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Abstract

Recent studies have demonstrated that the enepyefitability (net energy intake

potential; NEI potential) of a habitat, which idatdated as the gross energy gain from
foraging minus the energy expenditure from swimnahg focal point, may be a useful tool
for predicting the salmonid biomass. The effectasnof the NEI potential should be tested
in various systems. Even if the NEI potential isdated, its predictive accuracy and
transferability could be limited if the cover hattjtwhich is known to be an important

factor for determining salmonid abundance, is moistdered. We tested whether the NEI
potential is effective for predicting the salmobidmass even in a stream with abundant
cover and whether combining the NEI potential aowkc effects can improve the
predictability of fish biomass using a generaliieadar model. Our results demonstrated
that the NEI potential could generally predict fish biomass (percent deviance explained
= 79.9%), and the model that incorporated bot\tBépotential and the cover ratio
improved the predictive accuracy (percent deviang#ained = 88.5%). These results
suggest that energetic profitability can be anatiffe indicator for assessing habitat quality
and is relatively transferable to other systemsthfeumore, when cover effects are
considered, the habitat quality is more accuraggyesented; thus, combining the energetic
profitability and the cover effects might improvesttransferability of the assessment across

habitats.
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I ntroduction

Freshwater habitats have been severely degradedrimnys human activities (Behnke
1990; Dynesius and Nilsson 1994), and habitat disgien has played a key role in the
decline of salmonid populations (Gregory and Bis$887). Salmonid populations are
valuable for commercial and recreational fishing aromote the maintenance of stream
ecosystems. Numerous studies have focused on imgshabitat quality to recover and
conserve salmonid populations (see Fausch 198&aseénfeld 2003 for reviews). The
most common approach involves identifying the ptgishabitat features that regulate
salmonid populations. Several models have repreddigh abundance as a function of
these physical habitat variables (Fausch et a8}t $bwever, these models were based on
observational data, which frequently vary amonglgiocations (Inoue et al. 1997). As a
result, models obtained in a particular locatiomtgpically not easily applied to other
systems (Fausch et al. 1988; Bourgeois et al. 1996)

Habitat models have been developed based on fegarpnces for microhabitat
variables, such as the current velocity, depthstate size, and distance from cover at the
focal point, and these models have generally beecessful in assessing habitat quality
under particular conditions (e.g., Urabe and Naked®0; Guay et al. 2000; Maki-Petays et
al. 2002; Guay et al. 2003). However, the prefezdmased approach does not consider prey
availability, which is a factor that significantiffects habitat quality (Cada et al. 1987;
Filbert and Hawkins 1995; Nislow et al. 1998; Gima2000; Imre et al. 2004). Therefore,

the applicability of the preference-based apprdadaither systems with different prey
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productivity is limited (Rosenfeld et al. 2005; $déaki-Petays et al. 2002 for an alternative
view).

An alternative approach that combines both the iphl/babitat and prey availability in
evaluating habitat has emerged from studies fogusmenergetic profitability (Net energy
intake potential; NEI potential) of a habitat, wihis estimated as the gross energy gain
from foraging minus the energy expenditure frommnsming at a focal point using a
bioenergetics model (Fausch 1984; Hughes and B90L These and other studies (Hughes
1992a; Hughes 1992b; Guensch et al. 2001; Hayas 2007; Jenkins and Keeley 2010)
have demonstrated that fish consistently distritthiéenselves in a way that maximizes their
NEI potential (Fausch 1984; Hughes 1992a; Hugh&2iP A direct linkage between the
NEI potential of habitats and the growth rate,iical component of fitness, has also been
indicated (Nislow et al. 1999; Nislow et al. 2000slow et al. 2004; Rosenfeld and Boss
2001; Rosenfeld et al. 2005). From these studiessam hypothesize that a greater
abundance of high-NEI-potential (energetically pedfie) positions in a given area of a
stream may result in a higher fish biomass becthesaumber and/or size of the fish will
be greater.

This relationship might be more robust and traradfler than that reported by
conventional approaches. In fact, recent studiaducted in other regions, where the
environmental background differed greatly from #hosthe original studies, reported that
the NEI potential of a given stretch of stream wlasely correlated with the fish biomass
(Hayes et al. 2007; Jenkins and Keeley 2010; Uedla¢ 2010). Although additional

studies are necessary to validate and refine fireiags, the studies cited here suggest that
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a bioenergetics model would be a significant toolHabitat management.

However, approaches based on the energetic pntifgadDEl potential) of a habitat
are still imperfect for assessing habitat quali#gduse the NEI potential does not consider
the effect of cover on individual fithess. Coven g¢acrease fitness by reducing the
predation mortality (Helfman 1981), providing velyaefuges (Fausch 1993), and
mitigating the competitive interactions among indials at some age classes by visual
isolation (Fausch 1993; Imre et al. 2002). Themeftinie combination of cover effects and
the NEI potential may represent a better approachgsessing habitat quality. In the
present study, we tested whether the NEI poteistieffective for predicting the salmonid
biomass even in a stream with abundant cover amth&hthe combination of the NEI

potential and cover abundance can serve as a pettdictor of habitat quality.

M aterials and methods

Study site

The study was conducted in the Ironnebetsu Streaanfel length of 15.1 km; watershed
area of 38.8 ki), a small tributary of the Musa River in the ShiheRiver watershed,
northern Japan (Fig. 1). The Ironnebetsu Streadonsinated by a pebble and cobble
substrate and broadleaf forest cover in the ripaz@nes. The width of the study reaches
was 2.9 £ 0.85 m (mean £ SD), the depth was 29.8.2 cm, the current velocity was 44.5

*+ 15.8 cm/s, and the bed slope was 0.9 = 0.2%, wiviere generally suitable habitat
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features for stream salmonids. The study reaches meandering channels with pool-riffle
sequences. Undercut banks and accumulated woodig eedye present, particularly at the
outer bends of the reaches. Although masu sal@ocofhynchus masou Brevoort),which
typically become smolt at the age 1+, is the domtimative species in the lronnebetsu
Stream, other salmonid species, such as Dolly Va{8svelinus malma Walbaum),
white-spotted charS leucomaenis Pallas), and rainbow trouD( mykiss Walbaum), are also
present. The biomass of all four of these salmowis used in the present analysis. Fishing
Is strictly prohibited year-round to preserve andance the masu salmon stock in the Musa
Stream drainage, including the Ironnebetsu Stream.

We established four study reaches (200 m in lengttije Ironnebetsu Stream
(Reaches 1-4 in Fig. 1) and selected nine to tanm#l units in each of the study reaches
(riffle: n = 19, pool: n = 19, unit length: 5-10 n'We surveyed fish populations and
measured the physical attributes of each channelloreach reach, drifting invertebrates
were collected at one riffle unit that was consiedieto be representative of the study reach
(see “Drift sampling”). The field surveys were cowcted from late July to early August
2008 during the summer base flow, when the streanpérature and flow regime were

relatively stable.

Measurement of physical variables

We measured the physical parameters that weretedgencalculating the NEI potential of

the study channel units: the current velocity &06ff the depth, the bottom current velocity,
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and the depth [see Table 1 and Equations (1)4@¥ach channel unit, the current velocity
and depth were quantified at five equally spacedtp@at 1 m intervals on transects that
were perpendicular to the flow of the stream (Ba&j. As a result of this procedure,
approximately 1 m x 0.5 m grids were generatethénstudy units. This system’s spatial
resolution for assessing the habitat quality waslgequivalent to the size of the territories
of juvenile stream salmonids (Keeley and McPha88)9 The current velocity was
measured using a portable electromagnetic flow-n{etew-MATE Model 2000;
Marsh-McBirney Inc., Frederick, MD, USA).

We also quantified the cover area in each chanmel\Woody materials, grasses, and
undercut banks (both below the water surface and 4P cm above the water surface)
were defined as cover in the present study. Thee @freach cover feature was calculated by
multiplying the cover length and the average covieith (Fig. 2b) and summing the cover
area. The average cover width was the mean of thictls at 1/4, 1/2, and 3/4 of the cover
length (Fig. 2b). Ultimately, the cover ratio (totaver area: channel unit area) was used for

the data analysis and model construction.

Drift sampling

To estimate the prey density, we collected drifimgertebrates at a riffle in each study reach.
The sampling points were set at riffles characeetizy the average physical conditions
(width, current velocity, and depth) near the cenfeeach study reach. The study reaches

were short (200 m in length), and their surroundingironments were relatively uniform.
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Therefore, we regarded the drift samples as reptathee of each study reach. These samples
were used to calculate the NEI potential for edwmael unit. The drifting invertebrates were
sampled according to the methods of Urabe et @LqR Four drift nets (600m mesh, 25 cm
x 25 cm mouth openings, and 1 m net length) weweyad near the center of the stream flow
for 60 minutes (Fig. 2c¢). The proportions of theatavidths of the four nets to the stream
widths at the sampling points were calculated taficm the efficiency of the drift sampling.
The openings were set to extend more than 3 cmeath@water surface to capture the
floating terrestrial invertebrates. Drifting delysg generally stable during the daytime (e.g.,
Smock 2006; Miyasaka and Nakano 1999). Thus, welahthe drift between 0530 and
0600 h (approximately 1 h after sunrise) and regrttiese samples as representative of the
prey condition in each reach. The water volume \We sieved by the nets was estimated
from the current velocity measured at 60% of thatlilethe total area of the opening below
the water surface, and the collection time. We edsorded the current velocity in front of the
nets at the beginning and end of the collectionc@fapared the velocities to estimate the
filtering efficiency of each net (i.e., the ratibthe velocities at the beginning and end of the
collection). All of the samples were preserved %®ethanol and analyzed in the laboratory.
The invertebrate body lengths were measured undecrascope. The invertebrates were
dried at 55 °C for 24 h and weighed to the neddsing. The prey density for each net was

calculated by dividing the total dry weight by thater volume sieved by the nets.

Fish population survey



The fish were captured in each channel unit usibgckpack electrofishing unit (Model
12A, Smith-Root Inc., Vancouver, WA, USA). The nuenlof each salmonid species in each
channel unit was estimated using the three-passwa&method (Carle and Strub 1978). We
also measured the weights (g) and the fork lengting of the captured fish. The biomass of
each species was calculated from the estimated ewofiish and the mean body weight,
and the sum of the biomass was defined as theltitialass in the unit. Stream salmonids
generally require similar habitats (Bjornn and ReiE991) and partition identical resources
(i.e., habitat capacity) through intra and/or igpecific competition in the sympatric area
(Nakano and Furukawa-Tanaka 1994; Nakano 1995)efdre, the use of the total
salmonid biomass was reasonable to evaluate thsal carrying capacity of the reaches.
Dolly Varden may shift prey from drifting to benthiems in the presence of other
salmonids (Fausch et al. 1997; Nakano et al. 1998®)ever, the effects of such biological
traits on our analysis were likely negligible besaumost of the captured fish were masu

salmon and not Dolly Varden (3.8% of all fish).

Description of the bioenergetics model

The bioenergetics model used to estimate the Nienpial in this study is a simple
cost-benefit foraging model (Table 1). The NEI moie is expressed as the difference
between the gross energy intake (GEI) from the peegurces and the swimming cost (SC)
required to remain at the focal point (Fausch 1884ghes and Dill 1990). The NEI

potential at a given poimt{NEI;) is calculated from the following equations:
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NEIl; = GE} - SG (1)

GEl, = CA Vi, -D-PE-3,600/10 (2)

where CA and Vfy; are the capture (foraging) area @mnd the current velocity (cm/s) at
foraging point, respectively, and D and PE are the prey densig/r(f) and prey energy
content (J/g), respectively, based on the dry wesfithe prey. Because most of the drift
invertebrates belonged to the class Insecta (98%teatotal prey weight), we used 20,189 J/g
(from Cummins and Wuycheck 1971) as the PE valbe.TA shape can be specified by one
of five possible patterns and is dependent on tiemdepth, the current velocity, and the
maximum capture distance (MQRt the focal point (Urabe et al. 2010). The; GAapes and
the MCD definition are presented in Fig. 3. The two b&3g patterns are represented by the

following equations:

CA = n(MCD;)%2+2- 3- (MCD)) (3)
and
CA = n(MCD))? (4)

Equations 3 and 4 correspond to patterns 1 arespectively (Fig. 3). Pattern 1 is used
when the depth is greater than the MCD and thedfistat the bottom. Pattern 3 is used
when fish at 60% depth display a shorter MCD thendistance from the fish to the water
surface and stream bed. Pattern 2 is a semiciratad partially truncated by the stream
surface (Fig. 3a). Pattern 4 is a circle truncétgethe stream bed, and pattern 5 is a circle
truncated by both the water surface and the stiedr(Fig. 3b).

The transected measurement points (see “Measurahphysical variables” in this

section) were regarded as the virtual focal poens, the NEI potential was calculated at each
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focal point (Fig. 2a). The NEI potential was ava@dgn each channel unit and used for the
analysis. We selected the best equation to ca&cthat CAfor each measurement point based
on the relationship between the focal point curkehbcity (Vip,), the foraging point current
velocity (Vig,), the MCIQ, and the depthOf the two current velocities (the current at the
bottom and at 60% of the depth) at each measurgmoantt we specified the slower current
velocity as \j; and the faster velocity asgy. The fork length (FL) and body weight (BW) of
the salmonids, the prey length (PL), and the pensdy (D) obtained from the field surveys
were used to calculate the NETable 1). The FL and BW were defined as the meaad of
the individuals of all salmonid species for eacht.urhe PL and D were defined as the means
of the four sampling nets from each study reachofihe equations or values used to
calculate the NEI potential are presented in Table

To calculate the NEI potential, we assumed thafiieforaged on all of the drifting
prey that passed through the capture area. Basprewious studies that demonstrated that
foraging success can vary with the current veloaitgt foraging distance (Grossman et al.
2002; Hughes et al. 2003; Piccolo et al. 2008),assumption may yield an overestimate of
the NEI potential; thus, the NEI potential valuenfrthe present model is only an estimate.
However, previous studies have demonstrated thdetadhat did not consider the capture
probability effectively estimated fish position et® and abundance (e.g., Hughes and Dill
1990; Guensch et al. 2001; Jenkins and Keeley 2A0d4he et al. 2010). This finding implies
that the calculations using an approximate estirmeteacceptable for a relative comparison of
the NEI potential among sites.

Based on these assumptions and equations, weaiaidiwhe NEI potential for each

10



measurement point, and the average NEI potentialesimated for each unit. In the
calculations of the average NEI potential, negatiaieies were treated as 0 because they are

meaningless for fish.

Data analysis

We built three generalized linear models (GLMs;Wey 2002) with the observed salmonid
biomass as the dependent variable and either th@dt&ntial, the cover ratio, or both as the
independent variable(s) (error distribution, Gaaisslink function, identity). Consequently,
three GLMs (NEI potential, cover ratio, and full deds) were produced. Using these GLMs,
we tested whether the NEI potential effectivelydicted the salmonid biomass even in the
presence of abundant cover and whether considérengover effects contributed to an
improved predictive accuracy of the fish biomassbé et al. (2010) demonstrated that the
relationship between the salmonid biomass and thlepitential was expressed as a power
function, likely due to the density effect. Themefowe adopted the NEI potential as a power
term, and its index varied from 0.0 to 1.0 (oneimat place). Although salmonid abundance
generally increases with cover ratio, excess coay negatively impact the salmonid
biomass by reducing foraging efficiency (Wilzbadlak 1986). Therefore, we adopted the

full model with a quadratic cover term:

Fish biomass = a(NE)+ c(cover§ + d(cover) (5)
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The model was selected using the corrected Akaifarhation Criterion (AlCc) (Burnham
and Anderson 1998) in a best-subset selection guveeBoth the quadratic and linear
terms were incorporated into the cover ratio modéien the models displayed a similar
explanatory powerAAICc < 2), the model with the lowest AICc was s#édecas the best
model. To confirm the fit of the best model, weess®d the percent deviance that could be
explained by the model [100 x (1 - residual deviahoull deviance)] (see Dobson 1999)
and the relationship between the observed andqteedvalues. If the full model was
selected as the best model, we compared#i€c between the models from which either
the NEI potential or the cover ratio was removeddtermine which variable exerted a
greater influence on the prediction. All of thetistécal analyses were performed using the
statistics package R, version 2.10.1 (R FounddtioStatistical Computing, Vienna,

Austria).

Results

The drift sampling efficiencies were high for alltbe nets. The ratio of the current velocity
at the end of the collection period to the curreibcity at the beginning of the period was
0.988 + 0.066 (mean = SD), and the proportion efttital widths of the four nets to the
stream width at each sampling point was relatizelysistent among all reaches (29, 33, 38,
or 43% at each sampling point). These conditioltsvald us to evaluate the abundance of
the drifting prey. The PL and D for each study reeanged from 3.65-4.13 mm and

0.0572-0.0709 mg/frespectively (Tables 1 and 2). The fish biomasged from

12



0.05-43.03 g/rhin each channel unit (Table 2). Masu salmon weeenost abundant fish
captured (93% of all fish), and 97% of them wewe ybung-of-the-year (FL: 27-104 mm).
The mean FL and BW in the study units ranged frgn7-201.0 mm and 0.60-21.91 g,
respectively (Table 1). The cover ratio was 2521#4% (mean = SD), with a range of
0-90.3%, and the estimated NEI potential was 13&88.0 J/h, with a range of 11.2-394.8
J/h (Table 2).

The following full model displayed the lowest Al@ad was selected as the best model
to predict the salmonid biomass (Table 3): fismirgs = 0.46 x (mean NEP- 54 x
(coverf + 60 x (cover). Although the explanatory power wgsivalent for the models
with NEI exponents ranging from 0.3 to 08AICc < 2), the model with an exponent of 0.6
displayed the lowest AlCc. The predictability oftNEI potential model as well as the full
model was generally high. However, the percentatee explained by the full model
(88.5%) was higher than that explained by the N&#éptial model (79.9%) and the values
predicted by the full model exhibited a bettetdithe observed values than the predictions
of the NEI potential model (Fig. 4). The NEI poiahtnodel overestimated the salmonid
biomass in the channel units with a low cover ratibereas it underestimated the biomass
for the units with a high cover ratio (Fig. 4a).eTbest model, which incorporated the cover
factors, improved the estimations (Fig. 4b). WdCc was higher when the cover ratio
parameters were removed from the full mod&ICc = 16.3) than when the NEI potential

was removedAAICc = 14.0).

Discussion
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In agreement with recent studies (Nislow et al.£208ayes et al. 2007; Jenkins and Keeley
2010; Urabe et al. 2010), we demonstrated thag¢nieegetic profitability of the habitat is an
effective basis for estimating salmonid biomasg.[Ba (percent deviance explained =
77.9%)]. This observation suggests that the NEbpidl can be used to effectively evaluate
the habitat quality in our study system, even ttotg environmental conditions at our site
might differ significantly from those in other siad. Previous studies have demonstrated
that fish selectively use a focal point with a higBI potential (Fausch 1984; Hughes and
Dill 1990; Guensch et al. 2001; Jenkins and Keg@}0) and that such positions produce
high individual growth rates (Fausch 1984; Nisldvalk 2000; Rosenfeld et al. 2005).
Growth during the summer strongly affects wintewstal (Hunt 1969; Smith and Griffith
1994) and reproductive population traits, sucthasage at which fish become smolt
(Metcalfe and Thorpe 1990). These findings sugtedtthe NEI potential during the
summer may be a key determinant of the local pajounldevel across various systems.

We also observed that the effect of the cover @tithe fish biomass were stronger
than that of the NEI potential. Consequently, thredgctability of the model was enhanced
by combining the NEI potential and the cover rfffig. 4b (percent deviance explained =
88.5%)]. In general, functions of cover are catemgal into three types: providing shelter
from (1) current velocity and (2) predators andr{@igating the competition intensity
among individuals at some age classes. Cover sradt®v-current-velocity area by
intercepting the fast water current (Nagayama.e2@09). Focal points with a low current

velocity reduce the swimming cost and enhance tbftability of a foraging position
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(Fausch 1993). The positive effects of velocityleon habitat quality have been
evaluated already as the NEI potential. Therefiwejmproved predictive ability of the full
model that combines the NEI potential and the coa®o was likely to be attributed to the
other two effects of cover.

Overhead and lateral cover types are most likefyréwide shelter from terrestrial and
aquatic predators (Helfman 1981; Fausch 1993; Lrictzand Quinn 1995; Spalding et al.
1995), and lateral cover can also visually isolatividuals and reduce the level of
interference (Fausch 1993; Imre et al. 2002). Tleeser functions contribute to an increase
in the availability of energetically profitable fging positions. In the present study, we
observed that when the fish biomass was predicteaywnly the NEI potential, it tended to
be underestimated at reaches with abundant coden\arestimated at reaches with little
cover (Fig. 4a); these estimation errors were reégakldy incorporating cover ratio (Fig. 4b).
When the predation pressure and competitive irtieasnong individuals are higher due to
scarce-cover conditions, fish cannot always usetbgtable position even if it is present,
which likely results in the overestimation of fislkomass by the NEI potential model. In
contrast, the use of the profitable position b fisight be facilitated under the
abundant-cover conditions. Thus, we concludedttifeatover structures could enhance the
carrying capacity via an increase in the availgbof energetically profitable positions for
fish.

Although combining energetic profitability and cowedfects would represent a more
biologically meaningful approach to assessing laalgtiality and thus may be more

transferable across different systems than theesdronal approach, some technical
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problems persist. For example, the fish size imft@s the calculation of the NEI potential
through the estimation error of the MCD. Consedlyeah increased size variation would
decrease the accuracy of the prediction. At outyssite, almost all of the captured fish
were young-of-the-year masu salmon (>90%), andsgstiem assumed that all of the fish in
a channel unit were the same size. However, intyeshlmonid populations often comprise
multiple size (age) classes and species. In additie potential importance of cover among
stream-dwelling salmonids could vary dependinghenfood availability (Wilzbach 1985;
Railsback et al. 2005) and presumably on the iitiensthe predation pressure. These
factors imply that the effect of cover on the fisbmass demonstrated by our model is not
necessarily consistent across all systems. Howeaxepropose that the NEI potential
represents an important indicator for assessingydbéat quality for stream-salmonids
during the summer. Additionally, considering theeoeffects can enhance the
effectiveness of the NEI potential as an indicafdhe salmonid habitat quality in a
particular situation. We believe that this result inelp develop a new method for assessing
the habitat quality that can be extended to themshed scale and transferred across various
systems.

To apply our findings to watershed management jpesstfactors affecting the NEI
potential, such as the size structure of the figmkins and Keeley 2010), prey abundance
(Railsback and Rose 1999), prey availability (Hugbeal. 2003; Hayes et al. 2007; Piccolo
et al. 2008), temperature (Jenkins and Keeley 2Gi®) flow regime (Nislow et al. 2004;
Railsback et al. 2006; Hayes et al. 2007), sholsldl lae considered. To obtain a

comprehensive understanding of the complex effgictisese factors on the NEI potential
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using only our approach would be extremely difficBrocess-based bioenergetics model
(Hayes et al. 2007), which incorporates the effetigriations in spatio-temporal hydraulic
and biological factors on the energetic profitapibf local habitats, could greatly contribute
to the understanding of the combined effects oféhfactors on the habitat quality.

Hydraulic simulation studies, which have been eiygibin PHABSIM studies, can

simulate the depth and velocity in any watershedtions (Beecher et al. 2002; Beecher et
al. 2010) and thus could expand the potential ®fpitocess-based bioenergetic approach. In
addition, combining the existing inventory datéhabitat features (e.g., cover abundance

and river width) with this approach would improve imanagement of watersheds.
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Figure captions

Fig. 1 The locations of the study streams, the sampkaghes, and the drift sampling
stations.

Fig. 2 Measurements and sampling methods. Panel (alyétes a channel unit, including
the points for measuring the physical parameteis Wy, and depth) and for
calculating the NEI potential. Panel (b) illustsatee length and three widths of a
cover feature that were measured for calculatiegcthver area. The arrangement of
the four drift nets in a riffle located near thentar of a study reach is illustrated in
Panel (c).

Fig. 3 The five possible shape patterns for the captiga @A) modified from Urabe et al.
(2010). We hypothesized that if the bottom velogtglower than the water column
velocity, the fish will remain at the bottom (ajherwise, the fish will swim at 60%
of the total depth (b). In pattern 1, the maximuaptare distance (MCD) minus 3 cm
is less than the depth of the stream; thus, thenpaincludes the entire semicircle
centered at the focal point. In pattern 2, in wtitod depth is lower, a portion of the
semicircle is truncated by the stream surfaceeRa8 consists of a complete circle,
pattern 4 is a circle partially truncated by thream bed, and pattern 5 is a circle
partially truncated by both the stream bed anduaier surface.

Fig. 4 The relationship between the biomass of the cagtfish in the channel unit and the

fish biomass estimated by the NEI potential modebfd the full model (b).
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Table 1 Equations and values for calculating the NEI at a measuring point i. The abbreviations are
as follows: SC;, swimming cost (J/h); BW, mean body weight (g); Vs, current velocity at the focal
point (cm/s); MCD;, maximum capture distance (cm); RD;, reaction distance (cm); Vi, current
velocity at the forging point (cm/s); VMAX, maximum swimming speed of the fish (cm/s); PL, mean
prey length (mm); FL, mean fork length (mm); PE, prey energy content (J/g); D, prey density

3\

JAaaYaViaa

Parameter® Units  Equation or value Source

SC, Jh  SC,= 4.18605 - 0.9906 - BWO-784. ¢0.0186Ve:  Fgysch (1984)

MCD; cm MCD, = JRDE — (Vfg,i -RD; / VMAX)? Hughes and Dill (1990)

RD; cm  RD; =12-PL(1— e 02FL) Hughes and Dill (1990)

PE J/g 20189 Cummins and Wuycheck (1971)
VMAX cm/s VMAX=10-FL Winstone et al. (1985)

BW g 0.6-21.91 Field survey data

FL mm 37.7-101.0 Field survey data

PL mm 3.65-4.13 Field survey data

D mg/m°> 0.0572 - 0.0709 Field survey data

#BW and FL are shown as the range of the averages for each channel unit. PL and D are shown as
the range of the representative values for each reach (the average at each sampling point).



Table 2 Prey density, fish biomass, NEI potential, and cover ratio in each channel unit.

Channel Prey density Fish biomass NEI potential  Cover

Reach it (mg/m?) (g/m?) (3/h) ratio (%)

Pool 0.0653 +0.0343 16.56 201.5 +£151.3 4.0
Pool 0.0653 +0.0343 16.67 101.8 +121.4 4.0

Riffle 0.0653 +0.0343 4.89 88.7 £90.0 2.6
Pool 0.0653 +0.0343 22.75 153.6 +51.1 29.1
Riffle 0.0653 +0.0343 4.96 123.8 + 66.5 13.5
Pool 0.0653 +0.0343 18.06 173.7 £ 1426 226
Riffle 0.0653 +0.0343 9.87 44.1 £54.2 32.2
Pool 0.0653 +0.0343 21.91 79.4 +87.5 27.1
Riffle 0.0653 +0.0343 6.93 93.3 +64.9 4.4
Riffle 0.0572 £ 0.0155 0.05 112 £17.6 0.7
Pool 0.0572 £ 0.0155 25.35 145.3 + 83.5 14.2
Riffle 0.0572 £ 0.0155 5.90 36.5 £51.2 2.7

Pool 0.0572 £ 0.0155 43.03 178.7 +96.8 24.5
Riffle 0.0572 £ 0.0155 37.25 130.4 +70.6 31.2

Riffle 0.0572 £ 0.0155 18.45 79.5 +68.5 31.8
Riffle 0.0572 £ 0.0155 33.72 177.3 £99.0 37.4
Riffle 0.0572 £ 0.0155 3.61 101.6 +23.4 0.0
Riffle 0.0572 £ 0.0155 4.04 61.2 +40.2 0.0
Riffle 0.0572 £ 0.0155 23.45 138.4 +60.1 79.4
Pool 0.0676 + 0.0283 7.61 85.8 £99.7 5.2
Pool 0.0676 +0.0283 31.31 176.8 +130.0 27.9
Pool 0.0676 +0.0283 5.16 146 = 89.5 0.0
Riffle 0.0676 + 0.0283 1.34 13.8 +26.0 0.0
Pool 0.0676 +0.0283 28.60 51.9 £+67.3 59.2
Riffle 0.0676 + 0.0283 4.71 79.4 +59.8 0.0
Pool 0.0676 + 0.0283 21.31 2304 +128.0 356
Riffle 0.0676 + 0.0283 1.73 176 £31.9 0.0
Riffle 0.0676 + 0.0283 7.18 75.3 +75.8 34.5

Pool 0.0709 +0.0120 16.66 315.1 £103.7 4.0
Riffle 0.0709 +0.0120 18.93 264.6 +123.8 57.8

Riffle 0.0709 +0.0120 7.37 153.7 +117.3 0.0
Pool 0.0709 +0.0120 26.20 394.8 £188.3 60.8
Pool 0.0709 +0.0120 18.70 124 +160.0 374
Riffle 0.0709 +0.0120 21.34 80.1 £119.1 416

Pool 0.0709 +0.0120 29.53 331.5+145.0 426
Pool 0.0709 +0.0120 25.37 197.2 +123.0 90.3
Pool 0.0709 +0.0120 26.65 205 +129.1 547
Pool 0.0709 +0.0120 20.52 194.2 +66.1 54.3
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Table 3 The results of the AICc from the general
linear model for predicting fish biomass.

Model n AlCc AAICc
NEI + cover 38 262.9 -
cover 38 276.9 14.0

NEI 38 279.1 16.3




