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Performance Optimization of Iterative Receiver for Wireless Communications
Based on Realistic Channel Conditions

Xiaonan Shi, Yoshikazu Miyanaga

Graduate School of Information Science and Technology
Hokkaido University, Sapporo 060-0814, Japan

Abstract

Adopting orthogonal frequency division multiplexing (OFDM) to low-density parity check (LDPC) coded Multiple-
input multiple-output (MIMO) is attractive scheme for wireless communication systems. An iterative receiver design
for LDPC coded MIMO-OFDM system is proposed as the foundation for enhancing the wireless link performance
can deliver the coverage, speed, throughput and reliability. However, in previous works, evaluations are basically
assumed for a certain channel scenario and it is inefficient in incorporating different channel scenarios. The aim of
this paper is to improve the system range for equivalent error rate, while not significantly increasing system com-
plexity compared to conventional iterative receiver solution under realistic channel environment. We show that our
proposed iteration adaptation at receiver can considerably adopt the system to realistic change environment, and reach
very high reliability. Simulations of our optimization reveal superior error rate performance and lower computational
cost vs. conventional LDPC coded MIMO OFDM system. Our simulation results also capture the effects of real-
istic vs. typical channel fading types (i.e., Rician vs. Rayleigh, respectively) and fading parameter models (average
vs. random azimuth spread and K factor) on system performance and complexity.

Keywords: MIMO-OFDM, LDPC, Iterative receiver, Realistic channel fading

1. Introduction

Multiple-input multiple-output (MIMO) wireless
communications systems can improve transmission reli-
ability through diversity and array gain, and the data rate
through multiplexing gain. The evolution of the MIMO
concept has been punctuated by several landmark forays
into its benefits and challenges [1][2][3].

In actual environments, fluctuating channel condi-
tions challenge the design of a consistently-optimal re-
ceiver. There have been numerous attempts to max-
imize performance for minimum computational com-
plexity, by adapting signal processing to the channel
requirements. Among them, iterative receivers pro-
cess the received signals in detector and decoder to im-
prove system performance [4]. Furthermore, efficient
channel coding schemes have been shown to improve
the performance of MIMO OFDM systems [5][6][7].
LDPC code, with its efficient iterative decoding, has
been widely used in WLANs, WIMAX etc. Combin-
ing the iterative receiver with LDPC decoding by us-
ing channel state information and interference feature

feedback from previous iteration can improve MIMO
OFDM performance [8].

To the best of our knowledge, MIMO OFDM it-
erative receiver performance has so far only been
evaluated for typical or extreme channel parameter
assumptions[9], e.g., fixed azimuth spread (AS) and
K-factor. This approach can significantly distort per-
formance indications[10]. Researchers only recently
looked into the realistic channel model analysis for
MIMO (OFDM) wireless communications systems.
However, realistic channel simulations are very impor-
tant to accuracy predict the actual MIMO (OFDM) per-
formance. The European project WINNER II [11] has
measured the distribution for different scenarios, allow-
ing for realistic tests of MIMO OFDM channel condi-
tion. Based on our previous analysis [12], we analyze
MIMO systems in correlated Rician fading channel, and
compare performance for unrealistic and realistic chan-
nel models and parameter settings.

The major objective of this paper is to show that the
optimized iteration selection for iterative executing de-
tection and LDPC decoding that can approach the per-
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formance of the conventional fixed-iteration-number re-
ceiver and reduce receiver complexity for realistic Ri-
cian fading. In this paper, we evaluate MIMO-OFDM
realistically, i.e., for measurement-based AS and K dis-
tribution and correlation, and average the total system
performance for various wireless communications chan-
nel scenarios. Deriving from the fundamental perfor-
mance approach for LDPC code [13], we focus on the
performance improvement from combining iterative in-
terference cancelation detection with LDPC decoding
and reduce the numerical complexity of the MIMO-
OFDM receiver. Using instantaneous channel state in-
formation and feedback information from previous de-
coder soft-output, can yield a good compromise be-
tween complexity and performance. The active-set re-
ceiver outputs a soft replica update related to informa-
tion from decoder. Then, by efficient use of the log-
likelihood ratio (LLR) tradeoff between detector and de-
coder for the received data, the optimized receiver se-
lects appropriate iteration numbers for detection and de-
coding for the channel condition.

This paper is organized as follows. Section 2 intro-
duces our system model. Section 3 describes the opti-
mized iterative receiver based on instantaneous channel
state information and decoding soft replica information
and LDPC code design for realistic Rician fading chan-
nel. Section 4 shows simulation results and compare the
optimized and conventional approaches.

Notation: Scalars, vectors, and matrices are repre-
sented in lowercase italics, boldface lowercase, and
boldface uppercase, respectively, e.g., a, a, and A; a ∼
Nc(ā,A) indicates that a is a complex-valued circularly-
symmetric random vector[2] of Gaussian distribution
with mean ā and covariance A; ψ ∼ N(0, 1) indicates
that real-valued scalar ψ is a random variable of Gaus-
sian distribution with zero-mean and unit variance; sub-
scripts ·d and ·r identify, respectively, the deterministic
(mean) and random components of a scalar or vector;
index ·n indicates a normalized variable; i = 1 : N
stands for the enumeration i = 1, 2, · · · N; the super-
scripts ·T and ·H stand for transpose and Hermitian
(complex-conjugate) transpose. ‖ · ‖ stands for the Eu-
clidean vector norm; E{·} denotes statistical average.

2. Signal and Channel Models

2.1. Signal Model

Let us consider a single-user MIMO OFDM LDPC
system with NR transmit antennas and NT receive an-
tennas as shown in Fig. 1. The base station transmits
the NT × 1 signal vector x. The radio channel between
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Figure 1: QC-LDPC coded MIMO-OFDM system block diagram
model

the base station and the receiving mobile station is rep-
resented by matrix H of size NR×NT. Then, the received
signal, after fast Fourier transform (FFT), can be repre-
sented as the NR × 1 complex-valued vector [2]:

y = Hx + n, (1)

where n is temporally- and spatially-white, circularly-
symmetric, zero-mean, complex Gaussian with variance
N0, i.e., n ∼ Nc(0,N0INR ).

2.2. Channel Fading Model
Let us denote the deterministic and random compo-

nents of H as Hd and Hr, respectively, so that H =

Hd + Hr. The channel matrix can then be written fur-
ther as:

H =

√
K

K + 1
Hd,n +

√
1

K + 1
Hr,n, (2)

where Hd,n and Hr,n are the normalized deterministic
and random components of the channel matrix, respec-
tively, i.e., ‖Hd,n‖

2 = NTNR, and E{|
[
Hr,n

]
i, j |

2} = 1,
∀i = 1 : NR, j = 1 : NT. Thus, we can define the power
ratio of Hd and Hr, i.e., the Rician K-factor [2] as

K =
‖Hd‖

2

E{‖ [Hr‖
2}

=

K
K+1‖Hd,n‖

2

1
K+1E{|

[
Hr,n

]
|2}
. (3)

For K = 0, the channel fading is described by the
Rayleigh distribution. Otherwise, the channel fading is
described by the Rice distribution [1]. In this work, we
assume that Hd is rank-one, which is realistic when the
transmitter–receiver distance is much larger than the an-
tenna inter-element distance [2].

Let us consider the downlink from a base-station
situated above surrounding scatterers to a user sur-
rounded by scatterers. Then, the rows of Hr,n can
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be assumed mutually uncorrelated (and, thus, inde-
pendent). On the other hand, let us assume that the
columns are correlated, e.g., due to limited base-station
antenna interelement distance and azimuth spread (AS).
Finally, let us assume that each row in Hr,n has the
same, NT × NT, covariance matrix 1

K+1 RT. Then, we
can write Hr,n = Hw R1/2

T , where Hw has indepen-
dent, circularly-symmetric, complex-Gaussian, zero-
mean, unit-variance elements[2]. Given the AS, RT
can be computed for realistic Laplacian power azimuth
spectrum (PAS) as in [14][15].

2.3. Statistical Models of Azimuth Spread and K-Factor
Theoretical 802.11n models evaluation suffers from

limited practical relevance. WINNER project measured
and modeled the radio channel extensively in a wide
range of scenarios. Their models are the most com-
prehensive models available for wireless communica-
tion conditions. Different from conventional 802.11n
approved channel models with fixed scenario parameter
setup, WINNER developed statistical models for fad-
ing, and found there is always deterministic component
existing in realistic channel conditions.

For example, the WINNER II project found Rician
fading in most scenarios and modeled the measured
K-factor as a lognormally distributed random variable,
e.g., for scenario A1 (indoor office/residential) and line-
of-sight (LOS) conditions as [11]:

K = 100.1 (7+6ψ), ψ ∼ N(0, 1), (4)

i.e., the K-factor in dB has mean 7 and standard devia-
tion 6, respectively.

On the other hand, intended-signal power arrives
with azimuth angle dispersion that is typically mod-
eled by the Laplacian PAS. The realistic Laplacian
PAS model[14][11] has been used for the simula-
tion results shown later in this paper. The AS is
the root mean-square of the PAS, and affects antenna
correlation[2][16]. WINNER II also modeled the base-
station AS (expressed in degrees) as a lognormally dis-
tributed random variable, e.g., for scenario A1[11]:

AS = 101.64+0.31χ, χ ∼ N(0, 1), (5)

i.e., the AS mean and standard deviation are about 56◦

and 45◦, respectively.
The WINNER II measurements also found that AS

and K can be correlated[11]. Hereafter, ρ represents the
measured correlation of ψ and χ from (4) and (5). De-
pending on the scenario, this correlation can be nega-
tive, zero, or positive The numerical results shown later
in this paper are for scenarios A1 and C2, which are
described in Table 1 based on [11].
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Figure 2: LDPC parity-check matrix structure

3. Iterative Receiver

3.1. Iterative LDPC Decoding (Inner Loop)

LDPC code is a binary linear block code described by
a sparse parity-check matrix, i.e., with many zeros and
only a few ones (nodes)[17, Fig. 2.1]. Its performance
approaches the theoretical limit set by Shannon’s theo-
rem [17]. Since LDPC coding helps achieve high trans-
mission reliability, it is widely considered for future-
generation wireless communications systems [6][7].

Quasi-cyclic (QC) LDPC codes form a class
of LDPC codes with efficient encoding and low-
complexity decoding due to simple parity-check ma-
trix structure[18][19]. In[20] we have shown that QC-
LDPC can approach the bit-error-rate performance of
random-structured LDPC [17]. Fig. 2 depicts the QC-
LDPC parity-check matrix, PLDPC, of size c×v, where c
is the number of parity-check bits, and v is the codeword
length. The coding rate is then R = (v − c)/v. In Psource
each sub-block matrix is quasi-cyclic[21], whereas ma-
trix Pparity is double-diagonal.

For QC-LDPC there are available a number of soft-
output decoding algorithms, e.g., the min-sum algo-
rithm (MSA), which has been preferred for many prac-
tical applications since it offers comparable decoding
performance compared to that of conventional belief-
propagation LDPC decoding. MSA shows extremely
efficient (high reliability, low complexity) for LDPC de-
coding [22][23], whereby a soft-input/soft-output ap-
proach is applied iteratively to improve decoding reli-
ability based on parity-check sums computed from de-
tected symbols and the sparse parity-check matrix.

Fig. 3 depicts, in the right-hand side, the QC-LDPC
decoder, with the variable node decoding (VND) and
check node decoding (CND) blocks. These blocks em-
ploy MSA as described shortly. First, we define the
set of bits that participate in parity check c as V(c) =

{v : PLDPC = 1}, and the set of parity checks in which
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Table 1: Base-station AS and K statistics, for LOS[11]

Scenario AS [◦] K ρ

A1: indoor office/residential 101.64+0.31χ 100.1(7+6ψ) −0.6

C2: typical urban macrocell 101.00+0.25χ 100.1(7+3ψ) +0.1
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Figure 3: MIMO-OFDM QC-LDPC iterative receiver model

variable bits v participates as C(v) = {c : PLDPC = 1}.
V(c) denotes variable bits v excluded by V(c) \ v, and
C(v) denotes check c excluded by C(v) \ c. Hereafter,
Lin and Lout represent the a priori and a posteriori soft-
input/soft-output log-likelihood ratios (LLRs), respec-
tively, and β represents the extrinsic information. Fur-
ther, α and β represent the variable-to-check node mes-
sage and check-to-variable node message, respectively.
Finally, index j indicates decoding iteration number.

The formulation of MSA is as shown in Algo-
rithm 1( [23]).

Algorithm 1 LDPC iterative decoding
1: Initialization: α(c,v),0 = Lin, where α is the node ex-

change tentative parameter and Lin is the soft-input
log-likelihood value;

2: for j = 1 : Jmax or convergence to the hard decision
do

3: Check-to-variable message updating
phase: |β(c,v), j| =

∏
v′∈V(c)\v sign(α(c,v′),( j−1))

minv′∈V(c)\v{|α(c,v′),( j−1)|};
4: Variable-to-check message updating phase:

Lout,(v, j) = Lin + LE = Lin +
∑

c∈C(v) β(c,v), j; α(c,v), j =

Lout,(v, j) − β(c,v), j;
5: Hard decision for each information bit: stemp =

sign(Lout,(v, j))
6: Parity check for all the decoded information

bits: mod 2(stemp × PT
LDPC) = 0

7: if the stemp satisfies the parity check then
8: output the decoded bits as s = stemp,
9: else

10: return to continue the decoding iterations
11: end if
12: end for

3.2. Iterative Detection (Outer Loop)
The challenge detecting in spatially-multiplexed

streams of symbols in MIMO is to design a low-
complexity approach that can efficiently remove in-
terstream interference, in order to approach the
interference-free bound. The iterative receiver approach
has been successfully extended to joint detection and
decoding [24][25][26].

Fig. 3 shows how the MIMO detection block con-
nects with the decoding block to form a joint detection–
decoding architecture. Hereafter, we assume that the
spatially-multiplexed streams are detected using the
minimum mean square error (MMSE) approach. The
MMSE detector outputs are then decoded by a single
QC-LDPC soft-inputs/soft-output decoder. In each iter-
ation, the soft-outputs of the decoder are used to update
the LLRs of the transmitted signals that are then used in
the detector to compute the symbol estimate.

The MMSE detection approach[2] optimally reduces
the difference between the transmitted vector and

x̂ = Wy. (6)

Then, it can be shown that the weight matrix W is given
by:

W = (HHH + N0INR )−1HH . (7)

The conventional iterative receiver uses MMSE de-
tection updated by adapting an interpolation matrix D
to weight matrix calculation. This D matrix contains
the transmit signal replica obtained after decoding, i.e.,
x̃. Hereafter, m and n index the transmit and receive an-
tennas, respectively. On the other hand, whereas i and
j index detection iteration and decoding iteration, re-
spectively. Let wHm represent the mth row of W. Then,
we can obtain the soft-estimated transmitted symbol for
mth antenna as

x̂m,i = wHm,i(y −Hx̃m,i−1). (8)

Here is a summary of the algorithm, as described in
Algorithm 2( [4]).

The soft replica for the mth antenna is generated from
the a posteriori LLR Lout = Lin + β that is obtained by
the QC-LDPC decoder. Note that Lout can be computed
not only for binary modulation but for any otherM-PSK
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Algorithm 2 Conventional iterative detection
1: for m = 1 : NT do
2: wHm = hHm (HDm,i−1HH + N0INR )−1

3: Dm,i−1 = diag{M1,i−1, · · · ,Mm−1,i−1, 1,Mm+1,i−1
, · · · ,MNT ,i−1}, where Mm,i−1= xm,i−1 − x̃m,i−1.

4: x̂m,i = wHm,i(y − Hx̃m,i−1), where x̃m,i−1 =

[x̃1,i−1, · · · , x̃m−1,i−1, 0, x̃m+1,i−1, · · · , x̃NT,i−1]T .
5: end for

modulation. Then, the replica derived from decoding is
given by [27]:

x̃m,q = E{xm,q} =
∑

xm,q∈M

xm

log2M∏
q=1

1/[1 + e−xm,q Lout,(v, j) ].(9)

3.3. Proposed Adaptive Joint Iterative Detection–
Decoding Approach

Conventional iterative detection–decoding can yield a
significant performance gain (in terms of the error rate).
However, the detection and decoding steps are executed
for fixed number of iterations [28][26].

Since the MMSE solution from (6) suffers from in-
terstream interference [2], we adopt successive interfer-
ence cancelation (SIC) [29] to mitigate the interference
in the first detection iteration loop, which produces a
more suitable signal for decoding. The SIC approach
— where one stream is treated as target stream whereas
remaining streams are treated as interferers and the pro-
cessing subtracts the interference stream by stream —
is as shown in Algorithm 3.

Algorithm 3 Interstream interference cancellation
1: for m = 1 : NT , i = 1 do
2: x̂m,i = wHm y
3: y = y − hm x̂m,i

4: H = H−m, where H−m describes deleting the
mth column from H

5: end for

After all streams have been processed, the obtained
stream symbol estimates are demodulated to obtain the
initial a priori LLRs Lin for QC-LDPC decoding, as fol-
lows [27]:

Lin = log2
Pr{x̂m|xm = 1}
Pr{x̂m|xm = 0}

= log2

∑
x̃m,q∈xm,1=1 eξ∑
x̃m,q∈xm,1=0 eξ

, (10)

where

ξ = −
‖ym −Hx̃m,q‖

2

N0
+

1
2

NT∑
m=1

log2 M∑
q=1

xm,qLout,(v, j) (11)

In practice, the SNR changes with the fading ampli-
tude, which affects error rate performance[13]. There-
fore, after the first iteration, we consider adapting the
iteration numbers to the actual channel conditions in
order to reduce complexity or improve performance.
Thus, we found that low SNR calls for more decoding it-
erations. This is because the LLR from the detector is as
well as expected. Then, unnecessary detection iterations
can be eliminated. On the other hand, high SNR calls
for more detection iterations, in order to cancel inter-
ference. Thus, we can use fewer decoding iterations to
reduce computational cost. Within the maximum num-
ber of iterations, an optimized iteration selection is ob-
tained by comparing signal-to-interference-plus-noise-
ratio (SINR = wHm hm) in detection iterations. The pro-
posed structure is described by Algorithm 4.

Algorithm 4 Dynamic iterative receiver adaptation
1: Set (Imax = 4, Jmax = 10)
2: while j < Jmax, i < Imax do
3: compute Dm for i-1 iteration
4: update each row of weight matrix wm

5: SINRm,i = hHm (HDm,i−1HH + N0INR )−1hm

6: estimate transmitted signal x̂m

7: compute Lin for decoding
8: if SINRm,i 6 SINRm,i−1 then j++

9: else i++

10: end if
11: end while

4. Numerical Results

Reference[30] shows that for more iterations accu-
racy improves. However, to achieve a certain per-
formance level, a minimum number of iterations is
required. This number was obtained by simulations
in [31]. Thus, in this paper, we choose the best achiev-
able bit error rate performance with fixed iteration loops
as a criterion and try to optimize the iteration loops.

Since most scenarios may actually experience
rank(Hd,n) = 1, we have considered a rank-one deter-
ministic channel matrix in our simulations. For only
adapting iterative detection or decoding, by using the
method in [31] for an IEEE 802.11n system, that at
least five and two iterations are needed for decoding and
detection, respectively, for a packet error rate of 10−2.
Then, for the bidirectional receiver structure, simula-
tion results are shown for a 4×4 MIMO OFDM system.
The modulation is 16-QAM, the code length c = 832,
the coding rate is R = 1/2, and the SNR (i.e., Eb/N0)
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is from 25 dB to 50 dB. We test WINNER II scenarios
for the effects on performance of fading type and fading
parameter model by considering the following cases:

a) K = 0, for Rayleigh fading (unrealistic)

b) K equals to the mean of its lognormal distribu-
tion (unrealistic, but such typical values are often
considered[1])

c) (AS, K) samples with AS and K lognormally dis-
tributed and correlated as in Table 1 (realistic).

In the first simulation iteration, the detection and
decoding iteration numbers are set to their minimum
mentioned above. Thereafter, for a low SINR we in-
crease the detection iteration number (and maintain the
minimum decoding iteration number), whereas for a
high SINR we increase decoding iteration number (and
maintain the minimum detection iteration number, until
the decoding iteration reaches to the maximum number.

For the new optimized iterative receiver, Figs. 4 and 5
show the performance comparison for un/realistic chan-
nel models for scenarios A1 and C2, respectively. Fig. 4
shows that Rayleigh fading yields better performance
than Rician fading with fixed K-factor. The latter dis-
plays somewhat better performance than Rician fading
with correlated AS and K.

Fig. 5 shows similar results. However, unlike for sce-
nario A1 (with large AS), the Rayleigh vs. Rician per-
formance gap remains constant with increasing SNR for
scenario C2 (with small AS). These results also indicate
that the actual performance (average over the AS and
K distributions) can be significantly different from the
performance measured for average K value.

Let us now compare the performance of the newly-
proposed iterative receiver with optimized numbers of
detection and decoding iterations with the conventional
noniterative receiver [27] and with the iterative receiver
with fixed numbers of iterations [27, 28] (40 detection
and decoding iterations in total as mentioned in [31] as
well). Fig. 6 depicts our results for scenario A1 with
randomness AS-K and rank(Hd) = 1. Note that the
iterative receivers outperform the noniterative receiver
by about 2 dB. Furthermore, the optimized iterative re-
ceiver approaches the performance of the nonoptimized
iterative receiver. Then, Fig. 7 shows rank(Hd) = full. A
comparison for different fading with randomness AS-K
is depicted as well. The performance gap between non-
iterative and iterative receiver become larger. The opti-
mized iterative receiver plot is overlap with the nonop-
timized iterative receiver, which means the optimized
iterative receiver performance is viable.
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Figure 4: A1 scenario, optimized iterative receiver for unrealistic/re-
alistic fading channels.

We have obtained similar results for scenario C2.
Note from these figures that the bit error rate (BER) is
higher for scenario C2 than for scenario A1. The mean
AS for scenarios A1 and C2 are about 50◦ and 12◦, re-
spectively. This is due to the greater AS leads the trans-
mit power more uniformly as i.i.d. channel (and thus,
diversity gain) in the latter case.

For iteration cost, we list the computational iterations
for decoding and detection in Tabel 2. Furthermore, the
iteration cost is compared between rank(Hd) = 1/full,
respectively. Since the fixed K-factor Rician fading be-
haves similar as correlated AS and K Rician fading, we
compare the correlated Rician fading with Rayleigh fad-
ing for computation cost performance. Due to the ran-
domness of Rician fading, the iterations for decoding
renders sensitively when increasing the SNR. The more
iterations of detection is also required for the correlated
Rician fading comparing with the typical Rayleigh fad-
ing. All the adapted iterative receiver can outperform
fixed iteration receiver that executes a constant number
of iterations for all SNRs.

5. Conclusion

In this paper, we propose an optimization method for
iterative MIMO-OFDM receivers. In particular, we de-
veloped efficient LDPC decoding with receiver itera-
tions that are mindful of the data recover accuracy at
receiver. We adapt the receiver iterations and LDPC de-
coding iterations dynamically based on evaluating re-
alistic channel conditions, where a variation of chan-
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Table 2: Computational cost for different fading schemes

rank(Hd) = NT

SNR 0 5 10 15 20 25
Rayleigh fading Decoding iteration 10 9 8 8 7 6

Detection iteration 2 2 2 3 3 3
Rice fading Decoding iteration 10 8 8 7 7 5
ρ = −0.6 Detection iteration 2 2 3 3 3 4

Fixed iteration Decoding iteration 10 10 10 10 10 10
Receiver Detection iteration 4 4 4 4 4 4

rank(Hd) = 1
SNR 25 30 35 40 45 50

Rayleigh fading Decoding iteration 10 10 9 9 8 7
Detection iteration 2 2 3 3 3 4

Rice fading Decoding iteration 10 9 8 8 6 6
ρ = −0.6 Detection iteration 2 3 4 4 4 4

Fixed iteration Decoding iteration 10 10 10 10 10 10
Receiver Detection iteration 4 4 4 4 4 4
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Figure 5: C2 scenario, optimized iterative receiver for unrealistic/re-
alistic fading channels.

nel parameters is carefully considered. The results pre-
sented highlight the validity of our approach in that ,de-
spite the decreased iterations, we are able to attain close
conventional fixed iteration performance but lower com-
putational cost.
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Figure 6: A1 scenario, non/iterative receiver performance comparison
for realistic fading model, rank(Hd) = 1.
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