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Hydrogen desorption properties and decomposition processes of NH;BH3-MAIH, (M = Na, Li)
composites were investigated by using thermogravimetry-differential thermal analysis (TG-

DTA-MS), powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy
(FTIR) analyses. We prepared the composites by ball-milling and the mixtures by hand-milling.
The ball-milled composites desorbed 4-5 wt% hydrogen at three exothermic steps below
260 °C. The emissions of by-product gases, NHs;, B,Hgs and BsHgN3;, were effectively
suppressed. From XRD and FTIR analyses, the formation of mixed-metal (Na(Li), Al)
amidoborane phase was suggested. Very different results were obtained using hand-milling.
They showed only one exothermic reaction at 80-90 °C. The emission of by-product gases was
not suppressed. By comparing the differences between ball-milled composites and hand-milled
mixtures, the importance of mixed-metal amidoborane in this system was proposed.

1. Introduction

Ammonia borane (NH;BH;, AB) is considered as one of the most
promising hydrogen storage materials because of its high hydrogen
capacity (19.6 wt%, 0.145 kg L™ and relatively low
dehydrogenation temperature.® Nevertheless, sluggish kinetics below
100 °C, poor recyclability, and emission of by-product gases during
heating (e.g., ammonia (NHs), diborane (B,Hg) and borazine
(BsHgN3)) are disadvantages for practical applications.>* For
instance, release of ammonia causes damage to the fuel cell
performance even at trace levels.’ Also, NH; and B,Hg are toxic
materials for living things. ’

To overcome these disadvantages, several approaches have been
developed, such as infusion of AB in nanoscaffolds,® doping with
transition metals as catalysts,® size and catalytic effects from
graphitic carbon nitride,’® and chemical modification of AB by
replacing one of H atoms with an alkali or alkaline earth metal to
form metal amidoboranes.™* In previous reports, many kinds of AB-
MH (Metal Hydride) composites, such as AB-LiH,**"® AB-NaH,
181718 AB.KH, 12131 AB-MgH,, 2! AB-CaH,,®° AB-LiNH,,2 AB-
LiBH,® and AB-Li;AlHg?* were synthesized and their
dehydrogenation properties were investigated. Recently, we
experimentally verified that AB-MAIH, (M = Na, Li) composites,
which were prepared based on the indicator we proposed, can
suppress the emission of NH;, B,Hg and BsHgN3.®> However, their
decomposition processes have not been clarified yet.

In this study, we investigated the decomposition processes of AB-
MAIH,; (M = Na, Li) composites. We prepared the composites by
ball-milling and the mixtures by hand-milling. We analysed the
hydrogen desorption properties by thermogravimetry-differential
thermal analysis-mass spectrometry (TG-DTA-MS) and performed

This journal is © The Royal Society of Chemistry 2013

phase identification by powder X-ray diffraction (XRD) and Fourier
transform infrared (FTIR) spectroscopy. By comparing the ball-
milled composites and hand-milled mixtures, the decomposition
processes were proposed.

2. Experimental

The starting materials NH3;BH3, NaAlIH,, LiAIH, (purity 97 %,
90 %, 95 %, respectively) were purchased from Sigma Aldrich
Co. Ltd. These materials were used as-received without any
purification. All samples were handled in an argon-filled
glovebox to prevent sample oxidation. AB-MAIH,; (M = Na,
Li) composites were prepared by ball-milling of AB and
MAIH, (M = Na, Li) with a molar ratio of 1 : 1 under a 1.0
MPa H, atmosphere with 300 rpm for 5 min. Ball-milling was
performed by using a planetary ball-mill apparatus (Fritsch
Pulverisette 7) with 20 stainless steel balls (7 mm in diameter)
and 300 mg samples (ball : powder ratio = 70 : 1, by mass). We
also prepared the mixtures by hand-milling. Hand-milled
mixtures were prepared by mixing AB and MAIH, (M = Na,
Li) in an agate mortar in the glove box for 90 seconds. Hand-
milling over 120 seconds is dangerous because it often causes
gas eruptions. The hydrogen desorption properties were
examined by thermal desorption mass spectrometry
measurements (TDMS, ULVAC, BGM-102) combined with
thermogravimetry and differential thermal analysis (TG-DTA,
Bruker, 2000SA). The heating rate was 5 °C min™ and the
helium gas flow rate was 300 mL min®. Powder X-ray
diffraction (XRD, PANalytical, X’Pert Pro with Cu Ko
radiation) measurements were performed to observe the phases
of composites. The samples used for XRD measurements were
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Fig. 1 TG-DTA-MS profiles of ball-milled AB-MAIH, composites; (a) AB-NaAlH, composite, (b) AB-LiAIH, composite. The

heating rate was 5 °C min%,

placed on a greased glass plate in an argon-filled glovebox and
then sealed with a polyimide sheet (Kapton, The Nilaco Co.
Ltd.) to avoid oxidation during measurement. Fourier transform
infrared spectrometry (FT-IR, Spectrum One, Perkin-Elmer)
measurements were performed using a diffuse reflection cell to
investigate chemical bonds in the composites. All the samples
were diluted with KBr to a mass ratio of 5 : 95 (sample : KBr).

3. Results and Discussion

3.1 Hydrogen desorption properties of ball-milled

composites

TG-DTA-MS results of ball-milled AB-MAIH, (M = Na, Li)
composites are shown in Fig. 1. As shown in Fig. 1 (a),
exothermic peaks were observed at 66, 127, and 164 °C in DTA
profile of AB-NaAlH, composite. These peaks correspond to
H, desorption peaks in mass spectra. The composite did not
desorb NHj3;, B,Hg, and B3zHgN; at all within the accuracy of our
apparatus. From TG profile, the amount of desorbed H, was
estimated at 5 wt%. AB-LiAIH, composite showed similar H,
desorption properties as those of AB-NaAlH, composite. Three
exothermic peaks (53, 117 and 131 °C ) were observed in DTA
profile. The composite did not desorb NH3, B,Hg and B3HgNs.
The suppression of by-product gas emission was also found in
AB-LisAlHs composite.?* The amount of desorbed H, was
about 4 wt% for AB-LiAIH, composite. These results were
quite different from the TG-DTA-MS results of AB? or
MAIH,® (M = Na, Li) itself, suggesting the reactions between
AB and MAIH, during milling and heating. Each exothermic
peak of AB-LiAIH, composite was lower than the
corresponding peak of AB-NaAlH, composite. This would be
correlated with the lower thermal stability of LiAlIH, than that
of NaAIH,. %
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3.2 Structure and phase analyses of ball-milled composites

The pressure increase due to H, desorption was observed
during ball-milling, which suggested the mixed-metal
amidoborane formed by the reaction between NaAIH, and AB.
NH3, BsHg, and BsHgN3 desorption was not observed during
ball-milling. One of the driving forces for the reaction would be
the affinity of H® in NaAlH, and H® in NH; of AB. Fig. 2
shows the XRD profiles of ball-milled AB-MAIH,; (M = Na,
Li) composites after heating to each temperature. Broad
diffraction peaks at around 20° and 27° in all profiles originate
from the polyimide film and grease to prevent sample oxidation.
In AB-NaAlH, composite, both AB and NaAlH, phases were
observed at room temperature (RT). Besides, small unknown
peaks appeared in the range of 15 — 30°. These peaks doesn’t
match with any diffraction pattern of decomposition products of
starting materials or mono-metal amidoborane, suggesting the
formation of mixed-metal (Na, Al) amidoborane phase during
ball-milling. After heating to 80 °C, the peak intensities of
mixed-metal amidoborane became stronger compared to RT.
The reaction between AB and NaAlH, proceeded further to
form the mixed-metal amidoborane, resulting in the H,
desorption at 66 °C as shown in Fig. 1 (a). After heating to
140 °C, the mixed-metal amidoborane phase disappeared,
indicating its decomposition. It is interesting that NaBH, phase
appeared at 140 °C. After heating to 170 °C, strong peak
intensities of NaBH, were observed, while most of NaAlH,
phase disappeared. The formation process of NaBH,; will be
described in Section 3.3. Furthermore, a new set of peaks were
observed in the range of 10 — 25°. This could be another mixed-
metal amidoborane formed by the reaction between NazAlHg
and AB. After heating to 260 °C, this unknown phase
decomposed and only NaBH, and Al phases were observed. In
case of AB-LiAIH, composite, similar results were obtained as
AB-NaAlH,; composite. At RT, unknown peaks, which were
considered as mixed-metal (Li, Al) amidoborane, were
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Fig. 2 XRD profiles of ball-milled AB-MAIH, composites after heating to each temperature; (a) AB-NaAlH, composite,

(b) AB-LiAIH, composite.

observed in the range of 10 — 25°. After heating to 170 °C,
further new peaks were observed in the range of 10 — 40°. The
peak positions of AB-LizAlHg composite reported by Xia et al.
were also shown as reference in Fig. 2 (b).%* The positions of
observed peaks were similar to the reference, suggesting the
formation of mixed-metal (Li, Al) amidoborane. Though
borohydride phase was not observed in the XRD profiles of
AB-LiAlIH,; composite, the FTIR spectra showed the strong B-
H stretching. This indicated that the amorphous LiBH, formed
during heating.

Fig. 3 shows the in-situ FTIR spectra of ball-milled AB-
MAIH, (M = Na, Li) composites during heating. The spectra of
AB and MAIH; (M = Na, Li) at RT were also shown as
references. In AB-MAIH; (M = Na, Li) composites, peak
intensities corresponding to N-H stretching between 3150 and
3500 cm™ decreased as temperature increased, whereas peaks
corresponding to B-H stretching between 2200 and 2400 cm™
were remained after heating to 260 °C in both composites. This
phenomenon was also observed in other metal
amidoboranes.”?*#?324 From this result, the formation of
metal amidoborane phase was also suggested.

This journal is © The Royal Society of Chemistry 2012
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Fig. 3 In-situ FTIR spectra of ball-milled AB-MAIH,
composites at each temperature; (a) AB-NaAlH,
composite, (b) AB-LiAIH, composite. AB and MAIH,
(M = Na, Li) spectra was presented for comparison.
The heating rate was 5 °C min™.
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Fig. 4 TG-DTA-MS profiles of hand-milled AB-MAIH, mixtures; (a) AB-NaAlH, mixture, (b) AB-LiAlH, mixture. The heating

rate was 5 °C min..
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Fig. 5 XRD profiles of hand-milled AB-MAIH, mixtures at RT and after heating to 260 °C; (a) AB-NaAIH, mixture, (b) AB-

LiAIH, mixture.

3.3 Comparison with hand-milled mixtures

To clarify the reaction process in detail, we prepared the
mixtures by hand-milling and investigated their H, desorption
properties and phases. Interestingly, results were quite different
from the ball-milled composites. Fig. 4 shows TG-DTA-MS
results of hand-milled AB-MAIH,; (M = Na, Li) mixtures.
Sharp exothermic peaks were observed at 90 °C (AB-NaAlH,)
and 84 °C (AB-LiAlIH,) in DTA profiles. The weight losses of
about 30 wt% (AB-NaAlH,;) and 50 wt% (AB-LiAIH,) were
also observed. From the mass spectra, H,, NHs, B,Hg and
B3;HeN3; peaks were observed in both mixtures. Except this
exothermic reaction, any reactions were not observed up to
260 °C.

Fig. 5 shows the XRD profiles of hand-milled AB-MAIH,
(M = Na, Li) mixtures before and after heating to 260 °C.
Before heating, AB and MAIH, (M = Na, Li) were observed.
Unknown peaks were not observed in the range of 10 — 30°,
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which was different from the results of ball-milled composites.
After heat treatment, NaBH, was observed in the AB-NaAlH,
mixture, which was similar to the results of ball-milled
composites.

The reaction observed in the hand-milled mixture was quite
similar to the solid state reaction of MAIH, (M = Na, Li) with
NH,CI. In this reaction, MCI and [H4Al-NH,4] is formed and

soon [H AI-NH,] decomposes to [HAINH] and H,,
accompanied by a large exothermic heat.?® The previous study
showed diammoniate of diborane (DADB),

[(NH3),BH,]*[BH.]", an ionic isomer of AB, is formed during
the induction period before H, desorption occurs.”® MAIH, was
also confirmed to be an ionic compound, consisting of M*
cation and AlH, anion.’® Considering the reaction between
DADB and NaAlH,, the reaction between BH, anion and Na*
cation would cause the formation of NaBH,. On the one hand,
the reaction between [(NH3),BH,]* and AIH,” would cause the
H, and by-product gas emissions. However, the ball-milled

This journal is © The Royal Society of Chemistry 2012



composites showed the different results from the hand-milled
mixtures. This would be attributed to the formation of mixed-
metal amidoborane. Though this phase was not observed in the
hand-milled mixtures, it was observed in the ball-milled
composites at not only RT but also other temperatures (e.g.,
170 °C). The interaction between metal amidoborane and AB
like LiNH,BH3;-NH3;BH; showed the significantly low H,
desorption temperature.’>*® Similarly, the interaction between
mixed-metal amidoborane and AB could occur in the ball-
milled composites. Mixed-metal amidoborane would stabilize
the reaction between Al-H bonds and N-H bonds, resulting in
the suppression of by-product gases. Thus, it is suggested that
mixed-metal amidoborane plays an important role in
suppressing the emission of by-product gases.

4, Conclusions

AB-MAIH,; (M = Na, Li) composites were successfully
synthesized by ball-milling and their hydrogen desorption
properties and decomposition processes were investigated. The
composites desorbed 4-5 wt% hydrogen below 260 °C,
accompanied by H, desorption. They did not desorb NH3, B,Hg,
and BsHgN; at all. They showed three exothermic reactions
below 260 °C, accompanied by H, desorption. The first
reaction is ascribed to the formation of mixed-metal
amidoborane phase. The second reaction is ascribed to the
decomposition of mixed-metal amidoborane. In the last, the
reactions described as below occurred. One is the reaction
between AB and MAIH, (M = Na, Li), which result in the
formation of MBH, (M = Na, Li). The other is the reaction
between M;AIHg (M = Na, Li) and AB, which result in the
formation of another mixed-metal amidoborane. The hand-
milled mixtures showed quite different results from the ball-
milled composites. They showed only one exothermic reaction
at 80-90 °C. The emission of by-product gases was not
suppressed. By comparing the results of the ball-milled
composites with those of the hand-milled mixtures, the
importance of the mixed-metal amidoborane as a barrier against
by-product gas emission in this system was proposed. These
results would be helpful for clarifying reaction mechanisms of
AB-MH composites.
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