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Robust Object Detection in Severe Imaging
Conditions Using Co-occurrence Background

Model

Dong Liang, Shun’ichi Kaneko, Manabu Hashimoto, Keniji laaXinyue Zhao,

and Yutaka Satoh

Abstract

In this study, a spatial-dependent background model faaliely objects is used in severe imaging
conditions. It is robust in the cases of sudden illuminafiilmctuation and burst motion background.
More importantly, it is quite sensitive under the cases adaraxposure, low-illumination and narrow
dynamic range, all of which are very common phenomenon wssuyveillance camera. The background
model maintains statistical models in the form of multipiegb pairs with few parameters. Experiments
using several challenging datasets (Heavy Fog, PETS-2QEI-INDOOR, and a real surveillance

application) confirm the robust performance in various imggonditions.

Index Terms

object detection, narrow dynamic range, low-illuminatibackground modeling, underexposure

. INTRODUCTION

On the basis of visible spectrum imaging technology, sllaregie camera must be the most

widely-used imaging sensing device for public security (Btual., 2004; Moeslund et al.,
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2006; losifidis et al., 2011). Compared with more sophiséidathermal camera and stereo
imaging device (Nalpantidis et al., 2008), its flexibilityca low-cost will guarantee a long-
term and extensive utilization. Nevertheless, such videmera itself has several weaknesses
which influence its imaging quality: first, since the framderas fixed (typically 30 fps for
NTSC system), the shutter speed cannot delay longer thafrahee interval. Thus, under a
low-light condition, the sensor would not keep sufficienpesure, making the intensity of signal
easily submerge into background noise. Second, survedlaask requires large depth of field
(i.e. capture a globally sharp scene), the light-gathedpgrture is relatively small (i.e. large
F-number of aperture), which also leads to underexposure.

On the other hand, detecting object in severe imaging candiis an essential task to perform
higher-level application, such as video synopsis and imdekPritch et al., 2008), person re-
identification (Farenzena et al., 2010; Li et al., 2013), abtiormal events detection (Datta
et al., 2002). Traditional independent pixel-wise modelsdbject detection assume every pixel
as an independent statistic (Kim et al., 2005; Elgammal.eR@0D2; Stauffer and Grimson, 1999;
Wren et al., 1997) and then subtract the current frame frotatssc background model. This
kind of method can handle gradual illumination changes byatipg the statistical background
models progressively as time goes by. In practice, howdvisrkind of model update is usually
relatively slow to avoid mistakenly integrating foregrauelements into the background model,
making it difficult to adapt to sudden illumination changexl &ourst motion. To employ not
only an independent statistic of a pixel but also the spatatelation between pixels, a group
of spatial-dependence methods has been proposed (Seki22@3; Toyama et al., 1999; Sheikh
and Shah, 2005; Zhao et al., 2011). Seki et al. (Seki et ad3P0froposed a co-occurrence-based
block correlation method, according to which the object bardetected as coarse local blocks.
Toyama et al. (Toyama et al., 1999) proposed a three laygmitidm in which Weiner filters
were employed, and it used region and frame-level inforomattd verify pixel-wise background
model. Nevertheless, this method needs some heuristienscke that such a pipeline method
can result in a fragile architecture which may suffer from aného effect, as an error can

propagate to the subsequent processing stages, espegidily various ill-conditions. Sheikh
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et al. (Sheikh and Shah, 2005) used the joint representatiamage pixels in local spatial
distribution (proximal pixels) and colour information taiti both background and foreground’s
kernel density estimation (KDE) models competitively inexidion framework. This frame work
is suitable for dynamic background (such as ripple), but cahdeal well with illumination
change. Zhao et al. (Zhao et al., 2011) proposed a learrasgebapproach, which aims to
find high steady difference between pixels to offset themilation change. Nevertheless, the
presupposed threshold’; of the intensity difference influences the sensitivity ofteddion,
as the intensity difference increases, the model beconsssskensitive; without optimizing its
magnitude, the detecting sensitivity will be far from anatiéevel. The above methods can
hardly be qualified for robust and accurate object deteatimher severe imaging conditions.
Recently, we have proposed a basic version of a novel sji@@ndence background model
(Liang et al., 2013), called co-occurrence probabilitgdxhpixel pairs (CP3), which aims to deal
with sudden illumination variation and burst motion baakgrd. Its accurate characteristics make
it operable under several challenging severe imaging tiondi Compared with our earlier work
GAP (Zhao et al., 2011), the proposed method has the folgpwohvantages: (1) CP3 employs
a unique parametrized statistical model to describe eaaH-pair's co-occurrence rather than a
fixed global double-sided threshold for all pixel-pairs ilA\g (2) CP3 derives a self-adaptive
threshold for each target pixel to select better-qualifypguting pixels rather than a predefined
threshold in GAP. Compared with some state-of-the-artpedéent pixel-wise models or spatial-
dependence models, such an accurate background modédicsigtly enhance the robustness of
object detection in severe imaging conditions, e.g. fogggne, low-light and noise, sudden
illumination change, and narrow dynamic range, which caoliserved in experimental section.
In remainder, Section 2 details CP3 background model; &&@i details object detection;
Section 4 presents the experiments, Section 5 presentspéinadion and some discussions, and

Section 6 concludes the main contributions of this work.

[I. BACKGROUND MODELING

Fundamental definitions of image data as shown in Fig. 1(&giaing image sequence with a

total of 7" images, each image h&s< V' pixel positions. Defing as target pixel at locatiofu, v),
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and its intensity is denoted g9:(u,v)}i—12..7, andQ(v’,v") as arbitrary pixel with intensity

sequencg g (u',v") }+=12. r at location(v’, v"). Fig. 1(b) and (c) depict an image sequence and
a vertical section of its intensities over time, from whi¢hsi clear that the intensity of a pixel
have simultaneous variation with its neighbouring pixalsime goes by (i.e. spatio-temporal co-
occurrence), especially when sudden illumination vasratiappens. Note that a spatio-temporal
co-occurring pixel pair depends on not only the position aridntation of the camera, but also
the irregular geometrical shape and inconsistent relatisence of a physical position pair in

the scene.

A. Co-occurrence character of an arbitrary pixel pair

To further analyse the bivariate statistical property ob@lpair, the co-occurrence probability
joint histogram of a pixel pair is defined. Thigth bin of the joint histogram for an arbitrary
pixel pair (P, @) in T training images can be expressed as

T

hea(i,5) = Y 0(pe @i, ), (1)

t=1
whered(p:, qi,4,j) = 1if (pr = i)N (¢ = j) (Kronecker delta). The binsp (i, j) corresponding
to i,j € [0,L — 1] represent the co-occurrence probability;6f= ¢ and ¢, = j. The joint

L=1 where

histogramhp, can be written compactly as an ordered arfay, = {hprq(i,j)};=0

L is the number of discrete intensity. We selected a targesl pix, and four pixelsS, W,

G and R, as arbitrary pixels shown in Fig. 2 (a). The sectios, (i, j) > 0 of co-occurrence
probability joint histograms are illustrated in Fig. 2 (p-As shown in Fig. 2 (e), the bins é&fpr
are parallel to the axis diagonal line, i.e. the slope of #mression line ok approaches to
“1”. Then, the statistical linearity of a pixel pair can reduthe bivariate statistic to a univariate
statistic of the stable intensity differenc&(p;,q;). This type of @ pixels can be employed
to estimate the intensity of the target pixel. For robusked#bn, it is necessary to maintain
co-occurring pixel pairs, which maintain a background mddeprovide an estimation foP.

Once the true intensity oP is far from the background model; would be regarded as an
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abnormal-status/foreground-element.

B. Background model of co-occurring pixel pairs

For eachQy, it keeps a bivariate differendewith P, p,~N (¢, + b, 02), whereo? follows
a normalized distribution ~ N (0, 02). We use this Gaussian function to model the distribution
of a pixel pair rather than a mixture of Gaussian (Stauffel @nmson, 1999) because we found
that a single Gaussian worked better since the selectetigaiks keep steady differences except

for noise, the probability density function (PDF) is esttethas follows,

~ 2
» 1 L ( Ape, Qt(k)) —b
f(Ape, qery); b, 62) = Emexp ~3 ( 5. , (2)

where the estimation of noise standard deviation= o, and the estimation of difference

The above two parameters, b are recorded for the following detection procedure. The

—di(k)

background model is a look-up table (LUT) consistind '} ~ [/, v/, 6., b]. In the following,
we will introduce how to select such kind of high co-occugrisupporting pixels for each target

pixel.

C. Measurement of co-occurring pixel pairs

For an arbitrary pixel paifP, @), the one dimensional histograms corresponding to their

marginal distributions is,

L—1
i) = hpq(i,j). (3)
j=0

The expectations i€ (p;) = 7 LS~ Nihp(i); its variances w2, = 530 [0 — E(p)]hp(i).

The covariance of &P, () pair can be defined as follows:

~
—
~
[y

1
T

7

Cro = [0 = E(p)]lj — E(a)lhpelis 4). (4)

1§

o
<.

I

o
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In order to measure the independence, Pearson correlaigfficeent is utilized:

Crag
= ! 5
L ()

where o, and o, are the standard deviations &f and (), respectively. Fig. 3 shows four
examples ofyp, (), the black crosses stand for the locationhfand the red coloured area have
high correlation coefficient values. The examples proviome characteristics of co-occurring
pixel pairs under illumination change: first, the high c@areing distribute around a target pixel,
not only follow the illumination motion, but also relate thet geometrical characteristic of the
pixels (position, orientation, shape and relative distdn8econd, similar intensity value is not a
necessary condition for co-occurring pixel pairs, evenxalppair which shows a obvious mean
value of intensity difference, is possible to be a qualifieeoccurring pixel pair (e.g. the pixel
on the road with a low intensity value and the one on the gra#is avhigh intensity value).

Except for illumination change, another typical motiontpat in backgrounds is burst motion.
This motion pattern can be described as a moving part of tlskgbaund following regular
directions but with an irregularly scheduled occurrencer @roposed method employs the
spatial-dependence of pixel pairs to keep stable diffexemegardless of the intensity of a single
pixel under any frequency or speed of burst motion. Theegfartarget pixelP can search for
the supporting pixels so long as the intensity changes opiked pairs are simultaneous. Fig. 4
shows some examples of various burst motion background;yand, of each target pixel.

For each target pixeP(u,v), U x V — 1 number ofyp o) need to be calculated at different
locations(w’, v"). Then@),, corresponding to the highest components in the arrayp, g )

can be selected as the candidates of preferred supportiets pnamely

{@n} ={QW )y, @) > 7} n=1,2,., N, (6)

where¥ is the lower limit for co-occurring pixel pairs.
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D. Adaptive principle for selecting a support pixel

In practice, due to the sensor noise and encoding noise oirtage sequence, any and
¢; cannot maintain a full co-occurrence relation. Therefohe, lower limit+ for choosing co-
occurring pixel pairs is a key factor we tend to solve. Ourrapph to formalization is to assume
that,p, = p// +e; andgq; = ¢’ + e2, wherep,’ and¢,” are the intensities without any noiss;
ande,; are the additive noise independently with each other but tieé same density function
N(0,02). Then we assume,’ and ¢,/ are perfect positive linear correlation with a constant
b= A(p/,q/), namelyp, = ¢’ + b, and analysey as a statistic for investigating how large
degradation is raised by the noise. For the computation ©fy), dis-concordance between
and¢; can degrade value apart from “1”. The correlation coefficiefitcan be represented by

the next expression according to Eq. (5)

2 2
’Vy:C(pt’—kel,pt’%—el—eQ—b) _ oy + 0o, -

Op/+e1 " Op/+e1—ea—b Opi+er " Opl+er—ea—b

Whenyp,’ is independent witle, Eq. (7) is rewritten as

1
. 05; + 02 _ ai; + o2 _
(% + 2o, + 2005 \oF, + 203

(8)

/N
—_
+
"Sq'\’ ‘ ko
N——
ol

whereo? can be determined by the noise level of the image sequencen\tiie noise level is
significantly smaller than the dynamic range 9f namelycrf,t > o2, EqQ. (8) approximate to
“1”, which reveals that with large-scale intensity vartiin training dataset, the noise effect
for correlation measurement can be reduced. On the othet, hathe intensity of P keep
steady which meams}‘f),5 — 0, Eq. (8) will level off to 1/4/2, then the candidate supporting
pixels can be selected from all the stationary elements ebtickground. From the theoretical
analysis, the lower limit is determined according to the poghensive conditions combining

with a straightforward computableﬁt, anda?, which can be steadily implemented by,

crfl = ﬁ ;;[pl — P2 — % ;;(pl _pQ)]2v 9)
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wherep; andp, are the intensity values at locatign, v) at the first frame and second frame
respectively.

As the spatial distribution of),, follows irregular patterns, we cannot implement any ordina
spatial interpolation approach for selecting represamtad? from Q,.. To solve this issue, K-
means clustering is employed to partitidh number of(,, into K clusters, depending on the
nearest clustering centres. With clustering convergeahespixel closest to th&-th cluster centre

is selected as a uniqug?’ .

E. Speed-up version

For convenient computation, Eq. (5) can be calculated basexcorrelation matrix instead of
calculating pixel-by-pixel serial processing. The caatigin matrix is the covariance matrix of the
standardized random variablgs= p,/o(p;). First, with a total ofA/ = U x V' pixel positions, the
image sequence can be arranged progressively as a coluron sety" = {p,(m)}m=12.. -

The correlation matrix in the size dff x M is

rix") =cixM, ™)), (10)

where(C(-) is the covariance operation. The correlation matrix is sytnim so that each row
and column of th&(x*) is an array ofy ) for eachP(u,v). The main issue is the cost of
computation of all the potentials, since they are combmaltg as many ad/ x V. When we
want a speed-up version, we typically only consider a spauseber of well-separated locations,
i.e. we modified Eq. (10) using a hierarchical structure obaaciance-matrixy?, which can

be sampled uniformly using an integral sample interéathe sub-sef!™/4% ¢ \M:
T = (M, (M, (11)
In order to cover all target pixels, we hav@ hierarchical correlation matrice§(y*/4%),
AWM = (@A + N Yoz, paayae), (12)

where\ = 1,2, ..., A%
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I1l. OBJECT DETECTION

The proposed background model converts an object deteptioblem into a competitive

.....

1

§(P)= 22D B(QK), where B(QF) = . (13

K 1 iflp—a) —b) <C-6.
k=1 0 otherwise

wherep and g, are the intensity values d? and Q% in the current frame respectively, add
is a constant. For each pixel pdiP, Q7), the binary function3(Q?) for discriminating the
normal/abnormal state betweéhand Q% can be estimated according to Eq. (13). Target pixel
P in the input image is considered as a foreground pixel onlg(#) < pf, wherepf is a
probability threshold of foreground that can be adjusteddioieve the desired result. Otherwise,

pixel P is considered as a background pixel. That is,

foreground if &(P)<pf
§(Plpf) = : (14)

background otherwise
Note that Eqg. (13) uses a bivariate normal distribution obxalgpair is different from traditional
single Gaussian PDF-based identification function; In glsirGaussian PDF-based method,
an ideal threshold should be changed following the latasnsity variation. For example, the
standard deviation should be larger when the illuminatioatflate becomes more intense. In our
proposed version, the stable difference of a pixel pair igies/a normalized observation so that
o. is only related to the noise acting on each pixel. Therefweedo not need an adjustakiléto
adapt to its changes caused by illumination changes or bagkg motion. The constardt can
be set from 1.0 to 3.0 in order to contain approximately ara ae68-99 % of its probability
density function. In the following experiments, we sét= 2.5. Considering computational
complexity, the procedure used to calculaté’) for every target pixel, is performed by a LUT
for calculating3(Q7) along with bit counting operations for calculatiggP), both of them are

quite efficient to implement on any conventional hardware.
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IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, waltiégie video datasets including a
variety of severe imaging conditions. We compared our algorwith three methods: (1) GMM
(Stauffer and Grimson, 2000), a standardized method amdependent pixel-wise models;
(2) Sheikh’s KDE (Sheikh and Shah, 2005), a representatiethod among spatial-dependent
models, which is different from the original KDE that it emops KDE over the joint domain
(location) and range (intensity) representation of imagelp; (3) GAP (Zhao et al., 2011),
which is a predecessor and has a homologous methodologyORiBh The parameters for GMM
were set as defaults in OpenCV tool; for Sheikh’'s KDE were amtording to the author’s
recommendations with the size of model [26, 26, 26, 21, 34fi ;ma GAP W, = 20,Wp =
0.9, Wy = 0.3.

For quantitative analysis, the three information retdenaasurements?recision, Recall and

F — measure were utilized,
TP

Precision = ————— 15
recision = PP (15)
and
TP
ll=———— 16
Reca TPLEN’ (16)

whereT P, FP and F'N stand for the number of true positive pixels, false posipweels and

false negative pixels, represent the number of pixels warehcorrectly classified as foreground,
the number of pixels which are incorrectly classified as dovand and the number of pixels
which are incorrectly classified as background, respdgtividhe precision ration (also called

positive predictive value) is the fraction of detected Bx&hich belong to the foreground, which
can show the detection noise level; Thewall ration (also known as sensitivity) is the fraction
of object’'s completeness after detectian.— measure is a weighted harmonic mean of the

Precision and Recall to compute a score,

B 2Precision - Recall

F (17)

"~ Precision + Recall’
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A. Parameters discussion

In our proposed model CP3, there are two important parase@ne is the number of
supporting pixelsk in background modeling step, and the other is probabilityooéground
pf in detection step. We synthetically investigate the reteghip amongF’ — measure, K, and
pf, using PETS2001-dataset3-cameral (Raw data: ftp:&ftpg.ac.uk/pub/), shown in Fig. 5.
The highestF’ — measure at aroundpf = 0.4 to pf = 0.7. The largerK is, the more steady
F —measure will be provided. On the other hand, from the results of Figit % reasonable to
assume that selecting more supporting pixels will contelia a robust result. However, without
loss of generality and saving computing time, the numbeKoffor a given video scene is set

at K =20 andpf = 0.5 in the following experiments.

B. Experiments on datasets

First, we use a dataset of traffic sequence with heavy fog (Rata: http://i21www.ira.uka.
de/imagesequences/). In which there is only gradually varied illation but no burst motion
background. The only difficulty is that the heavy fog compessthe dynamic range of the scene.
The detection results are shown in Fig. 6. In the point of vidwensitivity for detecting object,
GAP method is the weakest one, because of the fixed threshoioigdthe training and testing
phase.

Second, we use PETS2001-dataset3-cameral (Ground tttgh/limu.ait.kyushu-u.ac.jp/en/
dataset/) to test outdoor severe illumination fluctuatibig.(7). The 300 frames ground truth
data allows us to do a long-term quantitative test as showfign8 (a-c). The sudden patrtial
illumination variations in this scene can be clearly représd as average intensity change shown
in Fig. 8 (d), after 150 frames, it became a low-light phasthwi sudden illumination change.
CP3 has an obviously highétrecision, Recall and F'—measure than any other methods. Even
under low-light and sudden illumination changes phasentb#hod is still relatively steady.

The third dataset for testing indoor environment is AISDIBIOR dataset (http://ssc-lab.com/
~liang/CP3 project/AIST INDOOR_DATASET.rar). It contains several indoor extreme condi-

tions: low contrast illumination, lights sudden on-off aad auto-door rapid open-shut. The
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detection results are shown in Fig. 9. Compared with oth@ragches, CP3 is insensitive to
sudden illumination and robust to reciprocating motionhsff uto door. Note that, when in the
low-contrast frame#1129, the object and the background also have low-contrast lestveach
other, rather than a easier cag6042.

The averagePrecision, Recall and F' — measure of the above three experiments are shown

in Table I.

V. APPLICATIONS AND DISCUSSIONS

We have already integrated CP3 method to an off-line supdehahopper analysis system
(Etchuya et al., 2013) as its first step for person detectomake a quite time-consuming trans-
formation of coordinates to be more practicable, i.e. ordypsform the region of interest (ROI),
rather than the whole scene. In this application, the daiasa high resolution (10241536)
surveillance video, where an optimized implementation 83Glgorithm for object detection
can process about 20 fps. The runtime is measured on a campititea Intel Xeon 3.0 GHz
processor. Some detection samples are shown in Fig. 10.idrstipermarket scene, there is
a large-area glass window facing the camera’s directiorthab the scene not only has light
on/off, but also have sunlight change, under which CP3 nakttam work well. At present, our
method needs to model the background based on an off-limeefxark. Therefore, two ways
are available for detecting object. One is periodical ofélmodel a scene and then do on-line
detection alternately; another way is, implementing batho#-line modeling and an off-line
detecting, just as such kind of supermarket shopper alsaystem. So one possible further work

can be implementing CP3 to model the background on-line éosgn and object detection.

VI. CONCLUSIONS

In conclusion, CP3 performs robust detection under seveaging conditions. It determines
stable co-occurring pixel pairs instead of building thegpagetrized/non-parametrized model for a
single pixel. These pixel pairs are adaptive to captureciral background motion and cope with

local and global illumination changes. As a spatial-dejeeicd method, CP3 does not predefine
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any local operator, subspace or block, but provides an atzufetection criterion even under

weak illumination.
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Arbitrary Pixel
U Q(v, V')

Fig. 1. (a) Definition of CP3 elementary unit. (b) Using pxallong this line to create visible 2D spatial-temporal iméc).
It is clear that the intensity of a pixel have simultaneousateon with its neighbouring pixels as time goes by, espgciwhen
sudden illumination variation happens. (Dataset: PET2D{thAset3-cameral)
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Fig. 2. (a) One target pixeP and four arbitrary pixelsS, G, W, and R. (b) - () The sectiongpq(i,5) > 0 of four
co-occurrence probability joint histogramhs-s, hpa, hpw, andhpr. In (e), the bins ol pr are parallel to the axis diagonal

line, implying high co-occurrence.

(b) (d)

Fig. 3. Correlation coefficients p, ) using PETS2001-dataset3-cameral dataset. The blaclesretznd for the locations
of P, and the red coloured area have high correlation coefficialtes.

(e) (® (9) (h)

Fig. 4. Examples of various burst motion. (a) Tree swing. Myhamic horizontal lines of a displayer. (c) Auto-inductio
escalator. (d) Speed-adjustable fan. (e) - (h) Correlatimefficientsy p, ) values of a selected pixel in (a) - (d). The black
crosses stand for the locations Bf and the red coloured area have high correlation coefficiaties.
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Fig. 5. The relationship amonfj—measure, K, andpf, using PETS2001-dataset3-cameral dataset. The hifhesteasure
at aroundpf = 0.4 to pf = 0.7. The largerK is, the more steady’ — measure will be provided.

Raw #152 GMM Sheikh’s KDE GAP

Fig. 6. Qualitative comparison of GMM, Sheikh’KDE, GAP, apdposed CP3 method using a dataset of traffic sequence
with heavy fog. The difficulty is that the heavy fog compresiee dynamic range of the scene.

TABLE |
MEAN precision, recall, AND F' — measure OF GMM, SHEIKH'S KDE, GAP,AND PROPOSEDCP3METHOD USING
HEAVY FOG, PATS2001AND AIST-INDOOR DATASETS.

Methods Quantitative evaluation Heavy fog PATS2001 AISDDOOR Total

Precision 0.614 0.816 0.402 0.611

GMM Recall 0.747 0.311 0.290 0.422

F — measure 0.674 0.450 0.323 0.482

Precision 0.439 0.390 0.374 0.401

Sheikh’'s KDE Recall 0.763 0.464 0.517 0.327
F — measure 0.557 0.424 0.306 0.429

Precision 0.847 0.905 0.912 0.888

GAP Recall 0.605 0.539 0.575 0.573

F — measure 0.706 0.676 0.703 0.695

Precision 0.862 0.918 0.922 0.901

Proposed CP3 Recall 0.795 0.836 0.780 0.804

F — measure 0.827 0.875 0.845 0.849
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Fig. 7. Qualitative comparison of GMM, Sheikh’KDE, GAP, aptoposed CP3 using PETS2001-dataset3-cameral dataset
with outdoor severe illumination fluctuation.



ROBUST OBJECT DETECTION IN SEVERE IMAGING CONDITIONS 19

ir ir
0.8[ 0.8[
n 7 o e d 7 n 7 GmM
806 GMM - . ;DDDDDD: - e H0.6
-t o oo a
L: KDE B . DD @ %DD o o 'r_‘g KDE
3] + o +
9 GAP %-”: D”u 2% . o GAP
Ho.af * cp3 = o G E B 0.4 * cp3
o o v m vV o
. RS =
v o o %Efn oo Z°
@ o o ?a o
L m g . =N L
0.2 © S . %u DD; m O D§¥ 0.2
R s Ty B B =
s D%é' ? Y oW, S
o bed,
0 ‘ ‘ 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Frames overtime Frames overtime

() (b)

ir 150
140
0.8[
> 130
D
o e
0.67] GMM g
g . G 120
5 KDE 8
12]
s * Gap -
o
Fo0.41 * cp3 g 110
b M
[}
% 100
0.2[
90
0 80
0 50 0 50 100 150 200 250 300
Frames overtime Frames overtime

© (d)

Fig. 8. (a)Precision, (b) Recall and (c) F — measure of CP3, GAP, Sheikh’s KDE and GMM using PETS2001-dataset3-
cameral dataset. (d) Average intensity over time of 300ng$tames. Even under low-light and sudden illuminatiormraies
phase, CP3 is still relatively steady.
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Fig. 9. Qualitative comparison of GMM, Sheikh’KDE, GAP, apdoposed CP3 using AIST-INDOOR dataset. It contains
several indoor extreme conditions: low contrast illumioat lights sudden on-off and an auto-door rapid open-shut.

Fig. 10. Integrating CP3 method to an off-line supermarketpper analysis system as its first step for person detedtion
this supermarket scene, there is a large-area glass winalcwgfthe camera’s direction, so that the scene not only igas |
on/off, but also have sunlight change.
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NOMENCLATURE

binary function

estimation of difference

constant of a Gaussian function
covariance operation

intensity difference

intensity of noise

mathematical expectation

Pearson correlation coefficient

lower limit of ~

correlation matrix

joint histogram of intensity

a bin of the joint histogram of intensity
number of supporting pixels

number of discrete intensity level
integral sample interval

target pixel

intensity of a target pixel

current intensity of a target pixel
probability threshold of foreground
arbitrary pixel

current intensity of a supporting pixel
intensity of an arbitrary pixel

a supporting pixel

estimation of standard deviation of a co-occurring pixat [
variance of noise

total number of images
frame number
probability function
column vector

pa
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