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Abstract 15 

We quantitatively evaluated the effects of rising sea surface temperature (SST) on coral 16 

bleaching and the uncertainties resulting from differences in global warming projections. To 17 

do so, we used monthly SSTs in the 21st century obtained from 23 climate models under the 18 

A1B scenario (from the Special Report on Emissions Scenarios) and SST-based indices for 19 

coral bleaching. All of the projections indicated that severe bleaching or death of corals will 20 

be common and severe in wide areas of the tropical and subtropical oceans by the middle of 21 



 

 2

this century. However, decadal oscillation could modify the exact timing by around ±10 years. 22 

Such projections are important for conserving marine biodiversity and designing future 23 

strategies to avoid tropical and subtropical coral extinction. To obtain more reliable 24 

projections and reduce uncertainties, climate models should be improved by using higher 25 

spatiotemporal resolutions and more realistic biological indices should be embedded into 26 

existing models. 27 
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Introduction 34 

Corals play a fundamental role in primary production and habitat formation for numerous 35 

other species in tropical and subtropical oceans. Thus, the degradation of coral habitats can 36 

cause fundamental modifications to coastal ecosystems. Although small-scale coral bleaching 37 

has been reported for at least 75 years (Yonge & Nichols, 1931), since the early 1980s, mass 38 

coral bleaching that might be connected to global climate change has increased rapidly in 39 

frequency, intensity, and geographical extent across tropical and subtropical oceans (e.g., 40 

Glynn, 1984, 1988, 1991, 1993; Brown, 1997; Hough-Guldberg, 1999, 2011, Nakano, 2004; 41 

Hough-Guldberg et al., 2007; Nojima & Okamoto, 2008). The largest such bleaching event, 42 

which occurred in 1998, is estimated to have killed 16% of the world's corals, primarily in the 43 

western Pacific and Indian Ocean (Wilkinson, 2004; IPCC, 2007b). 44 

Coral bleaching is a general response to stress (Hough-Guldberg, 2011). Corals bleach in 45 

response to a range of conditions including sudden changes in light, temperature, and salinity, 46 

the presence of toxins, and microbial infections. The causal relationship between sea 47 

temperature and mass coral bleaching has been proven empirically (Hough-Guldberg and 48 

Smith, 1989; Glynn & D’Croz, 1990) and in situ (Brown, 1997; Hough-Guldberg, 1999). 49 

Using this causal relationship, mass bleaching events can be predicted with greater than 95% 50 

accuracy from satellite measurements of sea surface temperature (SST) anomalies relative to 51 

the maximum summer temperatures (e.g., Goreau & Hayes, 1994; Toscano et al., 2000). 52 
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Global warming and associated increases in seawater temperatures necessitate urgent 53 

precise projections of future coral bleaching and death, not only to conserve marine 54 

biodiversity but also to plan for the adaptation of human societies to these changes. Therefore, 55 

long-term future projections of the effects of global warming on corals derived from climate 56 

models, as well as short-term predictions from satellite SST measurements, are sought as 57 

guidelines to design our adaptive measures to climate change and global warming. 58 

Using climate model outputs and simplified indices to express coral bleaching in response 59 

to future rises in water temperature, several modeling studies have attempted to project the 60 

future probability of coral bleaching and death (e.g., Done et al., 2003; Donner et al., 2005, 61 

2009; Guinotte et al., 2003; Hoegh-Guldberg, 1999, 2005, 2011; Meissner et al., 2012; 62 

Sheppard et al., 2003; Tevena et al., 2012; Wooldridge et al., 2005; Yara et al., 2009, 2011, 63 

2012; Frieler et al., 2012). These projected results are all qualitatively identical in that both 64 

the frequency and extent of the severe bleaching or death of corals are expected to intensify. 65 

Particularly, intermittent high water temperatures, which result in the severe bleaching or 66 

death of present-day corals, will appear perpetually in the latter half of the 21st century (e.g., 67 

Yara et al., 2009). 68 

However, water temperature is projected differently by climate models with different 69 

spatial resolutions, which may generate uncertainties in the results, as discussed by Yara et al. 70 

(2009). Moreover, if the climate scenarios and indices used in projections are all different, it is 71 
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difficult to directly examine the uncertainties underlying such projections. In substance, 72 

through the comparison of 23 different climate model outputs, Yara et al. (2011) demonstrated 73 

that there exists a high uncertainty in the projected poleward range expansion of coral habitats 74 

in response to rising water temperatures. Therefore, we may need to pay special attention to 75 

evaluating coral bleaching projections based on climate model water temperature outputs. 76 

In this study, using procedures similar to those of Yara et al. (2011), we quantitatively 77 

examine the potential effects of SST increases on coral bleaching, as well as the uncertainties 78 

resulting from differences in the SST warming trends identified among models and locations. 79 

The following section describes the experimental design of a SST-based index for coral 80 

bleaching and the SST datasets of the multiple climate models used in this study. The third 81 

section includes the results and discussion of projections of coral bleaching and their 82 

uncertainties. The last section draws conclusions based on the results and discussion. 83 

 84 

Materials and methods 85 

Simplified index for coral bleaching 86 

The algorithm used with satellite data predicts that coral bleaching starts when a threshold 87 

of 1°C above a region’s mean SST during the warmest month is exceeded for more than 4 88 

weeks (e.g., Goreau & Hayes, 1994; Toscano et al., 2000; Hoegh-Guldberg, 2011; Meissner et 89 

al., 2012). Several previous studies use Degree Heating Weeks (DHW (°C week)), a product 90 
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of exposure intensity (°C above threshold) and duration (in weeks), developed by the National 91 

Oceanic and Atmospheric Administration (NOAA) Coral Reef Watch Program (Liu et al., 92 

2003) to predict coral bleaching events (NOAA Hotspot Program; Hoegh-Guldberg, 1999; 93 

Strong et al., 2000). In this metric, coral bleaching is predicted to occur when DHW > 4, a 94 

condition that indicates that the period over which the threshold temperature is exceeded by 95 

1°C lasts for more than 4 weeks. Coral bleaching becomes progressively worse at higher 96 

temperatures or for longer periods over which the threshold temperature is exceeded. Severe 97 

coral bleaching, which may lead to the extinction of corals, is predicted to occur by this 98 

metric when DHW > 8, that is, the period over which the threshold temperature is exceeded 99 

by 1°C (2°C) lasts for more than 8 (4) weeks. 100 

However, most climate model outputs are available monthly rather than weekly, and the 101 

DHW cannot be applied to these outputs. Alternatively, the Degree Heating Month (DHM (°C 102 

month)) metric, derived from the DHW, has been used in modeling studies that only have 103 

access to monthly SST outputs (e.g., Donner et al., 2005; Yara et al., 2009; Tevena et al., 104 

2012). By this metric, coral bleaching is predicted to occur when DHM > 1, i.e., the threshold 105 

temperature is exceeded by 1°C for more than 1 month. Similarly, severe coral bleaching is 106 

predicted to occur when DHM > 2, i.e., the threshold temperature is exceeded by 1°C (2°C) 107 

for more than 2 (1) months. The DHM value has proved to be a reasonable proxy for DHW 108 

value (Donner et al., 2005). In this study, DHM was used as a simplified index for predicting 109 
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coral bleaching, basically following the procedure introduced by Yara et al. (2009). 110 

 111 

Datasets of modeled water temperatures 112 

We used SST outputs provided by multiple climate model projections from the World 113 

Climate Research Programme’s (WCRP’s) phase 3 of the Coupled Model Intercomparison 114 

Project (CMIP3; Meehl et al., 2007), which was performed for the Fourth Assessment Report 115 

of the Intergovernmental Panel on Climate Change (IPCC AR4; IPCC, 2007a). As noted by 116 

Yara et al. (2011), when evaluating projections based on the SST warming trends obtained 117 

from the CMIP3 models, it is important to consider the uncertainties in the SST trends. 118 

Monthly mean SSTs from 23 CMIP3 model projections (Table 1; Yara et al., 2011) were 119 

used and combined with the DHM metric for coral bleaching projections. The climate models 120 

have different ocean models with different spatial resolutions. For example, the horizontal 121 

resolutions range from 0.2° to 5°. We employed the “20th century climate in coupled models” 122 

(20C3M) simulations from 1980 to 1999 as predicted by the models using the global warming 123 

projections under the Special Report on Emissions Scenarios (SRES) A1B scenario, which 124 

assumes a future world of rapid economic growth with a balanced emphasis on all energy 125 

sources (IPCC, 2007a). 126 

Values obtained by each model may depart from the real values (or the expected values in 127 

future projections), which are referred to as the model’s biases. Such biases need to be 128 
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corrected for the period of discussion, which is 2000 through 2099 in this study. We corrected 129 

biases in the monthly mean SST in each of the CMIP3 models as follows (Yara et al., 2009, 130 

2011): First, we calculated monthly mean SST anomalies during 2000–2099 (i.e., 1,200 131 

months) under the SRES A1B scenario projection ( AiBSRESSST ) relative to the monthly mean 132 

climatology (the 20-year mean SST from 1980 to 1999) of the 20C3M simulation ( MCSST 320 ). 133 

Second, the SST anomaly for each month during 2000–2099 was added to the observed 134 

monthly mean climatology (18-year mean SST from 1982 to 1999) of the NOAA Optical 135 

Interpolation Sea Surface Temperature (OISST; Reynolds et al. 2007), interpolated to a 136 

horizontal grid point in each of the CMIP3 models (OISST ). The modeled SST discussed in 137 

this study after the bias correction process described above is expressed as: 138 

{ },),,,(),,,(),,,(),,,( 3201

loglim
44444444 344444444 2144 344 21

Anomaly

MCBASRES

yatoC

ntyxSSTntyxSSTntyxOISSTntyxSST −+=          (1) 139 

where x and y are the number of longitudinal and latitudinal grids in each model, respectively;  140 

t is the number of months, from the starting point of future simulations (January 2000) for 141 

SST and BASRESSST 1 , and the corresponding months from January to December for the 142 

monthly mean climatology ( MCSST 320  and OISST ); n is the model number in Table 1. 143 

We calculated the bias-corrected monthly mean SST from 23 CMIP3 models (Table 144 

1) during 2000–2099. The CMIP3 multi-model SST outputs combined with the DHM were 145 

also compared to one another. This comparison was performed for four tropical/subtropical 146 

coral reefs for which coral bleaching has been monitored or projected in previous studies (e.g., 147 
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Hoegh-Guldberg, 1999, 2011; Yara et al., 2009), the Sekisei Lagoon in the Ryukyu Islands, 148 

Japan (124.0°E, 24.3°N); Phuket, Thailand (98.4°E, 7.9°N); the US Virgin Islands in the 149 

Caribbean Sea (64.8°W, 18.3°N); and Heron Island, Australia, on the Great Barrier Reef 150 

(151.9°E, 23.4°S). 151 

Although projected results are similar using any model outputs, different regional patterns 152 

and magnitudes in the SST warming trends of various model outputs lead to uncertainties in 153 

the projected results. This is because different models project different responses to the same 154 

external forcing as a result of their treatments of physical processes, numerical schemes, and 155 

other factors (e.g., Yara et al., 2011; Brown et al., 2012). 156 

To evaluate quantitatively the uncertainties arising from these factors, using the same 157 

procedure as that of Yara et al. (2011), we divided the temporal fluctuation in modeled SST in 158 

the warmest months in the 21st century into four components: the climatology ( cSST ) 159 

obtained by averaging model results from 1980 to 1999, the global warming trend (∆SSTgw), 160 

the decadal oscillation (∆SSTd), and the interannual fluctuation (∆SSTi). Then, the SST was 161 

expressed as the sum of the four temporal components as follows: 162 

 ,),,,(),,,(),,,(),,,(),,,(

minloglim
44 344 2144 344 2144 344 2144 344 21

nfluctuatiolInterannua

i

noscillatioDecadal

d

trendgwarGlobal

gw

yatoC

c ntyxSSTntyxSSTntyxSSTntyxSSTntyxSST ∆+∆+∆+=  (2) 163 

where x and y are the number of longitudinal and latitudinal grids in each model, respectively;  164 

t is the number of months, from the starting point of future simulations (January 2000) for 165 

SST, gwSST∆ , dSST∆ , and iSST∆ , and the corresponding month from January to December 166 

for the monthly mean climatology ( cSST ); n is the model number in Table 1. 167 
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 168 

Results 169 

The projected frequency of the severe bleaching or death of corals in the four sites from 170 

the 2000s to 2090s was obtained using SST outputs from all 23 CMIP3 climate models (Table 171 

1) and DHM (Fig. 1). The frequency of the severe bleaching or death of corals is projected to 172 

be as low as zero in the 2000s and 2010s, but is projected to rise thereafter under the SRES 173 

A1B scenario. 174 

In Equation (2), ∆SSTgw was calculated from the linear trend in monthly mean SST from 175 

2000 to 2099. ∆SSTd was the decadal oscillation component generated by the 176 

ocean-atmosphere climate system, such as the Pacific Decadal Oscillation, and was defined 177 

by a 5-year running mean component of (SST – cSST  – ∆SSTgw). The remainder (SST – 178 

cSST  – ∆SSTgw – ∆SSTd) was regarded as the interannual fluctuation component (∆SSTi), 179 

but is not discussed here because we considered the projected effects of global warming and 180 

the uncertainties with time scales longer than 10 years in this study. To evaluate the range of 181 

uncertainty derived from the decadal oscillation, we calculated the standard deviation of 182 

∆SSTd and compared the values of the +2 and -2 standard deviation cases (+2SD and -2SD 183 

cases, respectively) to the standard case, which is defined as cSST + ∆SSTgw. The difference 184 

between the +2SD and -2SD cases indicates the possible range in the timing caused by the 185 

decadal oscillation, that is, the uncertainty due to decadal variations in the timing of the 186 
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continuous severe bleaching or death of corals. 187 

 Uncertainties in the projected effects of SST warming on the severe bleaching or 188 

death of corals in the four sites were assessed for the warmest months in the CMIP3 189 

multi-model projections (Fig. 2). The simulated results show that the severe bleaching or 190 

death of corals tends to start to occur continuously a decade earlier or later in the +2SD and 191 

-2SD cases, respectively, compared to the standard case. The time at which the probability of 192 

the severe bleaching or death of corals will exceed 50% (i.e., predicted by more than half of 193 

the total climate models) for the +2SD and -2SD cases is in the 2070s and 2090s in Sekisei 194 

Lagoon, in the 2070s and 2090s in Phuket, in the 2050s and 2090s in the US Virgin Islands, 195 

and in the 2080s and later than the 2090s in Heron Island, respectively.  196 

 197 

Discussion 198 

Projected coral bleaching and its uncertainties 199 

Most of the climate models predict that extremely high SSTs will appear every year 200 

by the end of the 21st century. This means that the severe bleaching or death of corals will be a 201 

common and crucial issue over wide areas of tropical and subtropical oceans by the middle of 202 

this century, and we will need to take action to mitigate and adapt to global warming to avoid 203 

tropical and subtropical coral extinctions. Considering uncertainties in projected results, the 204 

difference in the timing of bleaching occurrence between the two cases is 20-40 years, 205 
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although the timing is different among models, being mostly 10-20 years earlier and later, 206 

respectively, than the timing predicted by the standard case at each site. This means that the 207 

timing could be modified by around ±10 years by the decadal oscillation, which is the 208 

uncertainty relevant to global warming. 209 

 210 

Limitations of this study 211 

There are, however, a number of limitations that lead to uncertainties in our model 212 

results. Some result from the insufficient spatiotemporal resolution of climate models, 213 

whereas others stem from biological indices that are too simplified when combined with 214 

climate models. 215 

The temporal and spatial resolutions of the model outputs are monthly and ~100 km, 216 

respectively (Table 1). A higher temporal resolution (~weekly) would project bleaching more 217 

accurately, as shown by favorable predictions based on DHW (e.g., Liu et al., 2003). A higher 218 

spatial resolution is required to reproduce physical processes in coral habitats in shallow 219 

coastal areas. Moreover, ocean current patterns are an important factor when considering the 220 

existence of corals in coastal areas because ocean currents transport coral eggs and larvae. To 221 

reproduce the future distribution of corals under rising water temperature and changing ocean 222 

currents with fewer uncertainties, climate models with higher spatial and temporal resolutions 223 

are required. Preferable models for such aims include climate models from phase 5 and later 224 
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of the Coupled Model Intercomparison Project and those that embed the Regional Ocean 225 

Modeling System (ROMS), which provide results with high horizontal resolutions (e.g., 226 

Gruber et al., 2012). 227 

Although all of these climate models use a set of primitive equations to reproduce 228 

physical processes in the ocean, different models tend to have strengths in different areas and 229 

at different spatial scales (Brown et al., 2012). Some models reproduce the Kuroshio Current 230 

well, whereas others reproduce El Niño-Southern Oscillation (ENSO) events well (e.g. 231 

Guilyardi et al., 2009; Brown et al., 2012; Ganachaud et al., 2013). For example, as oceanic 232 

conditions are controlled strongly by the Kuroshio Current in the Sekisei Lagoon, coral 233 

bleaching in this oceanic domain is expected to be reproduced well by the MIROC3.2_hires 234 

(Table 1) which has relative strength in reproducing the Kuroshio Current amongst the climate 235 

models. Yet, each model performance will continue to improve in future as climate models are 236 

updated. For example, both frequency and duration of ENSO events were reported to be 237 

reproduced better in the updated versions of MIROC (Watanabe et al., 2010; Sakamoto et al., 238 

2012). 239 

So far, we have not considered any potential for the thermal adaptation and 240 

acclimatization of corals to warming events. However, several previous studies have 241 

suggested that coral acclimatization and adaptation to extreme warming events will increase 242 

thermal tolerance (e.g., Brown et al., 2002; Castillo & Helmuth, 2005; Teneva et al., 2012; 243 
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Guest et al., 2012; Howells et al., 2012; Oliver & Palumbi, 2011; Hoegh-Guldberg et al., 244 

2007; Csaszar et al., 2010; Maynard et al., 2008; Brown & Cossins, 2011; Tsuchiya & Fujita, 245 

2009; Frieler et al., 2012), especially in regions subject to more variable temperature regimes. 246 

Such biological responses have the potential to alleviate much of the impact of warming on 247 

corals (e.g., Pandolfi et al., 2011). Recently, future projections of coral bleaching in response 248 

to global warming have included new, simplified indices of the adaptation of corals to future 249 

global warming (Frieler et al., 2012). We will need to further develop new indices of the 250 

adaptability of corals to coral bleaching events and embed these into climate models to further 251 

reduce the uncertainties and increase the reproducibility of simulated results. 252 

In addition to these emerging insights, we should also pay attention to understanding 253 

the responses of coral communities to multiple environmental stressors (e.g., Manzello, 2010). 254 

Although there is no doubt that high water temperatures are a major cause of coral bleaching, 255 

other factors are also considered to be multiple stressors that can cause coral bleaching 256 

simultaneously (e.g., Langdon & Atkinson, 2005; Anthony et al., 2008 and 2011; Meissner et 257 

al., 2012; Yara et al., 2012). For example, experiments have shown that exposure to low pH 258 

and the saturation state of the mineral carbonate aragonite caused by ocean acidification, 259 

another global phenomenon, makes corals more prone to bleaching (Anthony et al., 2011). 260 

Other regional and local factors such as destructive fishing, overfishing, siltation, pollution, 261 

crown-of-thorns starfish predation, and diseases presumably co-affect future coral bleaching 262 
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events along with global warming. Improving such biological knowledge, along with 263 

improving physical projections as described above, would contribute significantly to 264 

projecting the future status of corals. 265 
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Table 1. List of climate models of which monthly mean SSTs are used in this study and the 593 

spatial resolution, ocean model and references 594 

Model (Country)  Spatial resolution 

(longitude×latitude×the 

number of vertical layer) 

Ocean model References 

1. BCCR-BCM2.0 (Norway) 1.5°×0.5-1.5°×35 NBRSC-MICOM1.0 (1) 

2. CGCM3.1_T47 (Canada) 1.85°×1.85°×29 CCCMA(OGCM3.1) (2),(3),(4) 

3. CGCM3.1_T63 (Canada) 1.4°×0.94°×29 CCCMA(OGCM3.1) (2),(3),(4) 

4. CNRM-CM3 (France) 2°×0.5-2°×31 OPA8.1 (5),(6) 

5. CSIRO-MK3.0 (Australia) 1.88°×0.84°×31 MOM2.2 (7) 

6. CSIRO-MK3.5 (Australia) 1.88°×0.84°×31 MOM2.2 (7) 

7. GFDL-CM2.0 (USA) 1.0°×0.33-1.0°×50 OM3 (8) 

8. GFDL-CM2.1 (USA) 1.0°×0.33-1.0°×50 OM3.1 (8) 

9. GISS-AOM (USA) 4°×3°×16 AOM 4×3 (9) 

10. GISS-EH (USA) 2°×2°×16 HYCOM (10) 

11. GISS-ER (USA) 5°×4°×13 Russell Ocean (9),(11) 

12. FGOALS-g1.0 (China) 1.0°×1.0°×33 LICOM1.0 (12),(13) 

13. INGV-SXG (Italy) 2°×1-2°×31 OPA 8.2 (5) 

14. INM-CM3.0 (Russia) 2.5°×2°×33 INM-CM3.0 (14),(15) 

15. IPSL-CM4 (France) 2°×1-2°×31 OPA (5) 

16. MIROC3.2_hires (Japan) 0.28°×0.19°×47 COCO3.3 (16) 

17. MIROC3.2_medres (Japan) 1.4°×0.5-1.4°×43 COCO3.3 (16) 

18. ECHO-G (Germany/Korea) 2.8°×0.5-2.8°×20 HOPE-G (17) 

19.ECHAM5-MPI-OM 

(Germany) 

1.5°×1.5°×40 MPI-OM (18),(19) 

20. MRI-CGCM2.3.2 (Japan) 2.5°×0.5-2.0°×23 MRI-CGCM2.3.2a (20),(21),(22) 

21. NCAR-PCM1 (USA) 1-1.13°×0.27-1°×32 POP1.0 (23),(24) 

22. UKMO-HadCM3 (UK) 1.25°×1.25°×20 HadCM3 (25),(26) 

23. UKMO-HadGEM1 (UK) 1.0°×0.3-1.0°×40 HadGEM1 (27) 

References noted here are: (1) www.bcm.uib.no; (2) Flato & Boer (2001); (3) Kim et al. 595 

(2002); (4) Kim et al. (2003); (5) Madec et al. (1998); (6) Salas-Mélia et al. (2005); (7) 596 

Gordon et al. (2002); (8) Gnanadesikan et al. (2006); (9) Russell et al. (1995); (10) Bleck 597 

(2002); (11) Russell et al. (2000); (12) Yongqiang et al. (2002); (13) Yongqiang et al. (2004); 598 

(14) Diansky et al. (2002); (15) Diansky & Volodin (2002); (16) K-1 model developers 599 

(2004); (17) Legutke & Maier-Reimer (1999); (18) Haak et al. (2003); (19) Marsland et al. 600 

(2003); (20) Yukimoto et al. (2001); (21) Yukimoto et al. (2006a); (22) Yukimoto et al. 601 

(2006b); (23) Smith et al. (1995); (24) Washington et al. (2000); (25) Johns et al. (1997); (26) 602 
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Gordon et al. (2000); (27) Johns et al. (2006).603 
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 605 

 606 

Fig. 1. Projected frequency and probability (%) of high SST that would potentially induce 607 

severe coral bleaching or death in Sekisei Lagoon in the Ryukyu Islands, Japan (124.0°E, 608 

24.3°N), Phuket, Thailand (98.4°E, 7.9°N), the US Virgin Islands in the Caribbean Sea 609 

(64.8°W, 18.3°N), and Heron Island, Australia, on the Great Barrier Reef (151.9°E, 23.4°S) 610 

for the 2000s to the 2090s, obtained using the projected monthly-mean SSTs of multiple 611 

climate models and a simplified evaluation metric of Degree Heating Month (DHM). For 612 

example, a frequency of 1 or 0.5 indicates that such high SSTs appear every year or five times 613 

a decade, respectively. The probability of occurrence of the severe bleaching or death of 614 

corals for each frequency in each decade is evaluated by how many climate models predicted 615 

the occurrence for each frequency in each decade. For example, the predicted probability of 616 

the continuous severe bleaching or death of corals in the 2090s is 70% because 16 of 23 617 

climate models predict this with a frequency of 1 for that decade. 618 
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 620 

 621 

Fig. 2. Cumulative probability (%) distribution of the timing of the continuous severe 622 

bleaching or death of corals in Sekisei Lagoon, Phuket, Virgin Islands, and Heron Island for 623 

the -2SD case (in gray bars), standard case (in white bars), and +2SD case (in black bars), 624 

respectively, from the 2000s through the 2090s, as projected by the climate models. A 625 

probability of 50%, for example, indicates that half of the total climate models project the 626 

timing of the continuous severe bleaching or death of corals. 627 


