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Robust Object Detection in Severe Imaging

Conditions Using Co-occurrence Background

Model

Dong Liang, Shun’ichi Kaneko, Manabu Hashimoto, Kenji Iwata, Xinyue Zhao,

and Yutaka Satoh

Abstract

In this study, a spatial-dependent background model for detecting objects is used in severe imaging

conditions. It is robust in the cases of sudden illuminationfluctuation and burst motion background.

More importantly, it is quite sensitive under the cases of underexposure, low-illumination and narrow

dynamic range, all of which are very common phenomenon usinga surveillance camera. The background

model maintains statistical models in the form of multiple pixel pairs with few parameters. Experiments

using several challenging datasets (Heavy Fog, PETS-2001,AIST-INDOOR, and a real surveillance

application) confirm the robust performance in various imaging conditions.

Index Terms

object detection, narrow dynamic range, low-illumination, background modeling, underexposure

I. INTRODUCTION

On the basis of visible spectrum imaging technology, surveillance camera must be the most

widely-used imaging sensing device for public security (Huet al., 2004; Moeslund et al.,
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2006; Iosifidis et al., 2011). Compared with more sophisticated thermal camera and stereo

imaging device (Nalpantidis et al., 2008), its flexibility and low-cost will guarantee a long-

term and extensive utilization. Nevertheless, such video camera itself has several weaknesses

which influence its imaging quality: first, since the frame rate is fixed (typically 30 fps for

NTSC system), the shutter speed cannot delay longer than theframe interval. Thus, under a

low-light condition, the sensor would not keep sufficient exposure, making the intensity of signal

easily submerge into background noise. Second, surveillance task requires large depth of field

(i.e. capture a globally sharp scene), the light-gatheringaperture is relatively small (i.e. large

F-number of aperture), which also leads to underexposure.

On the other hand, detecting object in severe imaging conditions is an essential task to perform

higher-level application, such as video synopsis and indexing (Pritch et al., 2008), person re-

identification (Farenzena et al., 2010; Li et al., 2013), andabnormal events detection (Datta

et al., 2002). Traditional independent pixel-wise models for object detection assume every pixel

as an independent statistic (Kim et al., 2005; Elgammal et al., 2002; Stauffer and Grimson, 1999;

Wren et al., 1997) and then subtract the current frame from a statistic background model. This

kind of method can handle gradual illumination changes by updating the statistical background

models progressively as time goes by. In practice, however,this kind of model update is usually

relatively slow to avoid mistakenly integrating foreground elements into the background model,

making it difficult to adapt to sudden illumination changes and burst motion. To employ not

only an independent statistic of a pixel but also the spatialcorrelation between pixels, a group

of spatial-dependence methods has been proposed (Seki et al., 2003; Toyama et al., 1999; Sheikh

and Shah, 2005; Zhao et al., 2011). Seki et al. (Seki et al., 2003) proposed a co-occurrence-based

block correlation method, according to which the object canbe detected as coarse local blocks.

Toyama et al. (Toyama et al., 1999) proposed a three layers algorithm in which Weiner filters

were employed, and it used region and frame-level information to verify pixel-wise background

model. Nevertheless, this method needs some heuristic scheme so that such a pipeline method

can result in a fragile architecture which may suffer from a domino effect, as an error can

propagate to the subsequent processing stages, especiallyunder various ill-conditions. Sheikh
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et al. (Sheikh and Shah, 2005) used the joint representationof image pixels in local spatial

distribution (proximal pixels) and colour information to built both background and foreground’s

kernel density estimation (KDE) models competitively in a decision framework. This frame work

is suitable for dynamic background (such as ripple), but cannot deal well with illumination

change. Zhao et al. (Zhao et al., 2011) proposed a learning-based approach, which aims to

find high steady difference between pixels to offset the illumination change. Nevertheless, the

presupposed thresholdWG of the intensity difference influences the sensitivity of detection,

as the intensity difference increases, the model becomes less sensitive; without optimizing its

magnitude, the detecting sensitivity will be far from an ideal level. The above methods can

hardly be qualified for robust and accurate object detectionunder severe imaging conditions.

Recently, we have proposed a basic version of a novel spatial-dependence background model

(Liang et al., 2013), called co-occurrence probability-based pixel pairs (CP3), which aims to deal

with sudden illumination variation and burst motion background. Its accurate characteristics make

it operable under several challenging severe imaging conditions. Compared with our earlier work

GAP (Zhao et al., 2011), the proposed method has the following advantages: (1) CP3 employs

a unique parametrized statistical model to describe each pixel-pair’s co-occurrence rather than a

fixed global double-sided threshold for all pixel-pairs in GAP; (2) CP3 derives a self-adaptive

threshold for each target pixel to select better-quality supporting pixels rather than a predefined

threshold in GAP. Compared with some state-of-the-art independent pixel-wise models or spatial-

dependence models, such an accurate background model significantly enhance the robustness of

object detection in severe imaging conditions, e.g. foggy scene, low-light and noise, sudden

illumination change, and narrow dynamic range, which can beobserved in experimental section.

In remainder, Section 2 details CP3 background model; Section 3 details object detection;

Section 4 presents the experiments, Section 5 presents an application and some discussions, and

Section 6 concludes the main contributions of this work.

II. BACKGROUND MODELING

Fundamental definitions of image data as shown in Fig. 1(a): atraining image sequence with a

total ofT images, each image hasU×V pixel positions. DefineP as target pixel at location(u, v),
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and its intensity is denoted as{pt(u, v)}t=1,2,...,T , andQ(u′, v′) as arbitrary pixel with intensity

sequence{qt(u′, v′)}t=1,2,...,T at location(u′, v′). Fig. 1(b) and (c) depict an image sequence and

a vertical section of its intensities over time, from which it is clear that the intensity of a pixel

have simultaneous variation with its neighbouring pixels as time goes by (i.e. spatio-temporal co-

occurrence), especially when sudden illumination variation happens. Note that a spatio-temporal

co-occurring pixel pair depends on not only the position andorientation of the camera, but also

the irregular geometrical shape and inconsistent relativedistance of a physical position pair in

the scene.

A. Co-occurrence character of an arbitrary pixel pair

To further analyse the bivariate statistical property of a pixel pair, the co-occurrence probability

joint histogram of a pixel pair is defined. Thei,jth bin of the joint histogram for an arbitrary

pixel pair (P, Q) in T training images can be expressed as

hPQ(i, j) =

T
∑

t=1

δ(pt, qt, i, j), (1)

whereδ(pt, qt, i, j) = 1 if (pt = i)∩(qt = j) (Kronecker delta). The binshPQ(i, j) corresponding

to i, j ∈ [0, L − 1] represent the co-occurrence probability ofpt = i and qt = j. The joint

histogramhPQ can be written compactly as an ordered array,hPQ = {hPQ(i, j)}L−1
i,j=0, where

L is the number of discrete intensity. We selected a target pixel P , and four pixelsS, W ,

G andR, as arbitrary pixels shown in Fig. 2 (a). The sectionhPQ(i, j) > 0 of co-occurrence

probability joint histograms are illustrated in Fig. 2 (b-e). As shown in Fig. 2 (e), the bins ofhPR

are parallel to the axis diagonal line, i.e. the slope of the regression line ofhPQ approaches to

“1”. Then, the statistical linearity of a pixel pair can reduce the bivariate statistic to a univariate

statistic of the stable intensity difference∆(pt, qt). This type ofQ pixels can be employed

to estimate the intensity of the target pixel. For robust detection, it is necessary to maintain

sufficient number ofQ as supporting pixels, and denoted as{QP
k }k=1,2,...,K. (P, {QP

k }) denotes

co-occurring pixel pairs, which maintain a background model to provide an estimation forP .

Once the true intensity ofP is far from the background model,P would be regarded as an
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abnormal-status/foreground-element.

B. Background model of co-occurring pixel pairs

For eachQP
k , it keeps a bivariate differenceb with P , pt∼N (qt(k) + b, σ2

ε ), whereσ2
ε follows

a normalized distributionε ∼ N (0, σ2
ε). We use this Gaussian function to model the distribution

of a pixel pair rather than a mixture of Gaussian (Stauffer and Grimson, 1999) because we found

that a single Gaussian worked better since the selected pixel pairs keep steady differences except

for noise, the probability density function (PDF) is estimated as follows,

f(∆(pt, qt(k)); b̂, σ̂ε) =
1

σ̂ε

√
2π

exp



−1

2

(

∆(pt, qt(k))− b̂

σ̂ε

)2


 , (2)

where the estimation of noise standard deviationσ̂ε = σpt−qt(k) and the estimation of difference

ε is b̂ = E [pt − qt(k)].

The above two parameterŝσε, b̂ are recorded for the following detection procedure. The

background model is a look-up table (LUT) consisting of{QP
k } ∼ [ u′, v′, σ̂ε, b̂ ]. In the following,

we will introduce how to select such kind of high co-occurring supporting pixels for each target

pixel.

C. Measurement of co-occurring pixel pairs

For an arbitrary pixel pair(P, Q), the one dimensional histograms corresponding to their

marginal distributions is,

hP (i) =
L−1
∑

j=0

hPQ(i, j). (3)

The expectations isE(pt) = 1
T

∑L−1
i=0 ihP (i); its variances isσ2

pt = 1
T

∑L−1
i=0 [i − E(pt)]2hP (i).

The covariance of a(P, Q) pair can be defined as follows:

CP,Q =
1

T

L−1
∑

i=0

L−1
∑

j=0

[i− E(pt)][j − E(qt)]hPQ(i, j). (4)
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In order to measure the independence, Pearson correlation coefficient is utilized:

γ(P, Q) =
CP,Q

σpt · σqt

, (5)

where σpt and σqt are the standard deviations ofP and Q, respectively. Fig. 3 shows four

examples ofγ(P, Q), the black crosses stand for the location ofP , and the red coloured area have

high correlation coefficient values. The examples provide some characteristics of co-occurring

pixel pairs under illumination change: first, the high co-occurring distribute around a target pixel,

not only follow the illumination motion, but also relate to the geometrical characteristic of the

pixels (position, orientation, shape and relative distance); Second, similar intensity value is not a

necessary condition for co-occurring pixel pairs, even a pixel-pair which shows a obvious mean

value of intensity difference, is possible to be a qualified co-occurring pixel pair (e.g. the pixel

on the road with a low intensity value and the one on the grass with a high intensity value).

Except for illumination change, another typical motion pattern in backgrounds is burst motion.

This motion pattern can be described as a moving part of the background following regular

directions but with an irregularly scheduled occurrence. Our proposed method employs the

spatial-dependence of pixel pairs to keep stable differences regardless of the intensity of a single

pixel under any frequency or speed of burst motion. Therefore, a target pixelP can search for

the supporting pixels so long as the intensity changes of thepixel pairs are simultaneous. Fig. 4

shows some examples of various burst motion background, andγ(P, Q) of each target pixel.

For each target pixelP (u, v), U × V − 1 number ofγ(P, Q) need to be calculated at different

locations(u′, v′). ThenQn corresponding to the highestN components in the arrayγ(P, Q(u′,v′))

can be selected as the candidates of preferred supporting pixels, namely

{Qn} = {Q(u′, v′)|γ(P, Q) > γ̌}, n = 1, 2, ..., N, (6)

whereγ̌ is the lower limit for co-occurring pixel pairs.
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D. Adaptive principle for selecting a support pixel

In practice, due to the sensor noise and encoding noise of theimage sequence, anypt and

qt cannot maintain a full co-occurrence relation. Therefore,the lower limit γ̌ for choosing co-

occurring pixel pairs is a key factor we tend to solve. Our approach to formalization is to assume

that, pt = pt
′ + e1 and qt = qt

′ + e2, wherept′ and qt
′ are the intensities without any noise;e1

ande2 are the additive noise independently with each other but with the same density function

N (0, σ2
n). Then we assumept′ and qt

′ are perfect positive linear correlation with a constant

b = ∆(pt
′, qt

′), namelypt′ = qt
′ + b, and analysěγ as a statistic for investigating how large

degradation is raised by the noise. For the computation ofγ(P, Q), dis-concordance betweenpt

andqt can degraděγ value apart from “1”. The correlation coefficientγ̌ can be represented by

the next expression according to Eq. (5)

γ̌ =
C(pt′ + e1, pt

′ + e1 − e2 − b)

σpt′+e1 · σpt′+e1−e2−b
=

σ2
p′t
+ σ2

n

σp′t+e1 · σp′t+e1−e2−b

. (7)

Whenpt′ is independent withe, Eq. (7) is rewritten as

γ̌ =
σ2
p′t
+ σ2

n

[(σ2
p′t
+ σ2

n)(σ
2
p′t
+ 2σ2

n)]
1
2

=

(

σ2
p′t
+ σ2

n

σ2
p′t
+ 2σ2

n

)
1
2

=

(

1 +
σ2
n

σ2
pt

)

−
1
2

, (8)

whereσ2
n can be determined by the noise level of the image sequence. When the noise level is

significantly smaller than the dynamic range ofpt, namelyσ2
pt ≫ σ2

n, Eq. (8) approximate to

“1”, which reveals that with large-scale intensity variation in training dataset, the noise effect

for correlation measurement can be reduced. On the other hand, if the intensity ofP keep

steady which meansσ2
p′t

→ 0, Eq. (8) will level off to 1/
√
2, then the candidate supporting

pixels can be selected from all the stationary elements of the background. From the theoretical

analysis, the lower limit is determined according to the comprehensive conditions combining

with a straightforward computableσ2
pt, andσ2

n, which can be steadily implemented by,

σ2
n =

1

2UV

∑

u

∑

v

[p1 − p2 −
1

UV

∑

u

∑

v

(p1 − p2)]
2, (9)
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wherep1 and p2 are the intensity values at location(u, v) at the first frame and second frame

respectively.

As the spatial distribution ofQn follows irregular patterns, we cannot implement any ordinary

spatial interpolation approach for selecting representative QP
k from Qn. To solve this issue, K-

means clustering is employed to partitionN number ofQn into K clusters, depending on the

nearest clustering centres. With clustering convergence,the pixel closest to thek-th cluster centre

is selected as a uniqueQP
k .

E. Speed-up version

For convenient computation, Eq. (5) can be calculated basedon a correlation matrix instead of

calculating pixel-by-pixel serial processing. The correlation matrix is the covariance matrix of the

standardized random variablesp̃t = pt/σ(pt). First, with a total ofM = U×V pixel positions, the

image sequence can be arranged progressively as a column vector setχM = {p̃t(m)}m=1,2,...,M .

The correlation matrix in the size ofM×M is

Υ (χM) = C(χM , (χM)T ), (10)

whereC(·) is the covariance operation. The correlation matrix is symmetric so that each row

and column of theΥ (χM) is an array ofγ(P, Q) for eachP (u, v). The main issue is the cost of

computation of all the potentials, since they are combinatorially as many asU × V . When we

want a speed-up version, we typically only consider a sparsenumber of well-separated locations,

i.e. we modified Eq. (10) using a hierarchical structure of a covariance-matrixχM , which can

be sampled uniformly using an integral sample intervalΛ, the sub-setχ[M/Λ2] ⊂ χM :

Υ (χ[M/Λ2]) = C(χ[M/Λ2], (χ[M/Λ2])T ). (11)

In order to cover all target pixels, we haveΛ2 hierarchical correlation matricesΥ (χ[M/Λ2]),

χ
[M/Λ2]
λ = {p̃t(ωΛ2 + λ)}ω=1,2,...,[M/Λ2], (12)

whereλ = 1, 2, ..., Λ2.
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III. OBJECT DETECTION

The proposed background model converts an object detectionproblem into a competitive

binary classification problem by comparing the pairs(P, {QP
k }k=1,2,...,K) in turn:

ξ(P ) =
1

K

K
∑

k=1

β(QP
k ), where β(QP

k ) =











1 if |(p− qk)− b̂)| < C · σ̂ε

0 otherwise

, (13)

wherep and qk are the intensity values ofP andQP
k in the current frame respectively, andC

is a constant. For each pixel pair(P, QP
k ), the binary functionβ(QP

k ) for discriminating the

normal/abnormal state betweenP andQP
k can be estimated according to Eq. (13). Target pixel

P in the input image is considered as a foreground pixel only ifξ(P ) < pf , wherepf is a

probability threshold of foreground that can be adjusted toachieve the desired result. Otherwise,

pixel P is considered as a background pixel. That is,

ξ(P |pf) =











foreground if ξ(P ) < pf

background otherwise

. (14)

Note that Eq. (13) uses a bivariate normal distribution of a pixel pair is different from traditional

single Gaussian PDF-based identification function; In a single Gaussian PDF-based method,

an ideal threshold should be changed following the latest intensity variation. For example, the

standard deviation should be larger when the illumination fluctuate becomes more intense. In our

proposed version, the stable difference of a pixel pair provides a normalized observation so that

σ̂ε is only related to the noise acting on each pixel. Therefore,we do not need an adjustableC to

adapt to its changes caused by illumination changes or background motion. The constantC can

be set from 1.0 to 3.0 in order to contain approximately an area of 68-99 % of its probability

density function. In the following experiments, we setC = 2.5. Considering computational

complexity, the procedure used to calculateξ(P ) for every target pixel, is performed by a LUT

for calculatingβ(QP
k ) along with bit counting operations for calculatingξ(P ), both of them are

quite efficient to implement on any conventional hardware.
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IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we tested it on video datasets including a

variety of severe imaging conditions. We compared our algorithm with three methods: (1) GMM

(Stauffer and Grimson, 2000), a standardized method among independent pixel-wise models;

(2) Sheikh’s KDE (Sheikh and Shah, 2005), a representative method among spatial-dependent

models, which is different from the original KDE that it employs KDE over the joint domain

(location) and range (intensity) representation of image pixels; (3) GAP (Zhao et al., 2011),

which is a predecessor and has a homologous methodology withCP3. The parameters for GMM

were set as defaults in OpenCV tool; for Sheikh’s KDE were setaccording to the author’s

recommendations with the size of model [26, 26, 26, 21, 31]; and in GAPWG = 20,WP =

0.9,WH = 0.3.

For quantitative analysis, the three information retrieval measurements,Precision, Recall and

F −measure were utilized,

Precision =
TP

TP + FP
, (15)

and

Recall =
TP

TP + FN
, (16)

whereTP , FP andFN stand for the number of true positive pixels, false positivepixels and

false negative pixels, represent the number of pixels whichare correctly classified as foreground,

the number of pixels which are incorrectly classified as foreground and the number of pixels

which are incorrectly classified as background, respectively. The precision ration (also called

positive predictive value) is the fraction of detected pixels which belong to the foreground, which

can show the detection noise level; Therecall ration (also known as sensitivity) is the fraction

of object’s completeness after detection.F − measure is a weighted harmonic mean of the

Precision andRecall to compute a score,

F =
2Precision · Recall

P recision+Recall
. (17)
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A. Parameters discussion

In our proposed model CP3, there are two important parameters. One is the number of

supporting pixelsK in background modeling step, and the other is probability offoreground

pf in detection step. We synthetically investigate the relationship amongF −measure, K, and

pf , using PETS2001-dataset3-camera1 (Raw data: ftp://ftp.cs.rdg.ac.uk/pub/), shown in Fig. 5.

The highestF −measure at aroundpf = 0.4 to pf = 0.7. The largerK is, the more steady

F −measure will be provided. On the other hand, from the results of Fig. 5, it is reasonable to

assume that selecting more supporting pixels will contribute to a robust result. However, without

loss of generality and saving computing time, the number ofK for a given video scene is set

at K = 20 andpf = 0.5 in the following experiments.

B. Experiments on datasets

First, we use a dataset of traffic sequence with heavy fog (Rawdata: http://i21www.ira.uka.

de/imagesequences/). In which there is only gradually varied illumination but no burst motion

background. The only difficulty is that the heavy fog compresses the dynamic range of the scene.

The detection results are shown in Fig. 6. In the point of viewof sensitivity for detecting object,

GAP method is the weakest one, because of the fixed threshold during the training and testing

phase.

Second, we use PETS2001-dataset3-camera1 (Ground truth: http://limu.ait.kyushu-u.ac.jp/en/

dataset/) to test outdoor severe illumination fluctuation (Fig. 7). The 300 frames ground truth

data allows us to do a long-term quantitative test as shown inFig. 8 (a-c). The sudden partial

illumination variations in this scene can be clearly represented as average intensity change shown

in Fig. 8 (d), after 150 frames, it became a low-light phase with a sudden illumination change.

CP3 has an obviously higherPrecision, Recall andF−measure than any other methods. Even

under low-light and sudden illumination changes phase, themethod is still relatively steady.

The third dataset for testing indoor environment is AIST-INDOOR dataset (http://ssc-lab.com/

∼liang/CP3 project/AIST INDOOR DATASET.rar). It contains several indoor extreme condi-

tions: low contrast illumination, lights sudden on-off andan auto-door rapid open-shut. The
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detection results are shown in Fig. 9. Compared with other approaches, CP3 is insensitive to

sudden illumination and robust to reciprocating motion of the auto door. Note that, when in the

low-contrast frame#1129, the object and the background also have low-contrast between each

other, rather than a easier case#0042.

The averagePrecision, Recall andF −measure of the above three experiments are shown

in Table I.

V. APPLICATIONS AND DISCUSSIONS

We have already integrated CP3 method to an off-line supermarket shopper analysis system

(Etchuya et al., 2013) as its first step for person detection,to make a quite time-consuming trans-

formation of coordinates to be more practicable, i.e. only transform the region of interest (ROI),

rather than the whole scene. In this application, the dataset is a high resolution (1024×1536)

surveillance video, where an optimized implementation of CP3 algorithm for object detection

can process about 20 fps. The runtime is measured on a computer with a Intel Xeon 3.0 GHz

processor. Some detection samples are shown in Fig. 10. In this supermarket scene, there is

a large-area glass window facing the camera’s direction, sothat the scene not only has light

on/off, but also have sunlight change, under which CP3 method can work well. At present, our

method needs to model the background based on an off-line framework. Therefore, two ways

are available for detecting object. One is periodical off-line model a scene and then do on-line

detection alternately; another way is, implementing both an off-line modeling and an off-line

detecting, just as such kind of supermarket shopper analysis system. So one possible further work

can be implementing CP3 to model the background on-line for person and object detection.

VI. CONCLUSIONS

In conclusion, CP3 performs robust detection under severe imaging conditions. It determines

stable co-occurring pixel pairs instead of building the parametrized/non-parametrized model for a

single pixel. These pixel pairs are adaptive to capture structural background motion and cope with

local and global illumination changes. As a spatial-dependence method, CP3 does not predefine
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any local operator, subspace or block, but provides an accurate detection criterion even under

weak illumination.

ACKNOWLEDGEMENTS

The authors would like to thank Professor Takayuki Tanaka for his helpful comments. Dong

Liang would like to thank China Scholarship Council (CSC) for its continual support. Xinyue

Zhao is supported by Zhejiang Provincial Natural Science Foundation of China (LQ13F030003).

REFERENCES

Datta, A., Shah, M., da Vitoria Lobo, N., 2002. Person-on-person violence detection in video

data. In: 16th International Conference on Pattern Recognition. Vol. 1. pp. 433–438.

Elgammal, A., Duraiswami, R., Harwood, D., Davis, L. S., 2002. Background and foreground

modeling using nonparametric kernel density estimation for visual surveillance. Proceedings

of the IEEE 90 (7), 1151–1163.

Etchuya, T., Nara, H., Kaneko, S., Li, Y., Miyoshi, M., Fujiyoshi, H., Shishido, K., 2013.

Integration of image and id-pos in iszot for behavior analysis of shoppers. In: 2013

International Symposium on Optomechatronic Technologies(ISOT). pp. 1–9.

Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M., 2010. Person re-identification

by symmetry-driven accumulation of local features. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE, pp. 2360–2367.

Hu, W., Tan, T., Wang, L., Maybank, S., 2004. A survey on visual surveillance of object motion

and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications

and Reviews 34 (3), 334–352.

Iosifidis, A., Mouroutsos, S. G., Gasteratos, A., 2011. A hybrid static/active video surveillance

system. International Journal of Optomechatronics 5 (1), 80–95.

Kim, K., Chalidabhongse, T. H., Harwood, D., Davis, L., 2005. Real-time foreground–

background segmentation using codebook model. Real-time imaging 11 (3), 172–185.

Li, W., Wu, Y., Mukunoki, M., Minoh, M., 2013. Coupled metriclearning for single-shot versus

single-shot person reidentification. Optical Engineering52 (2), 027203.



ROBUST OBJECT DETECTION IN SEVERE IMAGING CONDITIONS 14

Liang, D., Kaneko, S., Hashimoto, M., Iwata, K., Zhao, X., Satoh, Y., 2013. Co-occurrence-

based adaptive background model for robust object detection. In: 10th IEEE International

Conference on Advanced Video and Signal Based Surveillance(AVSS). pp. 401–406.
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(a) (b)

(c)

Fig. 1. (a) Definition of CP3 elementary unit. (b) Using pixels along this line to create visible 2D spatial-temporal image (c).
It is clear that the intensity of a pixel have simultaneous variation with its neighbouring pixels as time goes by, especially when
sudden illumination variation happens. (Dataset: PET2001-dataset3-camera1)
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Fig. 2. (a) One target pixelP and four arbitrary pixelsS, G, W , and R. (b) - (e) The sectionshPQ(i, j) > 0 of four
co-occurrence probability joint histogramshPS , hPG, hPW , andhPR. In (e), the bins ofhPR are parallel to the axis diagonal
line, implying high co-occurrence.

(a) (b) (c) (d)

Fig. 3. Correlation coefficientsγ(P, Q) using PETS2001-dataset3-camera1 dataset. The black crosses stand for the locations
of P , and the red coloured area have high correlation coefficientvalues.
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Fig. 4. Examples of various burst motion. (a) Tree swing. (b)Dynamic horizontal lines of a displayer. (c) Auto-induction
escalator. (d) Speed-adjustable fan. (e) - (h) Correlationcoefficientsγ(P, Q) values of a selected pixel in (a) - (d). The black
crosses stand for the locations ofP , and the red coloured area have high correlation coefficientvalues.
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Fig. 5. The relationship amongF−measure,K, andpf , using PETS2001-dataset3-camera1 dataset. The highestF−measure

at aroundpf = 0.4 to pf = 0.7. The largerK is, the more steadyF −measure will be provided.

Fig. 6. Qualitative comparison of GMM, Sheikh’KDE, GAP, andproposed CP3 method using a dataset of traffic sequence
with heavy fog. The difficulty is that the heavy fog compresses the dynamic range of the scene.

TABLE I
MEAN precision, recall, AND F −measure OF GMM, SHEIKH ’ S KDE, GAP,AND PROPOSEDCP3METHOD USING

HEAVY FOG, PATS2001,AND AIST-INDOOR DATASETS.

Methods Quantitative evaluation Heavy fog PATS2001 AIST-INDOOR Total
Precision 0.614 0.816 0.402 0.611

GMM Recall 0.747 0.311 0.290 0.422
F −measure 0.674 0.450 0.323 0.482
Precision 0.439 0.390 0.374 0.401

Sheikh’s KDE Recall 0.763 0.464 0.517 0.327
F −measure 0.557 0.424 0.306 0.429
Precision 0.847 0.905 0.912 0.888

GAP Recall 0.605 0.539 0.575 0.573
F −measure 0.706 0.676 0.703 0.695
Precision 0.862 0.918 0.922 0.901

Proposed CP3 Recall 0.795 0.836 0.780 0.804
F −measure 0.827 0.875 0.845 0.849
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Fig. 7. Qualitative comparison of GMM, Sheikh’KDE, GAP, andproposed CP3 using PETS2001-dataset3-camera1 dataset
with outdoor severe illumination fluctuation.
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Fig. 8. (a)Precision, (b) Recall and (c)F −measure of CP3, GAP, Sheikh’s KDE and GMM using PETS2001-dataset3-
camera1 dataset. (d) Average intensity over time of 300 testing frames. Even under low-light and sudden illumination changes
phase, CP3 is still relatively steady.
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Fig. 9. Qualitative comparison of GMM, Sheikh’KDE, GAP, andproposed CP3 using AIST-INDOOR dataset. It contains
several indoor extreme conditions: low contrast illumination, lights sudden on-off and an auto-door rapid open-shut.

Fig. 10. Integrating CP3 method to an off-line supermarket shopper analysis system as its first step for person detection. In
this supermarket scene, there is a large-area glass window facing the camera’s direction, so that the scene not only has light
on/off, but also have sunlight change.
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NOMENCLATURE

β(·) binary function
b̂ estimation of difference
C constant of a Gaussian function
C covariance operation

∆(·) intensity difference
e intensity of noise

E(·) mathematical expectation
γ Pearson correlation coefficient
γ̌ lower limit of γ
Υ correlation matrix
h(·) joint histogram of intensity
h(·) a bin of the joint histogram of intensity
K number of supporting pixels
L number of discrete intensity level
Λ integral sample interval
P target pixel
pt intensity of a target pixel
p current intensity of a target pixel
pf probability threshold of foreground
Q arbitrary pixel
q current intensity of a supporting pixel
qt intensity of an arbitrary pixel
QP

k a supporting pixel
σ̂ε estimation of standard deviation of a co-occurring pixel pair
σ2
n variance of noise
T total number of images
t frame number

ξ(·) probability function
χM column vector


