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Abstract

We quantitatively evaluated the effects of risirep ssurface temperature (SST) on coral
bleaching and the uncertainties resulting fromedédhces in global warming projections. To

do so, we used monthly SSTs in thé'2&ntury obtained from 23 climate models under the
Al1B scenario (from the Special Report on EmissiSasnarios) and SST-based indices for
coral bleaching. All of the projections indicatdtht severe bleaching or death of corals will

be common and severe in wide areas of the tropiwadlsubtropical oceans by the middle of
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this century. However, decadal oscillation coulddifiothe exact timing by around £10 years.

Such projections are important for conserving nerimodiversity and designing future

strategies to avoid tropical and subtropical coeatinction. To obtain more reliable

projections and reduce uncertainties, climate nsdébuld be improved by using higher

spatiotemporal resolutions and more realistic lgmal indices should be embedded into

existing models.

Keywords. Biodiversity, Coral bleaching, Future projectiorpkal warming, Rise in water

temperature, Uncertainty
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Introduction

Corals play a fundamental role in primary produti@md habitat formation for numerous

other species in tropical and subtropical oceahas the degradation of coral habitats can

cause fundamental modifications to coastal ecosystalthough small-scale coral bleaching

has been reported for at least 75 years (Yongecads, 1931), since the early 1980s, mass

coral bleaching that might be connected to globalate change has increased rapidly in

frequency, intensity, and geographical extent actaxpical and subtropical oceans (e.g.,

Glynn, 1984, 1988, 1991, 1993; Brown, 1997; HougheBerg, 1999, 2011, Nakano, 2004,

Hough-Guldberg et al., 200Rojima & Okamoto, 2008). The largest such bleaclangnt,

which occurred in 1998, is estimated to have killé&o of the world's corals, primarily in the

western Pacific and Indian Ocean (Wilkinson, 208€C, 2007b)

Coral bleaching is a general response to stressgitGuldberg, 2011). Corals bleach in

response to a range of conditions including suddhamges in light, temperature, and salinity,

the presence of toxins, and microbial infectionie Tcausal relationship between sea

temperature and mass coral bleaching has beenmpm@wgirically (Hough-Guldberg and

Smith, 1989; Glynn & D’Croz, 1990) anich situ (Brown, 1997; Hough-Guldberg, 1999).

Using this causal relationship, mass bleaching tsvesn be predicted with greater than 95%

accuracy from satellite measurements of sea sutéaoperature (SST) anomalies relative to

the maximum summer temperatures (e.g., Goreau &$Jay994; Toscano et al., 2000).
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Global warming and associated increases in seaweateperatures necessitate urgent
precise projections of future coral bleaching arehtd, not only to conserve marine
biodiversity but also to plan for the adaptatiorhafnan societies to these changes. Therefore,
long-term future projections of the effects of gblwarming on corals derived from climate
models, as well as short-term predictions from Is@eSST measurements, are sought as
guidelines to design our adaptive measures to timiaange and global warming.

Using climate model outputs and simplified indite®xpress coral bleaching in response
to future rises in water temperature, several modedtudies have attempted to project the
future probability of coral bleaching and deatlg(eDone et al., 2003; Donner et al., 2005,
2009; Guinotte et al., 2003; Hoegh-Guldberg, 192005, 2011; Meissner et al., 2012,
Sheppard et al., 2003; Tevena et al., 2012; Watydeériet al., 2005; Yara et al., 2009, 2011,
2012; Frieler et al., 2012). These projected resate all qualitatively identical in that both
the frequency and extent of the severe bleachirdgath of corals are expected to intensify.
Particularly, intermittent high water temperaturedyich result in the severe bleaching or
death of present-day corals, will appear perpetualthe latter half of the Z'lcentury (e.g.,
Yara et al., 2009).

However, water temperature is projected differerily climate models with different
spatial resolutions, which may generate unceresnn the results, as discussed by Yara et al.

(2009). Moreover, if the climate scenarios andaediused in projections are all different, it is
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difficult to directly examine the uncertainties @nying such projections. In substance,

through the comparison of 23 different climate nadegputs, Yara et al. (2011) demonstrated

that there exists a high uncertainty in the pr@dgioleward range expansion of coral habitats

in response to rising water temperatures. Therefeeemay need to pay special attention to

evaluating coral bleaching projections based anatiée model water temperature outputs.

In this study, using procedures similar to thoseYafa et al. (2011), we quantitatively

examine the potential effects of SST increasesooal bleaching, as well as the uncertainties

resulting from differences in the SST warming tremndentified among models and locations.

The following section describes the experimentadigie of a SST-based index for coral

bleaching and the SST datasets of the multipleatknmodels used in this study. The third

section includes the results and discussion ofeptigns of coral bleaching and their

uncertaintiesThe last section draws conclusions based on thdtsesd discussion.

M aterials and methods

Simplified index for coral bleaching

The algorithm used with satellite data predicts twaal bleaching starts when a threshold

of 1°C above a region’s mean SST during the warmestth is exceeded for more than 4

weeks (e.g., Goreau & Hayes, 1994; Toscano €2@00Q; Hoegh-Guldberg, 2011; Meissner et

al., 2012). Several previous studies use Degreéinged/eeks (DHW (°C week)), a product
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of exposure intensity (°C above threshold) and wumgin weeks), developed by the National

Oceanic and Atmospheric Administration (NOAA) Cdradef Watch Program (Liu et al.,

2003) to predict coral bleaching events (NOAA Hotsprogram; Hoegh-Guldberg, 1999;

Strong et al., 2000). In this metric, coral bleachis predicted to occur when DHW > 4, a

condition that indicates that the period over whitoh threshold temperature is exceeded by

1°C lasts for more than 4 weeks. Coral bleachirapimes progressively worse at higher

temperatures or for longer periods over which treghold temperature is exceeded. Severe

coral bleaching, which may lead to the extinctibcarals, is predicted to occur by this

metric when DHW > §, that is, the period over whilsh threshold temperature is exceeded

by 1°C (2°C) lasts for more than 8 (4) weeks.

However, most climate model outputs are availakbdatimy rather than weekly, and the

DHW cannot be applied to these outputs. Alternatjtbe Degree Heating Month (DHM (°C

month)) metric, derived from the DHW, has been usadodeling studies that only have

access to monthly SST outputs (e.g., Donner e2@05; Yara et al., 2009; Tevena et al.,

2012). By this metric, coral bleaching is predicte@ccur when DHM > 1, i.e., the threshold

temperature is exceeded by 1°C for more than 1 m&imilarly, severe coral bleaching is

predicted to occur when DHM > 2, i.e., the thredhiteimperature is exceeded by 1°C (2°C)

for more than 2 (1) months. The DHM value has pdaeebe a reasonable proxy for DHW

value (Donner et al., 2005). In this study, DHM wagd as a simplified index for predicting
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coral bleaching, basically following the procedimeoduced by Yara et al. (2009).

Datasets of modeled water temper atures

We used SST outputs provided by multiple climatedehgoprojections from the World
Climate Research Programme’s (WCRP’s) phase 3 efChupled Model Intercomparison
Project (CMIP3; Meehl et al., 2007), which was parfed for the Fourth Assessment Report
of the Intergovernmental Panel on Climate ChanB€Q AR4; IPCC, 2007a). As noted by
Yara et al. (2011), when evaluating projectionsebddasn the SST warming trends obtained
from the CMIP3 models, it is important to consitex uncertainties in the SST trends.

Monthly mean SSTs from 23 CMIP3 model projectiofab{e 1; Yara et al., 2011) were
used and combined with the DHM metric for coraksleing projections. The climate models
have different ocean models with different spatedolutions. For example, the horizontal
resolutions range from 0.2° to 5°. We employed“@@" century climate in coupled models”
(20C3M) simulations from 1980 to 1999 as predidigdhe models using the global warming
projections under the Special Report on Emissiaren&rios (SRES) A1B scenario, which
assumes a future world of rapid economic growtthvaitbalanced emphasis on all energy
sources (IPCC, 2007a).

Values obtained by each model may depart fromehevalues (or the expected values in

future projections), which are referred to as thedel's biases. Such biases need to be
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corrected for the period of discussion, which i9@through 2099 in this study. We corrected
biases in the monthly mean SST in each of the CMiie8els as follows (Yara et al., 2009,
2011): First, we calculated monthly mean SST anm®atluring 2000-2099 (i.e., 1,200
months) under the SRES A1B scenario projectiBflizess) relative to the monthly mean
climatology (the 20-year mean SST from 1980 to 1@9%e 20C3M simulationm).
Second, the SST anomaly for each month during 22088- was added to the observed
monthly mean climatology (18-year mean SST from2188 1999) of the NOAA Optical
Interpolation Sea Surface Temperature (OISST; Regnet al. 2007), interpolated to a
horizontal grid point in each of the CMIP3 modefssst ). The modeled SST discussed in

this study after the bias correction process deedrabove is expressed as:

SST (X, ,t,1) = OISST(X, 1, 1) +{SSTercs s (%, Yot 1) = STy (%, Y110, (1)
Climatology Anomaly

where x and y are the number of longitudinal atituidinal grids in each model, respectively;
t is the number of months, from the starting pahfuture simulations (January 2000) for

SST and SSlgeeus, and the corresponding months from January to mbee for the
monthly mean climatologym and 0OISST ); n is the model number in Table 1.

We calculated the bias-corrected monthly mean 3&h £3 CMIP3 models (Table
1) during 2000-2099. The CMIP3 multi-model SST otgpcombined with the DHM were
also compared to one another. This comparison wdsrmmed for four tropical/subtropical

coral reefs for which coral bleaching has been tooed or projected in previous studies (e.g.,



148 Hoegh-Guldberg, 1999, 2011; Yara et al., 2009),Skkisei Lagoon in the Ryukyu Islands,
149 Japan (124.0°E, 24.3°N); Phuket, Thailand (98.47B°’N); the US Virgin Islands in the
150 Caribbean Sea (64.8°W, 18.3°N); and Heron Islandstrialia, on the Great Barrier Reef
151  (151.9°E, 23.4°S).

152 Although projected results are similar using anydeleutputs, different regional patterns
153  and magnitudes in the SST warming trends of varinadel outputs lead to uncertainties in
154  the projected results. This is because differendetsproject different responses to the same
155  external forcing as a result of their treatmentplofsical processes, numerical schemes, and
156  other factors (e.g., Yara et al., 2011; Brown gt2012).

157 To evaluate quantitatively the uncertainties agsfrom these factors, using the same
158  procedure as that of Yara et al. (2011), we divithedtemporal fluctuation in modeled SST in
159 the warmest months in the ®Tentury into four components: the cIimatoIogﬁc)

160  obtained by averaging model results from 1980 @91 %he global warming trend$STyw),

161  the decadal oscillatioAGSTy), and the interannual fluctuation$ST,). Then, the SST was

162  expressed as the sum of the four temporal compsmariollows:

163 SST (x,y,t,n) = SST, (x,y,t,n) + ASST, (X, y,t,n) + ASST, (X, y,t,n) + ASST, (x,y,t,n), (2)
— Clim anEy_/ Global war min g trend Decadal oscillatio n Interannua | fluctuatio n

164  where x and y are the number of longitudinal anituidinal grids in each model, respectively;
165 tis the number of months, from the starting pahfuture simulations (January 2000) for

166  SST, ASS[,, ASST,, and ASS], and the corresponding month from January to Deeem

167  for the monthly mean climatologySSI. ); n is the model number in Table 1.
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Results

The projected frequency of the severe bleachindeath of corals in the four sites from

the 2000s to 2090s was obtained using SST outputsdll 23 CMIP3 climate models (Table

1) and DHM (Fig. 1). The frequency of the seversabhing or death of corals is projected to

be as low as zero in the 2000s and 2010s, bubjsqted to rise thereafter under the SRES

A1B scenatrio.

In Equation (2) ASSTyw was calculated from the linear trend in monthlyam&ST from

2000 to 2099. ASSTy was the decadal oscillation component generated thoy

ocean-atmosphere climate system, such as the ®Bafiadal Oscillation, and was defined

by a 5-year running mean component of (SS|SI, — ASSTy,). The remainder (SST -
ﬁc — ASSTyw — ASSTy) was regarded as the interannual fluctuation corepb ASST),

but is not discussed here because we considergutdfexted effects of global warming and
the uncertainties with time scales longer than déry in this study. To evaluate the range of
uncertainty derived from the decadal oscillatiore wealculated the standard deviation of
ASSTy and compared the values of the +2 and -2 stargfartion cases (+2SD and -2SD
cases, respectively) to the standard case, whidhfised asgc + ASSTyw. The difference

between the +2SD and -2SD cases indicates thebt®sange in the timing caused by the

decadal oscillation, that is, the uncertainty doedécadal variations in the timing of the

10
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continuous severe bleaching or death of corals.

Uncertainties in the projected effects of SST wagnon the severe bleaching or
death of corals in the four sites were assessedh®rwarmest months in the CMIP3
multi-model projections (Fig. 2). The simulated uks show that the severe bleaching or
death of corals tends to start to occur contingoasllecade earlier or later in the +2SD and
-2SD cases, respectively, compared to the stamadsed The time at which the probability of
the severe bleaching or death of corals will exce@¥ (i.e., predicted by more than half of
the total climate models) for the +2SD and -2SDesas in the 2070s and 2090s in Sekisei
Lagoon, in the 2070s and 2090s in Phuket, in tf2@nd 2090s in the US Virgin Islands,

and in the 2080s and later than the 2090s in Histand, respectively.

Discussion
Projected coral bleaching and its uncertainties

Most of the climate models predict that extremabhhSSTs will appear every year
by the end of the 2century.This means that the severe bleaching or deathrafscwill be a
common and crucial issue over wide areas of trbpicd subtropical oceans by the middle of
this century, and we will need to take action tdigmte and adapt to global warming to avoid
tropical and subtropical coral extinctions. Consig uncertainties in projected results, the

difference in the timing of bleaching occurrencawsen the two cases is 20-40 years,

11



206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

although the timing is different among models, gemostly 10-20 years earlier and later,

respectively, than the timing predicted by the déad case at each site. This means that the

timing could be modified by around +10 years by thecadal oscillation, which is the

uncertainty relevant to global warming.

Limitations of this study

There are, however, a number of limitations thatlléo uncertainties in our model

results. Some result from the insufficient spatigperal resolution of climate models,

whereas others stem from biological indices that tao simplified when combined with

climate models.

The temporal and spatial resolutions of the modgbuts are monthly and ~100 km,

respectively (Table 1). A higher temporal resolnt{eweekly) would project bleaching more

accurately, as shown by favorable predictions baseDHW (e.g., Liu et al., 2003). A higher

spatial resolution is required to reproduce physpracesses in coral habitats in shallow

coastal areas. Moreover, ocean current patternaramaportant factor when considering the

existence of corals in coastal areas because atgents transport coral eggs and larvae. To

reproduce the future distribution of corals undsing water temperature and changing ocean

currents with fewer uncertainties, climate modeithwigher spatial and temporal resolutions

are required. Preferable models for such aims d&cllimate models from phase 5 and later

12
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of the Coupled Model Intercomparison Project anoséhthat embed the Regional Ocean

Modeling System (ROMS), which provide results whigh horizontal resolutions (e.g.,

Gruber et al., 2012).

Although all of these climate models use a setrohitive equations to reproduce

physical processes in the ocean, different mo@eld to have strengths in different areas and

at different spatial scales (Brown et al., 2012)m®& models reproduce the Kuroshio Current

well, whereas others reproduce El Nifio-Southernill@Bon (ENSO) events well (e.g.

Guilyardi et al., 2009; Brown et al., 2012; Ganaghat al., 2013). For example, as oceanic

conditions are controlled strongly by the Kurosl@arrent in the Sekisei Lagoon, coral

bleaching in this oceanic domain is expected toepeoduced well by the MIROC3.2_hires

(Table 1) which has relative strength in reprodgdime Kuroshio Current amongst the climate

models. Yet, each model performance will contiragrtprove in future as climate models are

updated. For example, both frequency and duratibENSO events were reported to be

reproduced better in the updated versions of MIR@/@&tanabe et al., 2010; Sakamoto et al.,

2012).

So far, we have not considered any potential fa&@ thermal adaptation and

acclimatization of corals to warming events. Howevseveral previous studies have

suggested that coral acclimatization and adaptatioextreme warming events will increase

thermal tolerance (e.g., Brown et al., 2002; Clastid Helmuth, 2005; Teneva et al., 2012,

13
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Guest et al.,, 2012; Howells et al., 2012; OliverP&alumbi, 2011; Hoegh-Guldberg et al.,

2007; Csaszar et al., 2010; Maynard et al., 2008wB & Cossins, 2011; Tsuchiya & Fujita,

2009; Frieler et al., 2012), especially in regisabject to more variable temperature regimes.

Such biological responses have the potential ®vialle much of the impact of warming on

corals (e.g., Pandolfi et al., 2011). Recentlyfatprojections of coral bleaching in response

to global warming have included new, simplifiedices of the adaptation of corals to future

global warming (Frieler et al., 2012). We will need further develop new indices of the

adaptability of corals to coral bleaching eventd ambed these into climate models to further

reduce the uncertainties and increase the reproititycof simulated results.

In addition to these emerging insights, we sholdd pay attention to understanding

the responses of coral communities to multiple mmmental stressors (e.g., Manzello, 2010).

Although there is no doubt that high water tempeest are a major cause of coral bleaching,

other factors are also considered to be multiptessors that can cause coral bleaching

simultaneously (e.g., Langdon & Atkinson, 2005; Aoty et al., 2008 and 2011; Meissner et

al., 2012; Yara et al., 2012). For example, expents have shown that exposure to low pH

and the saturation state of the mineral carbonedgoaite caused by ocean acidification,

another global phenomenon, makes corals more pmideaching (Anthony et al., 2011).

Other regional and local factors suchdestructive fishing, overfishing, siltation, polkn,

crown-of-thorns starfish predation, and diseasesipnably co-affect future coral bleaching

14
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events along with global warming. Improving suclolbgical knowledge, along with

improving physical projections as described abowsuld contribute significantly to

projecting the future status of corals.
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Table 1. List of climate models of which monthly aneSSTs are used in this study and the

spatial resolution, ocean model and references

Model (Country)

Spatial resolution
(longitudexlatitudexthe

number of vertical layer)

Ocean model
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1.85°%x1.85°x29
1.4°x0.94°%x29
2°x0.5-2°x31
1.88°x0.84°x31
1.88°x0.84°x31
1.0°x0.33-1.0°x50
1.0°x0.33-1.0°x50
4°x3°%x16
2°%2°x16
5°x4°x13
1.0°x1.0°x33
2°x1-2°x31
2.5°x2°%x33
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0.28°x0.19°x47

. MIROC3.2_medres (Japan)l.4°x0.5-1.4°x43
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ECHO-G (Germany/Korea)2.8°x0.5-2.8°%20
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CCCMA(OGCM3.1) (2),(3).(4)
CCCMA(OGCM3.1) (2),(3).(4)
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Fig. 1. Projected frequency and probability (%)hadh SST that would potentially induce
severe coral bleaching or death in Sekisei Lagootheé Ryukyu Islands, Japan (124.0°E,
24.3°N), Phuket, Thailand (98.4°E, 7.9°N), the UgM Islands in the Caribbean Sea
(64.8°W, 18.3°N), and Heron Island, Australia, be Great Barrier Reef (151.9°E, 23.4°S)
for the 2000s to the 2090s, obtained using theeptegd monthly-mean SSTs of multiple
climate models and a simplified evaluation metricDegree Heating Month (DHM). For
example, a frequency of 1 or 0.5 indicates thahdugh SSTs appear every year or five times
a decade, respectively. The probability of occureenf the severe bleaching or death of
corals for each frequency in each decade is evaluay how many climate models predicted
the occurrence for each frequency in each decamteexample, the predicted probability of
the continuous severe bleaching or death of camathe 2090s is 70% because 16 of 23
climate models predict this with a frequency obf that decade.
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Fig. 2. Cumulative probability (%) distribution dhe timing of the continuous severe

bleaching or death of corals in Sekisei Lagoon,keéhwirgin Islands, and Heron Island for

the -2SD case (in gray bars), standard case (itewdars), and +2SD case (in black bars),

respectively, from the 2000s through the 2090spgected by the climate models. A

probability of 50%, for example, indicates thatfhafl the total climate models project the

timing of the continuous severe bleaching or deattorals.
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