/10.1016/j.physa.2006.01.058
http://dx.doi.org/10.1016/j.physa.2006.01.058
http://dx.doi.org/10.1016/j.physa.2006.01.058
http://dx.doi.org/10.1016/j.physa.2006.01.058
http://dx.doi.org/10.1371/journal.pone.0064727
http://dx.doi.org/10.1371/journal.pone.0064727
http://dx.doi.org/10.1371/journal.pone.0064727
http://dx.doi.org/10.1371/journal.pone.0064727
http://dx.doi.org/10.1021/es400744g
http://dx.doi.org/10.1021/es400744g
http://dx.doi.org/10.1021/es400744g
http://dx.doi.org/10.1021/es400744g
http://dx.doi.org/10.1103/PhysRevE.79.016115
http://dx.doi.org/10.1103/PhysRevE.79.016115
http://dx.doi.org/10.1103/PhysRevE.79.016115
http://dx.doi.org/10.1103/PhysRevE.79.016115
http://dx.doi.org/10.1126/science.1235823
http://dx.doi.org/10.1126/science.1235823
http://dx.doi.org/10.1126/science.1235823
http://dx.doi.org/10.1126/science.1235823
http://dx.doi.org/10.1371/journal.pone.0058407
http://dx.doi.org/10.1371/journal.pone.0058407
http://dx.doi.org/10.1371/journal.pone.0058407
http://dx.doi.org/10.1371/journal.pone.0058407
http://dx.doi.org/10.1371/journal.pone.0013541
http://dx.doi.org/10.1371/journal.pone.0013541
http://dx.doi.org/10.1371/journal.pone.0013541
http://dx.doi.org/10.1371/journal.pone.0013541
http://dx.doi.org/10.1371/journal.pone.0040393
http://dx.doi.org/10.1371/journal.pone.0040393
http://dx.doi.org/10.1371/journal.pone.0040393
http://dx.doi.org/10.1371/journal.pone.0040393
http://dx.doi.org/10.1371/journal.pone.0069580
http://dx.doi.org/10.1371/journal.pone.0069580
http://dx.doi.org/10.1371/journal.pone.0069580
http://dx.doi.org/10.1371/journal.pone.0069580
http://dx.doi.org/10.1073/pnas.172501399
http://dx.doi.org/10.1073/pnas.172501399
http://dx.doi.org/10.1073/pnas.172501399
http://dx.doi.org/10.1073/pnas.172501399
http://dx.doi.org/10.1080/19463131003661025
http://dx.doi.org/10.1080/19463131003661025
http://dx.doi.org/10.1080/19463131003661025
http://dx.doi.org/10.1080/19463131003661025
http://dx.doi.org/10.1103/PhysRevE.83.066111
http://dx.doi.org/10.1103/PhysRevE.83.066111
http://dx.doi.org/10.1103/PhysRevE.83.066111
http://dx.doi.org/10.1103/PhysRevE.83.066111
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://dx.doi.org/10.1080/00107510500052444
http://arxiv.org/abs/arXiv:1402.2671
http://dx.doi.org/10.1111/j.1744-6570.2011.01239.x
http://dx.doi.org/10.1111/j.1744-6570.2011.01239.x
http://dx.doi.org/10.1111/j.1744-6570.2011.01239.x
http://dx.doi.org/10.1111/j.1744-6570.2011.01239.x
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://dx.doi.org/10.1038/nphys1130
http://dx.doi.org/10.1038/nphys1130
http://dx.doi.org/10.1038/nphys1130
http://dx.doi.org/10.1038/nphys1130
http://dx.doi.org/10.1103/PhysRevLett.102.058701
http://dx.doi.org/10.1103/PhysRevLett.102.058701
http://dx.doi.org/10.1103/PhysRevLett.102.058701
http://dx.doi.org/10.1103/PhysRevLett.102.058701
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1103/PhysRevE.71.036108
http://dx.doi.org/10.1103/PhysRevE.71.036108
http://dx.doi.org/10.1103/PhysRevE.71.036108
http://dx.doi.org/10.1103/PhysRevE.71.036108
http://dx.doi.org/10.1103/PhysRevE.73.035104
http://dx.doi.org/10.1103/PhysRevE.73.035104
http://dx.doi.org/10.1103/PhysRevE.73.035104
http://dx.doi.org/10.1103/PhysRevE.73.035104
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://barabasilab.neu.edu/networksciencebook/
http://dx.doi.org/10.1073/pnas.0610245104
http://dx.doi.org/10.1073/pnas.0610245104
http://dx.doi.org/10.1073/pnas.0610245104
http://dx.doi.org/10.1073/pnas.0610245104
http://dx.doi.org/10.1073/pnas.0503018102
http://dx.doi.org/10.1073/pnas.0503018102
http://dx.doi.org/10.1073/pnas.0503018102
http://dx.doi.org/10.1073/pnas.0503018102
http://dx.doi.org/10.1016/j.socnet.2005.01.007
http://dx.doi.org/10.1016/j.socnet.2005.01.007
http://dx.doi.org/10.1016/j.socnet.2005.01.007
http://dx.doi.org/10.1016/j.socnet.2005.01.007
http://arxiv.org/abs/arXiv:0906.3202
http://dx.doi.org/10.1016/j.physa.2008.05.014
http://dx.doi.org/10.1016/j.physa.2008.05.014
http://dx.doi.org/10.1016/j.physa.2008.05.014
http://dx.doi.org/10.1016/j.physa.2008.05.014



