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1 Introduction

The standard model (SM) of particle physics is a quite successful theory, which can explain

experimental data so far. However, there are still several mysteries and puzzles. For

example, the SM has many free parameters including the neutrino masses. Most of such

free parameters appear in Yukawa couplings of quarks and leptons, i.e., in the flavor sector.

Recent experiments of neutrino oscillations reported relatively large mixing angles in the

lepton sector. They are completely different from the quark mixing angles. Therefore, it is

quite important to study a realistic and natural model that can simultaneously explain such
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mixing patterns of quarks and leptons. A certain symmetry could control Yukawa couplings

among three generations. Indeed, quark and lepton masses and mixing angles have been

studied from the viewpoint of flavor symmetries, in particular non-Abelian discrete flavor

symmetries [1–5].

Superstring theory is a promising candidate for the unified theory of all the interactions

including gravity and all the matter fields and Higgs fields. Superstring theory is defined in

ten-dimensional (10D) spacetime and then predicts extra six dimensions compactified on

some compact space in addition to the observed four-dimensional (4D) spacetime. Further-

more, supersymmetric Yang-Mills (SYM) theory in higher dimensional spacetime appears

as effective field theory of superstring theory. That leads to quite interesting aspects from

both theoretical and phenomenological points of view. (See ref. [6] for a review of super-

string phenomenology.) It is important to study the structure of such an internal compact

space, especially, from the latter viewpoint. The detailed structure of the internal space de-

termines important aspects of particle phenomenology in four-dimensional (4D) low-energy

effective field theory (LEEFT), e.g., mass spectra including the generation number, cou-

pling selection rules, coupling strength, symmetries in 4D LEEFT, etc. For example, the

toroidal compactification is one of the simplest compactifications, but 10D SYM theory on

the 6D torus without any gauge background as well as superstring theory leads to N = 4

supersymmetry in 4D spacetime. That is non-chiral theory and not realistic. The orbifold

compactification and the torus compactification with magnetic fluxes as well as the orbifold

with magnetic fluxes can reduce the number of 4D supersymmetric currents and lead to

4D chiral theory. Thus, these are quite interesting to study.

Recently, magnetic fluxes in extra dimensions have been receiving many attentions.1

The N = 4 supersymmetry is broken by magnetic fluxes down to N = 0, 1 or 2, which

depends on the configuration of magnetic fluxes. It is quite interesting that the simplest

toroidal compactifications with magnetic fluxes in extra dimensions lead to 4D chiral spec-

tra, starting from higher-dimensional SYM theories which might be obtained as LEEFT of

superstring theories [8–12]. In addition, the structure of compact six dimensions determines

generations of chiral matters, masses and couplings of the 4D LEEFT after dimensional re-

ductions. For example, the degeneracy of chiral zero-modes, i.e., the number of generation,

is determined by the magnitude of magnetic fluxes, and the overlap integrals of localized

zero-mode wavefunctions yield Yukawa couplings for chiral matter fields in the 4D LEEFT.

Indeed, many phenomenologically important properties of the SM, such as the 4D chirality,

the number of generations and hierarchical Yukawa couplings [13, 14] could be originated

from the magnetic fluxes.

Furthermore, it is known that magnetized D-brane models as well as intersecting

D-brane models can derive certain non-Abelian discrete flavor symmetries such as D4,

∆(27) and ∆(54) [13, 15–22].2 Similar flavor symmetries can be obtained from heterotic

orbifold models [24–26]. Thus, non-Abelian discrete symmetries which play a role in

particle physics can arise from the underlying theory, e.g., superstring theory. In addition,

1See for a review of phenomenological aspects in orbifold compactification [7].
2See also ref. [23].
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non-Abelian discrete symmetries are interesting ideas for controlling flavor structures

in model-building in the bottom-up approach as mentioned above. These could provide

a bridge between the low-energy phenomenology and the underlying theory, especially

superstring theory. Therefore, it is interesting and important to study the non-Abelian

discrete flavor symmetry obtained from the magnetized brane models as the low-energy

effective theory of superstring theory.

In our previous paper [27], we studied the flavor structures realized by non-factorizable

fluxes on toroidal extra dimensions. That expanded the possibilities for new types of model

building, and indeed we have obtained several new types of models with the SM particle

content as massless modes. Then, it turned out that non-factorizable fluxes can lead rich

flavor structures in three-generation models of quarks and leptons. Because of these facts,

it is quite attractive to study the flavor symmetry realized in the magnetized models with

the extension to non-factorizable fluxes.

This paper is organized as follows. In section 2, we review the magnetized 10D SYM

theory and the fields appearing in its action. In addition, we explain the chiral zero-

modes and Yukawa couplings in two cases with factorizable and non-factorizable fluxes,

respectively. Then we develop a way to label the zero-modes with non-factorizable fluxes in

detail in section 3. In section 4, we show the non-Abelian discrete flavor symmetries realized

in the 10D SYM theory with generic configurations of magnetic fluxes in extra dimensions.

In addition, we confirm that these flavor symmetries could be rederived from the perspective

of the non-Abelian discrete gauge symmetry, in section 5. Section 6 is devoted to discussions

and conclusions. In appendix A, we refer to the number of generation-types for the arbitrary

degeneracy of zero-modes and give some interpretations for them. In appendix B and C,

we enumerate and discuss the examples of some configurations of magnetic fluxes in three-

and four-generation models, respectively, which are not explained in section 4.

2 Magnetized brane models

We start with 10D SYM theory. We consider 4D flat Minkowski spacetime and factorizable

three tori T 2 × T 2 × T 2, that is, R3,1 × (T 2)3. The Lagrangian is given by

L = − 1

4g2
Tr
(

FMNFMN

)

+
i

2g2
Tr
(

λ̄ΓMDMλ
)

, (2.1)

where g is a 10D YM gauge coupling constant and M,N = 0, 1, . . . , 9. The field strength

FMN and the covariant derivative DM are written by

FMN = ∂MAN − ∂NAM − i[AM , AN ], (2.2)

DMλ = ∂Mλ− i[AM , λ]. (2.3)

In the following, we use xi and yi as two real coordinates on the i-th T 2 for i = 1, 2, 3. The

SYM theory includes a 10D vector field AM and a 10D Majorana-Weyl spinor field λ. The

trace in the above Lagrangian acts the indices of YM gauge group.

– 3 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
7

For convenience we adopt complex coordinates zi and complex vector fields Ai for

i = 1, 2, 3, which are defined as

zi =
1

2
(xi + τiyi), Ai =

1

Im τi
(A3+2i − τ̄iA2+2i). (2.4)

The 10D SYM theory possessesN = 4 supersymmetry counted in terms of 4D supercharges.

The 10D vector field AM and Majorana-Weyl spinor field λ are decomposed into 4D N = 1

single vector and triple chiral multiplets, i.e., V = {Aµ, λ0} and φi = {Ai, λi} (i = 1, 2, 3).

For 4D positive chirality, these spinor fields λ0, λ1, λ2 and λ3 have the 6D chiralities,

(+,+,+), (+,−,−), (−,+,−), and (−,−,+) on 6D spacetime R3,1 × T 2
i for i = 1, 2, 3,

respectively. The 4D N = 1 single vector and triple chiral multiplets can be expressed in

terms of vector superfield V and chiral superfields φi (i = 1, 2, 3).

2.1 Magnetized torus model with factorizable fluxes

We consider the 10D SYM theory with two types of magnetic fluxes, factorizable flux and

non-factorizable flux. In this subsection, we review the former factorizable case based on

ref. [12], and assume the following magnetic background:

〈Ai〉 =
π

Im τi

(

M (i)z̄i + ζ̄i

)

, 〈Aµ〉 = 〈λ0〉 = 〈λi〉 = 0, (2.5)

where M (i) and ζi are N × N matrices of (Abelian) magnetic fluxes and Wilson-lines,

respectively,3 given as

M (i) =















M
(i)
1 1N1

M
(i)
2 1N2

. . .

M
(i)
n 1Nn















, ζi =















ζ
(i)
1 1N1

ζ
(i)
2 1N2

. . .

ζ
(i)
n 1Nn















, (2.6)

with a positive integer Na (a = 1, 2, . . . , n) satisfying
∑n

a=1Na = N , and τi denotes the

complex structure parameter that characterizes the shape of the i-th T 2. When there are

non-vanishing magnetic fluxes and Wilson-lines, the form of VEV (2.5) leads to factorizable

fluxes. Here, the magnetic fluxes satisfy M
(i)
1 ,M

(i)
2 , . . . ,M

(i)
n ∈ Z due to Dirac’s quanti-

zation condition. In the case that the magnetic fluxes M
(i)
1 ,M

(i)
2 , . . . ,M

(i)
n take different

values from each other, U(N) gauge group breaks into U(N1)×U(N2)× . . .×U(Nn). The

same holds for Wilson-lines. We use indices a, b, . . . for labeling the unbroken subgroups

U(Na),U(Nb), . . . of U(N), respectively. The block off-diagonal part (φi)ab of chiral super-

field φi is the bi-fundamental representation under U(Na)×U(Nb) and the block diagonal

part (φi)aa is the adjoint representation under U(Na).

Next, we refer to the zero-mode equations for chiral matter superfields φj . The zero-

mode equations are found as [28]

∂̄if
(i)
j +

1√
2

[

〈Āi〉, f (i)j

]

= 0 (i = j), (2.7)

3For simplicity, we assume the following forms of magnetic fluxes andWilson-lines, although those are not

general forms. In general, we can choose the different forms of magnetic fluxes and Wilson-lines from each

torus T 2
i . However, we do not require such general forms when we study only non-Abelian flavor symmetries.
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∂if
(i)
j − 1√

2

[

〈Ai〉, f (i)j

]

= 0 (i 6= j), (2.8)

where f
(i)
j denotes the zero-mode wavefunction of the chiral superfield φj on the i-th T 2

and then ∂i ≡ ∂/∂zi. Note that a difference of the signs in eqs. (2.7) and (2.8) comes

from the chirality structure. The zero-mode wavefunctions f
(i)
j , in general, satisfy different

equations on each T 2
i for i = 1, 2, 3. Due to the existence of non-vanishing magnetic fluxes,

chirality projection occurs.

For the zero-mode wavefunction f
(i=j)
j in the ab-sector, if M

(i)
ab ≡ M

(i)
a −M

(i)
b > 0,

then there exist |M (i)
ab | solutions of zero-mode equation (2.7),

(f
(i)
j )ab = gΘ

I
(i)
ab

,M
(i)
ab

j (z′i) (I
(i)
ab = 1, 2, . . . , |M (i)

ab |), (2.9)

Θ
I
(i)
ab

,M
(i)
ab

j (zi) = N eiπM
(i)
ab

ziIm zi/Im τi · ϑ





I
(i)
ab /M

(i)
ab

0



 (M
(i)
ab zi,M

(i)
ab τi), (2.10)

where z′i ≡ zi + ζ
(i)
ab /M

(i)
ab , ζ

(i)
ab ≡ ζ

(i)
a − ζ

(i)
b , and ϑ denotes Jacobi ϑ-function,

ϑ





a

b



 (ν, τ) =
∑

l∈Z

eπi(a+l)2τe2πi(a+l)(ν+b). (2.11)

On the other hand, there is no normalizable zero-mode wavefunction if M
(i)
ab < 0 and,

finally, the zero-mode wavefunction is constant if M
(i)
ab = 0.

For the zero-mode wavefunction f
(i 6=j)
j in the ab-sector, if M

(i)
ab < 0, the zero-mode

wavefunctions can be written as the complex conjugate of the wavefunction (2.9). There

is no normalizable zero-mode wavefunction if M
(i)
ab > 0 and the zero-mode wavefunction is

constant if M
(i)
ab = 0. Notice that the degeneracy of the zero-modes in the chiral superfield

φj on the i-th torus is determined by the number of the magnetic fluxes M
(i)
ab that the φj

feels on the i-th torus. With three toroidal compactifications, the total degeneracy Nab of

the chiral zero-modes in (φj)ab can be written by Nab =
∏3

i=1

∣

∣M
(i)
ab

∣

∣.

The Yukawa couplings between chiral zero-modes in the 4D effective theory are given

by the overlap integrals,

λIJK =
3
∏

i=1

∫

d2zi

√

det g(i) (f
(i)
1 )ab(f

(i)
3 )bc(f

(i)
2 )ca, (2.12)

where g(i) denotes the metric for the i-th torus T 2
i and I ≡ (I

(1)
ab , I

(2)
ab , I

(3)
ab ) labels the

total generation of zero-modes in ab-sector. The same holds for the other sectors. We can

calculate the overlap integral (2.12) under M
(i)
ab +M

(i)
bc +M

(i)
ca = 0, which are evaluated as

λIJK =
3
∏

i=1

λ
I
(i)
ab

I
(i)
ca I

(i)
bc

, (2.13)

– 5 –
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λ
I
(i)
ab

I
(i)
ca I

(i)
bc

∝
M

(i)
ca
∑

m=1

δ
I
(i)
ab

+I
(i)
ca +M

(i)
ab

m, I
(i)
bc

(2.14)

× ϑ







M
(i)
ca I

(i)
ab

−M
(i)
ab

I
(i)
ca +M

(i)
ab

M
(i)
ca m

−M
(i)
ab

M
(i)
ca M

(i)
bc

0






(M

(i)
bc ζ̄

(i)
ca −M

(i)
ab ζ̄

(i)
bc ,−τ̄iM

(i)
ab M

(i)
ca M

(i)
bc ),

where we omit an overall factor, because the factor has no effect on the flavor symmetry

in magnetized torus models.

2.2 Magnetized torus model with non-factorizable fluxes

Next, we review the generalization of the above results including non-factorizable fluxes,

based on refs. [12, 29, 30]. We assume the following magnetic background,

〈Ai〉 =
π

Im τi

(

M (i)z̄i +M (ij)z̄j + ζ̄i

)

, (2.15)

〈Aµ〉 = 〈λ0〉 = 〈λi〉 = 0, (2.16)

with i 6= j, where M (ij) is a N ×N matrix of an additional (Abelian) magnetic fluxes,

M (ij) =















M
(ij)
1 1N1

M
(ij)
2 1N2

. . .

M
(ij)
n 1Nn′















, (2.17)

with a positive integer Na′ (a′ = 1, 2, . . . , n′) satisfying
∑n′

a′ Na′ = N .4 It holds that

M
(ij)
1 ,M

(ij)
2 , . . . ,M

(ij)
n ∈ Z due to Dirac’s quantization condition. The magnetic back-

ground (2.15) is a straightforward extension of eq. (2.5) and leads to non-factorizable

magnetic fluxes.

We substitute the VEVs (2.15) into zero-mode equations (2.7) and (2.8) and find

that the zero-mode wavefunctions and the degeneracy of zero-modes are changed from the

factorizable case. Again, we focus on chiral superfields φi (i = 1, 2, 3) and then explain

their zero-mode wavefunctions in the following. In this paper, we consider the case that

only magnetic fluxes M (12) and M (21) in the first and the second tori T 2
1 × T 2

2 are turned

on. The extensions to the other non-vanishing magnetic fluxes M (ij) are straightforward.

Now, we define the matrix

Nab ≡
(

M
(1)
ab M

(21)
ab

M
(12)
ab M

(2)
ab

)

, (2.18)

M
(i)
ab ≡M (i)

a −M
(i)
b , (2.19)

M
(ij)
ab ≡ Im τi

Im τj
(M (ij)

a −M
(ij)
b ) + (M (ji)

a −M
(ji)
b ), (2.20)

4As mentioned in eq. (2.6), these magnetic fluxes and Wilson-lines are not general forms.
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which determines the degeneracy of zero-modes. Note that diagonal elements of the matrix

Nab correspond to the magnetic fluxes defined in eq. (2.6).

Next, in order to obtain the normalizable wavefunctions with the matrix N and complex

structure parameters τi (i = 1, 2), we must impose the Riemann conditions

N
ij
ab ∈ Z, (Nab · ImΩ)T = Nab · ImΩ, Nab · ImΩ > 0, ∀a, b, (2.21)

where Ω ≡ diag(τ1, τ2) is a 2 × 2 matrix constructed from complex structure parameters.

For a while, we consider the case with vanishing Wilson-lines, i.e., ζ̄1 = ζ̄2 = 0. Only if

the matrix Nab and the complex structure Ω satisfy the Riemann conditions (2.21), there

exist the normalizable zero-mode wavefunctions in the ab-sector on the first and second

tori, which are expressed as

(f
(12)
j )ab = gΘ

~iab,Nab

j (~z), (2.22)

Θ
~iab,Nab

j (~z) = N eπi(Nab·~z)·(ImΩ)−1·(Im ~z) · ϑ





~iab

0



 (Nab · ~z,Nab · Ω), (2.23)

where ~z ≡ (z1, z2) and ϑ denotes the Riemann ϑ-function,

ϑ





~a

~b



 (~ν,Ω) =
∑

~l∈Z2

eπi(
~l+~a)·Ω·(~l+~a)e2πi(

~l+~a)·(~ν+~b). (2.24)

The vector~iab labels degenerated zero-modes (generations), and we will explain its meaning

in detail in the next section.

Note that the expression of the wavefunction (2.22) is for (totally) positive chirality

matters, which namely have the chirality (+,+) and (−,−) on the first and second tori.

In 10D SYM theory with the superfield description [28] we adopt in this paper, the

wavefunction (2.22) is valid for a chiral superfield φ3 that has the chirality (−,−) on the

first and second tori. For chiral superfields φ1 and φ2, they need to be mixed up to be the

solution of the zero-mode equations. As stated in refs. [29, 30], we consider the following

parameterizations,

(φ1)ab = αabΦab, (φ2)ab = βabΦab. (2.25)

The Riemann conditions (2.21) to obtain normalizable zero-mode wavefunctions and an

explicit form of the zero-mode wavefunction (2.22) can be also applied for Φab by replacing

the complex structure Ω with the effective complex structure Ω̃ ≡ Ω̂ab · Ω, where

Ω̂ab ≡
1

1 + q2ab

(

1− q2ab −2qab

−2qab q2ab − 1

)

. (2.26)

Mixing parameters qab ≡ βab/αab are given for individual bi-fundamental representations

labeled by a and b (a 6= b), and their values are determined by the second condition of the

Riemann conditions.

– 7 –
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On the third torus, the zero-mode wavefunction is the same as the expression (2.9)

or the complex conjugate to that. Thus, the degeneracy of zero-modes Nab with non-

factorizable fluxes is determined by the matrix Nab and the fluxM
(3)
ab , i.e., Nab = | detNab×

M
(3)
ab | for M (3)

ab 6= 0 in the present situation.

Next, the Yukawa couplings in the 4D effective theory is also evaluated by the overlap

integral

λIJK = λ
I
(3)
ab

I
(3)
ca I

(3)
bc

∫

d2z1d
2z2

√

det g(1)g(2) (f
(12)
1 )ab(f

(12)
3 )bc(f

(12)
2 )ca, (2.27)

where I ≡ (~iab, I
(3)
ab ) labels the total generation of zero-modes in ab-sector. The same holds

for the other sectors. We consider the case that there are zero-modes with the total negative

chirality on the first and second tori. Then, we can calculate the overlap integrals (2.27)

under Nab+Nbc+Nca = 0 and M
(3)
ab +M

(3)
bc +M

(3)
ca = 0 [12, 29, 30], which are evaluated as

λIJK = λ~iab~ica~ibc · λI(3)ab
I
(3)
ca I

(3)
bc

, (2.28)

λ~iab~ica~ibc ∝
∑

~m

δ~ibc,N−1
cb

(Nab
~iab+Nca

~ica+Nab ~m)

×
∫

dy1dy2



e−π~y·(NabΩ̃ab+NcaΩ̃ca+NbcΩ)·~y · ϑ





~K

0



 (i~Y|i~Q)



 , (2.29)

where ~y ≡ (y1, y2) and ~m denote the integer points in the region spanned by

~e′i ≡ ~ei (detNab detNca)N
−1
ca (Nab + Nca)N

−1
ab , (2.30)

~e1 =

(

1

0

)

, ~e2 =

(

0

1

)

, (2.31)

and

~K ≡
(

~ibc

(~iab −~ica + ~m)Nab(Nab+Nca)−1
Nca

detNab detNca

)

, (2.32)

~Y ≡
(

(NabΩ̃ab + NcaΩ̃ca + NbcΩ) · ~y
(detNab detNca)(NabΩ̃ab(N

−1
ab )

T − NcaΩ̃ca(N
−1
ca )

T ) · ~y

)

, (2.33)

~Q ≡
(

NabΩ̃ab + NcaΩ̃ca + NbcΩ (detNab detNca)(NabΩ̃ab(N
−1
ab )

T − NcaΩ̃ca(N
−1
ca )

T )

(detNab detNca)(Ω̃ab − Ω̃ca) (detNab detNca)
2(Ω̃abN

−1
ab + Ω̃caN

−1
ca )

)

.

(2.34)

In eq. (2.29), again, we omit an overall factor, because of the same reason as the model

with factorizable fluxes in the previous subsection. Note that the integrals over z1 and z2
are non-factorizable, while the one over z3 is factorized in the Yukawa couplings (2.27), as

a consequence of the flux configuration assumed above. The overlap integral on the third

torus yields the factor λ
I
(3)
ab

I
(3)
ca I

(3)
bc

that is exactly the same as eq. (2.14) for i = 3. The
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property of non-factorizable fluxes appears in the overlap integral on the first and second

tori. Therefore it is interesting to investigate the factor λ~iab~ica~ibc in eq. (2.29).

We have limited the above discussion to the case with vanishing Wilson-lines. In

this paragraph, we show the zero-mode wavefunction and the Yukawa coupling with non-

vanishing Wilson-lines, i.e., ζ̄1, ζ̄2 6= 0. Indeed, by means of shifting the coordinates, such

a zero-mode wavefunction can be obtained as

(f
(12)
j )ab = gΘ

~iab,Nab

j (~z′), (2.35)

where ~z′ ≡ ~z + N
−1
ab · ~ζab and ~ζab ≡ (ζ

(1)
ab , ζ

(2)
ab ). By calculating the overlap integral of the

above zero-mode wavefunctions on the first and second tori, the relevant part of the Yukawa

couplings in the 4D effective theory can be obtained as

λ~iab~ica~ibc ∝
∑

~m

δ~ibc,N−1
bc

(Nab
~iab+Nca

~ica+Nab ~m) (2.36)

×
∫

dy1dy2



e−π(~y′ab·NabΩ̃ab·~y′ab+
~y′ca·NcaΩ̃ca·~y′ca+

~y′bc·NbcΩ·~y′bc) · ϑ





~K

0



(i~Y|i~Q)



,

up to an overall factor. Moreover, we should replace ~Y in eq. (2.36) with

~Y ≡
(

NabΩ̃ab · ~y′ab + NcaΩ̃ca · ~y′ca + NbcΩ · ~y′bc
(detNab detNca)(NabΩ̃ab(N

−1
ab )

T · ~y′ab − NcaΩ̃ca(N
−1
ca )

T · ~y′ca)

)

, (2.37)

where we define ~y′ab ≡ ~yab+(NabIm Ω̃ab)
−1 ·Im ~ζab for the zero-mode wavefunction (f

(12)
1 )ab.

The same holds for the zero-mode wavefunction (f
(12)
2 )ca. For the ca-sector in chiral su-

perfield φ3, we replace ~ybc with ~y′bc ≡ ~ybc + (NbcImΩ)−1 · Im ~ζbc.

2.3 Magnetized orbifold model with non-factorizable fluxes

Finally in this section we review the orbifold projection with non-factorizable fluxes based

on ref. [27]. In our previous paper [27], we extend the model proposed in ref. [31] (see also

ref. [17]) where the orbifold models with factorizable fluxes are constructed. The number of

the (degenerate) zero-modes is changed by the orbifold projection. We consider the T 6/Z2

orbifold where the Z2 projection acts on the first and second tori. It is constructed by

dividing T 6 by the Z2 projection z1 → −z1 and z2 → −z2, simultaneously. Such an iden-

tification prohibits (continuous) non-vanishing Wilson-lines. Here, we consider vanishing

Wilson-lines. On such an orbifold, we impose the following boundary conditions for 10D

superfields V and φi,

V (xµ,−z1,−z2, z3) = +PV (xµ, z1, z2, z3)P
−1, (2.38)

φ1(xµ,−z1,−z2, z3) = −Pφ1(xµ, z1, z2, z3)P−1, (2.39)

φ2(xµ,−z1,−z2, z3) = −Pφ2(xµ, z1, z2, z3)P−1, (2.40)

φ3(xµ,−z1,−z2, z3) = +Pφ3(xµ, z1, z2, z3)P
−1, (2.41)
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| detNab| 0 1 2 3 4 5 6 7 8 9 10

even 1 1 2 2 3 3 4 4 5 5 6

odd 0 0 0 1 1 2 2 3 3 4 4

Table 1. The degeneracy of zero-modes for even- and odd-modes.

where a projection operator P acts on the YM indices and satisfies P 2 = 1N . Then,

either even- or odd-modes among the zero-modes can survive depending on P . Instead of

eq. (2.22), we find the zero-mode wavefunctions in the following form,

Θ
~iab
even(~z) = Θ

~iab,Nab(~z) + Θ~e−~iab,Nab(~z), (2.42)

Θ
~iab
odd(~z) = Θ

~iab,Nab(~z)−Θ~e−~iab,Nab(~z), (2.43)

up to a normalization factor, where we define ~e ≡ ~e1+~e2 in terms of eq. (2.31) and utilized

the following formula,

Θ
~iab,Nab(−~z) = Θ~e−~iab,Nab(~z). (2.44)

We will also explain the label of generation ~iab in the next section. After the orbifold

projection, the degeneracy of these zero-modes on the first and second tori is changed as

shown in table 1. Note that table 1 is the same as the corresponding one given in ref. [31]

by replacingM with detN. Because of this replacement, we can obtain more various flavor

structures. We remark that there are exceptions in the above table 1 that will be illustrated

in the subsection 3.3 in detail after explaining the label ~iab in the next section.

3 Degenerated structures of zero-modes

In this section, we propose a way to investigate the properties of the degenerated zero-modes

on the magnetized torus with non-factorizable fluxes and classify the degeneracy based on it.

3.1 Generation-types

The degeneracy of zero-modes generated by non-factorizable fluxes are labeled by ~iab ap-

pearing in eq. (2.22). Unlike the magnetized torus model with factorizable fluxes, the

zero-mode label ~iab is more complicated. In the magnetized model with non-factorizable

flux, we can no longer naively count the degeneracy of zero-modes in terms of the label Iab
shown in eq. (2.9). Since the degeneracy of zero-modes can be identified with the genera-

tion, it is quite important to be familiar with a suitable way for labeling them, when we

discuss the flavor symmetry obtained from the models with non-factorizable fluxes.

For simplicity, hereafter in this subsection we omit the YM indices a, b those becomes

implicit. First we consider the case where three zero-modes are induced by non-factorizable

fluxes: | detN| = 3. We can also extend the following analysis to the case that detN equals

to an arbitrary prime number. We can generally parametrize the matrix N as

N =

(

3n11 + n′11 3n21 + n′21

3n12 + n′12 3n22 + n′22

)

, (3.1)
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(n′11, n
′
21), (n

′
12, n

′
22)

Type 1 (0, 1) or (0, 2)

Type 2 (1, 2) or (2, 1)

Type 3 (1, 1) or (2, 2)

Type 4 (2, 0) or (1, 0)

Table 2. The integer sets satisfying eq. (3.2).

where n11, n12, n21, n22 are integers and each of n′11, n
′
12, n

′
21, n

′
22 is either 0, 1, or 2. For

detN = ±3, we obtain the relation

n′11n
′
22 − n′12n

′
21 = 0 (mod 3). (3.2)

We can easily find a trivial pattern n′11 = n′21 = 0 or n′12 = n′22 = 0 satisfying eq. (3.2). In

addition, we find four patterns of the non-trivial solution as shown in table 2.

From the condition

N ·~i ∈ Z, (3.3)

given in ref. [12] in order to obtain the normalizable zero-mode wavefunctions, we find four

types of the three-generation label ~i ≡ (i1, i2), which are given as

Type 1:

~i =

(

0

0

)

,

(

1/3

0

)

,

(

2/3

0

)

,

✲

✻

i1

i2

t t t

(3.4)

Type 2:

~i =

(

0

0

)

,

(

1/3

1/3

)

,

(

2/3

2/3

)

,

✲

✻

i1

i2

t

t

t (3.5)

Type 3:

~i =

(

0

0

)

,

(

1/3

2/3

)

,

(

2/3

1/3

)

,

✲

✻

i1

i2

t

t

t

(3.6)

Type 4:

~i =

(

0

0

)

,

(

0

1/3

)

,

(

0

2/3

)

.

✲

✻

i1

i2

t

t

t (3.7)
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(a) ~i = (0, 0) (b) ~i = (1/3, 0) (c) ~i = (2/3, 0)

Figure 1. The probability densities of zero-mode wavefunctions
∣

∣Θ
~i,N(~z)

∣

∣

2
on (y1, y2)-plane for

Type 1, where we set (x1, x2) = (0, 0). These figures show that the peaks of the probability densities

are located at ~y = −~i.

(a) ~i = (0, 0) (b) ~i = (1/3, 1/3) (c) ~i = (2/3, 2/3)

Figure 2. The probability densities on (y1, y2)-plane for Type 2. The peaks are located at ~y = −~i.

(a) ~i = (0, 0) (b) ~i = (1/3, 2/3) (c) ~i = (2/3, 1/3)

Figure 3. The probability densities on (y1, y2)-plane for Type 3. The peaks are located at ~y = −~i.

where the three sets of (i1, i2) label three generations in every type. We denominate

these types of the label ~i generation-types. Recall that the label I has only single type,

i.e., I = 1, 2, 3 in magnetized torus model with factorizable fluxes. In contrast to such

a model, in general there are multiple generation-types in those with non-factorizable

fluxes. It is remarkable that the above labels represent the localization profiles of zero-

mode wavefunctions on (y1, y2)-plane. We show these profiles for each of generation-types

in figure 1, 2, 3 and 4.
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(a) ~i = (0, 0) (b) ~i = (0, 1/3) (c) ~i = (0, 2/3)

Figure 4. The probability densities on (y1, y2)-plane for Type 4. The peaks are located at ~y = −~i.

When we deal with the arbitrary degeneracy of zero-modes, detN ∈ Z, the number of

generation-types is given as the sum of divisors of detN ∈ Z, that is, a divisor function in

number theory. We will mention it in appendix A.

3.2 The relation between generation-types in each sectors

We now identify ab-sector as left-handed matter sector, ca-sector as right-handed matter

sector and bc-sector as Higgs sector, and study the degeneracy of Higgs fields in terms of

the generation-types developed in the previous subsection. In three generation models with

| detNab| = | detNca| = 3, we have 16 patterns of flavor structures, since each of left- and

right-handed matter sectors has four generation-types. Among these 16 patterns, if the

generation-types for ab- and ca-sector are the same, the degeneracy of bc-sector is limited

to 3n (n : integer). For example, we consider the case that the generation-types of ab- and

ca-sector are both Type 2. Then, we find

(n′11, n
′
21)bc = (n′11, n

′
21)ab + (n′11, n

′
21)ca = (1, 2) or (2, 1) or (0, 0) (mod 3), (3.8)

(n′12, n
′
22)bc = (n′12, n

′
22)ab + (n′12, n

′
22)ca = (1, 2) or (2, 1) or (0, 0) (mod 3). (3.9)

Thus, the generation-type of bc-sector is also Type 2 and we obtain

detNca = 0 (mod 3). (3.10)

The same holds for the generation-types other than Type 2. After all, we claim that the

degeneracy of zero-modes in the bc-sector equals to 3n (n : integer). On the other hand, if

the generation-types for ab- and ca-sector are different from each other, the degeneracy of

bc-sector is not limited to 3n (n : integer).

3.3 Exceptional generation-types in magnetized orbifold model

We refer to the exceptions for table 1 in the subsection 3.1. If detN = 4k (k : integer),

there are exceptional generation-types that is inconsistent with table 1. For example, we

consider the case with detN = 4 and then the degeneracy of zero-modes equals to four on

magnetized torus model. With the Z2 projection, the degeneracy of zero-modes is expected

– 13 –
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to reduce to three for the periodic condition or one for the anti-periodic condition according

to table 1. However, there exists the following generation-type for detN = 4,

~i =

(

0

0

)

,

(

0

1/2

)

,

(

1/2

0

)

,

(

1/2

1/2

)

.

✲

✻

i1

i2

t

t

t

t (3.11)

Then, four Z2-even zero-mode wavefunctions

Θ[(0, 0)]
even (~z), Θ[(0, 1/2)]

even (~z), Θ[(1/2, 0)]
even (~z), Θ[(1/2, 1/2)]

even (~z), (3.12)

survive after the Z2 projection. On the other hand, no Z2-odd zero-mode wavefunctions

survive. Because similar exceptions occur for detN = 4k, in this case, we must count the

number of zero-modes after the Z2 projection in terms of the relations (2.42) and (2.43),

instead of using table 1.

4 Non-Abelian discrete flavor symmetry on magnetized brane models

4.1 Magnetized torus model with factorizable fluxes

First of all, we refer to the non-Abelian discrete flavor symmetry from the magnetized torus

model with only factorizable fluxes. In this model, the flavor symmetry is investigated in

detail in ref. [13]. In this subsection, we briefly review the flavor symmetries revealed in

ref. [13].

First, we show the generic case with non-vanishing Wilson-lines. For

gcd(Mab,Mca,Mbc) = 3, there exists three Z3 symmetries, which act
∑3

Jab=1X
IabJabΘJab,Mab , where

X = Z,Z ′, C, Z =









1 0 0

0 ω 0

0 0 ω2









, Z ′ =









ω 0 0

0 ω 0

0 0 ω









, C =









0 1 0

0 0 1

1 0 0









, (4.1)

and ω ≡ e2πi/3. The generator C acts on ΘIab,Mab as cyclic permutations

3
∑

Jab=1

(Cn)IabJabΘJab,Mab = ΘIab+n,Mab , (4.2)

with an integer n. The generators Z and C do not commute each other. However, there

exists the closed algebra consisting of Z, Z ′ and C,

CZ = Z ′ZC. (4.3)

In this closed algebra, diagonal matrices are denoted by ZnZ ′m. These generators generate

the non-Abelian discrete flavor symmetry (Z3×Z ′
3)⋊Z

(C)
3

∼= ∆(27), which has 27 elements

totally. For gcd(Mab,Mca,Mbc) = g, there appears the flavor symmetry (Zg × Z ′
g)⋊ Z

(C)
g .
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In the remainder of this subsection, we consider the case with vanishing Wilson-lines.

In this case, we can define a Z2 transformation which acts as

ΘIab,Mab → ΘMab−Iab,Mab . (4.4)

We denote the generator of this Z2 transformation by P . For simplicity again, we consider

the case with gcd(Mab,Mca,Mbc) = 3 and the zero-modes of ab-sector with |Mab| = 3.

Then the representations of four generators Z, Z ′, C and P can be expressed as follows:

Z =









1 0 0

0 ω 0

0 0 ω2









, Z ′ =









ω 0 0

0 ω 0

0 0 ω









, C =









0 1 0

0 0 1

1 0 0









, P =









1 0 0

0 0 1

0 1 0









. (4.5)

The closed algebra for these generators is ∆(54) ∼= (Z3 × Z ′
3)⋊ S3.

For gcd(Mab,Mca,Mbc) = g, notice that generators Z and P satisfy

PZ = Z−1P, (4.6)

and the closed algebra of C and P is Dg. Therefore the flavor symmetry, which is generated

by Z, Z ′, C and P , is nothing but (Zg × Z ′
g) ⋊ Dg. Note that in particular for g = 3,

D3
∼= S3 and then (Z3 × Z ′

3)⋊ S3 is isomorphic to ∆(54).

4.2 Magnetized torus model with non-factorizable fluxes: aligned generation-

types

We study the magnetized torus model with non-factorizable fluxes. In this model, Yukawa

couplings are given by eq. (2.27). Because the Yukawa couplings are written by Riemann

ϑ-function which is an extension of Jacobi ϑ-function, the flavor symmetries possessed

by these couplings would be different from those obtained in the factorizable case. By

focusing on and investigating the labels of generations, we study on the selection rule and

the character in the Riemann ϑ-function in order to analyze the flavor symmetry. In the

expression (2.27) of Yukawa couplings, we look at the factors coming from the overlap

integral on the first and second tori, that is λ~iab~ica~ibc shown in eq. (2.29), because such

factors reflect the property of non-factorizable fluxes. As shown in eq. (2.29), these factors

consist of the selection rule

∑

~m

δ~ibc,N−1
cb

(Nab
~iab+Nca

~ica+Nab ~m), (4.7)

and the Riemann ϑ-function

ϑ





~K

0



 (i~Y|i~Q). (4.8)

The value of the Riemann ϑ-function is determined by the character of ϑ-function

(~iab −~ica + ~m)
Nab(Nab + Nca)

−1
Nca

detNab detNca
, (4.9)
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Generation-type The set of the label {~iab} The 2-vector ~n

Type 1 (0, 0), (1/3, 0), (2/3, 0) (1/3, 0)

Type 2 (0, 0), (1/3, 1/3), (2/3, 2/3) (1/3, 1/3)

Type 3 (0, 0), (1/3, 2/3), (2/3, 1/3) (1/3, 2/3)

Type 4 (0, 0), (0, 1/3), (0, 2/3) (0, 1/3)

Table 3. The 2-vector ~n determined by the matrix Nab.

which appears in ~K. Notice that the generation labels ~iab, ~ica and ~ibc appear only in the

selection rule (4.7) and the character (4.9). Accordingly, the flavor structure of the Yukawa

coupling is completely determined by them. Thus we focus on these parts for the purpose

to identify the flavor symmetries.

We study the case with gcd(detNab, detNca, detNbc) = 3. In the following part of

this subsection, we analyze the case that the generation-types of ab-, ca- and bc-sectors

are aligned, and then study the case that the generation-types are not aligned in the next

subsection.

First we consider a general case where Wilson-lines are turned on. The selection

rule (4.7) reduces to the following relation,

Nab
~iab + Nca

~ica + Nbc
~ibc = −Nab ~m+ Nbc(l1~e1 + l2~e2), (4.10)

where l1 and l2 are integers and ~ei (i = 1, 2) are defined in eq. (2.31). Therefore the

selection rule (4.7) yields a couple of constraints represented by two component equations

in eq. (4.10) which restricts the flavor symmetry. On the other hand, we should notice that

the selection rule (4.7) remains intact under the following simultaneous translation,

~iab →~iab + ~n, ~ica →~ica + ~n, ~ibc →~ibc + ~n, (4.11)

with a 2-vector ~n determined by the generation-type in ab-sector. By using the periodicity

of the Riemann ϑ-function, we can set the 2-vector ~n as the difference between the two

of the set of the label {~iab} without loss of generality, as shown in table 3. Actually, we

can confirm that the value of the character in the Riemann ϑ-function would not change

under such a translation, and then it preserves the value of the Yukawa coupling. Such an

invariance under the above translation is guaranteed by the relation Nab + Nbc + Nca = 0

for the zero-modes of the three matters that construct the Yukawa coupling.

table 3 shows that the translation (4.11) is identified with the Z
(C)
3 transformation

Θ
~iab,Nab → Θ

~iab+~n,Nab , Θ
~ica,Nca → Θ

~ica+~n,Nca , Θ
~ibc,Nbc → Θ

~ibc+~n,Nbc . (4.12)

The representation of the Z
(C)
3 generator is written as

C =









0 1 0

0 0 1

1 0 0









, (4.13)
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which acts on the basis








Θ
~i0,N

Θ
~i1,N

Θ
~i2,N









, (4.14)

where we label the three-generation one by one, i.e., {~i} ≡ {~i0,~i1,~i2}. There always exists

a Z3 invariance under Z
(C)
3 generator in the case with aligned generation-types.

In the following, we investigate additional Z3 symmetries similar to those shown in as

eq. (4.1) in the factorizable case. For concreteness, we consider the flux configuration with

| detNab| = | detNca| = 3 and | detNbc| = 6, e.g.,

Nab =

(

−1 −2

−1 1

)

, Nca =

(

5 4

2 1

)

, Nbc =

(

−4 −2

−1 −2

)

. (4.15)

In this case, the generation-types in both the ab- and the ca-sectors are of the Type 2 and

the generation labels in bc-sector are given as

~ibc,0 =

(

0

0

)

, ~ibc,1 =

(

0

1/2

)

, ~ibc,2 =

(

1/3

1/3

)

, (4.16)

~ibc,3 =

(

1/3

5/6

)

, ~ibc,4 =

(

2/3

2/3

)

, ~ibc,5 =

(

2/3

1/6

)

. (4.17)

Then, the relevant factors in the Yukawa couplings are written as

λ~iab~ica~ibc,0 = λ~iab~ica~ibc,1 =









λ0 0 0

0 0 λ1

0 λ2 0









, λ~iab~ica~ibc,2 = λ~iab~ica~ibc,3 =









0 λ1 0

λ2 0 0

0 0 λ0









, (4.18)

λ~iab~ica~ica,4 = λ~iab~ica~ibc,5 =









0 0 λ2

0 λ0 0

λ1 0 0









, (4.19)

where values of λ0, λ1 and λ2 are different from each other. The numerical values of λ0, λ1
and λ2 can be calculated in terms of the fluxes Nab,Nca and Nbc, however, they are irrelevant

to the flavor symmetry itself which the above Yukawa couplings possess.

In this example, in addition to the above Z3 generator C shown in eq. (4.13), there

exists the Z3 symmetry under the generator Z defined by

Z =









1 0 0

0 ω 0

0 0 ω2









, (4.20)

with ω = e2πi/3. Thus we can obtain non-Abelian discrete flavor symmetry, because these

generators C and Z do not commute each other,

CZ = ωZC. (4.21)
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Similarly to the argument in the previous subsection, the closed algebra of Z and C is

∆(27) with the generator of another Z3 transformation,

Z ′ =









ω 0 0

0 ω 0

0 0 ω









. (4.22)

Thus, in the aligned case with | detN| = 3 for all sectors, we have the possibility to

obtain ∆(27) flavor symmetry in 4D effective theory from the magnetized model with non-

factorizable fluxes. Notice that, because the flux configuration yielding the same value

of the determinant of flux matrices is not unique, various flavor structures are possible

with such ∆(27) symmetry, due to the variety of the generation-types. Yukawa couplings

are written by the overlap integral of zero-modes on toroidal extra dimensions, as stated

before. The localization profiles of the zero-modes which govern the generation-types are

determined by the configuration of magnetic fluxes. We show the probability densities

of zero-mode wavefunctions
∣

∣Θ
~j,N(~z)

∣

∣

2
on each torus in figure 5 and 6, for two different

configurations of magnetic fluxes. Those figures imply that if the generation-type is differ-

ent, the overlap integral of zero-modes on tori would be different, because the profiles of

zero-modes in Type 1 are universal among three generations on the second torus (x2, y2),

while those in Type 2 are dependent on generations on the same torus (x2, y2).

Furthermore, when the Wilson-lines are all vanishing in the present situation, we can

define a Z2 generator which acts as Θ
~iab,Nab → Θ~e−~iab,Nab . The Z2 generator is given by

P =









1 0 0

0 0 1

0 1 0









. (4.23)

If the intersection of three sets of labels {~i} in each sector corresponds to the labels of any

one from Type 1 to Type 4, the flavor symmetry is enhanced to ∆(54) ∼= (Z3 × Z ′
3) ⋊ S3

in 4D effective theory, as in the magnetized torus model with factorizable fluxes.

However, we remark that there does not always exist an invariance under the Z3

transformation generated by Z. Here and hereafter, we assume vanishing Wilson-lines in

the expressions of Yukawa couplings. We consider the flux configuration with | detNab| =
| detNca| = | detNbc| = 3, e.g.,

Nab =

(

−1 −1

−3 0

)

, Nca =

(

5 2

4 1

)

, Nbc =

(

−4 −1

−1 −1

)

. (4.24)

Then, generation-types are all of the Type 3, i.e.,

~iab,0 =

(

0

0

)

, ~iab,1 =

(

1/3

2/3

)

, ~iab,2 =

(

2/3

1/3

)

, (4.25)
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(a) ~i = (0, 0) (b) ~i = (1/3, 0) (c) ~i = (2/3, 0)

(d) ~i = (0, 0) (e) ~i = (1/3, 0) (f) ~i = (2/3, 0)

Figure 5. The probability densities of zero-mode wavefunctions
∣

∣Θ
~i,N(~z)

∣

∣

2
on (x1, y1)-plane for

Type 1 are shown in (a), (b) and (c), while those on (x2, y2)-plane are depicted in (d), (e) and (f).

and the same holds for ca- and bc-sector. The Yukawa couplings are written as

λ~iab~ica~ibc,0 =









λ0 λ1 λ1

λ2 λ2 λ3

λ2 λ3 λ2









, λ~iab~ica~ibc,1 =









λ2 λ3 λ2

λ3 λ2 λ2

λ1 λ1 λ0









, λ~iab~ica~ibc,2 =









λ2 λ2 λ3

λ1 λ0 λ1

λ3 λ2 λ2









, (4.26)

where values of λ0, λ1, λ2 and λ3 are different from each other. In the above example,

Yukawa couplings are not symmetric under the generator Z and the flavor symmetry is

(Z
(C)
3 ⋊ Z2)× Z ′

3
∼= S3 × Z ′

3 (Z
(C)
3 × Z ′

3 in the case with non-vanishing Wilson-lines). We

give another example, which corresponds to | detNab| = | detNca| = 3 and | detNbc| = 6,

but does not have the Z3 invariance under Z generator (4.20). The magnetic fluxes

Nab =

(

3 0

1 −1

)

, Nca =

(

1 2

4 5

)

, Nbc =

(

−4 −2

−5 −4

)

, (4.27)

yield the same generation-types as those in the previous example (4.15). Then, the Yukawa

couplings are written by

λ~iab~ica~ibc,0 = λ~iab~ica~ibc,1 =









λ0 λ1 λ1

λ2 λ1 λ3

λ2 λ3 λ3









, λ~iab~ica~ibc,2 = λ~iab~ica~ibc,3 =









λ1 λ3 λ2

λ3 λ1 λ2

λ3 λ1 λ0









, (4.28)
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(a) ~i = (0, 0) (b) ~i = (1/3, 1/3) (c) ~i = (2/3, 2/3)

(d) ~i = (0, 0) (e) ~i = (1/3, 1/3) (f) ~i = (2/3, 2/3)

Figure 6. The probability densities of zero-mode wavefunctions
∣

∣Θ
~i,N(~z)

∣

∣

2
on (x1, y1)-plane for

Type 2 are shown in (a), (b) and (c), while those on (x2, y2)-plane are depicted in (d), (e) and (f).

λ~iab~ica~ica,4 = λ~iab~ica~ibc,5 =









λ1 λ2 λ3

λ1 λ0 λ1

λ3 λ2 λ1









. (4.29)

Such Yukawa couplings have (Z
(C)
3 ⋊ Z2) × Z ′

3
∼= S3 × Z ′

3 symmetry. Therefore, the same

degeneracies and generation-types of zero-modes do not always yield the same flavor sym-

metry. Accordingly, we investigate the flavor symmetries for the other flux configurations

as systematically as possible, which is shown in appendix B.

Next, we extend the above argument and consider the case with

gcd(detNab, detNca, detNbc) = g > 3. We substitute the following generators in the

representation of a g × g matrix,

Z =





















1

ρ

ρ2

. . .

ρg−1





















, (4.30)
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with ρ ≡ e2πi/g, and

C =















0 1 0 · · · 0

0 0 1 · · · 0
. . .

1 0 0 · · · 0















, (4.31)

those are the generalizations of eqs. (4.20) and (4.13). Then, Z
(C)
g or (Zg ×Z ′

g)⋊Z
(C)
g can

be realized as the flavor symmetry in 4D effective theory.5 Similarly to the case with g = 3,

when the Wilson-lines are all vanishing, we can obtain (Z
(C)
g ⋊Z2) ∼= Dg or (Zg ×Z ′

g)⋊Dg

flavor symmetry enhanced by the Z2 generator which is the generalization of P . For g = 4,

we can obtain D4 flavor symmetry for which some examples are shown in appendix C.

So far we have shown the flavor symmetry obtained from the magnetic fluxes yielding

aligned generation-types, by identifying the explicit forms of its generators. Now we discuss

about the representations realized under this symmetry. The most typical example is the

representation under the ∆(27) flavor symmetry for g = 3.6 We focus on a single sector

and then omit the YM indices like ab. We first consider a sector where three zero-modes

are generated by | detN| = 3 and label them with {~i} ≡ {~i0,~i1,~i2}. These three generations
of zero-modes are represented as

|Θ3〉1 =









Θ
~i0,N

Θ
~i1,N

Θ
~i2,N









, (4.32)

that is identified with the triplet representation 3 under ∆(27).

Next, we consider a sector where six zero-modes are generated by | detN| = 6 and label

them with {~i} ≡ {~i0,~i1, . . . ,~i5}. We can decompose these six zero-modes into two triplet

representations,

|Θ6〉1 =









Θ
~i0,N

Θ
~i2,N

Θ
~i4,N









, |Θ6〉2 =









Θ
~i3,N

Θ
~i5,N

Θ
~i1,N









. (4.33)

The generator C of the Z3 transformation Z
(C)
3 acts as C|Θ3〉1 for | detN| = 3 and

C|Θ6〉i (i = 1, 2) for | detN| = 6. On the other hand, the representations |Θ6〉i (i = 1, 2)

behave as the complex conjugate to the triplet representation |Θ3〉1. Accordingly, both

|Θ6〉i (i = 1, 2) are 3̄ representation under ∆(27).

We further mention about a sector where nine zero-modes are generated by | detN| = 9

and label them with {~i} ≡ {~i0,~i1, . . . ,~i8}. Also in this case, we decompose these nine zero-

5There is an additional Z3 symmetry (Z′

3) which is allowed due to the fact that Yukawa couplings are

three-point couplings.
6The irreducible representation under the ∆(54) symmetry is equivalent to table 4 in ref. [13].
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| detN| Representation under ∆(27)

3 3

6 2× 3̄

9 11,12,13,14,15,16,17,18,19

12 4× 3

15 5× 3̄

18 2× {11,12,13,14,15,16,17,18,19}

Table 4. Examples of ∆(27) representations consisting of the zero-modes for g = 3.

modes into three triplet representations,

|Θ9〉1 =









Θ
~i0,N

Θ
~i3,N

Θ
~i6,N









, |Θ9〉ω =









Θ
~i1,N

Θ
~i4,N

Θ
~i7,N









, |Θ9〉ω2 =









Θ
~i2,N

Θ
~i5,N

Θ
~i8,N









, (4.34)

where ω ≡ e2πi/3. Note that these triplet representations are reducible. The triplets |Θ9〉ωn

have Z3 charges n, and they are decomposed into nine singlets, which are expressed as

1ωn, ωm : Θ
~in,N + ωmΘ

~in+3m,N + ω2mΘ
~in+6m,N, (4.35)

up to normalization factors. We find that no new representation other than the above

three appears for | detN| > 9, because these three appear repeatedly, as shown in table 4.

Table 4 is exactly the same as that in ref. [13] if we replace M with detN.

In the remainder of this subsection, we explain irreducible representations under

Z
(C)
3 ⋊ Z2

∼= S3 constructed by zero-mode wavefunctions. It is known that the irreducible

representations under S3 are two singlets 1,1′ and single doublet 2. Since the triplet (4.32)

for | detN| = 3 is reducible representations under S3, it is decomposed a singlet

1 : Θ
~i0,N +Θ

~i1,N +Θ
~i2,N, (4.36)

and a doublet

2 :

(

Θ
~i2,N −Θ

~i0,N

Θ
~i1,N −Θ

~i0,N

)

. (4.37)

On the other hand, the irreducible representations extracted from six zero-modes for

| detN| = 6 are found as follows. With the flux matrix (4.15), the Z2 generator P is

written as

P =

























1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

























, (4.38)
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| detN| Representation under S3

3 1, 2

6 2× {1,2}
9 3× {1,2}
12 4× {1,2}

Table 5. Examples of irreducible representations under S3
∼= Z

(C)
3 ⋊ Z2.

on the basis

|Θ6〉 =

























Θ
~i0,N

Θ
~i1,N

Θ
~i2,N

Θ
~i3,N

Θ
~i4,N

Θ
~i5,N

























. (4.39)

This sextet (4.39) is a reducible representation and it is decomposed into two singlets

1 : Θ
~i0,N +Θ

~i2,N +Θ
~i4,N, Θ

~i1,N +Θ
~i3,N +Θ

~i5,N, (4.40)

and two doublets

2 :

(

Θ
~i4,N −Θ

~i0,N

Θ
~i2,N −Θ

~i0,N

)

,

(

Θ
~i5,N −Θ

~i1,N

Θ
~i3,N −Θ

~i1,N

)

. (4.41)

Even for | detN| > 6, we can not obtain the remaining irreducible representation, i.e.,

singlet 1′. Singlet 1 and doublet 2 appear repeatedly for | detN| > 6, as shown in table 5.

4.3 Magnetized torus model with non-factorizable fluxes: not-aligned

generation-types

In this subsection, we study the case that generation-types in three sectors are not aligned.

Indeed, since there is no systematic way in general to identify the charges under the Z3

transformations, we explain the flavor symmetry by means of concrete examples. It is still

interesting to consider the three-generation model of quarks and leptons, and we focus on

the case with gcd(detNab, detNca, detNbc) = 3 in this paper.

First, we focus on the case with | detN| = 3 for each sector and non-vanishing Wilson-

lines, e.g.,

Nab =

(

1 −1

−3 0

)

, Nca =

(

0 1

3 3

)

, Nbc =

(

−1 0

0 −3

)

. (4.42)

Then, a generation-type for ab-sector are identified as Type 2, for ca-sector Type 1 and for

bc-sector Type 4. We label the localization points of zero-modes as

~iab,0 =

(

0

0

)

, ~iab,1 =

(

1/3

1/3

)

, ~iab,2 =

(

2/3

2/3

)

, (4.43)
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~ica,0 =

(

0

0

)

, ~ica,1 =

(

1/3

0

)

, ~ica,2 =

(

2/3

0

)

, (4.44)

~ibc,0 =

(

0

0

)

, ~ibc,1 =

(

0

1/3

)

, ~ibc,2 =

(

0

2/3

)

. (4.45)

Yukawa couplings λ~iab~ica~ibc are written as

λ~iab~ica~ibc,0 =









λ0 0 0

0 λ1 0

0 0 λ1









, λ~iab~ica~ibc,1 =









0 0 λ2

λ3 0 0

0 λ3 0









, λ~iab~ica~ibc,2 =









0 λ2 0

0 0 λ3

λ3 0 0









, (4.46)

where values of λ0, λ1, λ2 and λ3 are different from each other. We find a Z3 symmetry,

the generator of which is Z defined in eq. (4.20). Thus, Z3 × Z ′
3 symmetry is realized in

4D effective theory. Note that there does not exist an invariance under the Z3 generator

C in the case that generation-types for each gauge sector are not uniformly aligned. If

Wilson-lines are turned off, we can find an invariance under the Z2 generator (4.23). The

discrete group generated by Z,Z ′ and P is (Z3 ⋊ Z2)× Z ′
3
∼= S3 × Z ′

3.

In the remainder of this subsection, we consider irreducible representations under

Z3 ⋊ Z2
∼= S3 constructed by zero-mode wavefunctions, those are two singlets 1,1′ and

single doublet 2. Since the triplet (4.32) for | detN| = 3 is a reducible representation, we

decompose it into a singlet

1 : Θ
~i0,N, (4.47)

and a doublet

2 :

(

Θ
~i1,N

Θ
~i2,N

)

. (4.48)

In order to find the representations for | detN| = 6, we consider the flux configuration as

Nab =

(

2 1

3 0

)

, Nca =

(

0 −1

−3 3

)

, Nbc =

(

−2 0

0 −3

)

, (4.49)

where detNbc = 6 and

~i0 =

(

0

0

)

, ~i1 =

(

1/2

0

)

, ~i2 =

(

0

1/3

)

, (4.50)

~i3 =

(

1/2

1/3

)

, ~i4 =

(

0

2/3

)

, ~i5 =

(

1/2

2/3

)

(4.51)

for bc-sector. Then zero-modes in ab- and ca-sector with detNab = detNca = −3, can be

decomposed into singlets 1 and doublets 2. The irreducible representations constructed

by six zero-modes in bc-sector are found as follows. In the present case, the Z2 generator
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| detN| Representation under S3

3 1, 2

6 2× {1,2}
9 3× 2, 2× 1, 1′

12 4× {1,2}

Table 6. Examples of irreducible representations under S3
∼= Z3 ⋊ Z2.

P is expressed as

P =

























1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

























, (4.52)

on the basis

|Θ6〉 =

























Θ
~i0,N

Θ
~i1,N

Θ
~i2,N

Θ
~i3,N

Θ
~i4,N

Θ
~i5,N

























, (4.53)

though this sextet is decomposed into two singlets

1 : Θ
~i0,N, Θ

~i1,N, (4.54)

and two doublets

2 :

(

Θ
~i2,N

Θ
~i4,N

)

,

(

Θ
~i3,N

Θ
~i5,N

)

. (4.55)

For | detN| = 9, we can obtain the other irreducible representation, i.e., the remaining

singlet 1′. We summarize the representations for | detN| > 6 in table 6.

4.4 Magnetized orbifold model with non-factorizable fluxes

In this section, we study the flavor symmetry realized from the magnetized orbifold model

with non-factorizable fluxes. This model is obtained after the Z2 projection by which the

symmetry (Zg × Z ′
g)⋊ Z

(C)
g before orbifolding is broken into its subgroup.

First, we study an illustrating model, the model with g = 4, where we set

detNab = detNca = −4 and detNbc = 8. In such a model, the flavor symmetry is

(Z4 × Z ′
4) ⋊ Z

(C)
4 before the Z2 projection. We consider the zero-modes for detNab = −4
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where three Z2-even zero-modes survive, while the Z2-odd zero-mode is projected out.

The basis of these even modes is written as

|Θ4
even〉 =









Θ
~i0,N

Θ
~i1,N +Θ

~i3,N

Θ
~i2,N









. (4.56)

The same holds for the zero-modes with detNca = −4. For such a basis, we can define the

generator of a Z4 transformation as

Z =









i 0 0

0 −1 0

0 0 −i









, (4.57)

which is equivalent to the generator (4.30). In addition to this operator, we can also define

the generator of a cyclic permutation as

C =









0 0 1

0 1 0

1 0 0









. (4.58)

The closed algebra for these generators is D4. This implies that (Z4 × Z ′
4) ⋊ Z

(C)
4 breaks

into its subgroup D4. Notice that D4 is the symmetry for interchanging Θ
~i0,N with Θ

~i2,N.

Thus, for gcd(detNab, detNca, detNbc) = 2k (k : integer), the flavor symmetry D4 is

invariably realized in 4D effective theory. Such a result is quite similar to the one stated

in ref. [19] in type IIA intersecting brane models on T 6/Z2 or T 6/Z2 × Z ′
2 orbifolds.

As stated in the previous section, there exist the exceptions on the mag-

netized orbifold model with non-factorizable fluxes. We consider the case with

gcd(detNab, detNca, detNbc) = 4 and the same generation-types (3.11) at least for the

two of three matters. Then we have (Z4 × Z ′
4) ⋊ Z

(C)
4 as the flavor symmetry before the

Z2 projection. After the projection, we obtain (Z4 × Z ′
4) ⋊ Z

(C)
4 in 4D effective theory.

Namely, the orbifold projection does not affect the flavor structure for such a setup.

5 Non-Abelian discrete flavor symmetry from gauge symmetry breaking

In refs. [21, 22], it was mentioned that the non-Abelian discrete flavor symmetry is

originated from the remnant of gauge symmetries, and recently the method to study the

discrete flavor symmetry has been developed in refs. [18, 19]. In this section, we study the

appearance of the non-Abelian discrete flavor symmetry in the magnetized torus model

with non-factorizable fluxes, by using the method proposed in ref. [18]. They restrict their

analysis to the magnetized torus model with factorizable fluxes in ref. [18] and to the

magnetized orbifold model in ref. [19]. We apply their method to the magnetized torus

model with non-factorizable fluxes in this section.
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In the following, we assume the complex structures as τ1 = τ2 = i, without loss of

generality. It is due to the fact that the values of the complex structure parameters do

not affect the flavor symmetry in 4D effective field theory. In addition, we also assume

vanishing Wilson-lines, i.e., ζ̄i = 0 (i = 1, 2) for simplicity. We consider T 2 × T 2 toroidal

compactifications with two U(1) gauge field backgrounds,

A1 = πM (1) Im (z̄1dz1) + πM (12) Im (z̄2dz2), (5.1)

A2 = πM (21) Im (z̄1dz1) + πM (2) Im (z̄2dz2), (5.2)

in differential forms, so that

F1 = 2πM (1)dx1 ∧ dy1 + 2πM (12)dx2 ∧ dy2, (5.3)

F2 = 2πM (21)dx1 ∧ dy1 + 2πM (2)dx2 ∧ dy2. (5.4)

The above expressions are the straightforward extensions of those appearing in refs. [12, 18].

For vanishing Fi (i = 1, 2), the model possesses the translational invariances generated by

∂x1 and ∂y1 on the first torus and by ∂x2 and ∂y2 on the second torus. For non-vanishing

Fi (i = 1, 2), the model no longer has such invariances, because gauge fields Ai (i = 1, 2)

depend explicitly on the coordinates xi, yi (i = 1, 2),

A1(x1 + λ, y1, x2, y2) = A1(x1, y1, x2, y2) + λχ(1)
x1
, χ(1)

x1
= πM (1)y1, (5.5)

A1(x1, y1 + λ, x2, y2) = A1(x1, y1, x2, y2) + λχ(1)
y1 , χ(1)

y1 = −πM (1)x1, (5.6)

A1(x1, y1, x2 + λ, y2) = A1(x1, y1, x2, y2) + λχ(1)
x2
, χ(1)

x2
= πM (12)y2, (5.7)

A1(x1, y1, x2, y2 + λ) = A1(x1, y1, x2, y2) + λχ(1)
y2 , χ(1)

y2 = −πM (12)x2, (5.8)

and similarly

A2(x1 + λ, y1, x2, y2) = A2(x1, y1, x2, y2) + λχ(2)
x1
, χ(2)

x1
= πM (21)y1, (5.9)

A2(x1, y1 + λ, x2, y2) = A2(x1, y1, x2, y2) + λχ(2)
y1 , χ(2)

y1 = −πM (21)x1, (5.10)

A2(x1, y1, x2 + λ, y2) = A2(x1, y1, x2, y2) + λχ(2)
x2
, χ(2)

x2
= πM (2)y2, (5.11)

A2(x1, y1, x2, y2 + λ) = A2(x1, y1, x2, y2) + λχ(2)
y2 , χ(2)

y2 = −πM (2)x2. (5.12)

In order to preserve the action unchanged, we need to perform gauge transformations that

compensate the changes in Ai (i = 1, 2). That is, we perform the following operations for

a wavefunction of charge q,

ψ(x1, y1, x2, y2) → e−iqλχ
(1)
x1 e−iqλχ

(2)
x1 ψ(x1 + λ, y1, x2, y2) = eqλX

(1)
x ψ(x1, y1, x2, y2), (5.13)

ψ(x1, y1, x2, y2) → e−iqλχ
(1)
y1 e−iqλχ

(2)
y1 ψ(x1, y1 + λ, x2, y2) = eqλX

(1)
y ψ(x1, y1, x2, y2), (5.14)

ψ(x1, y1, x2, y2) → e−iqλχ
(1)
x2 e−iqλχ

(2)
x2 ψ(x1, y1, x2 + λ, y2) = eqλX

(2)
x ψ(x1, y1, x2, y2), (5.15)

ψ(x1, y1, x2, y2) → e−iqλχ
(1)
y2 e−iqλχ

(2)
y2 ψ(x1, y1, x2, y2 + λ) = eqλX

(2)
y ψ(x1, y1, x2, y2). (5.16)

The above compensations are generated by the operators X
(i)
x and X

(i)
y (i = 1, 2), which

are defined as

X(1)
x = ∂x1 − iπM (1)y1 − iπM (21)y2, X(1)

y = ∂y1 + iπM (1)x1 + iπM (21)x2, (5.17)
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X(2)
x = ∂x2 − iπM (12)y1 − iπM (2)y2, X(2)

y = ∂y2 + iπM (12)x1 + iπM (2)x2. (5.18)

These generators satisfy the Heisenberg algebras,

[X(i)
x , X(i)

y ] =M (i)X
(i)
Q , (5.19)

[X(i)
x , X(j)

x ] = [X(i)
y , X(j)

y ] = 0, (5.20)

where i, j = 1, 2 and we define X
(i)
Q ≡ 2πi. The Heisenberg algebras exponentiate to the

group element,

g(ǫ(1)x , ǫ(2)x , ǫ(1)y , ǫ(2)y , ǫ
(1)
Q , ǫ

(2)
Q ) (5.21)

= exp





ǫ
(1)
x

N
X(1)

x +
ǫ
(2)
x

N
X(2)

x +
ǫ
(1)
y

N
X(1)

y +
ǫ
(2)
y

N
X(2)

y +
ǫ
(1)
Q

N
X

(1)
Q +

ǫ
(2)
Q

N
X

(2)
Q



 ,

where N ≡ detN and

N =

(

M (1) M (21)

M (12) M (2)

)

. (5.22)

Accordingly, the following relation is satisfied:

g(ǫ(1)′x , ǫ(2)′x , ǫ(1)′y , ǫ(2)′y , ǫ
(1)′
Q , ǫ

(2)′
Q ) g(ǫ(1)x , ǫ(2)x , ǫ(1)y , ǫ(2)y , ǫ

(1)
Q , ǫ

(2)
Q ) (5.23)

= g

(

ǫ(1)′x + ǫ(1)x , ǫ(2)′x + ǫ(2)x , ǫ(1)′y + ǫ(1)y , ǫ(2)′y + ǫ(2)y ,

ǫ
(1)′
Q +ǫ

(1)
Q +

1

2N2
(ǫ(1)′x ǫ(1)y −ǫ(1)′y ǫ(1)x )M (1), ǫ

(2)′
Q +ǫ

(2)
Q +

1

2N2
(ǫ(2)′x ǫ(2)y −ǫ(2)′y ǫ(2)x )M (2)

)

.

This implies that there exist discrete symmetries with respect to parameters ǫ
(1)
x , ǫ

(1)
y , ǫ

(2)
x ,

ǫ
(2)
y , ǫ

(1)
Q and ǫ

(2)
Q . Since two tori are compactified, we must impose periodic boundary

conditions, namely

ψ(x1 + 1, y1, x2, y2) = eiqχ
(i)
x1ψ(x1, y1, x2, y2), ψ(x1, y1 + 1, x2, y2) = eiqχ

(i)
y1ψ(x1, y1, x2, y2),

(5.24)

ψ(x1, y1, x2 + 1, y2) = eiqχ
(i)
x2ψ(x1, y1, x2, y2), ψ(x1, y1, x2, y2 + 1) = eiqχ

(i)
y2ψ(x1, y1, x2, y2),

(5.25)

for i = 1, 2. The generators X
(i)
x , X

(i)
y and X

(i)
Q (i = 1, 2) must be compatible with the

above conditions. The generator X
(i)
Q (i = 1, 2) satisfies automatically the above require-

ment, while the others not so. Since the following condition:

eiqX
(1)
x eiqχ

(1)
y ψ(x1, y1, x2, y2) = eiqχ

(1)
y eiqX

(1)
x ψ(x1, y1, x2, y2), (5.26)

must be satisfied, the magnetic flux is quantized as qM (1) ∈ Z. In particular, we have

M (1) ∈ Z for a wavefunction with q = 1. The same holds for the other magnetic fluxes,

i.e., M (12), M (21), M (2) ∈ Z. After all, we obtain N ∈ Z. This is exactly the same as

– 28 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
7

Generation-type of ~j (n
(1)
x , n

(2)
x ) (n

(1)
y , n

(2)
y )

Type 1 (1, 0) or (2, 0) (1, 0) or (2, 0)

Type 2 (1, 1) or (2, 2) (1, 1) or (2, 2)

Type 3 (1, 2) or (2, 1) (1, 2) or (2, 1)

Type 4 (0, 1) or (0, 2) (0, 1) or (0, 2)

Table 7. The constraints that is indispensable for the equality in eq. (5.29).

the Dirac’s quantization condition. For particles with charge q = 1, the discrete symmetry

corresponds to the following set characterized by discrete parameters:

P =
{

g(n(1)x , n(2)x , n(1)y , n(2)y , ǫ
(1)
Q , ǫ

(2)
Q ) |

n
(i)
X = 0, 1, . . . , N − 1 (i = 1, 2, X = x, y) ; ǫ

(i)
Q (i = 1, 2) ∈ R

}

. (5.27)

In fact, we have the zero-mode wavefunction on magnetized tori, which is written as

ψ
~j,N(~z,Ω) = eπi(N·~z)·(ImΩ)−1·(Im ~z) · ϑ





~j

0



 (N · ~z,N · Ω), (5.28)

up to a normalization factor. For simplicity we set N = 3. We can straightforwardly check

that the action of the group element (5.21) is calculated as

g(n(1)x , n(2)x , n(1)y , n(2)y , ǫ
(1)
Q , ǫ

(2)
Q )ψ

~j,N(~z,Ω) (5.29)

= exp

[

2πi · j1
N

(M (1)n(1)x +M (21)n(2)x )

]

exp

[

2πi · j2
N

(M (12)n(1)x +M (2)n(2)x )

]

× exp



2πi





ǫ
(1)
Q + ǫ

(2)
Q

N
+
n
(1)
x n

(1)
y

2N2
M (1) +

n
(2)
x n

(2)
y

2N2
M (2)







ψ
~j+~n,N(~z,Ω),

where ~j ≡ (j1, j2) and ~n ≡ (n
(1)
y /N, n

(2)
y /N). The above relation holds only if the discrete

parameters n
(i)
X (i = 1, 2, X = x, y) satisfy the constraint, which is summarized in table 7.

We can interpret the group element (5.21) as the generator of the non-Abelian discrete

flavor symmetry. Thus, the discrete parameters are mapped into the representations of the

generators appearing in the flavor symmetry. Let us study an example. We consider the

following matrix of magnetic fluxes,

N =

(

2 1

1 2

)

. (5.30)

For the labels of Type 2, the group element

g(2, 2, 0, 0, 0, 0) =









1 0 0

0 ω 0

0 0 ω2









, (5.31)
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corresponds to the Z3 generator Z, with ω ≡ e2πi/3. Similarly,

g(0, 0, 1, 1, 0, 0) =









0 1 0

0 0 1

1 0 0









, (5.32)

corresponds to the Z
(C)
3 generator C. Then, the last group element

g(0, 0, 0, 0, 1, 0) =









ω 0 0

0 ω 0

0 0 ω









, (5.33)

is necessary for the closed algebra generated by the above generators. In the end, we obtain

the non-Abelian discrete flavor symmetry,

P =















Z =









1 0 0

0 ω 0

0 0 ω2









, Z ′ =









ω 0 0

0 ω 0

0 0 ω









, C =









0 1 0

0 0 1

1 0 0























= ∆(27), (5.34)

in the 4D effective theory. The same holds for the other generation-types, with replacing

the arguments of the group elements (5.21). One can apply the above method to the other

magnetized models with non-factorizable fluxes and obtain the generators of the other

non-Abelian discrete flavor symmetries.

6 Conclusions and discussions

We have studied the non-Abelian discrete flavor symmetries from magnetized brane models.

We have found that Zg×Zg, (Zg×Zg)⋊Z2, (Zg×Zg)⋊Zg and (Zg×Zg)⋊Dg symmetries

appear from the magnetized torus model with non-factorizable fluxes, if generation-types in

three sectors forming Yukawa couplings are aligned. In three-generation models of quarks

and leptons, Z3×Z3, S3×Z3, ∆(27) and ∆(54) symmetries can appear. On the other hand,

if the generation-types are not aligned, Z3 × Z3 and S3 × Z3 symmetries can appear. The

flavor symmetries obtained from non-factorizable fluxes are phenomenologically attractive.

Such results can become a clue when we reveal the property of the magnetized brane

models. In studying the flavor symmetry, we investigated the label ~i, the generation-types

of~i and the number of zero-modes (detN). In addition, we focused on the selection rule and

the character of Riemann ϑ-function. We have studied the number of the generation-types

and the classification for | detN| = 3.

We have studied the non-Abelian discrete flavor symmetry from the magnetized orb-

ifold model with non-factorizable fluxes. We have found thatD4 and (Zg×Zg)⋊Zg (g = 4k)

symmetries can appear from such a model. Unlike the magnetized torus model only with

factorizable fluxes, (Zg × Zg)⋊ Zg (g = 4k) can survive after the orbifold projection.

We have also analyzed the non-Abelian discrete flavor symmetry from the perspective

of gauge symmetry breaking. Especially, we applied the method developed in ref. [18] to

the model with non-factorizable fluxes, and confirmed the reappearance of ∆(27) flavor

symmetry.
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Here, we discuss phenomenological implications of our results. The analyses in this

paper show that one can derive several flavor structures from the torus compactification

with non-factorizable magnetic fluxes as well as the orbifold compactification. The Yukawa

couplings among left-handed and right-handed fermions and Higgs fields in each of the up-

type quark sector, down-type quark sector, charged lepton sector and neutrino sector can

have non-Abelian discrete flavor symmetries such as ∆(54), ∆(27) and S3 × Z3 as well as

Abelian flavor symmetries such as Z3 × Z3.

As shown in ref. [27], non-factorizable magnetic fluxes make it possible to construct

the models, where the charged lepton (up-type quark) sector and the neutrino (down-type

quark) sector have flavor symmetries different from each other. Then, such symmetries

are broken down into their subgroup, which is common in all of the sectors. This is quite

interesting. For example, one tries to understand the lepton mixing angles by using non-

Abelian discrete flavor symmetries in field-theoretical model building as follows [1–5]. First,

one assumes that there is a larger flavor symmetry in the full Lagrangian. Then, one breaks

it by vacuum expectation values of scalar fields such that the charged lepton sector and

the neutrino sector (the up-type sector and the down-type sector) have different unbroken

symmetries. For instance, one can derive the tri-bimaximal mixing matrix, when the

charged lepton mass terms and the neutrino mass terms have certain Z3 and Z2 symmetries,

respectively. Following such process, one can obtain other mixing angles.7

Form such a viewpoint of model building, our results are fascinating. As mentioned

above, non-factorizble magnetic fluxes can lead to different flavor symmetries between the

charged lepton sector and the neutrino sector, and also the flavor symmetries between

the up-type quarks and down-type quarks can be different from each other. That is,

the gauge backgroup in extra dimensions breaks a larger symmetry and leads to different

flavor symmetries between the charged leptons and neutrinos, up-type quarks and down-

types quarks.8 In the above sense, even the Abelian symmetries in some of the charged

lepton, neutrino, up-type quark, and down-type quark sectors are interesting. When non-

Abelian discrete flavor symmetries remain in one sector of the up-type quarks, down-type

quarks, charged leptons and neutrinos, the Higgs scalar fields are also multiplets under

these symmetries. A certain pattern of the VEVs of Higgs multiplet would break non-

Abelian flavor symmetries into Z3, Z2 or the other Abelian discrete symmetry. Then, we

would find realistic mixing angles. We would study such analysis systematically including

the right-handed Majorana neutrino masses9 elsewhere.
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A The generation-types for detN = n

We refer to the generation-types for detN = n. The number of generation-types is given

as the sum of divisors of detN = n, as stated. Although the strict proof is beyond the

scope of this paper, in this appendix, we provide a certain aspect of this fact based on the

label vector ~i.

First, we consider detN = p, where p is a prime number. For this case, the generation-

type is classified by the direction of the label ~i ≡ (i1, i2). For example, for p = 3, four

generation-types are schematized as follows.

✲

✻

i1

i2

t t t ✲

✻

i1

i2

t

t

t

✲

✻

i1

i2

t

t

t

✲

✻

i1

i2

t

t

t

The gradients on (i1, i2)-plane of these generation-types are 0, 1/2, 1 and ∞, respectively

from the left. The above gradients can be written as

0, 1/n (n = 0, 1, 2). (A.1)

Then the number of generation-types is 1 + 3 = 4. For detN = 5, generation-types are

shown as follows.

✲

✻

i1

i2

t t t t t ✲

✻

i1

i2

t

t

t

t

t

✲

✻

i1

i2

t

t

t

t

t

✲

✻

i1

i2

t

t

t

t

t

✲

✻

i1

i2

t

t

t

t

t

✲

✻

i1

i2

t

t

t

t

t

Also in this case, the gradients can be written as

0, 1/n (0, 1, . . . , 4). (A.2)

For arbitrary p, the gradients of the label are written as,

0, 1/n (0, 1, . . . , |p| − 1). (A.3)

Thus, for detN = p, we can classify the generation-types by their gradients and there are

(1 + |p|) generation-types.
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Next, we consider the case with detN = pq, where p and q are prime numbers. For |p| =
|q|, let us show you an example, detN = 4. Then, generation-types are found as follows.

✲

✻

i1

i2

t t t t ✲

✻

i1

i2

t

t

t

t

✲

✻

i1

i2

t

t

t

t

✲

✻

i1

i2

t

t

t

t

✲

✻

i1

i2

t

t

t

t

✲

✻

i1

i2

t

t

t

t

✲

✻

i1

i2

t

t

t

t

The first five generation-types can be classified by their gradients, as above. There are

two more generation-types, where two of four points reside in the i1-axis. Note that when

detN equals to composite number, we can not classify the generation-types only by their

gradients.

For |p| 6= |q|, we show an example, detN = 6. Then, generation-types are depicted as

follows.

✲

✻

i1

i2

t t t t t t ✲

✻

i1

i2

t

t

t

t

t

t

✲

✻

i1

i2

t

t

t

t

t

t

✲

✻

i1

i2

t

t

t

t

t

t

✲

✻

i1

i2

t

t

t

t

t

t

✲

✻
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These generation-types can be classified by their gradients. The number of generation-types

with two points existing on the i1-axis are three, as shown in the graphs below.

✲
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t

t

t

✲

✻
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t

t

t

t

t

t

While the number of generation-types with three points existing on the i1-axis are two, as

shown in the graphs below.

✲
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Notice that the number of generation-types with |p| points existing on the i1-axis are |q|
types, and vice versa. Thus, we can classify all the generation-types by their gradients and

the number of the points existing on the i1-axis.

We can straightforwardly apply the above argument to the case with detN =

pqr, pqrs, . . .. Accordingly, we would demonstrate that the number of generation-types

is given as the sum of divisors of detN = n.

B More about flavor symmetries in three-generation models: aligned

generation-types

It is shown that there exists ∆(27) or Z
(C)
3 ×Z ′

3 (∆(54) or S3×Z ′
3) as the flavor symmetries

in the case with aligned generation-types. In this appendix, some other configurations of

magnetic fluxes for g = 3 and the resultant flavor symmetries are analyzed. These results

are enumerated in table 8 and 9.

C Flavor symmetries in four-generation models

We study the flavor symmetries for g = 4, i.e., Z
(C)
4 and (Z4 × Z ′

4) ⋊ Z
(C)
4 with non-

vanishing Wilson-lines or D4 and (Z4 × Z ′
4)⋊D4 without Wilson-lines, depending on the

zero-mode degeneracies, the combination of generation-types and the existence of non-

vanishing Wilson-lines. In the following, we assume the vanishing Wilson-lines in the

expressions of Yukawa couplings. First, we consider the configuration of magnetic fluxes,

which is given as

Nab =

(

−2 −2

0 2

)

, Nca =

(

6 4

4 2

)

, Nbc =

(

−4 −2

−4 −4

)

. (C.1)

Then, the labels of zero-modes are given by

~iab,0 =

(

0

0

)

, ~iab,1 =

(

0

1/2

)

, ~iab,2 =

(

1/2

0

)

, ~iab,3 =

(

1/2

1/2

)

, (C.2)

~ica,0 =

(

0

0

)

, ~ica,1 =

(

0

1/2

)

, ~ica,2 =

(

1/2

0

)

, ~ica,3 =

(

1/2

1/2

)

. (C.3)

and

~ibc,0 =

(

0

0

)

, ~ibc,1 =

(

1/2

0

)

, ~ibc,2 =

(

1/4

0

)

, ~ibc,3 =

(

3/4

0

)

, (C.4)

~ibc,4 =

(

0

1/2

)

, ~ibc,5 =

(

1/2

1/2

)

, ~ibc,6 =

(

1/4

1/2

)

, ~ibc,7 =

(

3/4

1/2

)

. (C.5)
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# of zero-modes Nab Nca Nbc generation-types flavor symmetry

3-3-3

(

3 3

0 −1

) (

6 −5

−3 2

) (−9 2

3 −1

)

1 Z
(C)
3 × Z ′

3

(

3 3

2 1

) (−1 −2

−1 1

) (−2 −1

−1 −2

)

2 Z
(C)
3 × Z ′

3

(−1 0

−1 3

) (

5 −3

−6 3

) (−4 3

7 −6

)

4 Z
(C)
3 × Z ′

3

3-3-6

(

0 −1

−3 −1

) (

3 3

6 5

) (−3 −2

−3 −4

)

1 Z
(C)
3 × Z ′

3

(

3 −4

0 −1

) (

6 5

3 2

) (−9 −1

−3 −1

)

1 ∆(27)
(

5 2

4 1

) (

2 −1

−3 0

) (−7 −1

−1 −1

)

3 Z
(C)
3 × Z ′

3

(−1 −1

−2 1

) (

5 2

4 1

) (−4 −1

−2 −2

)

3 ∆(27)
(

3 6

2 3

) (

0 −3

−1 0

) (−3 −3

−1 −3

)

4 Z
(C)
3 × Z ′

3

(

5 −3

−1 0

) (−1 0

−1 3

) (−4 3

2 −3

)

4 ∆(27)

3-3-9

(

0 1

3 5

) (

3 0

0 −1

) (−3 −1

−3 −4

)

1 Z
(C)
3 × Z ′

3

(

3 3

5 4

) (

4 −1

1 −1

) (−7 −2

−6 −3

)

2 Z
(C)
3 × Z ′

3

(

0 −3

−1 5

) (

5 −4

−2 1

) (−5 7

3 −6

)

3 Z
(C)
3 × Z ′

3

(

3 3

4 3

) (−1 0

−3 3

) (−2 −3

−1 −6

)

4 Z
(C)
3 × Z ′

3

3-3-12

(

3 5

3 4

) (

3 −3

0 −1

) (−6 −2

−3 −3

)

1 Z
(C)
3 × Z ′

3

(

3 3

5 4

) (

1 −1

−3 0

) (−4 −2

−2 −4

)

2 Z
(C)
3 × Z ′

3

(

3 −3

−5 4

) (

1 1

3 0

) (−4 2

2 −4

)

3 Z
(C)
3 × Z ′

3

(

0 3

1 3

) (

4 −3

−1 0

) (−4 0

0 −3

)

4 Z
(C)
3 × Z ′

3

Table 8. The configurations of magnetic fluxes and flavor symmetries. Flavor symmetries are

written in the case with non-vanishing Wilson-lines.

This is exactly the case with aligned generation-types. Then, Yukawa couplings are written

as

λ~iab~ica~ibc,0 =λ~iab~ica~ibc,1 =















λ0 0 0 0

0 0 0 λ1

0 0 λ0 0

0 λ1 0 0















, λ~iab~ica~ibc,2 =λ~iab~ica~ibc,3 =















0 0 λ1 0

0 λ0 0 0

λ1 0 0 0

0 0 0 λ0















,

(C.6)
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# of zero-modes Nab Nca Nbc generation-types flavor symmetry

3-6-6

(

3 −5

−3 4

) (

3 3

0 −2

) (

−6 2

3 −2

)

1 Z
(C)
3 × Z ′

3

(

3 3

5 4

) (

−1 −2

−3 0

) (

−2 −1

−2 −4

)

2 Z
(C)
3 × Z ′

3

(

3 −3

−5 4

) (

−1 2

3 0

) (

−2 1

2 −4

)

3 Z
(C)
3 × Z ′

3

(

3 −3

−1 0

) (

−1 3

1 3

) (

−2 0

0 −3

)

4 Z
(C)
3 × Z ′

3

3-6-9

(

3 4

0 −1

) (

3 −5

−3 3

) (

−6 1

3 −2

)

1 Z
(C)
3 × Z ′

3

(

0 1

3 4

) (

3 −1

−3 −1

) (

−3 0

0 −3

)

1 ∆(27)

(

1 −1

0 3

) (

5 −2

−3 0

) (

−4 1

3 −3

)

2 Z
(C)
3 × Z ′

3

(

7 2

5 1

) (

−2 −1

−4 1

) (

−5 −1

−1 −2

)

2 ∆(27)

(

1 1

3 0

) (

5 −4

−4 2

) (

−6 3

1 −2

)

3 Z
(C)
3 × Z ′

3

(

−1 −1

2 5

) (

4 −2

−5 1

) (

−3 3

3 −6

)

3 ∆(27)

(

−1 0

−4 3

) (

3 3

5 3

) (

−2 −3

−1 −6

)

4 Z
(C)
3 × Z ′

3

(

1 −3

−2 3

) (

2 3

2 0

) (

−3 0

0 −3

)

4 ∆(27)

Table 9. The configurations of magnetic fluxes and flavor symmetries. Flavor symmetries are

written in the case with non-vanishing Wilson-lines.

λ~iab~ica~ibc,4 =λ~iab~ica~ibc,5 =















0 0 0 λ2

λ3 0 0 0

0 λ2 0 0

0 0 λ3 0















, λ~iab~ica~ibc,6 =λ~iab~ica~ibc,7 =















0 λ3 0 0

0 0 λ2 0

0 0 0 λ3

λ2 0 0 0















.

(C.7)

Thus, there do exist the symmetries under the three Z4 generators, i.e., Z, Z ′ and C in

these Yukawa couplings, and therefore we obtain (Z4 × Z ′
4) ⋊ Z

(C)
4 with non-vanishing

Wilson-lines or (Z4 × Z ′
4)⋊ (Z

(C)
4 ⋊ Z2) with vanishing Wilson-lines.

Next, the magnetic fluxes

Nab =

(

4 4

5 4

)

, Nca =

(

−1 0

−1 4

)

, Nbc =

(

−3 −4

−4 −8

)

, (C.8)
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lead to the following aligned generation-types:

~iab,0 =

(

0

0

)

, ~iab,1 =

(

0

1/4

)

, ~iab,2 =

(

0

1/2

)

, ~iab,3 =

(

0

3/4

)

, (C.9)

~ica,0 =

(

0

0

)

, ~ica,1 =

(

0

1/4

)

, ~ica,2 =

(

0

1/2

)

, ~ica,3 =

(

0

3/4

)

, (C.10)

and

~ibc,0 =

(

0

0

)

, ~ibc,1 =

(

0

1/2

)

, ~ibc,2 =

(

1/2

0

)

, ~ibc,3 =

(

1/2

1/2

)

, (C.11)

~ibc,4 =

(

0

1/4

)

, ~ibc,5 =

(

0

3/4

)

, ~ibc,6 =

(

1/2

1/4

)

, ~ibc,7 =

(

1/2

3/4

)

. (C.12)

Then, the selection rule does not rule out any coupling, namely, Yukawa couplings have all

non-vanishing elements, which are written as

λ~iab~ica~iab,0 =















λ0 λ1 λ4 λ1

λ3 λ2 λ3 λ7

λ8 λ6 λ5 λ6

λ3 λ7 λ3 λ2















, λ~iab~ica~iab,1 =















λ5 λ6 λ8 λ6

λ3 λ2 λ3 λ7

λ4 λ1 λ0 λ1

λ3 λ7 λ3 λ2















, (C.13)

λ~iab~ica~iab,2 =















λ9 λ10 λ13 λ10

λ12 λ11 λ12 λ16

λ17 λ15 λ14 λ15

λ12 λ16 λ12 λ11















, λ~iab~ica~iab,3 =















λ14 λ15 λ17 λ15

λ12 λ11 λ12 λ16

λ13 λ10 λ9 λ10

λ12 λ16 λ12 λ11















, (C.14)

λ~iab~ica~iab,4 =















λ2 λ3 λ7 λ3

λ6 λ5 λ6 λ8

λ7 λ3 λ2 λ3

λ1 λ4 λ1 λ0















, λ~iab~ica~iab,5 =















λ2 λ3 λ7 λ3

λ1 λ0 λ1 λ4

λ7 λ3 λ2 λ3

λ6 λ8 λ6 λ5















, (C.15)

λ~iab~ica~iab,6 =















λ11 λ12 λ16 λ12

λ15 λ14 λ15 λ17

λ16 λ12 λ11 λ12

λ10 λ13 λ10 λ9















, λ~iab~ica~iab,7 =















λ11 λ12 λ16 λ12

λ10 λ9 λ10 λ13

λ16 λ12 λ11 λ12

λ15 λ17 λ15 λ14















, (C.16)

where values of λn (n = 0, 1, . . . , 17) are different from each other. These Yukawa cou-

plings do not allow the invariance under the Z4 transformation Z, and therefore the flavor

symmetry is Z
(C)
4 , or D4 with the existence of non-vanishing Wilson-lines.

Finally, we consider the configuration of fluxes

Nab =

(

5 −1

1 −1

)

, Nca =

(

0 −1

−4 3

)

, Nbc =

(

−5 2

3 −2

)

, (C.17)
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which lead to the not-aligned generation-types, i.e.,

~iab,0 =

(

0

0

)

, ~iab,1 =

(

1/4

1/4

)

, ~iab,2 =

(

1/2

1/3

)

, ~iab,3 =

(

3/4

3/4

)

, (C.18)

~ica,0 =

(

0

0

)

, ~ica,1 =

(

1/4

0

)

, ~ica,2 =

(

1/2

0

)

, ~ica,3 =

(

3/4

0

)

, (C.19)

~ibc,0 =

(

0

0

)

, ~ibc,1 =

(

0

1/2

)

, ~ibc,2 =

(

1/2

1/4

)

, ~ibc,3 =

(

1/2

3/4

)

, (C.20)

and Yukawa couplings are given by

λ~iab~ica~iab,0 =















λ0 0 0 0

0 0 0 λ1

0 0 λ2 0

0 λ1 0 0















, λ~iab~ica~iab,1 =















0 0 λ2 0

0 λ1 0 0

λ0 0 0 0

0 0 0 λ1















, (C.21)

λ~iab~ica~iab,2 =















0 λ1 0 0

λ4 0 0 0

0 0 0 λ1

0 0 λ3 0















, λ~iab~ica~iab,3 =















0 0 0 λ1

0 0 λ3 0

0 λ1 0 0

λ4 0 0 0















. (C.22)

Therefore, we obtain (Z4 ⋊ Z2) × Z ′
4
∼= D4 × Z ′

4, or Z4 × Z ′
4 with the existence of non-

vanishing Wilson-lines.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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