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Foreword

I spent the first year of my PhD working on a completely different research

project whose results I did not include in this dissertation as I preferred

submitting a unified work. The paper resulting from this research project

is entitled “A Semiparametric Model for the Systematic Factors of Portfolio

Credit Risk Premia” and it is published in the Journal of Empirical Finance,

Volume 16, Issue 4, September 2009, pp. 655-670.

The paper investigates the empirical relationship between the daily returns

of a Credit Default Swap (CDS) index and stock returns, stock price volatil-

ity, and interest rates. Analogous empirical analyses were previously con-

ducted in the literature by Bystrom (2008) and Alexander and Kaeck (2008).

Bystrom (2008) estimated several linear regression models finding a negative

relationship between the daily returns of various CDS indexes, current stock

returns, and lagged stock returns. Alexander and Kaeck (2008) estimated

a Markov-switching model with a low-volatility regime and a high-volatility

regime finding that interest rates, stock returns, and stock volatility have a

stronger linear relationship with various CDS indexes in the high-volatility

regime.

Both in Bystrom (2008) and Alexander and Kaeck (2008) the relationship

between the daily returns of a CDS index and its determinants is assumed to

be well approximated by a unique parametric model over a rather extended

period of time. However, the parametric model describing the relationship

between the daily returns of a CDS index and its determinants is likely to

be affected by instability and sudden shifts over a relatively long period of

time. Instability and sudden shifts in the regression function could result,

for instance, from the smooth evolution of the economic scenario, or from

extreme and unexpected negative developments in the economy. For this
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reason, in our paper the relationship between the daily returns of a CDS

index and its determinants is described by a semiparametric model which

accounts for a nonlinear regression function characterized by inhomogeneous

smoothness properties and unknown number and locations of jumps. The

model is estimated by the adaptive nonparametric techniques introduced by

Spokoiny (1998) and further developed by Čižek et al. (2009) which consist

in locally approximating a regression function by a simple parametric model

and in selecting the degree of locality of the parametric approximation by a

multiscale local change point analysis.

Our estimation results indicate that from November 2004 to January 2008

the relationships between the daily returns of the considered CDS index and

stock returns, stock price volatility, and interest rates1 were characterized by

relatively long phases of stability interrupted by several sudden and extreme

jumps. The jumps were associated to the downgrade of Ford and General

Motors in 2005, to the slowdown of the US housing market in 2006, and to

the credit crisis started in 2007. Our estimation results also suggest that

in normal economic conditions the relationship between the daily returns of

the considered CDS index and its determinants tends to be relatively weak

but coherent with economic intuition and with earlier empirical findings,

while during periods of economic instability the relationship between the

daily returns of the CDS index and its determinants tends to be stronger

but often inconsistent with common economic intuition and with earlier em-

1The considered CDS index is the iTraxx Europe index. The iTraxx Europe is the
benchmark credit index in Europe and it is constructed as an equally weighted portfolio
of 125 liquidly traded single-name CDS’s. The considered stock returns are the daily
returns of the Dow Jones Euro Stoxx 50 index. The Dow Jones Euro Stoxx 50 is a blue-
chip index and it is constructed as a portfolio of 50 stocks weighted according to their
market capitalization and representative of different Eurozone countries. The considered
proxy for stock volatility is the Dow Jones VStoxx 50 index. The Dow Jones VStoxx 50
index measures the volatility implied in options on the Dow Jones Euro Stoxx 50 index.
The considered interest rate variable is the Euro swap rate versus Euribor for 1-year
maturity.
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pirical findings as it tends to reflect the prevailing circumstances of economic

distress.
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Abstract

In this dissertation we study the indifference buyer’s price and the indiffer-

ence seller’s price of an uncertainty averse decision-maker and the charac-

terization of a decision-maker’s attitudes toward uncertainty.

In the first part of the dissertation we study the properties fulfilled by the

indifference buyer’s price and by the indifference seller’s price of an uncer-

tainty averse decision-maker. We find that the indifference buyer’s price

is a quasiconvex risk measure and that the indifference seller’s price is a

cash-additive convex risk measure. We identify the acceptance family of the

indifference buyer’s price as well as the acceptance set of the indifference

seller’s price. We characterize the dual representations of the indifference

buyer’s price and of the indifference seller’s price both in terms of probabil-

ity charges and in terms of probability measures.

In the second part of the dissertation we study the characterization of a

decision-maker’s attitudes toward uncertainty in terms of the indifference

buyer’s price and of the indifference seller’s price. We find that a decision-

maker is more uncertainty averse than another if and only if her indifference

buyer’s price and her indifference seller’s price are larger than for the other.

We find that a decision-maker is increasingly (respectively, decreasingly, con-

stantly) uncertainty averse if and only if her indifference buyer’s price and

her indifference seller’s price are increasing (respectively, decreasing, con-

stant) functions of her constant initial wealth.

In the last part of the dissertation we further develop the characterization

of increasing, decreasing, and constant uncertainty aversion and we derive

a technical condition that allows to immediately verify whether an uncer-

tainty averse representation of preferences exhibits increasing, decreasing, or

constant uncertainty aversion. We find that this technical condition allows
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to classify a large class of uncertainty averse representations of preferences

into increasingly, decreasingly, and constantly uncertainty averse.
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Chapter 1

Introduction

The indifference prices are the boundaries delimiting the prices of a contract

that would be agreed to by an individual who prefers more money to less

money and who endeavors to maximize the relative desirability of her mon-

etary endowment. The technique of indifference pricing was introduced by

Bernoulli (1738) contextually with the prediction that an individual chooses,

among alternative monetary endowments, the one providing a maximum of

expected utility. The consistency of the paradigm of expected utility maxi-

mization and, accordingly, of the resulting indifference prices, with criteria

of logic and rationality, was established by von Neumann and Morgenstern

(1953) in a framework in which future events are assigned objective prob-

abilities, and extended by Savage (1972) to a framework in which future

events are assigned subjective probabilities (see also Ramsey (1931) and de

Finetti (1964)).

The technique of indifference pricing was further developed by Pratt (1964)
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in relation to the characterization of an individual’s attitudes toward risk.

In Pratt (1964) risk is intended as the variability of the outcomes of a mon-

etary prospect, irrespective of whether the different possible outcomes of

the monetary prospect are described by objective probabilities as in von

Neumann and Morgenstern (1953) or by subjective probabilities as in Sav-

age (1972). Pratt (1964) found that an individual is more risk averse than

another if and only if the maximum price that she would offer to avoid a

risky monetary prospect is larger than for the other, and that an individ-

ual is increasingly (respectively, decreasingly, constantly) risk averse if and

only if the maximum price that she would offer to avoid a risky monetary

prospect is an increasing (respectively, decreasing, constant) function of her

constant initial wealth. Pratt (1964) further observed that an individual is

more risk averse than another if and only if the degree of relative convexity

of her utility function (de Finetti (1952), Arrow (1970) and Pratt (1964))

is larger than for the other, and that an individual is increasingly (respec-

tively, decreasingly, constantly) risk averse if and only the degree of relative

convexity of her utility function is an increasing (respectively, decreasing,

constant) function of her constant initial wealth. Pratt (1964) showed that

the characterization of increasing, decreasing and constant risk aversion in

terms of the degree of relative convexity of a utility function (de Finetti

(1952)) or Arrow-Pratt coefficient of risk aversion (Arrow (1970) and Pratt

(1964)) allows to immediately classify the different possible specifications of

a utility function into increasingly, decreasingly, and constantly risk averse.

The indifference prices of an expected utility maximizer, intended indiffer-

ently either in the sense of von Neumann and Morgenstern (1953) or in

the sense of Savage (1972), have been extensively applied in the actuarial

mathematics literature on premium calculation principles (see, among oth-
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ers, Bühlmann (1970) and Deprez and Gerber (1985)), and in the financial

mathematics literature on pricing in incomplete markets (see, for instance,

Carmona (2009) and the references therein). Ellsberg (1961) observed that,

however, individuals do not always act consistently with the maximization

of expected utility1. Ellsberg (1961) observed that, specifically, if an indi-

vidual considers herself considerably ignorant of the relative frequencies of

future events, and if she dislikes her state of considerable ignorance of the

relative frequencies of future events, then “it is impossible to find probability

numbers in terms of which [... her] choices could be described - even roughly

or approximately - as maximizing the mathematical expectation of utility”.

Schmeidler (1989) indicated that the violation of the paradigm of expected

utility maximization in the particular situations described by Ellsberg (1961)

is consistent with a disfavor for the choices involving subjective rather than

objective probabilities. Schmeidler (1989) designated an individual’s disfa-

vor for the choices involving subjective rather than objective probabilities as

uncertainty aversion, and showed that the choices of an uncertainty averse

individual could be described as maximizing an objective function which

is more general than the mathematical expectation of utility. Schmeidler

(1989) showed that, in particular, the choices of an uncertainty averse in-

dividual could be described as maximizing the integral of the utility with

respect to a capacity or non-additive probability. Since the seminal paper

of Schmeidler (1989), several other objective functions have been proposed

in the literature to describe the choices of an uncertainty averse individual.

Examples are the multiple priors (Gilboa and Schmeidler (1989)), the mul-

tiplier (Hansen and Sargent (2001), Strzalecki (2011)) and the variational

1Other deviations from the paradigm of expected utility maximization different from
the one described by Ellsberg (1961) were discovered, for instance, by Allais (1953). This
dissertation is concerned, however, only with the violations of expected utility theory
observed by Ellsberg (1961), and not also with the ones observed by Allais (1953).
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(Maccheroni et al. (2006)) representations of preferences. Cerreia Vioglio

et al. (2011a) showed that, however, many objective functions which de-

scribe the choices of an uncertainty averse individual are particular cases of

a more general objective function which, because of its unifying character,

was denominated by Cerreia Vioglio et al. (2011a) the uncertainty averse

representation of preferences.

In this dissertation we study the indifference prices defined by the uncer-

tainty averse representation of preferences of Cerreia Vioglio et al. (2011a)

and their relationship with the characterization of an individual’s attitudes

toward uncertainty.

In Chapter 2 we introduce the uncertainty averse representation of prefer-

ences of Cerreia Vioglio et al. (2011a) along with its particular specifica-

tions corresponding to the variational (Maccheroni et al. (2006)), the multi-

plier (Hansen and Sargent (2001), Strzalecki (2011)) and the multiple priors

(Gilboa and Schmeidler (1989)) representations of preferences.

In Chapter 3 we study the indifference prices defined by the uncertainty

averse representation of preferences of Cerreia Vioglio et al. (2011a). We

define the indifference buyer’s price as the maximum price that an uncer-

tainty averse individual would offer to avoid an uncertain monetary prospect,

and the indifference seller’s price as the minimum price that an uncertainty

averse individual would demand to accept an uncertain monetary prospect.

We show that the indifference buyer’s price is a quasiconvex risk measure,

and that the indifference seller’s price is a cash-additive convex risk mea-

sure. We study the relationship between the indifference buyer’s price and

its acceptance family, as well as the relationship between the indifference

seller’s price and its acceptance set. We provide the dual representations

of the indifference buyer’s price and of the indifference seller’s price both
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on probability charges and on probability measures. We further develop the

dual representations on probability measures of the indifference buyer’s price

and of the indifference seller’s price defined in terms of the variational (Mac-

cheroni et al. (2006)), the multiplier (Hansen and Sargent (2001), Strzalecki

(2011)) and the multiple priors (Gilboa and Schmeidler (1989)) representa-

tions of preferences.

In Chapter 4 we study the characterization of an individual’s attitudes to-

ward uncertainty in terms of the indifference buyer’s price and of the in-

difference seller’s price defined by the uncertainty averse representation of

preferences of Cerreia Vioglio et al. (2011a). We show that a decision-

maker is more uncertainty averse than another if and only if her indifference

buyer’s price and her indifference seller’s price are larger than for the other,

and that a decision-maker is increasingly (respectively, decreasingly, con-

stantly) uncertainty averse if and only if her indifference buyer’s price and

her indifference seller’s price are increasing (respectively, decreasing, con-

stant) functions of her constant initial wealth. We find a correspondence

between increasing, decreasing, and constant uncertainty aversion and the

additive properties that the indifference buyer’s price satisfies with respect

to the positive constants (e.g. cash-subadditivity (El Karoui and Ravanelli

(2009))), and we show that these additive properties fulfilled by the in-

difference buyer’s price allow to immediately establish various inequalities

between the indifference buyer’s price and the indifference seller’s price. We

find a correspondence between increasing, decreasing, and constant uncer-

tainty aversion and the multiplicative properties that the uncertainty index

appearing in the uncertainty averse representation of preferences of Cer-

reia Vioglio et al. (2011a) satisfies with respect to the positive constants

(e.g. star-shapedness (Cerreia Vioglio et al. (2010))), and we show that
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these multiplicative properties fulfilled by the uncertainty index allow to

immediately classify the different possible specifications of the uncertainty

averse representation of preferences of Cerreia Vioglio et al. (2011a) into

increasingly, decreasingly, and constantly uncertainty averse. We find that

the variational (Maccheroni et al. (2006)) and, as a consequence, the mul-

tiplier (Hansen and Sargent (2001), Strzalecki (2011)), representations of

preferences are decreasingly uncertainty averse, and that the multiple priors

(Gilboa and Schmeidler (1989)) representation of preferences is constantly

uncertainty averse.
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Chapter 2

Decision-Theoretic Framework

2.1 Notations and Basic Concepts

2.1.1 Mathematical Notations

The pair (S,Σ) is a measurable space where S is a set of future states of

nature and Σ is a σ-algebra of subsets of S representing future events.

The set X = B(S,Σ) is the set of all bounded, real-valued, Σ-measurable

functions X on S, including the constant functions X(s) = x ∈ R for all

s ∈ S. The subset of constant functions in X is identified with R and every

equality or inequality involving elements of X is intended as holding for all

s ∈ S.

The set X ∗ = ba(S,Σ) is the set of all bounded, finitely additive, real-valued

set functions P on Σ and X ∗σ = ca(S,Σ) ⊂ X ∗ is its subset of countably

additive elements. A set function P on Σ is finitely additive if P (∪ni=1Ei) =∑n
i=1 P (Ei) for every finite family {Ei}ni=1 of pairwise disjoint sets in Σ
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and it is countably additive if P (∪∞i=1Ei) =
∑∞

i=1 P (Ei) for every countable

family {Ei}i∈N of pairwise disjoint sets in Σ. The set of positive normalized

set functions in X ∗ is indicated by,

∆ := {P ∈ X ∗ |P (E) ≥ 0 ∀E ∈ Σ, P (S) = 1}

and the subset of countably additive elements in ∆ ⊂ X ∗ is indicated by

∆σ ⊂ X ∗σ .

The sets X and X ∗ endowed, respectively, with the supremum norm1 and

with the total variational norm2, are Banach spaces. The space X ∗ is iden-

tified with the dual space of X and the evaluation duality is given by,

EP [X] :=

∫
S
X(s)P (ds)

for all (X,P ) ∈ X × X ∗. Unless otherwise specified, X is endowed with its

norm topology, X ∗ is endowed with its weak∗ topology, and product spaces

are endowed with their product topology. For the definitions of the different

topologies see Aliprantis and Border (2006, Chapter 2).

2.1.2 A Note on Terminology

In the terminology of measure theory the elements of ∆ ⊂ X ∗ are probability

charges and the elements of ∆σ ⊂ X ∗σ are probability measures. In this

dissertation we adopt, however, the terminology of decision-theory, in which

the elements of ∆ ⊂ X ∗ are finitely additive probabilities, and the elements

of ∆σ ⊂ X ∗σ are countably additive probabilities.

1That is, ||X||∞ := sups∈S |X(s)| for all X ∈ X .
2For every E ∈ Σ the total variation of a P on E is defined as ||P || = sup

∑n
i=1 |P (Ei)|

where the supremum is taken over all finite sequences {Ei} of disjoint sets in Σ with
Ei ⊆ E (see Dunford and Schwartz (1988, III.1.4)).
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2.1.3 Decision-Theoretic Concepts

The considered decision-theoretic set-up is a Savage (1972) framework. The

elements of X are interpreted as monetary payoffs, that is as the alternative

courses of actions that are available to an individual whose consequences are

money payments.

The non-constant monetary payoffs in X are interpreted as entailing “un-

measurable” uncertainty (Knight (1921)) in the sense of having as their “[...]

consequences a set of possible specific outcomes, but where the probabilities of

these outcomes are completely unknown or are not even meaningful” (Luce

and Raiffa (1989)).

The constant monetary payoffs in X are instead interpreted as certain as

they “[...] lead invariably to a specific outcome” (Luce and Raiffa (1989)).

2.2 Background on Uncertainty Aversion

In this section we present the notions and concepts of decision under un-

certainty which were relevant to the study and development of uncertainty

averse preferences. In Subsection 2.2.1 we briefly introduce Savage’s (1972)

expected utility. In Subsection 2.2.2 we describe the violation of Savage’s

(1972) expected utility known as Ellsberg’s (1961) paradox. In Subsection

2.2.3 we describe Schmeidler’s (1989) rationalization of Ellsberg’s (1961)

paradox in terms of a preference for mixtures, averages, or randomizations.

2.2.1 Subjective Expected Utility

According to Savage’s (1972) expected utility theory an individual whose

choices are consistent with some essential principles of logic and are not

intrinsically contradictory evaluates the relative desirability of alternative
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monetary payoffs by a function Uu,Q : X → R of the form,

Uu,Q(X) = EQ[u(X)] (2.1)

for all X ∈ X . The finitely additive probability Q ∈ ∆ in Equation (2.1) is a

subjective probability, prior, or belief (see also Ramsey (1931) and de Finetti

(1964)) reflecting the decision-maker’s personal opinion on the relative likeli-

hoods of future events. The function u : R→ R in Equation (2.1) is a utility

function reflecting the value, utility, or advantage, that the decision-maker

derives from particular monetary outcomes (see Bernoulli (1738) and von

Neumann and Morgenstern (1953)).

2.2.2 Ellsberg’s Paradox

The representation in Equation (2.1) implies that an individual whose choices

are consistent with the normative principles established by Savage (1972)

acts as if she assigned probabilities to future events and as if she chose,

among alternative monetary payoffs, the one providing a maximum of ex-

pected utility. Ellsberg (1961) observed that there are, however, some par-

ticular circumstances in which an individual perceives her information on the

relative likelihoods of future events as considerably opaque, deceitful, or in-

sufficient and, in contrast with the predictions of Savage’s (1972) expected

utility theory, she does not assign, or act as if she assigned, “meaningful

probabilities” to future events.

Ellsberg (1961) discussed, for instance, the following example. Consider an

urn known to contain 30 red balls and 60 black and green balls, the latter

in unknown proportion. One ball is to be drawn at random from the urn.

The “objective” probabilities of a red ball being drawn (R) and of a red ball
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not being drawn (RC) are “completely known” and equal to 1/3 and 2/3

respectively. In contrast, the “objective” probabilities of a black ball being

drawn (B) and of a green ball being drawn (G) are “significantly ignored”.

They are not “completely ignored” because they are known to lie in the

interval [0, 2/3]; there is, however, only little information to judge their pre-

cise values. Ellsberg (1961) investigated how an individual chooses among

the alternative monetary payoffs described in Table 2.1 whose outcomes are

contingent on the colour of the ball drawn from the urn described above.

Ellsberg (1961) observed that most individuals prefer X to Y and Y ′ to X ′

30︷ ︸︸ ︷ 60︷ ︸︸ ︷
R B G

X $100 $0 $0
Y $0 $100 $0
X ′ $100 $0 $100
Y ′ $0 $100 $100

Table 2.1: Urn Example I.

and that “it is impossible to find probability numbers in terms of which these

choices could be described - even roughly or approximately - as maximizing

the mathematical expectation of utility”. Consider, in fact, an individual

who maximizes the expected utility in Equation (2.1) and assume, without

loss of generality3, that u(0) = 0, and that u(100) = 1. This individual

strictly prefers X to Y if and only if Q(R) > Q(B) and strictly prefers Y ′

to X ′ if and only if Q(RC) > Q(BC). Thus, the choices of this individ-

ual reveal that her subjective probability satisfies both Q(R) > Q(B) and

Q(R) < Q(B), which is impossible. For this reason, these findings, as well

3The utility function u : R → R in Equation (2.1) is unique up to positive affine
transformations. Thus, there is no loss of generality in replacing u : R→ R by ũ : R→ R
where ũ(x) = β + αu(x) for all x ∈ R with β ∈ R and α ∈ (0,+∞) such that α =
1/(u(100)− u(0)) and β = 1− u(100)/(u(100)− u(0)) provided that u(100) > u(0).
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as other analogous findings collected by Ellsberg (1961), are referred to as

the Ellsberg’s paradox.

Ellsberg (1961) further observed that the choice of X over Y and of Y ′ over

X ′ is motivated by a preference for the monetary payoffs whose outcomes are

realized on events whose “objective” probabilities are “completely known”,

as opposed to the monetary payoffs whose outcomes are realized on events

whose “objective” probabilities are “significantly ignored”.

2.2.3 Uncertainty Aversion

Schmeidler (1989) noticed that an individual’s violation of the paradigm of

expected utility maximization in the circumstances described by Ellsberg

(1961) is consistent with a preference for smoothing, or averaging, alter-

native monetary payoffs across states of nature, and that this preference

for mixtures reflects an endeavor to “objectify” the probabilities of the fu-

ture events on which the outcomes of the monetary payoffs are realized (see

Klibanoff (2001)). Consider again the urn described in Subsection 2.2.2 and

assume that an individual is asked to choose among the alternative monetary

payoffs described in Table 2.2. An individual who considers herself consid-

30︷ ︸︸ ︷ 60︷ ︸︸ ︷
R B G

Y $0 $100 $0
Z $0 $0 $100
1
2Y + 1

2Z $0 $50 $50

Table 2.2: Urn Example II.

erably ignorant of the relative likelihoods of the events on which a blue ball

is drawn (B) and a green ball is drawn (G) would be indifferent between Y

and Z, but would prefer their “average” 1
2Y + 1

2Z to either of them alone:
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while the probability that either Y or Z pays $100 is “significantly ignored”,

as it is only known to lie in the interval [0, 2/3], the probability that their

“average” 1
2Y + 1

2Z pays $50 is “completely known”, as it is known to be

equal to 2/3.

Schmeidler (1989) designated an individual who prefers a mixture of equally

desirable monetary payoffs to either of them alone as uncertainty averse to

indicate that her choices reveal a preference for the monetary payoffs whose

outcomes are realized on the future events to which probabilities are assigned

“objectively” and a disfavour for the monetary payoffs whose outcomes are

realized on the future events to which probabilities are to be assigned sub-

jectively (see also Klibanoff (2001)).

2.3 Uncertainty Averse Preferences

Although whether uncertainty aversion should be considered a normative

principle of decision under uncertainty or a possibly implausible and irra-

tional trait of particular individuals is still the object of debate (see Al-Najjar

and Weinstein (2009)) several models of choice under uncertainty have been

developed in the economic literature which explicitly postulate uncertainty

aversion of the decision-maker. Examples are the multiple priors (Gilboa

and Schmeidler (1989)), the multiplier (Hansen and Sargent (2001), Strza-

lecki (2011)), and the variational (Maccheroni et al. (2006)) representations

of preferences. Other models of choice under uncertainty which allow for

uncertainty aversion of the decision-maker are, among others, the Choquet

expected utility (Schmeidler (1989)) and the smooth ambiguity (Klibanoff

et al. (2005)) representations of preferences.

Cerreia Vioglio et al. (2011a) showed that all the decision-theoretic models

which characterize uncertainty aversion through Schmeidler’s (1989) prefer-
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ence for mixtures represent particular cases of a more fundamental class of

preferences which, because of their great generality, were denominated by

Cerreia Vioglio et al. (2011a) uncertainty averse preferences4. The uncer-

tainty averse representation of preferences Uu,G : X → R of Cerreia Vioglio

et al. (2011a) is given by,

Uu,G(X) = inf
P∈∆

G(EP [u(X)], P ) (2.2)

for all X ∈ X . The function u : R → R in Equation (2.2) is a utility func-

tion (as in Equation (2.1)) reflecting the decision-maker’s attitudes toward

risk. The function G : R × ∆ → (−∞,+∞] in Equation (2.2) is an un-

certainty index reflecting the decision-maker’s attitudes toward uncertainty.

The smaller the uncertainty index G, the larger the decision-maker’s uncer-

tainty aversion. The uncertainty index G : R×∆→ (−∞,+∞] in Equation

(2.2) is increasing on R for each P ∈ ∆, lower semi-continuous and quasi-

convex on R ×∆, normalized, that is such that infP∈∆G(y, P ) = y for all

y ∈ R, and such that G(., P ) is extended-valued continuous on R for each

P ∈ ∆5.

The representation in Equation (2.2) implies that an uncertainty averse

decision-maker whose choices are consistent with the principles established

by Cerreia Vioglio et al. (2011a) evaluates the relative desirability of an

uncertain monetary payoff in X as if, by the function G, she appraised its

expected utility under each probabilistic scenario in ∆, and as if she summa-

rized her appraisal by considering exclusively the worst probabilistic scenario

in ∆.

4As the Choquet expected utility model of Schmeidler (1989) and the smooth ambi-
guity model of Klibanoff et al. (2005) do not require a priori that the decision-maker is
uncertainty averse, in this dissertation they will not be treated as special cases of the
uncertainty averse representation of preferences of Cerreia Vioglio et al. (2011a).

5That is, limx→x0 G(x, P ) = G(x0, P ) ∈ (−∞,+∞] for all x0 ∈ R and P ∈ ∆.
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In the following subsections we illustrate that the variational (Maccheroni

et al. (2006)), the multiplier (Hansen and Sargent (2001), Strzalecki (2011)),

and the multiple priors (Gilboa and Schmeidler (1989)) representations of

preferences are obtained as particular cases of the uncertainty averse rep-

resentation of preferences of Cerreia Vioglio et al. (2011a) under suitable

specifications of the uncertainty index G : R×∆→ (−∞,+∞] in Equation

(2.2).

2.3.1 Variational Preferences

The variational representation of preferences Uu,c : X → R of Maccheroni

et al. (2006) is given by,

Uu,c(X) = inf
P∈∆

(
EP [u(X)] + c(P )

)
(2.3)

for all X ∈ X . The function u : R→ R in Equation (2.2) is a utility function

(as in Equation (2.1)) reflecting the decision-maker’s attitudes toward risk.

The function c : ∆ → (−∞,+∞] in Equation (2.3) is an ambiguity index

reflecting the decision-maker’s attitudes toward uncertainty. The smaller

the ambiguity index c, the larger the decision-maker’s uncertainty aversion.

The ambiguity index c : ∆ → (−∞,+∞] is convex, lower semi-continuous,

and normalized, that is such that infP∈∆ c(P ) = 0.

The representation in Equation (2.3) implies that an uncertainty averse

decision-maker whose choices are consistent with the principles established

by Maccheroni et al. (2006) evaluates the relative desirability of an uncer-

tain monetary payoff in X as if, by the function c, she applied a correction

to its expected utility under each probabilistic scenario in ∆, and as if she

summarized her appraisal by considering exclusively the worst probabilistic
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scenario in ∆.

The variational representation of preferences is a particular case of the un-

certainty averse representation of preferences in Equation (2.2) which is

obtained when the uncertainty index G : R×∆→ (−∞,+∞] satisfies,

G(x, P ) = x+ c(P ) (2.4)

for all (x, P ) ∈ R×∆.

2.3.2 Multiplier Preferences

The multiplier representation of preferences Uu,θ,R,P
?

: X → R introduced

by Hansen and Sargent (2001) and axiomatized by Strzalecki (2011) is given

by,

Uu,θ,R,P
?
(X) = inf

P∈∆

(
EP [u(X)] + θR(P ||P?)

)
(2.5)

for all X ∈ X with θ ∈ (0,+∞] and P? ∈ ∆σ. The function u : R → R

in Equation (2.2) is a utility function (as in Equation (2.1)) reflecting the

decision-maker’s attitudes toward risk. The constant θ ∈ (0,+∞] in Equa-

tion (2.2) is a parameter reflecting the decision-maker’s attitudes toward

uncertainty. The smaller the parameter θ ∈ (0,+∞], the larger the decision-

maker’s uncertainty aversion. The function R(. ||P?) : ∆ → [0,+∞] in

Equation (2.2) is the relative entropy with respect to P? ∈ ∆σ which is

given by,

R(P ||P?) =


EP

[
ln
( dP
dP?

)]
if P ∈ ∆σ(P?)

+∞ otherwise

for all P ∈ ∆. The set ∆σ(Q) ⊂ ∆σ is the set of all probability measures on

(S,Σ) which are absolutely continuous with respect to P? ∈ ∆σ. The prob-

ability measure P? ∈ ∆σ is interpreted as the decision-maker’s best guess of
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the “right” probability on (S,Σ) and it is designated as the decision-maker’s

reference probability (see Strzalecki (2011)).

The representation in Equation (2.5) implies that an uncertainty averse

decision-maker whose choices are consistent with the principles established

by Strzalecki (2011) evaluates the relative desirability of an uncertain mon-

etary payoff in X as if she applied a correction to its expected utility under

each probabilistic scenario in P ∈ ∆, the correction depending on the “dis-

tance” R(P ||P?) of the considered probabilistic scenario P ∈ ∆ from the

reference scenario Q ∈ ∆σ, and on the relevance θ ∈ (0,+∞] that the

decision-maker assigns to this “distance”, and as if she summarized her ap-

praisal by considering exclusively the worst probabilistic scenario in ∆.

The multiplier representation of preferences is a particular case of the un-

certainty averse representation of preferences in Equation (2.2) which is

obtained when the uncertainty index G : R×∆→ (−∞,+∞] satisfies,

G(x, P ) = x+ θR(P ||P?) (2.6)

for all (x, P ) ∈ R×∆.

2.3.3 Multiple Priors Preferences

The multiple priors representation of preferences Uu,P : X → R of Gilboa

and Schmeidler (1989) is given by,

Uu,P(X) = inf
P∈P

EP [u(X)] (2.7)

for all X ∈ X . The function u : R→ R in Equation (2.2) is a utility function

(as in Equation (2.1)) reflecting the decision-maker’s attitudes toward risk.

The set P ⊂ ∆ is a set of priors reflecting the decision-maker’s attitudes
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toward uncertainty. The larger the set of priors P, the larger the decision-

maker’s uncertainty aversion.

The representation in Equation (2.7) implies that an uncertainty averse

decision-maker whose choices are consistent with the principles established

by Gilboa and Schmeidler (1989) evaluates the relative desirability of an

uncertain monetary payoff in X as if she appraised its expected utility under

each probabilistic scenario in P ⊂ ∆ and as if she summarized her appraisal

by considering exclusively the worst probabilistic scenario in P.

The multiple priors representation of preferences is a particular case of the

uncertainty averse representation of preferences in Equation (2.2) which is

obtained when the uncertainty index G : R×∆→ (−∞,+∞] satisfies,

G(x, P ) = x+ δ(P | P) (2.8)

for all (x, P ) ∈ R×∆ and where δ(. | P)→ [0,+∞] is defined by,

δ(P | P) =


0 if P ∈ P

+∞ otherwise

for all P ∈ ∆.

2.4 Remarks, Assumptions, and Continuity Concepts

In this section we discuss various technical aspects of the uncertainty averse

representation of preferences of Cerreia Vioglio et al. (2011a). In section

2.4.2 we clarify the relationship between the Savage (1972) framework con-

sidered in this dissertation and the generalized Anscombe and Aumann

(1963) framework originally considered by Cerreia Vioglio et al. (2011a).

In Section 2.4.2 we clearly state the assumptions on the uncertainty averse
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representation of preferences of Cerreia Vioglio et al. (2011a) which allow

to obtain the results presented in this dissertation. In Section 2.4.3 we dis-

cuss some continuity concepts which allow to characterize the situations in

which the uncertainty averse representation of preferences of Cerreia Vioglio

et al. (2011a) can be equivalently expressed in terms of countably additive

probabilities.

2.4.1 Remarks

The representations of preferences of Cerreia Vioglio et al. (2011a), Strza-

lecki (2011), Maccheroni et al. (2006) and Gilboa and Schmeidler (1989)

were originally obtained in a generalized Anscombe and Aumann (1963)

framework in which the objects of choice are uncertain acts. An uncertain

act is a Σ-measurable simple6 function f on S taking values in a convex

subset C of a vector space. C could be specified, for instance, as the set of

all probability measures µ on (R,B(R)) with finite support, where B(R) is

the Borel σ-algebra on R. A probability measure µ on (R,B(R)) has finite

support if the smallest closed set B ∈ B(R) such that µ(Bc) = 0 is finite.

Let F := F(C) be the set of all uncertain acts. Let ũ : C → R be

a non-constant affine function. Let ũ(C) := {ũ(c), c ∈ C} ⊆ R. Let

B0(Σ, ũ(C)) := B0(S,Σ; ũ(C)) be the set of all real-valued Σ-measurable

simple functions on S with values in ũ(C) ⊆ R. Observe that, if f ∈ F , then

ũ(f) ∈ B0(Σ, ũ(C)). Let G̃ : ũ(C)×∆→ (−∞,+∞] be such that G̃(., P ) is

increasing on ũ(C) ⊆ R for each P ∈ ∆, lower semi-continuous and quasi-

convex on ũ(C)×∆, normalized, that is such that infP∈∆ G̃(y, P ) = y for all

y ∈ ũ(C), and such that G̃(., P ) is extended-valued continuous on ũ(C) ⊆ R

for each P ∈ ∆. An uncertainty averse representation of preferences (Cer-

6A function is said to be simple if it takes on only finitely many values.
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reia Vioglio et al. (2011a, Theorem 3)) is a function V ũ,G̃ : F → R defined

by,

V ũ,G̃(f) := inf
P∈∆

G̃(EP [ũ(f)], P ) (2.9)

for all f ∈ F . As in Section 2.3, the function G̃ : ũ(C) ×∆ → (−∞,+∞]

in Equation (2.9) is an uncertainty index describing the decision-maker’s

attitudes toward uncertainty. Differently from Section 2.3, the function

ũ : C → R in Equation (2.9) is not a utility function7 but a utility index

describing the decision-maker’s attitudes toward risk. If C is specified, for

instance, as the set of all probability measures µ on (R,B(R)) with finite

support, then the utility index ũ : C → R in Equation (2.9) is related to the

utility function u : R→ R in Equation (2.2) by the following relationship,

ũ(f(s)) =

∫
R
u(x)d f(s, x)

for all s ∈ S. Although the uncertainty averse representation of preferences

was defined and characterized by Cerreia Vioglio et al. (2011a) on the set

F of all Σ-measurable simple function f on S with values in C, it admits

a continuous extension V ũ
′
,G̃
′

: Fb → R to the set Fb := Fb(C) of all

bounded Σ-measurable functions fb on S with values in C (see Ghirardato

and Siniscalchi (2009)). As a result of this extension, C can be specified

as the set Mb := Mb(R,B(R)) of all probability measures µ on (R,B(R))

with bounded support. A probability measure µ on (R,B(R)) has bounded

support if µ([−b, b]) = 1 for some b ≥ 0. Denote by X̃ := Fb(Mb) the set of

7As indicated in Section 2.2.1 in this dissertation a utility function is intended as a
utility function for money u : R → R. Thus, in this dissertation a utility function is not,
in general, an affine function.
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all bounded Σ-measurable functions X̃ := fb on S with values inMb. Then,

ũ′(X̃(s)) =

∫
R
u(x)d X̃(s, x) (2.10)

for all s ∈ S. Let X ∈ X and let δX ∈ X̃ be such that δX(s)(.) is a Dirac

measure on B(R) for each s ∈ S, that is,

δX(s)(B) =


1 if X(s) ∈ B

0 otherwise

for all B ∈ B(R). Föllmer and Schied (2004, Section 2.5) observed that the

mapping,

X ∈ X 7→ δX ∈ X̃

is an embedding. It follows that the space X of all bounded, real-valued, Σ-

measurable functions on S can be identified with the set of all the elements

of X̃ which are Dirac measures on B(R) for each s ∈ S. Let Uu,G
′

: X → R

be the function defined by,

Uu,G
′
(X) := V ũ

′
,G̃
′
(δX) (2.11)

for all X ∈ X . Thus, by Equation (2.11), Equation (2.9), and Equation

(2.10),

Uu,G
′
(X) = inf

P∈∆
G′(EP [ũ′(δX)], P )

= inf
P∈∆

G′(EP

[ ∫
R
u(x)d δX(x)

]
, P )

= inf
P∈∆

G′(EP [u(X)], P )

as in Equation (2.2).
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2.4.2 Assumptions

Throughout this dissertation we will implicitly assume that the utility func-

tion u : R→ R is strictly increasing and concave and that the monotonicity

of the uncertainty index G : R × ∆ → (−∞,+∞] in its first argument is

strict.

The assumption that the utility function u is increasing ensures that the pref-

erences that the decision-maker expresses through the indifference prices are

consistent with the compelling principle of rationality (see Cerreia Vioglio

et al. (2010)). The assumption that the utility function u is concave ensures

that the preferences that the decision-maker expresses through the indiffer-

ence prices are consistent with the fundamental principle that diversification

does not increase “risk” (see Cerreia Vioglio et al. (2010)).

The assumptions that the utility function u and the uncertainty index G

are strictly increasing guarantee that the indifference prices are uniquely

defined.

Assumption 2.1. The utility function u : R→ R is strictly increasing and

concave.

Assumption 2.2. The uncertainty index G : R×∆→ (−∞,+∞] is strictly

increasing in its first argument.

Observe that, as u is concave and finite on all of R, it is necessarily continu-

ous (see Rockafellar (1970, Corollary 10.1.1)) and that the continuity of the

utility function u, combined with the different continuity properties of the

uncertainty index G, guarantees that the indifference prices exist.

Overall, Assumption 2.1 and Assumption 2.2 ensure that the uncertainty

averse representation of preferences Uu,G : X → R in Equation (2.2) is

strictly increasing, quasiconcave, and continuous with respect to the sup-
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norm ||.||∞.

2.4.3 Continuity Concepts

The theories of decision under uncertainty discussed in Section 2.3 describe a

decision-maker’s subjective probabilities, priors, or beliefs in terms of finitely

additive probabilities. The conditions of positivity, normalization, and fi-

nite additivity are in fact sufficient for a set function to be interpretable as

an individual’s “coherent” judgment of probabilities (de Finetti, Chapter 3

(1970)). An individual’s judgment of probabilities is said to be “coherent”,

acceptable, or admissible if it is not intrinsically contradictory (de Finetti,

Chapter 3 (1970)).

Although from the decision-theoretic perspective the condition of count-

able additivity is objectionable (see Ramsey (1931), de Finetti (1964), and

Savage (1972)), from the mathematical perspective it is a convenient simpli-

fication. The axiom with which an individual’s choices must be consistent

for her preferences to be represented in terms of countably additive proba-

bilities is the axiom of monotone continuity (Arrow (1970)). The axiom of

monotone continuity was introduced by Arrow (1970) in the framework of

Savage’s (1972) expected utility and was employed, among others, by Cer-

reia Vioglio et al. (2011a), Maccheroni et al. (2006) and Chateauneuf et al.

(2005) to express, respectively, the uncertainty averse (Cerreia Vioglio et al.

(2011a)), the variational (Maccheroni et al. (2006)), and the multiple priors

(Gilboa and Schmeidler (1989)) representations of preferences in terms of

countably additive probabilities. An equivalent technical condition, known

as continuity from below, is employed in the financial mathematics literature

to describe the situation in which a quasiconvex (see Cerreia Vioglio et al.

(2010)) or convex (see, for instance, Föllmer and Schied (2004, Chapter 4))
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risk measure admits a dual representation on probability measures.

For simplicity in this dissertation we will assume, however, the stronger

condition of continuity with respect to bounded point-wise convergence, also

known as the Lebesgue property (see Jouini et al. (2006)).

Definition 2.1. An uncertainty averse representation of preferences Uu,G :

X → R is said to be continuous with respect to bounded point-wise conver-

gence if Uu,G(Xn) → Uu,G(X) whenever (Xn)n∈N is a uniformly bounded

sequence8 in X such that Xn(s)→ X(s) for every s ∈ S.

Proposition 2.1 shows that the uncertainty averse representation of prefer-

ences Uu,G : X → R in Equation (2.2) is continuous with respect to bounded

point-wise convergence if and only if the set of finitely additive probabili-

ties ∆ ⊂ X ∗ in Equation (2.2) can be equivalently replaced by its subset of

countably additive elements ∆σ ⊂ X ∗σ as the elements of ∆ ⊂ X ∗ which are

not countably additive do not contribute to the formation of the minimum

in Equation (2.2). In what follows the set of all elements of ∆ ⊂ X ∗ which

do not belong to ∆σ ⊂ X ∗σ is denoted by,

∆ \∆σ = {P ∈ X ∗ : P ∈ ∆ and P /∈ ∆σ}

The proof of Proposition 2.1 is an immediate application of Proposition 4.3

and Proposition 4.5 in Cerreia Vioglio et al. (2010).

Proposition 2.1. An uncertainty averse representation of preferences Uu,G :

X → R is continuous with respect to bounded point-wise convergence if and

only if,

G(x, P ) = +∞

for all (x, P ) ∈ R× (∆ \∆σ).

8That is, there exists M ∈ R such that ||Xn||∞ ≤M for all n ∈ N.
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Proof of Proposition 2.1. Observe that Equation (2.2) can be equivalently

written as,

Uu,G(X) = −ρR(u(X)) ∀X ∈ X

where ρR : X → R is a quasiconvex risk measure which is continuous with

respect to the sup-norm ||.||∞ and which is represented by the maximal risk

function R : R×∆→ [−∞,+∞) given by,

R(x,Q) = −G(−x,Q)

for all (x,Q) ∈ R × ∆. Observe also that Uu,G : X → R is continuous

with respect to bounded point-wise convergence if and only if ρR : X →

R is continuous with respect to bounded point-wise convergence. Thus,

the statement follows directly from Proposition 4.3 and Proposition 4.5 in

Cerreia Vioglio et al. (2010).
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Chapter 3

Indifference Pricing with Uncertainty

Averse Preferences

3.1 Indifference Buyer’s Price

Consider an uncertainty averse decision-maker who is endowed with a con-

stant monetary payoff w0 ∈ R and an uncertain monetary payoff X ∈ X .

The uncertainty averse decision-maker contemplates a transaction which

allows her to transfer the uncertain component of her wealth X ∈ X in

exchange for paying a constant amount of money m ∈ R. Accepting the

agreement would make her wealth constant and equal to w0 −m ∈ R. The

uncertainty averse decision-maker is therefore in the position of a buyer

of a policy (or insured) and the maximum price (or insurance premium)

m ∈ R which, from the perspective of her uncertainty averse preferences

Uu,G : X → R, makes the the constant monetary payoff w0 − m ∈ R

more desirable than the uncertain monetary payoff w0 + X ∈ X , corre-
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sponds precisely to the price which makes them equally desirable. For this

reason, this maximum price is denominated indifference buyer’s price. In

Subsection 3.1.1 we introduce its definition, we derive its properties, and we

identify its acceptance family. In Subsection 3.1.2 we characterize its dual

representation on finitely additive probabilities and on countably additive

probabilities. In Subsection 3.1.3 we provide more explicit characterizations

of its dual representation on countably additive probabilities in terms of the

variational (Maccheroni et al. (2006)), the multiplier (Hansen and Sargent

(2001), Strzalecki (2011)), and the multiple priors (Gilboa and Schmeidler

(1989)) representations of preferences.

3.1.1 Definition, Properties, and Acceptance Family

3.1.1.1 Definition

The indifference buyer’s price, which in this dissertation is considered from

an actuarial perspective, is defined as a function πu,Gw0 : X → R yielding the

maximum price that a decision-maker with uncertainty averse preferences

Uu,G : X → R and with constant initial wealth w0 ∈ R would offer to avoid

an uncertain monetary prospect in X (e.g. to receive insurance).

Definition 3.1. A function πu,Gw0 : X → R is said to be an indifference

buyer’s price if it satisfies,

u(w0 − πu,Gw0
(X)) = Uu,G(w0 +X) (3.1)

for all X ∈ X and w0 ∈ R.
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3.1.1.2 Properties

Proposition 3.1 asserts that the indifference buyer’s price is monotone de-

creasing, quasiconvex, and normalized. As a consequence of these properties,

the indifference buyer’s price πu,Gw0 : X → R is a quasiconvex risk measure.

Quasiconvex risk measures were introduced in the financial mathematics

literature by Cerreia Vioglio et al. (2010). A quasiconvex risk measure is

a function representing the ordering of alternative monetary payoffs in X

based on their relative “risk”, where the term risk is “[...] used in a loose

way to refer to any sort of uncertainty viewed from the standpoint of the

unfavorable contingency” (Knight (1921)).

Proposition 3.1. The indifference buyer’s price πu,Gw0 : X → R satisfies the

following properties for all X,Y ∈ X and w0 ∈ R.

(i) Monotonicity: If X ≥ Y , then πu,Gw0 (X) ≤ πu,Gw0 (Y ).

(ii) Quasiconvexity: πu,Gw0 (λX + (1 − λ)Y ) ≤ max{πu,Gw0 (X), πu,Gw0 (Y )} for

all λ ∈ [0, 1].

(iii) Normalization: πu,Gw0 (m) = −m for all m ∈ R.

Proof of Proposition 3.1. (i) Let X,Y ∈ X . If X ≥ Y , then by Definition

3.1 and by the increasing monotonicity of Uu,G : X → R,

u(w0 − πu,Gw0
(X)) = Uu,G(w0 +X) ≥ Uu,G(w0 + Y ) = u(w0 − πu,Gw0

(Y ))

and the increasing monotonicity of u : R → R yields πu,Gw0 (X) ≤ πu,Gw0 (Y ).

Thus, πu,Gw0 : X → R is monotone decreasing.

(ii) If λ ∈ [0, 1], then by Definition 3.1, by the quasiconcavity of Uu,G : X →
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R and by the increasing monotonicity of u : R→ R,

u(w0 − πu,Gw0
(λX + (1− λ)Y ))

= Uu,G(w0 + λX + (1−λ)Y )

= Uu,G(λ(w0+X) + (1− λ)(w0 + Y ))

≥ min{Uu,G(w0 +X), Uu,G(w0 + Y )}

= min{u(w0 − πu,Gw0
(X)), u(w0 − πu,Gw0

(Y ))}

= u(w0 −max{πu,Gw0
(X), πu,Gw0

(Y )})

and the increasing monotonicity of u : R→ R yields,

πu,Gw0
(λX + (1− λ)Y ) ≤ max{πu,Gw0

(X), πu,Gw0
(Y )}

for all λ ∈ [0, 1]. Thus, πu,Gw0 : X → R is quasiconvex.

(iii) If m ∈ R, then by Definition 3.1,

u(w0 − πu,Gw0
(m)) = u(w0 +m)

and the strict monotonicity of u : R → R yields πu,Gw0 (m) = −m. Thus,

πu,Gw0 : X → R is normalized.

Decreasing monotonicity implies that the decision-maker is willing to offer

higher prices to avoid higher losses. Quasiconvexity implies that the maxi-

mum price that the decision-maker is willing to offer to avoid a portfolio of

uncertain monetary payoffs is lower than the highest of the prices that she

is inclined to offer to avoid its constituents. Normalization implies that the

maximum price that the decision-maker is willing to offer to avoid a certain

loss is exactly equal to its amount.
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3.1.1.3 Acceptance Family

The indifference buyer’s price πu,Gw0 : X → R can be equivalently studied in

terms of an appropriately defined acceptance family. Acceptance families

were introduced in the mathematical finance literature on quasiconvex risk

measures by Drapeau and Kupper (2010). An acceptance family is a col-

lection of acceptance sets. We define the acceptance set of an uncertainty

averse decision-maker Uu,G : X → R with constant initial wealth w0 ∈ R at

level m ∈ R as the subset Au,Gw0,m of X given by,

Au,Gw0,m := {X ∈ X |Uu,G(w0 +X) ≥ u(w0 −m)} (3.2)

The acceptance set Au,Gw0,m defined by Equation (3.2) is the set of uncertain

monetary payoffs in X that a an uncertainty averse decision-maker Uu,G :

X → R with constant initial wealth w0 ∈ R prefers to the constant monetary

payoff −m ∈ R. We call (Au,Gw0,m)m∈R the acceptance family of an uncertainty

averse decision-maker Uu,G : X → R with constant initial wealth w0 ∈ R.

Proposition 3.2 asserts that the acceptance family (Au,Gw0,m)m∈R is monotone,

convex, and normalized.

Proposition 3.2. The acceptance family (Au,Gw0,m)m∈R satisfies the following

properties for all X,Y ∈ X and m,n ∈ R.

(i) Monotonicity:

(a) If X ∈ Au,Gw0,m and Y ≥ X, then Y ∈ Au,Gw0,m.

(b) If m ≤ n, then Au,Gw0,m ⊆ A
u,G
w0,n.

(ii) Convexity: If X,Y ∈ Au,Gw0,m, then λX + (1 − λ)Y ∈ Au,Gw0,m for all

λ ∈ [0, 1].

(iii) Normalization: inf{x ∈ R |x ∈ Au,Gw0,m} = −m.

40



Proof. Let X,Y ∈ X and m,n ∈ R.

(i-a) Let X ∈ Au,Gw0,m and Y ≥ X. By the increasing monotonicity of Uu,G :

X → R,

Uu,G(w0 + Y ) ≥ Uu,G(w0 +X) ≥ u(w0 −m)

Thus, Y ∈ Au,Gw0,m.

(i-b) Let n ≥ m and X ∈ Au,Gw0,m. By the increasing monotonicity of u : R→

R,

Uu,G(w0 +X) ≥ u(w0 −m) ≥ u(w0 − n)

Thus, X ∈ Au,Gw0,n.

(ii) Let X,Y ∈ Au,Gw0,m. By the quasiconcavity of Uu,G : X → R,

Uu,G(w0 + λX + (1− λ)Y )

= Uu,G(λ(w0 +X)+(1− λ)(w0 + Y ))

≥ min{Uu,G(w0 +X), Uu,G(w0 + Y )}

≥ u(w0 −m)

for all λ ∈ [0, 1]. Thus, λX + (1− λ)Y ∈ Au,Gw0,m for all λ ∈ [0, 1].

(iii) By the increasing monotonicity of u : R→ R,

inf{x ∈ R |u(w0 + x) ≥ u(w0 −m)} = −m.

Observe that the acceptance set Au,Gw0,m ⊂ X corresponds to the set of all un-

certain monetary prospects for which an uncertainty averse decision-maker

Uu,G : X → R with constant initial wealth w0 ∈ R would agree to buy
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protection, or insurance, at a price less than m ∈ R, that is,

Au,Gw0,m = {X ∈ X |πu,Gw0
(X) ≤ m} (3.3)

for all m ∈ R. Observe also that the indifference buyer’s price πu,Gw0 : X → R

satisfies,

πu,Gw0
(X) = inf{m ∈ R |X ∈ Au,Gw0,m}

for all X ∈ X . It follows from Equation (3.3) that Proposition 3.1 could be

equivalently obtained combining Proposition 3.2 with Theorem 1.7 in Dra-

peau and Kupper (2010). It also follows from Equation (3.3) that the indif-

ference buyer’s price inherits directly all the different continuity properties

of the uncertainty averse representation of preferences because πu,Gw0 : X → R

and Uu,G : X → R have the same level sets.

Let Au,G
C

w0,m be the subset of X given by,

Au,G C

w0,m := {X ∈ X |Uu,G(w0 +X) < u(w0 −m)} (3.4)

for every m ∈ R. Remark 3.1, when combined with Equation (3.3), asserts

that the indifference buyer’s price πu,Gw0 : X → R inherits the continuity of

the uncertainty averse representation of preferences Uu,G : X → R with

respect to the sup-norm ||.||∞.

Remark 3.1. The sets Au,Gw0,m ⊂ X and Au,G
C

w0,m ⊂ X are closed with respect

to convergence in sup-norm ||.||∞ for all m ∈ R.

Remark 3.2, when combined with Equation (3.3), asserts that the indiffer-

ence buyer’s price πu,Gw0 : X → R inherits the continuity with respect to

bounded point-wise convergence of the uncertainty averse representation of

preferences Uu,G : X → R.
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Remark 3.2. Uu,G : X → R is continuous with respect to bounded point-

wise convergence if and only if the sets Au,Gw0,m ⊂ X and Au,G
C

w0,m ⊂ X are

closed with respect to bounded point-wise convergence for all m ∈ R.

3.1.2 Dual Representation

3.1.2.1 Finitely Additive Probabilities

As a consequence of its monotonicity, quasiconvexity, and continuity with

respect to the sup-norm ||.||∞, the indifference buyer’s price πu,Gw0 : X → R

admits a representation in term of the set ∆ ⊂ X ∗ of all finitely additive

probabilities. The illustration of the representation results is considerably

simplified by introducing an appropriate notation for the support function1

of the acceptance set Au,Gw0,m ⊂ X which, consistently with the terminology

adopted in the mathematical finance literature, we designate as minimal

penalty function (see Drapeau and Kupper (2010) and Föllmer and Schied

(2002, 2004)).

Definition 3.2. The minimal penalty function ru,Gw0 : R ×∆ → (−∞,+∞]

of the indifference buyer’s price πu,Gw0 : X → R is defined by,

ru,Gw0
(m,Q) := sup

X∈Au,Gw0,m

EQ[−X] (3.5)

for all (m,Q) ∈ R×∆.

The representation of the indifference buyer’s price πu,Gw0 in Proposition 3.3

is an application of the duality for quasiconcave functions introduced by

de Finetti (1949), extended by Cerreia Vioglio et al. (2011b) and further

developed by Drapeau and Kupper (2010).

1For support functions see §13 in Rockafellar (1970).
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Proposition 3.3. The indifference buyer’s price πu,Gw0 : X → R has the

following representation,

πu,Gw0
(X) = sup

Q∈∆
R(EQ[−X], Q) (3.6)

for all X ∈ X . The maximal risk function Ru,Gw0 : R ×∆ → [−∞,+∞) for

which the representation in Equation (3.6) holds is unique and defined by,

Ru,Gw0
(x,Q) := inf{m ∈ R | ru,Gw0

(m,Q) ≥ x} (3.7)

for all (x,Q) ∈ R×∆. In particular, if R : R×∆→ [−∞,+∞) is any other

function satisfying the representation in Equation (3.6), then R(x,Q) ≤

Ru,Gw0 (x,Q) for all (x,Q) ∈ R×∆.

Proof of Proposition 3.3. By Proposition 3.1 and Remark 3.1 πu,Gw0 : X → R

is monotone decreasing, quasiconvex, and continuous with respect to the

sup-norm ||.||∞. By Theorem 4 in Cerreia Vioglio et al. (2011b) a monotone

decreasing and quasiconvex function πu,Gw0 : X → R which is continuous with

respect to the sup-norm ||.||∞ has the following representation,

πu,Gw0
(X) = sup

Q∈∆
Ru,Gw0

(EQ[−X], Q)

for all X ∈ X , where Ru,Gw0 : R×∆→ [−∞,+∞) is defined by,

Ru,Gw0
(x,Q) := inf

X∈X :EQ[−X]≥x
πu,Gw0

(X)

for all (x,Q) ∈ R×∆, and can be rewritten as,

Ru,Gw0
(x,Q) = inf{πu,Gw0

(X) ∈ R |X ∈ X : EQ[−X] ≥ x}
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= inf{m ∈ R | ∃X ∈ X : πu,Gw0
(X) ≤ m, EQ[−X] ≥ x}

= inf{m ∈R | sup
X∈X :πu,Gw0

(X)≤mEQ[−X] ≥ x}

= inf{m ∈ R | ru,Gw0 (m,Q) ≥ x}

for all (x,Q) ∈ R ×∆. By Corollary 2 in Cerreia Vioglio et al. (2011b), if

R : R×∆→ [−∞,+∞) is increasing in the first component, quasiconcave,

upper semi-continuous, and such that R(., Q) is extended-valued continuous

on R for each Q ∈ ∆, then the function πu,Gw0 : X → R defined by,

πu,Gw0
(X) := sup

Q∈∆
R(EQ[−X], Q)

for all X ∈ X , is monotone decreasing, quasiconvex and continuous with

respect to the sup-norm ||.||∞. Moreover, for all (x̄, Q̄) ∈ R×∆ and X ∈ X

such that EQ̄[−X] ≥ x̄,

πu,Gw0
(X) = sup

Q∈∆
R(EQ[−X], Q) ≥ R(EQ̄[−X], Q̄) ≥ R(x̄, Q̄)

Thus2,

Ru,Gw0
(x̄, Q̄) = inf

X∈X :EQ̄[−X]≥x̄
πu,Gw0

(X) ≥ R(x̄, Q̄)

for all (x̄, Q̄) ∈ R×∆.

The representation in Equation (3.6) implies that an uncertainty averse

decision-maker evaluates the maximum price that she would pay to avoid an

uncertain monetary payoff in X as if, by the function Ru,Gw0 , she appraised

its expected loss under each probabilistic scenario in ∆, the appraisal Ru,Gw0

depending on her risk attitudes u, on her uncertainty attitudes G and on

her initial wealth w0 ∈ R and as if, by the function πu,Gw0 , she summarized

2See also Cerreia Vioglio et al. (2011a, Lemma 51)
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her appraisal by considering exclusively the worst probabilistic scenario in

∆.

3.1.2.2 Countably Additive Probabilities

Proposition 3.4 shows that an uncertainty averse representation of prefer-

ences Uu,G : X → R is continuous with respect to bounded point-wise con-

vergence if and only if the set of all finitely additive probabilities ∆ ⊂ X ∗

in Equation (3.6) can be equivalently replaced by its subset of countably

additive elements ∆σ ⊂ X ∗σ .

Proposition 3.4 is a direct consequence of Remark 3.2 and of Proposition

4.3 and Proposition 4.5 in Cerreia Vioglio et al. (2010).

Proposition 3.4. An uncertainty averse representation of preferences Uu,G :

X → R is continuous with respect to bounded point-wise convergence if and

only if,

R(x,Q) = −∞

for all (x,Q) ∈ R× (∆ \∆σ).

3.1.3 Examples

In this subsection we characterize the dual representations on countably

additive probabilities of the indifference buyer’s price defined in terms of the

variational (Maccheroni et al. (2006)), the multiplier (Hansen and Sargent

(2001), Strzalecki (2011)), and the multiple priors (Gilboa and Schmeidler

(1989)) representations of preferences. In what follows u∗ : R → R denotes

the convex conjugate of the strictly increasing and concave utility function

u : R→ R, that is,

u∗(λ) := sup
x∈R

(u(x)− λx) (3.8)
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for all λ ∈ R. All the examples presented in this subsection are direct

applications of various representation results collected in the Appendix at

the end of this chapter.

Example 3.1. The indifference buyer’s price πu,cw0 : X → R defined by a

variational representation of preferences Uu,c : X → R which is continuous

with respect to bounded point-wise convergence has the representation in

Proposition 3.3 with,

Ru,cw0
(x,Q) = w0−u−1

(
inf

λ∈(0,+∞)

{
λ(w0−x)+ inf

P∈∆σ

(
c(P)+EP

[
u∗
(
λ
dQ
dP

)])})
(3.9)

for all (x,Q) ∈ R × ∆σ. Equation (3.9) follows directly from Proposition

3.13 and Theorem 3.1 in the Appendix.

Example 3.2. The indifference buyer’s price πu,θ,R,P
?

w0 : X → R defined

by a multiplier representation of preferences Uu,θ,R,P
?

: X → R has the

representation in Proposition 3.3 with,

Ru,θ,R,P
?

w0
(x,Q) =

w0 − u−1
(

inf
λ∈(0,+∞)

{
λ(w0 − x) + inf

P∈∆σ(P?)

(
θR(P||P?) + EP

[
u∗
(
λ
dQ
dP

)])})
(3.10)

for all (x,Q) ∈ R × ∆σ with θ ∈ (0,+∞] and P? ∈ ∆σ. Equation (3.10)

follows directly from Proposition 3.13 and Corollary 3.1 in the Appendix.

Example 3.3. The indifference buyer’s price πu,Pw0 : X → R defined by a

multiple priors representation of preferences Uu,P : X → R which is contin-

uous with respect to bounded point-wise convergence has the representation
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in Proposition 3.3 with,

Ru,Pw0
(x,Q) = w0−u−1

(
inf

λ∈(0,+∞)

{
λ(w0−x)+ inf

P∈P
EP

[
u∗
(
λ
dQ
dP

)]})
(3.11)

for all (x,Q) ∈ R×∆σ with P ⊂ ∆σ. Equation (3.11) follows directly from

Proposition 3.13 and Corollary 3.2 in the Appendix.

3.2 Indifference Seller’s Price

Consider an uncertainty averse decision-maker who is endowed with a con-

stant monetary payoff w0 ∈ R. The uncertainty averse decision-maker is

offered a constant amount of money m ∈ R in exchange for accepting an

uncertain monetary payoff X ∈ X . Agreeing to the transaction would make

her wealth uncertain and equal to w0 + X + m ∈ X . The uncertainty

averse decision-maker is therefore in the position of a seller of a contract

(or insurer) and the minimum price (or insurance premium) m ∈ R which,

from the perspective of her uncertainty averse preferences Uu,G : X → R,

makes the uncertain monetary payoff w0 +X +m ∈ X more desirable than

the constant monetary payoff w0 ∈ R, corresponds precisely to the price

which makes them equally desirable. For this reason, this minimum price

is denominated indifference seller’s price. In Subsection 3.2.1 we introduce

its definition, we derive its properties, and we identify its acceptance set.

In Subsection 3.2.2 we characterize its dual representation on finitely ad-

ditive probabilities and on countably additive probabilities. In Subsection

3.2.3 we provide more explicit characterizations of its dual representation

on countably additive probabilities in terms of the variational (Maccheroni

et al. (2006)), the multiplier (Hansen and Sargent (2001), Strzalecki (2011)),

and the multiple priors (Gilboa and Schmeidler (1989)) representations of
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preferences.

3.2.1 Definition, Properties, and Acceptance Set

3.2.1.1 Definition

The indifference seller’s price, which in this dissertation is considered from an

actuarial perspective, is defined as the minimum price that a decision-maker

with uncertainty averse preferences Uu,G : X → R and with constant initial

wealth w0 ∈ R would demand to accept an uncertain monetary prospect in

X (e.g. to provide insurance).

Definition 3.3. A function ϕu,Gw0 : X → R is said to be an indifference

seller’s price if it satisfies,

u(w0) = Uu,G(w0 +X + ϕu,Gw0
(X)) (3.12)

for all X ∈ X and w0 ∈ R.

3.2.1.2 Properties

Proposition 3.5 asserts that the indifference seller’s price is monotone de-

creasing, convex, cash-additive, and normalized. As a result of these prop-

erties, the indifference seller’s price ϕu,Gw0 : X → R is a cash-additive convex

risk measure. Cash-additive convex risk measures were introduced by Deprez

and Gerber (1985) in the actuarial mathematics literature and by Frittelli

and Rosazza Gianin (2002) and Föllmer and Schied (2002) in the financial

mathematics literature. A cash-additive convex risk measure is a function

yielding the minimum constant amount of money m ∈ R that must be added

to an uncertain monetary payoff in X ∈ X such that the adjusted uncertain
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position X +m ∈ X becomes acceptable3 to a decision-maker.

Proposition 3.5. The indifference seller’s price ϕu,Gw0 : X → R satisfies the

following properties for all X,Y ∈ X .

(i) Monotonicity: If X ≥ Y , then ϕu,Gw0 (X) ≤ ϕu,Gw0 (Y ).

(ii) Convexity: ϕu,Gw0 (λX + (1−λ)Y ) ≤ λϕu,Gw0 (X) + (1−λ)ϕu,Gw0 (Y ) for all

λ ∈ [0, 1].

(iii) Cash-additivity: ϕu,Gw0 (X +m) = ϕu,Gw0 (X)−m for all m ∈ R.

(iv) Normalization: ϕu,Gw0 (0) = 0.

Proof of Proposition 3.5. (i) Let X,Y ∈ X . If X ≥ Y , then by Definition

3.3 and by the increasing monotonicity of Uu,G : X → R,

u(w0) = Uu,G(w0+Y + ϕu,Gw0
(Y ))

= Uu,G(w0 +X + ϕu,Gw0
(X))

≥ Uu,G(w0 + Y + ϕu,Gw0
(X))

and the increasing monotonicity of Uu,G : X → R yields ϕu,Gw0 (X) ≤ ϕu,Gw0 (Y ).

Thus, ϕu,Gw0 : X → R is monotone decreasing.

(ii) If m ∈ R, then by Definition 3.3,

u(w0) = Uu,G(w0+X + ϕu,Gw0
(X))

= Uu,G(w0 +X +m+ ϕu,Gw0
(X +m))

= u(w0)

3The criterion of acceptability is subjectively determined by the decision-maker de-
pending on the situation and on the problem under consideration.
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and the strict monotonicity of Uu,G : X → R yields,

ϕu,Gw0
(X) = m+ ϕu,Gw0

(X +m)

Thus, ϕu,Gw0 : X → R is cash-additive.

(iii) If λ ∈ [0, 1], then by the quasiconcavity of Uu,G : X → R and by

Definition 3.3,

Uu,G(w0 + λX + (1− λ)Y + λϕu,Gw0
(X) + (1− λ)ϕu,Gw0

(Y ))

= Uu,G(λ(w0 +X + ϕu,Gw0
(X)) + (1− λ)(w0 + Y + ϕu,Gw0

(Y )))

≥ min{Uu,G(w0 +X + ϕu,Gw0
(X)), Uu,G(w0 + Y + ϕu,Gw0

(Y ))}

=Uu,G(w0 + λX + (1− λ)Y + ϕu,Gw0
(λX + (1− λ)Y ))

= u(w0)

and the increasing monotonicity of Uu,G : X → R yields,

ϕu,Gw0
(λX + (1− λ)Y ) ≤ λϕu,Gw0

(X) + (1− λ)ϕu,Gw0
(Y )

Thus, ϕu,Gw0 : X → R is convex.

(iv) As u : R→ R is strictly increasing,

u(w0 + ϕu,Gw0
(0)) = u(w0)

if and only if ϕu,Gw0 (0) = 0. Thus, ϕu,Gw0 : X → R is normalized.

Decreasing monotonicity implies that a decision-maker would demand higher

prices to accept higher losses. Convexity implies that the minimum price

that a decision-maker would demand to accept of a portfolio of uncertain

monetary payoffs is lower than the convex combinations of the prices that
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she would demand to accept its constituents. Cash-additivity implies that

adding a constant amount of money to an uncertain monetary payoff de-

creases the minimum price that a decision-maker would demand to accept

the uncertain prospect exactly by this constant amount. Normalization im-

plies that a decision-maker would not pay any money to receive a monetary

payoff which is certainly equal to zero4.

3.2.1.3 Acceptance Set

The indifference seller’s price πu,Gw0 : X → R can be equivalently studied in

terms of the acceptance set Au,Gw0,0
⊂ X of an uncertainty averse decision-

maker Uu,G : X → R with constant initial wealth w0 ∈ R at level zero. This

is the subset Au,Gw0,0
of X given by,

Au,Gw0,0
= {X ∈ X |Uu,G(w0 +X) ≥ u(w0)} (3.13)

and it corresponds to the set of uncertain monetary payoffs in X that a

decision-maker with uncertainty averse preferences Uu,G : X → R and with

constant initial wealth w0 ∈ R finds more desirable than nothing.

Proposition 3.6 asserts that the acceptance set Au,Gw0,0
⊂ X is monotone, con-

vex, and normalized. Proposition 3.6 is a direct consequence of Proposition

3.2 in Subsection 3.2.1.3 and its proof is not provided.

Proposition 3.6. The acceptance set Au,Gw0,0
⊂ X satisfies the following

properties for all X,Y ∈ X .

(i) Monotonicity: If X ∈ Au,Gw0,0
and Y ≥ X, then Y ∈ Au,Gw0,0

.

(ii) Convexity: If X,Y ∈ Au,Gw0,0
, then λX + (1 − λ)Y ∈ Au,Gw0,0

for all

λ ∈ [0, 1].

4In other words, a decision-maker would demand a non-negative price to accept a
monetary payoff which is certainly equal to zero.
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(iii) Normalization: inf{x ∈ R |x ∈ Au,Gw0,0
} = 0.

Remark 3.3 clarifies the relationship between the acceptance set Au,Gw0,m ⊂ X

at level m ∈ R and the acceptance set Au,Gw0,0
at level zero of an uncertainty

averse decision-maker Uu,G : X → R with constant initial wealth w0 ∈ R.

Remark 3.3. The acceptance setAu,Gw0,m ⊂ X satisfiesAu,Gw0,m = Au,Gw0−m,0+m

for all m ∈ R.

Observe that the acceptance set Au,Gw0,0
⊂ X corresponds to the set of all un-

certain monetary prospects for which an uncertainty averse decision-maker

Uu,G : X → R with constant initial wealth w0 ∈ R would agree to sell

protection, or insurance, in exchange of nothing, that is,

Au,Gw0,0
= {X ∈ X |ϕu,Gw0

(X) ≤ 0} (3.14)

Observe also that the indifference seller’s price ϕu,Gw0 : X → R satisfies,

ϕu,Gw0
(X) = inf{m ∈ R |X +m ∈ Au,Gw0,0

}

for all X ∈ X . It follows from Equation (3.14) that Proposition 3.1 could

be equivalently obtained combining Proposition 3.6 with Proposition 4.7

in Föllmer and Schied (2004). It also follows from Equation (3.14) that

the indifference seller’s price inherits directly all the different continuity

properties of the uncertainty averse representation of preferences because

ϕu,Gw0 : X → R and Uu,G : X → R have the same level sets.

Let Au,G
C

w0,0
be the subset of X given by,

Au,G
C

w0,0
:= {X ∈ X |Uu,G(w0 +X) < u(w0)} (3.15)

Remark 3.4, when combined with Equation (3.14), asserts that the indiffer-
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ence seller’s price ϕu,Gw0 : X → R inherits the continuity of the uncertainty

averse representation of preferences Uu,G : X → R with respect to the sup-

norm ||.||∞.

Remark 3.4. The sets Au,Gw0,0
⊂ X and Au,G

C

w0,0
⊂ X are closed with respect

to convergence in sup-norm ||.||∞.

Remark 3.5, when combined with Equation (3.14), asserts that the indif-

ference seller’s price ϕu,Gw0 : X → R inherits the continuity with respect to

bounded point-wise convergence of the uncertainty averse representation of

preferences Uu,G : X → R.

Remark 3.5. Uu,G : X → R is continuous with respect to bounded point-

wise convergence if and only if the sets Au,Gw0,0
⊂ X and Au,G

C

w0,0
⊂ X are

closed with respect to bounded point-wise convergence.

Observe that, as a result of decreasing monotonicity and cash-additivity, the

indifference seller’s price φu,Gw0 : X → R is even Lipschitz continuous with

respect to the supremum norm ||.||∞ (see Föllmer and Schied (2004, Lemma

4.3)).

3.2.2 Dual Representation

3.2.2.1 Finitely Additive Probabilities

As a consequence of its monotonicity, convexity, and cash-additivity, the in-

difference seller’s price ϕu,Gw0 : X → R admits a representation in terms of the

set ∆ ⊂ X ∗ of all finitely additive probabilities. The following proposition

is a direct application of Proposition 3.5 and of Föllmer and Schied (2004,

Theorem 4.15).
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Proposition 3.7. The indifference seller’s price ϕu,Gw0 : X → R has the

following representation,

ϕu,Gw0
(X) = sup

Q∈∆

(
EQ[−X]− α(Q)

)
(3.16)

for all X ∈ X . The minimal penalty function αu,Gw0 : ∆ → (−∞,+∞] for

which the representation in Equation (3.16) holds is unique and defined by,

αu,Gw0
(Q) := sup

X∈Au,Gw0,0

EQ[−X] (3.17)

for all Q ∈ ∆. In particular, if α : ∆ → (−∞,+∞] is any other function

satisfying the representation in Equation (3.16), then αu,Gw0 (Q) ≤ α(Q) for

all Q ∈ ∆.

The representation in Equation (3.16) implies that an uncertainty averse

decision-maker evaluates the minimum price that she would demand to ac-

cept an uncertain monetary payoff in X as if, by the function αu,Gw0 , she

applied a correction to its expected loss under each probabilistic scenario in

∆, the correction αUw0
depending on her risk attitudes u, on her uncertainty

attitudes G and on her initial wealth w0 ∈ R and as if, by the function

ϕu,Gw0 , she summarized her appraisal by considering exclusively the worst

probabilistic scenario in ∆.

3.2.2.2 Countably Additive Probabilities

Proposition 3.4 shows that an uncertainty averse representation of prefer-

ences Uu,G : X → R is continuous with respect to bounded point-wise con-

vergence if and only if the set of all finitely additive probabilities ∆ ⊂ X ∗

in Equation (3.16) can be equivalently replaced by its subset of countably
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additive elements ∆σ ⊂ X ∗σ .

Proposition 3.8 is a direct consequence of Remark 3.5, of Proposition 4.5 in

Cerreia Vioglio et al. (2010), and of Proposition 3 in Krätschmer (2005).

Proposition 3.8. An uncertainty averse representation of preferences Uu,G :

X → R is continuous with respect to bounded point-wise convergence if and

only if,

α(Q) = +∞

for all Q /∈ ∆σ.

3.2.3 Examples

In this subsection we derive the dual representations on countably addi-

tive probabilities of the indifference seller’s price defined in terms of the

variational (Maccheroni et al. (2006)), the multiplier (Hansen and Sargent

(2001), Strzalecki (2011)), and the multiple priors (Gilboa and Schmeidler

(1989)) representations of preferences. As in subsection 3.1.3, in what fol-

lows u∗ : R → R will denote the convex conjugate of the strictly increasing

and concave utility function u : R → R. All the examples presented in this

subsection are direct applications of various representation results collected

in the Appendix at the end of this chapter.

Example 3.4. The indifference seller’s price ϕu,cw0 : X → R defined by a

variational representation of preferences Uu,c : X → R which is continuous

with respect to bounded point-wise convergence has the representation in

Proposition 3.7 with,

αu,cw0
(Q) = w0 + inf

λ∈(0,+∞)

1

λ

{
inf

P∈∆σ

(
c(P) +EP

[
u∗
(
λ
dQ
dP

)])
− u(w0)

}
(3.18)

for all Q ∈ ∆σ. Equation (3.18) follows directly from Remark 3.6 and
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Theorem 3.1 in the Appendix.

Example 3.5. The indifference seller’s price ϕu,θ,R,P
?

w0 : X → R defined

by a multiplier representation of preferences Uu,θ,R,P
?

: X → R has the

representation in Proposition 3.7 with,

αu,θ,R,P
?

w0
(Q) =

w0 + inf
λ∈(0,+∞)

1

λ

{
inf

P∈∆σ(P?)

(
θR(P||P?) + EP

[
u∗
(
λ
dQ
dP

)])
− u(w0)

}
(3.19)

for all (x,Q) ∈ R × ∆σ with θ ∈ (0,+∞] and P? ∈ ∆σ. Equation (3.19)

follows directly from Remark 3.6 and Corollary 3.1 in the Appendix.

Example 3.6. The indifference seller’s price ϕu,Pw0 : X → R defined by a

multiple priors representation of preferences Uu,P : X → R which is contin-

uous with respect to bounded point-wise convergence has the representation

in Proposition 3.7 with,

αu,Pw0
(Q) = w0 + inf

λ∈(0,+∞)

1

λ

{
inf
P∈P

EP

[
u∗
(
λ
dQ
dP

)]
− u(w0)

}
(3.20)

for all (x,Q) ∈ R×∆σ with P ⊂ ∆σ. Equation (3.20) follows directly from

Remark 3.6 and Corollary 3.1 in the Appendix.

3.3 Appendix

The dual representations of the indifference buyer’s price and of the indiffer-

ence seller’s price defined by the variational, the multiplier, and the multiple

priors representations of preferences presented in Subsection 3.1.3 and Sub-

section 3.2.3 are special cases of the dual representations of the indifference

buyer’s price and of the indifference seller’s price defined by a general strictly

increasing, concave, and continuous function. In Subsection 3.3.1 of this Ap-
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pendix we describe the dual representation of a general strictly increasing,

concave, and continuous function while in Subsection 3.3.2 of this Appendix

we characterize the maximal risk function and the minimal penalty function

representing the indifference buyer’s price and the indifference seller’s price

defined by a general strictly increasing, concave, and continuous function.

3.3.1 Dual Representation of a Concave Preference Functional

In this section we describe the dual representation of a general strictly in-

creasing, concave, and continuous function U : X → R in terms of its convex

conjugate function U∗ : X ∗ → (−∞,+∞] defined by,

U∗(µ) := sup
X∈X

(
U(X)− Eµ[X]

)
(3.21)

for all µ ∈ X ∗.

Proposition 3.9. A strictly increasing, concave, and continuous function

U : X → R has the following representation,

U(X) = inf
Q∈∆

inf
λ∈(0,+∞)

(
EQ[λX] + U∗(λQ)

)
(3.22)

for all X ∈ X .

Proof. By Proposition 3.3 a monotone increasing, quasiconcave, and contin-

uous function U : X → R has the following representation,

U(X) = inf
Q∈∆

V (EQ[X], Q) (3.23)

for all X ∈ X . The minimal value function V ? : R × ∆ → (−∞,+∞] for
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which the representation in Equation (3.23) holds is unique and defined by,

V ?(x,Q) := sup
X∈X :EQ[X]≤x

U(X)

for all (x,Q) ∈ R×∆. In particular, if V : R×∆→ (−∞,+∞] is any other

function satisfying the representation in Equation (3.23), then V (x,Q) ≥

V ?(x,Q) for all (x,Q) ∈ R×∆. The minimal value function V ? : R×∆→

(−∞,+∞] can be rewritten as,

V ?(x,Q) = sup{U(X) ∈R |X ∈ X : EQ[−X] ≥ −x}

= sup{m ∈ R | ∃X ∈ X : U(X) ≥ m, EQ[−X] ≥ −x}

= sup{m ∈ R | supX∈X :U(X)≥mEQ[−X] ≥ −x}

for all (x,Q) ∈ R × ∆. As U : X → R is concave5 and U∗(0) = +∞, by

Theorem 13.5 and Theorem 9.7 in Rockafellar (1970),

sup
X∈X :U(X)≥m

EQ[−X] = inf
λ∈(0,+∞)

1

λ

(
U∗(λQ)−m

)
(3.24)

for all (m,P ) ∈ R×∆. Thus,

V ?(x,Q) = sup
{
m ∈ R

∣∣∣ inf
λ∈(0,+∞)

1

λ

(
U∗(λQ)−m

)
≥ −x

}
= sup

{
m ∈ R

∣∣∣ inf
λ∈(0,+∞)

(
λx+ U∗(λQ) ≥ m

)}
= inf

λ∈(0,+∞)

(
λx+ U∗(λQ)

)
(3.25)

for all (x, P ) ∈ R×∆. See also Cerreia Vioglio et al. (2011b, Example 3.2)

and Cerreia Vioglio et al. (2011a, Corollary 38).

5Observe that a concave function is quasiconcave, while a quasiconcave function is not
necessarily concave.
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Proposition 3.10 characterizes the situation in which the set of finitely ad-

ditive probabilities ∆ ⊂ X ∗ in Equation (3.22) can be equivalently replaced

by its subset of countably additive elements ∆σ ⊂ X ∗σ . Proposition 3.10 is

a direct consequence of Proposition 2.1.

Proposition 3.10. A strictly increasing, concave, and continuous function

U : X → R is continuous with respect to bounded point-wise convergence if

and only if,

U∗(λQ) = +∞

for all Q /∈ ∆σ and λ ∈ (0,+∞).

A classic example of strictly increasing, concave, and continuous function U :

X → R which is continuous with respect to bounded point-wise convergence

is the expected utility Uu,P : X → R defined in terms of a countably additive

probability P ∈ ∆σ (see Equation (2.1)). Consistently with the assumptions

and with the notation employed throughout this dissertation, in what follows

u : R→ R denotes a strictly increasing and concave function, and u∗ : R→

R denotes its convex conjugate function (see Equation (3.8)).

Proposition 3.11. Let U : X → R be the function defined by,

U(X) = EP[u(X)] (3.26)

for all X ∈ X where P ∈ ∆σ. Then U : X → R has the representation in

Proposition 3.9 with,

U∗(λQ) =


EP

[
u∗
(
λ
dQ

dP

)]
if Q ∈ ∆σ(P)

+∞ otherwise

for all λ ∈ (0,+∞).
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Proof of Proposition 3.11. By Proposition 4.104 and Theorem 4.106 in Föllmer

and Schied (2004),

sup
X∈X :EP[u(X)]≥m

EQ[−X] =


inf

λ∈(0,+∞)

1

λ

(
EP

[
u∗
(
λ
dQ

dP

)]
−m

)
if Q ∈ ∆σ(P)

+∞ otherwise

Thus, the statement follows from Theorem 13.5 and Theorem 9.7 in Rock-

afellar (1970) (see Equation (3.24)).

Theorem 3.1 describes the convex conjugate function of a variational repre-

sentation of preferences Uu,c : X → R which is continuous with respect to

bounded point-wise convergence. Recall that a variational representation of

preferences Uu,c : X → R is continuous with respect to bounded point-wise

convergence if and only if c(P ) = +∞ for all P /∈ ∆σ (see Proposition 2.1).

Theorem 3.1. Let U : X → R be the function defined by,

U(X) = inf
P∈∆σ

(
EP[u(X)] + c(P)

)

for all X ∈ X . Then U : X → R has the representation in Proposition 3.9

with,

U∗(λQ) =


inf

P∈∆σ

(
c(P) + EP

[
u∗
(
λ
dQ

dP

)])
if Q ∈ ∆σ

+∞ otherwise

for all λ ∈ (0,+∞).

Proof of Theorem 3.1. Observe that a variational representation of prefer-

ences U : X → R which is continuous with respect to bounded point-wise

convergence can be equivalently written as,

U(X) = −ρc(u(X)) ∀X ∈ X
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where ρc : X → R is a cash-additive convex risk measure represented by

the minimal penalty function c : ∆→ (−∞,+∞] such that c(P ) = +∞ for

all P /∈ ∆σ. Let λ ∈ (0,+∞) and Q ∈ ∆. By decreasing monotonicity of

ρc : X → R,

U∗(λQ) = sup
X∈X

(
EQ[−λX]− ρc(u(X))

)
= sup

(X,Z)∈X×X :u(X)≥Z

(
EQ[−λX]− ρc(Z)

)
= sup

(X,Z)∈X×X

(
EQ[−λX]− ρc(Z)− δ(X,Z | U)

)

where U ⊂ X × X is the convex set defined by,

U := {(X,Z) ∈ X × X : u(X) ≥ Z}

and δ(. | U) : X × X → [0,+∞] is the convex function defined by,

δ(X,Z | U) :=


0 if (X,Z) ∈ U

+∞ otherwise

Let g : X × X → R be the concave function defined by,

g(X,Z) := EQ[−λX]− ρc(Z)

for all (X,Z) ∈ X × X . Let f : X × X → [0,+∞] be the convex function

defined by,

f(X,Z) := δ(X,Z | U)

for all (X,Z) ∈ X × X . By Fenchel’s Duality Theorem (see Rockafellar
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(1970, Theorem 31.1)),

sup
(X,Z)∈X×X

(
g(X,Z)− f(X,Z)

)
= inf

(P̄ ,Q̄)∈X ∗×X ∗

(
g∗(P̄ , Q̄) + f∗(P̄ , Q̄)

)

The function g∗ : X ∗ × X ∗ → (−∞,+∞] is the convex conjugate function

of g : X × X → R, that is,

g∗(P̄ , Q̄) = sup
(X,Z)∈X×X

(
g(X,Z)− EP̄ [X]− EQ̄[Z]

)

for all (P̄ , Q̄) ∈ X ∗ × X ∗. The function f∗ : X ∗ × X ∗ → (−∞,+∞] is the

convex conjugate function of f : X × X → [0,+∞], that is,

f∗(P̄ , Q̄) = sup
(X,Z)∈X×X

(
EP̄ [X] + EQ̄[Z]− f(X,Z)

)

for all (P̄ , Q̄) ∈ X ∗×X ∗. The function g∗ : X ∗×X ∗ → (−∞,+∞] satisfies,

g∗(P̄ , Q̄) = sup
(X,Z)∈X×X

(
EQ[−λX]− ρc(Z)− EP̄ [X]− EQ̄[Z]

)
= sup

Z∈X

(
EQ̄[−Z]− ρc(Z)

)
+ sup
X∈X

(
EQ[−λX]− EP̄ [X]

)
= c(Q̄) + δ(−P̄ |λQ)

where the function δ(. |λQ) : X ∗ → [0,+∞] is defined by,

δ(−P̄ |λQ) :=


0 if −P̄ = λQ

+∞ otherwise

for all P̄ ∈ X ∗. It follows that,

inf
(P̄ ,Q̄)∈X ∗×X ∗

(
g∗(P̄ , Q̄) + f∗(P̄ , Q̄)

)
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= inf
(P̄ ,Q̄)∈X ∗×X ∗

(
c(Q̄) + δ(−P̄ |λQ) + f∗(P̄ , Q̄)

)
= inf

Q̄∈X ∗

(
c(Q̄) + f∗(−λQ, Q̄)

)
= inf

Q̄∈∆σ

(
c(Q̄) + f∗(−λQ, Q̄)

)

where the last equality follows from the fact that c(Q̄) = +∞ for all Q̄ /∈ ∆σ.

The function f∗ : X ∗ ×X ∗ → (−∞,+∞] satisfies,

f∗(−λQ, Q̄) = sup
(X,Z)∈X×X

(
EQ[−λX] + EQ̄[Z]− δ(X,Z | U)

)
= sup

(X,Z)∈U

(
EQ̄[Z]− EQ[λX]

)
= sup

(X,Z)∈X×X :u(X)≥Z

(
EQ̄[Z]− EQ[λX]

)
= sup

X∈X

(
EQ̄[u(X)]− EQ[λX]

)

for all Q̄ ∈ ∆σ. Therefore, by Proposition 3.11,

f∗(−λQ, Q̄) =


EQ̄
[
u∗
(
λ
dQ

dQ̄

)]
if Q ∈ ∆σ(Q̄)

+∞ otherwise

for all Q̄ ∈ ∆σ. Thus,

inf
Q̄∈∆σ

(
c(Q̄)+f∗(−λQ, Q̄)

)
=


inf

Q̄∈∆σ

(
c(Q̄) + EQ̄

[
u∗
(
λ
dQ

dQ̄

)])
if Q ∈ ∆σ

+∞ otherwise

Corollary 3.1 describes the convex conjugate function of a multiplier repre-

sentation of preferences Uu,θ,R,P
?

: X → R. Observe that, since R(P ||P?) =

+∞ for all P /∈ ∆σ(P?), any multiplier representation of preferences Uu,θ,R,P
?

:
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X → R is continuous with respect to bounded point-wise convergence (see

Proposition 2.1).

Corollary 3.1. Let U : X → R be the function defined by,

U(X) = inf
P∈∆σ(P?)

(
EP[u(X)] + θR(P||P?)

)

for all X ∈ X with θ ∈ (0,+∞] and P? ∈ ∆σ. Then U : X → R has the

representation in Proposition 3.9 with,

U∗(λQ) =


inf

P∈∆σ(P?)

(
R(P||P?) + EP

[
u∗
(
λ
dQ

dP

)])
if Q ∈ ∆σ

+∞ otherwise

for all λ ∈ (0,+∞).

Proof of Corollary 3.1. Follows from Theorem 3.1 setting c(P) = θR(P||P?)

for all P ∈ ∆σ with θ ∈ (0,+∞] and P? ∈ ∆σ.

Corollary 3.2 describes the convex conjugate function of a multiple priors

representation of preferences Uu,P : X → R which is continuous with respect

to bounded point-wise convergence. Recall that a multiple priors represen-

tation of preferences Uu,P : X → R is continuous with respect to bounded

point-wise convergence if and only if P ⊂ ∆σ (Proposition 2.1).

Corollary 3.2. Let U : X → R be the function defined by,

U(X) = inf
P∈P

EP[u(X)]

for all X ∈ X with P ⊂ ∆σ. Then U : X → R has the representation in
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Proposition 3.9 with,

U∗(λQ) =


inf
P∈P

EP

[
u∗
(
λ
dQ

dP

)]
if Q ∈ ∆σ

+∞ otherwise

for all λ ∈ (0,+∞).

Proof of Corollary 3.2. Follows from Theorem 3.1 setting c(P) = 0 if P ∈ P

and c(P) = +∞ if P /∈ P for all P ∈ ∆σ and with P ⊂ ∆σ.

3.3.2 Dual Representation of the Indifference Buyer’s Price Defined by a

Concave Preference Functional

In this subsection we characterize the dual representation of the indifference

buyer’s price and of the indifference seller’s price defined in terms of a strictly

increasing, concave, and continuous function. As in Subsection 3.3.1, we

denote by U : X → R a strictly increasing, concave, and continuous function,

and by U∗ : X ∗ → (−∞,+∞] its convex conjugate function (see Equation

(3.21)). In addition, we denote by u : R → R the restriction of U : X → R

to the real line, that is,

u(x) := U(x)

for all x ∈ R. It follows that u : R→ R is a strictly increasing and concave

function.

Proposition 3.12 and Remark 3.6 characterize the minimal penalty functions

representing, respectively, the indifference buyer’s price and the indifference

seller’s price, defined by a strictly increasing, concave, and continuous func-

tion U : X → R.

Proposition 3.12. Let rUw0
: ∆ × R → (−∞,+∞] be the function defined
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by,

rUw0
(m,Q) := sup

X∈X :U(w0+X)≥u(w0−m)
EQ[−X]

for all (m,Q) ∈ ∆× R. Then,

rUw0
(m,Q) = w0 + inf

λ∈(0,+∞)

1

λ

(
U∗(λQ)− u(w0 −m)

)

for all (m,Q) ∈ R×∆.

Proof of Proposition 3.12. As U : X → R is concave and U∗(0) = +∞, by

Theorem 13.5 and Theorem 9.7 in Rockafellar (1970),

rUw0
(m,Q) = inf

λ∈(0,+∞)

1

λ

(
sup
X∈X

(
U(w0 +X)− u(w0 −m)− EQ[λX]

))
= inf

λ∈(0,+∞)

1

λ

(
sup
X∈X

(
U(w0 +X)− EQ[λ(w0 +X)]

)
+ λw0 − u(w0 −m)

)
= w0 + inf

λ∈(0,+∞)

1

λ

(
U∗(λQ)− u(w0 −m)

)

for all (m,Q) ∈ R×∆.

Remark 3.6. Let αUw0
: ∆→ (−∞,+∞] be the function defined by,

αUw0
(Q) := rUw0

(0, Q)

for all Q ∈ ∆. Then,

αUw0
(Q) = w0 + inf

λ∈(0,+∞)

1

λ

(
U∗(λQ)− u(w0)

)

for all Q ∈ ∆.

Proposition 3.13 characterizes the maximal risk function representing the

indifference buyer’s price defined by a strictly increasing, concave, and con-

tinuous function U : X → R.
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Proposition 3.13. Let RUw0
: ∆ × R → [−∞,+∞) be the function defined

by,

RUw0
(x,Q) := inf{m ∈ R | rUw0

(m,Q) ≥ x}

for all (x,Q) ∈ ∆× R. Then,

RUw0
(x,Q) = w0 − u−1

(
inf

λ∈(0,+∞)

(
λ(w0 − x) + U∗(λQ)

))

for all (x,Q) ∈ R×∆.

Proof of Proposition 3.13. By Proposition 3.12,

RUw0
(x,Q) = inf

{
m ∈ R

∣∣∣w0 + inf
λ∈(0,+∞)

1

λ

(
U∗(λQ)− u(w0 −m)

)
≥ x

}
= inf

{
m ∈ R

∣∣∣ inf
λ∈(0,+∞)

(
λ(w0 − x) + U∗(λQ)

)
≥ u(w0 −m)

}
= inf

{
m ∈ R

∣∣∣m ≥ w0 − u−1
(

inf
λ∈(0,+∞)

(
λ(w0 − x) + U∗(λQ)

))}
= w0 − u−1

(
inf

λ∈(0,+∞)

(
λ(w0 − x) + U∗(λQ)

))

for all (x,Q) ∈ R×∆.
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Chapter 4

Characterizations of Comparative

Uncertainty Attitudes

4.1 Comparative Uncertainty Aversion

In this section we study the comparison of the different extents of uncer-

tainty aversion of different decision-makers at a given level of constant initial

wealth. In Section 4.1.1 we present a definition of comparative uncertainty

aversion which is consistent with the definition of comparative uncertainty

aversion of Ghirardato and Marinacci (2001) and with the definition of com-

parative risk aversion of Yaari (1969). In Section 4.1.2 we provide various

characterizations of comparative uncertainty aversion in terms of the in-

difference buyer’s price and of the indifference seller’s price introduced in

Chapter 3.

Observe that, for simplicity, all the definitions and all the results are pro-

vided in terms of the more general notion of comparative risk and uncer-
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tainty aversion, and that all the definitions and all the results which charac-

terize comparative uncertainty aversion only will be recovered as particular

cases under a suitable normalization condition.

4.1.1 Definition

The notion of comparative risk and uncertainty aversion allows to compare

the different extents of risk and uncertainty aversion of different decision-

makers Uu1,G1 : X → R and Uu2,G2 : X → R endowed with the same

constant initial wealth w0 ∈ R. The intuition underlying the notion of

comparative risk and uncertainty aversion is that if a decision-maker Uu1,G1 :

X → R endowed with constant initial wealth w0 ∈ R prefers a constant

monetary payoff x ∈ R to a stochastic monetary payoff X ∈ X , then a more

risk and uncertainty averse decision-maker Uu2,G2 : X → R endowed with

the same constant initial wealth w0 ∈ R will do the same.

Definition 4.1. A decision-maker Uu1,G1 : X → R is said to be less risk

and uncertainty averse than another Uu2,G2 : X → R if,

u1(w0 + x) ≥ Uu1,G1(w0 +X) ⇒ u2(w0 + x) ≥ Uu2,G2(w0 +X) (4.1)

for all X ∈ X , x ∈ R, and w0 ∈ R.

Note that the second decision-maker Uu2,G2 may prefer the constant mon-

etary payoff x ∈ R either because she is more risk averse than the first

decision-maker Uu1,G1 , that is because she dislikes the variability of the

outcomes of the stochastic monetary payoff X ∈ X more than the first

decision-maker Uu1,G1 , or because she is more uncertainty averse than the

first decision-maker Uu1,G1 , that is because she dislikes the fact that the

probabilities of the different possible outcomes of X ∈ X are not objectively
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determined more than the first decision-maker Uu1,G1 . For this reason, Def-

inition 4.1 is, in general, a definition of comparative risk and uncertainty

aversion, and not a definition of comparative uncertainty aversion only.

For Definition 4.1 to specialize to comparative uncertainty aversion only, it

is necessary that both decision-makers Uu1,G1 and Uu2,G2 display the same

risk attitudes u1 and u2, that is that u1 = u2
1. This normalization condition

ensures, in fact, that different choices of the decision-makers are ascribable

only to their different uncertainty attitudes G1 and G2, and not also to their

different risk attitudes u1 and u2.

Remark 4.1. Definition 4.1 can be immediately characterized in terms of

the acceptance family (Au,Gw0,m)m∈R introduced in Section 3.1.1.3. In fact, it

follows directly from Definition 4.1 that a decision-maker Uu1,G1 : X → R is

less risk and uncertainty averse than another Uu2,G2 : X → R if and only if,

Au2,G2
w0,m ⊆ A

u1,G1
w0,m (4.2)

for all m ∈ R and w0 ∈ R. Therefore, a more risk and uncertainty averse

decision-maker Uu2,G2 : X → R prefers fewer stochastic monetary payoffs

X ∈ X to a constant monetary payoff −m ∈ R at every level of constant

initial wealth w0 ∈ R.

Note that Uu1,G1 is said to be more risk and uncertainty averse than Uu2,G2

when the implication in Equation (4.1) holds true in the opposite direction

and that Uu1,G1 is said to be as risk and uncertainty averse as Uu2,G2 when

the implication in Equation (4.1) holds true in both directions. The same

considerations apply to the set inclusion in Remark 4.1.

1Actually, it is not necessary that u1 and u2 are identical, as it is sufficient that u1 and
u2 are equivalent, that is that either u1 is a positive affine transformation of u2, or that
u2 is a positive affine transformation of u1. Nevertheless, without loss of generality, we
can set u1 = u2. See also Cerreia Vioglio et al. (2011a, Section 3.3).
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4.1.2 Characterizations

Theorem 4.1 asserts that a decision-maker is less risk and uncertainty averse

than another if and only if her indifference buyer’s price and her indifference

seller’s price are smaller than for the the other at every level of constant

initial wealth. Analogous results in term of the indifference buyer’s price

were obtained by Pratt (1964) in the expected utility framework in relation

to the characterization of comparative risk aversion.

Theorem 4.1. The following statements are equivalent.

(i) Uu1,G1 is less risk and uncertainty averse than Uu2,G2.

(ii) πu1,G1
w0 ≤ πu2,G2

w0 for all w0 ∈ R.

(iii) ϕu1,G1
w0 ≤ ϕu2,G2

w0 for all w0 ∈ R.

Proof of Theorem 4.1. Let X ∈ X and x ∈ R.

(i) ⇔ (ii) By Definition 4.1 and Definition 3.1, Uu1,G1 : X → R is less risk

and uncertainty averse than Uu2,G2 : X → R if and only if,

u1(w0 + x) ≥ u1(w0 − πu1,G1
w0

(X)) ⇒ u2(w0 + x) ≥ u2(w0 − πu2,G2
w0

(X))

that is, since u1 : R→ R and u2 : R→ R are strictly increasing, if and only

if,

πu1,G1
w0

(X) ≥ −x ⇒ πu2,G2
w0

(X) ≥ −x

Thus, Uu1,G1 : X → R is less risk and uncertainty averse than Uu2,G2 : X →

R if and only if,

πu1,G1
w0

(X) ≤ πu2,G2
w0

(X).

(i)⇔ (iii) By Definition 4.1 and Definition 3.3, Uu1,G1 : X → R is less risk
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and uncertainty averse than Uu2,G2 : X → R if and only if,

Uu1,G1(w0 + x+X + ϕu1,G1
w0+x(X)) ≥ Uu1,G1(w0 +X) ⇒

Uu2,G2(w0 + x+X + ϕu2,G2
w0+x(X)) ≥ Uu2,G2(w0 +X)

that is, since Uu1,G1 : X → R and Uu2,G2 : X → R are strictly increasing, if

and only if,

ϕu1,G1
w0+x(X) ≥ −x ⇒ ϕu2,G2

w0+x(X) ≥ −x

Thus, Uu1,G1 : X → R is less risk and uncertainty averse than Uu2,G2 : X →

R if and only if,

ϕu1,G1
w0+x(X) ≤ ϕu2,G2

w0+x(X).

Corollary 4.1 provides the dual characterization of uncertainty aversion con-

sistent with Theorem 4.1 and with the representation results in Proposition

3.3 and Proposition 3.7.

Corollary 4.1. The following statements are equivalent.

(i) Uu1,G1 is less risk and uncertainty averse than Uu2,G2.

(ii) Ru1,G1
w0 ≤ Ru2,G2

w0 for all w0 ∈ R.

(iii) αu1,G1
w0 ≥ αu2,G2

w0 for all w0 ∈ R.

Proof of Corollary 4.1. (i) ⇔ (ii) By Remark 4.1, Uu1,G1 : X → R is less

risk and uncertainty averse than Uu2,G2 : X → R if and only if Au2,G2
w0,m ⊆

Au1,G1
w0,m for all m ∈ R. By Rockafellar (1970, Corollary 13.1.1),

Au2,G2
w0,m ⊆ A

u1,G1
w0,m ⇔ ru2,G2

w0
(m,Q) ≤ ru1,G1

w0
(m,Q)
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for all (m,Q) ∈ R×∆. By Equation (3.7) and by the increasing monotonicity

of ru1,G1
w0 : R×∆→ (−∞,+∞] and ru2,G2

w0 : R×∆→ (−∞,+∞] in the first

argument,

ru2,G2
w0

(m,Q) ≤ ru1,G1
w0

(m,Q) ∀(m,Q) ∈ R×∆ ⇔

Ru1,G1
w0

(x,Q) ≤ Ru2,G2
w0

(x,Q) ∀(x,Q) ∈ R×∆

Thus, Uu1,G1 : X → R is less risk and uncertainty averse than Uu2,G2 : X →

R if and only if,

Ru1,G1
w0

(x,Q) ≤ Ru2,G2
w0

(x,Q)

for all (x,Q) ∈ R×∆.

(i) ⇔ (iii) By Theorem 4.1 and by Remark 3.3 Uu1,G1 : X → R is less risk

and uncertainty averse than Uu2,G2 : X → R if and only if Au2,G2
w0−m,0 −m ⊆

Au1,G1
w0−m,0 −m for all m ∈ R. By Rockafellar (1970, Corollary 13.1.1),

Au2,G2
w0−m,0 −m ⊆ A

u1,G1
w0−m,0 −m ⇔ αu2,G2

w0−m(Q)−m ≤ αu1,G1
w0−m(Q)−m

for all m ∈ R and Q ∈ ∆. Thus, Uu1,G1 : X → R is less risk and uncertainty

averse than Uu2,G2 : X → R if and only if,

αu2,G2
w0−m(Q) ≤ αu1,G1

w0−m(Q)

for all m ∈ R and Q ∈ ∆.
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4.2 Increasing, Decreasing, and Constant Uncertainty Aver-

sion

In this section we study the comparison of the different extents of uncer-

tainty aversion of a given decision-maker at different levels of constant initial

wealth. In Section 4.2.1 we present a definition of increasing, decreasing, and

constant uncertainty aversion which is consistent with the definition of in-

creasing, decreasing, and constant risk aversion in Kreps (1988, Chapter 6,

page 75). In Section 4.2.2 we provide various characterizations of increasing,

decreasing, and constant uncertainty aversion in terms of the indifference

buyer’s price and of the indifference seller’s price introduced in Chapter 3.

Observe that, for simplicity, all the definitions and all the results are pro-

vided in terms of the more general notion of increasing, decreasing, and

constant risk and uncertainty aversion, and that all the definitions and all

the results which characterize increasing, decreasing, and constant uncer-

tainty aversion only will be recovered as particular cases under a suitable

normalization condition.

4.2.1 Definition

The notion of increasing, decreasing, and constant uncertainty aversion al-

lows to compare the different extents of uncertainty aversion of a given

decision-maker Uu,G : X → R at different levels of constant initial wealth

w1 ∈ R and w2 ∈ R. The intuition underlying the notion of increasing

uncertainty aversion is that if a decision-maker Uu,G : X → R prefers a

constant monetary payoff x ∈ R to a stochastic monetary payoff X ∈ X

when her constant initial wealth is w1 ∈ R, and if she still prefers the con-

stant monetary payoff x ∈ R when her constant initial wealth is increased
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to w2 ∈ R, then she is increasingly risk and uncertainty averse2.

Definition 4.2. A decision-maker Uu,G : X → R is said to be increasingly

risk and uncertainty averse if,

u(w1 + x) ≥ Uu,G(w1 +X) ⇒ u(w2 + x) ≥ Uu,G(w2 +X) (4.3)

for all X ∈ X , x ∈ R, and w1, w2 ∈ R such that w1 ≤ w2.

Note that the decision-maker Uu,G : X → R may still prefer the constant

monetary payoff x ∈ R when her constant initial wealth is increased to

w2 ∈ R either because she is increasingly risk averse, that is because she dis-

likes even more the variability of the outcomes of the stochastic monetary

payoff X ∈ X when her constant initial wealth is increased to w2 ∈ R, or

because she is increasingly uncertainty averse, that is because she dislikes

even more the fact that the probabilities of the different possible outcomes

of X ∈ X are not objectively determined when her constant initial wealth

is increased to w2 ∈ R. For this reason, Definition 4.2 is a definition of

increasing risk and uncertainty aversion, and not a definition of increasing

uncertainty aversion only.

For Definition 4.2 to specialize to increasing uncertainty aversion only, it is

necessary that the decision-maker Uu,G displays the same risk aversion at

different levels of constant initial wealth w1 ∈ R and w2 ∈ R, that is that

u : R → R is constantly absolute risk averse (CARA). This normalization

condition ensures, in fact, that the decision-maker’s different choices at dif-

ferent levels of constant initial wealth w1 ∈ R and w2 ∈ R are ascribable

only to the way in which her uncertainty aversion changes when her con-

2In fact, if this decision-maker Uu,G : X → R was decreasingly risk and uncertainty
averse, than at some high level constant initial wealth w2 ∈ R she would reverse her
preferences and choose the stochastic monetary payoff X ∈ X .
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stant initial wealth is increased from w1 ∈ R to w2 ∈ R, and not also to the

way in which her risk aversion changes when her constant initial wealth is

increased from w1 ∈ R to w2 ∈ R. Recall that the CARA utility functions

are the linear utility function u(x) = β + αx for all x ∈ R with β ∈ R and

α ∈ (0,+∞) and the exponential utility function u(x) = −αe−θx for all

x ∈ R with α, θ ∈ (0,+∞).

Remark 4.2. Definition 4.2 can be immediately characterized in terms of

the acceptance family (Au,Gw0,m)m∈R introduced in Section 3.1.1.3. In fact, it

follows directly from Definition 4.2 that a decision-maker Uu,G : X → R is

increasingly risk and uncertainty averse if and only if,

Au,Gw2,m ⊆ A
u,G
w1,m (4.4)

for all m ∈ R and w1, w2 ∈ R such that w1 ≤ w2. Thus, an increasingly risk

and uncertainty averse decision-maker Uu,G : X → R prefers fewer stochastic

monetary payoffs X ∈ X to the constant monetary payoff −m ∈ R when

her constant initial wealth is increased from w1 ∈ R to w2 ∈ R.

Note that Uu,G is said to be decreasingly risk and uncertainty averse when

the implication in Equation (4.3) holds true in the opposite direction, and

that Uu,G is said to be constantly risk and uncertainty averse when the

implication in Equation (4.3) holds true in both directions. The same con-

siderations apply to the set inclusion in Remark 4.2.

4.2.2 Characterizations

Theorem 4.2 asserts that a decision-maker is increasingly risk and uncer-

tainty averse if and only if her indifference buyer’s price and her indifference

seller’s price are increasing functions of her constant initial wealth. Analo-
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gous results in term of the indifference buyer’s price were obtained by Pratt

(1964) in the expected utility framework in relation to the characterization

of increasing, decreasing, and constant risk aversion.

Theorem 4.2. The following statements are equivalent.

(i) Uu,G is increasingly risk and uncertainty averse.

(ii) πu,Gw1 ≤ π
u,G
w2 for all w1, w2 ∈ R such that w1 ≤ w2.

(iii) ϕu,Gw1 ≤ ϕ
u,G
w2 for all w1, w2 ∈ R such that w1 ≤ w2.

Proof of Theorem 4.2. Follows from applying the same arguments as in the

proof of Theorem 4.1 with Uu,G(w1 +X) = Uu1,G1(w0 +X) and Uu,G(w2 +

X) = Uu2,G2(w0 + X) for all X ∈ X and with w1, w2 ∈ R such that w1 ≤

w2.

Corollary 4.2 provides a dual characterization of uncertainty aversion con-

sistent with Theorem 4.2 and with the representation results of Proposition

3.3 and Proposition 3.7.

Corollary 4.2. The following statements are equivalent.

(i) Uu,G is increasingly risk and uncertainty averse.

(ii) Ru,Gw1 ≤ R
u,G
w2 for all w1, w2 ∈ R such that w1 ≤ w2.

(iii) αu,Gw1 ≥ α
u,G
w2 for all w1, w2 ∈ R such that w1 ≤ w2.

Proof of Corollary 4.2. Follows from applying the same arguments as in the

proof of Corollary 4.1 with Au,Gw1,m = Au1,G1
w0,m and Au,Gw2,m = Au2,G2

w0,m for all

m ∈ R and with w1, w2 ∈ R such that w1 ≤ w2.

4.2.3 Further Characterizations

This section illustrates some further characterizations of increasing, decreas-

ing and constant risk and uncertainty aversion which do not rely on the
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dependence of the indifference buyer’s price πu,Gw0 : X → R and of the indif-

ference seller’s price ϕu,Gw0 : X → R on the decision-maker’s constant initial

wealth w0 ∈ R. The characterization results presented in this section rely

instead on the observation that the notion of increasing, decreasing, or con-

stant risk and uncertainty aversion describes how a decision-maker’s choice

between an uncertain monetary payoff X ∈ X and a constant monetary

payoff x ∈ R is altered if a positive constant amount of money m ∈ [0,+∞)

is added to both alternatives.

Proposition 4.1. A decision-maker Uu,G : X → R is increasingly risk and

uncertainty averse if and only if,

u(w0 + x) ≥ Uu,G(w0 +X) ⇒ u(w0 + x+m) ≥ Uu,G(w0 +X +m) (4.5)

for all m ∈ [0,+∞), X ∈ X , x ∈ R, and w0 ∈ R.

Proof of Proposition 4.1. Follows from Definition 4.2 taking w1 = w0 ∈ R

and setting w2 = w0 +m ∈ R with m ∈ [0,+∞).

Proposition 4.2 shows that Proposition 4.1 can be equivalently characterized

in terms of the acceptance family (Au,Gw0,m)m∈R.

Proposition 4.2. A decision-maker Uu,G : X → R is increasingly risk and

uncertainty averse if and only if,

Au,Gw0,m ⊆ A
u,G
w0,m+n + n (4.6)

for all m ∈ R, n ∈ [0,+∞) and w0 ∈ R.

Proof of Proposition 4.2. Let X ∈ X and m ∈ R. By Proposition 4.1 Uu,G :
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X → R is increasingly risk and uncertainty averse if and only if,

u(w0 −m) ≥ Uu,G(w0 +X) ⇒ u(w0 −m− n) ≥ Uu,G(w0 +X − n)

for all n ∈ (−∞, 0], that is, if and only if,

Au,Gw0,m ⊇ A
u,G
w0,m+n + n

for all n ∈ (−∞, 0]. Thus, Uu,G : X → R is increasingly risk and uncertainty

averse if and only if,

Au,Gw0,m ⊆ A
u,G
w0,m+n + n

for all n ∈ [0,+∞).

Note that decreasing risk and uncertainty aversion is obtained reversing

the direction of the implication in Equation (4.5), and that constant risk

and uncertainty aversion is obtained when the implication in Equation (4.5)

applies in both directions. The same considerations apply to the set inclusion

in Equation (4.6).

4.2.3.1 Cash-Subadditivity

As a consequence of Proposition 4.1, increasing, decreasing and constant

risk and uncertainty aversion are equivalently characterized by the additive

properties that the indifference buyer’s price πu,Gw0 : X → R satisfies with

respect to the positive constant monetary payoffs m ∈ [0,+∞) for any given

w0 ∈ R.

Theorem 4.3. A decision-maker Uu,G : X → R is increasingly risk and
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uncertainty averse if and only if,

πu,Gw0
(X +m) ≥ πu,Gw0

(X)−m (4.7)

for all m ∈ [0,+∞), X ∈ X , and w0 ∈ R.

Proof of Theorem 4.3. Let X ∈ X , x ∈ R and m ∈ [0,+∞). By Proposition

4.1 and Definition 3.1 Uu,G : X → R is increasingly risk and uncertainty

averse if and only if,

u(w0 + x) ≥ u(w0−πu,Gw0
(X)) ⇒

u(w0 +m+ x) ≥ u(w0 − πu,Gw0
(X +m))

or, equivalently, as u : R→ R is strictly increasing, if and only if,

πu,Gw0
(X) ≥ −x ⇒ πu,Gw0

(X +m) +m ≥ −x

Thus, Uu,G : X → R is increasingly risk and uncertainty averse if and only

if,

πu,Gw0
(X +m) ≥ πu,Gw0

(X)−m.

Theorem 4.3 asserts that a decision-maker Uu,G : X → R is increasingly

risk and uncertainty averse if and only if the indifference buyer’s price

πu,Gw0 : X → R is cash-subadditive. It follows from Proposition 3.1 that

the indifference buyer’s price of an increasingly risk and uncertainty averse

decision-maker is a cash-subadditive quasiconvex risk measure. The property

of cash-subadditivity was introduced in the mathematical finance literature

by El Karoui and Ravanelli (2009) to model the impact of default risk and

81



interest rate ambiguity on the minimal reserve amount that must be added

to an uncertain monetary payoff such that it becomes acceptable to a fi-

nancial regulator or supervisory agency. The property of cash-subadditivity

is a weakening of the property of cash-additivity considered by Deprez and

Gerber (1985), Frittelli and Rosazza Gianin (2002), and Föllmer and Schied

(2002).

It follows from Theorem 4.3 implies that Uu,G : X → R is decreasingly risk

and uncertainty averse if and only if,

πu,Gw0
(X +m) ≤ πu,Gw0

(X)−m (4.8)

for all m ∈ [0,+∞) and X ∈ X , that is if and only if πu,Gw0 : X → R is

a cash-superadditive quasiconvex risk measure, and that Uu,G : X → R is

constantly risk and uncertainty averse if and only if,

πu,Gw0
(X +m) = πu,Gw0

(X)−m (4.9)

for all m ∈ R and X ∈ X , that is if and only if πu,Gw0 : X → R is a cash-

additive convex risk measure (see Cerreia Vioglio et al. (2010, Proposition

2.1)). In the framework of expected utility preferences Uu,Q : X → R

the characterization of constant risk aversion in terms of cash-additivity of

the indifference buyer’s price πu,Qw0 : X → R is a direct consequence of the

Nagumo-Kolmogorov-de Finetti Theorem (see de Finetti (1931)).

Corollary 4.3 provides a dual characterization of increasing risk and uncer-

tainty aversion consistent with Theorem 4.3 and with the representation

result of Proposition 3.3. Proposition 4.3 is a direct application of Proposi-

tion 2.11 in Drapeau and Kupper (2010).

Corollary 4.3. A decision-maker Uu,G : X → R is increasingly risk and
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uncertainty averse if and only if,

Ru,Gw0
(x−m,Q) ≥ Ru,Gw0

(x,Q)−m (4.10)

for all m ∈ [0,+∞), (x,Q) ∈ R×∆, and w0 ∈ R.

The different additive properties of the indifference buyer’s price πu,Gw0 : X →

R described by Equation (4.7), Equation (4.8), and Equation (4.9), allow to

immediately establish various inequalities between the indifference buyer’s

price πu,Gw0 : X → R and the indifference seller’s price ϕu,Gw0 : X → R. The

derivation of the various inequalities is based on the useful result of Lemma

4.1.

Lemma 4.1. The indifference buyer’s price πu,Gw0 : X → R satisfies,

πu,Gw0
(X + ϕu,Gw0

(X)) = 0 (4.11)

for all X ∈ X and w0 ∈ R.

Proof of Lemma 4.1. Let X ∈ X . By Definition 3.1 and Definition 3.3,

u(w0 − πu,Gw0
(X + ϕu,Gw0

(X))) = Uu,G(w0 +X + ϕu,Gw0
(X)) = u(w0)

and the strict monotonicity of u : R→ R yields πu,Gw0 (X+ϕu,Gw0 (X)) = 0.

Lemma 4.1, combined with Theorem 4.3, allows to characterize increasing,

decreasing, and constant risk and uncertainty aversion in terms of the in-

equalities fulfilled by the indifference buyer’s price πu,Gw0 : X → R and by the

indifference seller’s price ϕu,Gw0 : X → R for every w0 ∈ R.

Theorem 4.4. A decision-maker Uu,G : X → R is increasingly risk and
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uncertainty averse if and only if,

πu,Gw0
(X) ≤ ϕu,Gw0

(X) (4.12)

for all X ∈ X such that ϕu,Gw0 (X) ∈ [0,+∞).

Proof of Theorem 4.4. By Theorem 4.3 and Lemma 4.1 Uu,G : X → R is

increasingly risk and uncertainty averse if and only if,

0 = πu,Gw0
(X + ϕu,Gw0

(X)) ≥ πu,Gw0
(X)− ϕu,Gw0

(X)

for all X ∈ X such that ϕu,Gw0 (X) ∈ [0,+∞).

It follows from Theorem 4.4 that Uu,G : X → R is decreasingly risk and

uncertainty averse if and only if,

πu,Gw0
(X) ≥ ϕu,Gw0

(X) (4.13)

for all X ∈ X such that ϕu,Gw0 (X) ∈ [0,+∞), and that Uu,G : X → R is

constantly risk and uncertainty averse if and only if,

πu,Gw0
(X) = ϕu,Gw0

(X) (4.14)

for all X ∈ X .

Lemma 4.2 provides a dual characterization of Lemma 4.1 in terms of the

maximal risk function Ru,Gw0 : R×∆→ [−∞,+∞) and of the minimal penalty

function αu,Gw0 : ∆→ (−∞,+∞].

Lemma 4.2. The maximal risk function Ru,Gw0 : R×∆→ [−∞,+∞) satis-

fies,

Ru,Gw0
(x,Q) ≤ 0
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for all (x,Q) ∈ R×∆ such that x ≤ αu,Gw0 (Q).

Proof of Lemma 4.2. By the increasing monotonicity of Ru,Gw0 : R × ∆ →

[−∞,+∞) in its first argument, by Equation (3.6), and by Lemma 4.1,

Ru,Gw0
(x,Q) ≤ Ru,Gw0

(EQ[−X]−ϕu,Gw0
(X), Q)

≤ sup
Q∈∆

Ru,Gw0
(EQ[−X]− ϕu,Gw0

(X), Q)

= 0

for all (x,Q) ∈ R ×∆ such that x ≤ EQ[−X] − ϕu,Gw0 (X) for some X ∈ X ,

that is for all (x,Q) ∈ R×∆ such that,

x ≤ sup
X∈X

(
EQ[−X]− ϕu,Gw0

(X)
)

= sup
X∈Au,Gw0,0

EQ[−X]

= αu,Gw0
(Q)

See also Remark 4.16 point (a) in Föllmer and Schied (2004). Thus, R(x,Q) ≤

0 for all (x,Q) ∈ R×∆ such that x ≤ αu,Gw0 (Q).

Lemma 4.2, combined with Corollary 4.3, allows to characterize increasing,

decreasing and constant risk and uncertainty aversion in terms of the in-

equalities that maximal risk function Ru,Gw0 : R × ∆ → [−∞,+∞) and the

minimal penalty function αu,Gw0 : ∆→ (−∞,+∞] fulfill for every w0 ∈ R.

Corollary 4.4. A decision-maker Uu,G : X → R is increasingly risk and

uncertainty averse if and only if,

Ru,Gw0
(x,Q) ≤ x− αu,Gw0

(Q) (4.15)
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for all (x,Q) ∈ R×∆ such that x ≥ αu,Gw0 (Q).

Proof. By Lemma 4.2 and Corollary 4.3 Uu,G : X → R is increasingly risk

and uncertainty averse if and only if,

0 ≥ Ru,Gw0
(x− (x− αu,Gw0

(Q)), Q) ≥ Ru,Gw0
(x,Q)− x+ αu,Gw0

(Q)

for all (x,Q) ∈ R × ∆ such that x ≥ αu,Gw0 (Q). Thus, Uu,G : X → R is

increasingly risk and uncertainty averse if and only if,

Ru,Gw0
(x,Q) ≤ x− αu,Gw0

(Q)

for all (x,Q) ∈ R×∆ such that x ≥ αu,Gw0 (Q)

4.2.3.2 Star-Shapedness

The uncertainty indexes G : R × ∆ → (−∞,+∞] that are minimally and

maximally uncertainty averse consistently with the notion of comparative

uncertainty aversion described in Section 4.1 have already been characterized

by Cerreia Vioglio et al. (2011a, Section 3.3) who found that a decision-

maker Uu1,G1 : X → R is more uncertainty averse than another Uu2,G2 :

X → R if and only if,

G1 ≤ G2

provided that u1 = u2 : R → R. Theorem 4.5 characterizes the uncer-

tainty indexes G : R ×∆ → (−∞,+∞] that are increasingly, decreasingly,

and constantly uncertainty averse accordingly with the notion of increas-

ing, decreasing and constant uncertainty aversion described in Section 4.2.

The proof of Theorem 4.5 exploits the characterization of a decision-maker’s

increasing, decreasing, and constant risk and uncertainty aversion in Theo-
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rem 4.3 under the normalization condition that the decision-maker’s utility

function is constantly absolute risk averse (see Subsection 4.1.1).

Theorem 4.5. A decision-maker Uu,G : X → R is increasingly uncertainty

averse if and only if,

G(λx+m,P ) ≤ λG(x, P ) +m

for all λ ∈ (0, 1], m ∈ [0,+∞), and (x, P ) ∈ R×∆, decreasingly uncertainty

averse if and only if,

G(λx+m,P ) ≥ λG(x, P ) +m

for all λ ∈ (0, 1], m ∈ [0,+∞), and (x, P ) ∈ R ×∆, and constantly uncer-

tainty averse if and only if,

G(λx+m,P ) = λG(x, P ) +m

for all λ ∈ (0,+∞), m ∈ R, and (x, P ) ∈ R×∆.

Proof of Theorem 4.5. The indifference buyer’s price πL,Gw0 : X → R defined

in terms of the linear utility function u(x) = β+αx for all x ∈ R with β ∈ R

and α ∈ (0,+∞) is given by,

πL,Gw0
(X) = w0 +

β

α
− 1

α
inf
P∈∆

G(β + αw0 + αEP [X], P ) (4.16)

for all X ∈ X and w0 ∈ R. By Drapeau and Kupper (2010, Proposition 2.11)

the function πL,G0 : X → R in Equation (4.16) is cash-subadditive if and only

if G(x+m,P ) ≤ G(x, P ) +m for all m ∈ [0,+∞), cash-superadditive if and

only if G(x+m,P ) ≥ G(x, P ) +m for all m ∈ [0,+∞), and cash-additive if
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and only if G(x+m,P ) = G(x, P ) +m for all m ∈ R.

The indifference buyer’s price πE,Gw0 : X → R defined in terms of the expo-

nential utility function u(x) = −αe−θx for all x ∈ R with α, θ ∈ (0,+∞) is

given by,

πE,Gw0
(X) = w0 +

1

θ
ln
(
− 1

α
inf
P∈∆

G(EP [−αe−θ(w0+X)], P )
)

(4.17)

for all X ∈ X and w0 ∈ R. By Cerreia Vioglio et al. (2010, Proposition

4.1) the function πE,G0 : X → R in Equation (4.17) is cash-subadditive if

and only if G(λx, P ) ≤ λG(x, P ) for all λ ∈ (0, 1], cash-superadditive if and

only if G(λx, P ) ≥ λG(x, P ) for all λ ∈ (0, 1], and cash-additive if and only

if G(λx, P ) = λG(x, P ) for all λ ∈ (0,+∞).

It follows that πL,Gw0 : X → R and πE,Gw0 : X → R are cash-subadditive if and

only if G(λx+m,P ) ≤ λG(x, P )+m for all λ ∈ (0, 1] and m ∈ [0,+∞), cash-

superadditive if and only ifG(λx+m,P ) ≥ λG(x, P )+m for all λ ∈ (0, 1] and

m ∈ [0,+∞), and cash-additive if and only if G(λx+m,P ) = λG(x, P )+m

for all λ ∈ (0,+∞) and m ∈ R.

Thus, the statement follows from Theorem 4.3, together with the normal-

ization condition that the decision-maker’s utility function is either linear

or exponential discussed in Section 4.2.

Theorem 4.5 asserts that a decision-maker Uu,G : X → R is increasingly un-

certainty averse if and only if her uncertainty index G : R×∆→ (−∞,+∞]

is star-shaped3 and cash-subadditive. The property of star-shapedness was

introduced in the mathematical finance literature by Cerreia Vioglio et al.

(2010) to model the impact of liquidity risk on the minimal reserve amount

that must be added to an uncertain monetary payoff such that it becomes

3A function h : R→ R is said to be star-shaped if h(λx) ≤ λh(x) for all λ ∈ (0, 1] and
x ∈ R.
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acceptable to a financial regulator or supervisory agency. The property of

star-shapedness is a weakening of the property of positive homogeneity4 con-

sidered by Artzner et al. (1999) and Delbaen (2002).

The characterization of increasing, decreasing, and constant uncertainty

aversion in Theorem 4.5 allows to easily classify the different possible spec-

ifications of the uncertainty averse representation of preferences of Cerreia

Vioglio et al. (2011a) into increasingly, decreasingly, and constantly uncer-

tainty averse.

Example 4.1. By Theorem 4.5, the variational representation of prefer-

ences Uu,c : X → R of Maccheroni et al. (2006) is decreasingly uncer-

tainty averse. In fact, as c(P ) ≥ 0 for all P ∈ ∆, the uncertainty index

G : R×∆→ (−∞,+∞] in Equation (2.4) satisfies,

G(λx+m,P ) = λx+m+ c(P )

≥ λx+m+ λc(P )

= λG(x, P ) +m

for all λ ∈ (0, 1], m ∈ R, and (x, P ) ∈ R×∆.

Example 4.2. The multiplier representation of preferences Uu,θ,R,Q : X →

R of Hansen and Sargent (2001) and Strzalecki (2011) is a particular case

of the variational representation of preferences of Maccheroni et al. (2006)

which is obtained when,

c(P ) = θR(P ||Q)

for all P ∈ ∆ where θ ∈ (0,+∞) and R(. ||Q) : ∆→ [0,+∞] is the relative

entropy with respect to Q ∈ ∆σ (see Subsection 2.3.2). Thus, the multiplier

4A function h : R → R is said to be positively homogeneous if h(λx) = λh(x) for all
λ ∈ (0,+∞) and x ∈ R.
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representation of preferences Uu,θ,R,Q : X → R is decreasingly uncertainty

averse.

Example 4.3. By Theorem 4.5, the multiple priors representation of pref-

erences Uu,P : X → R of Gilboa and Schmeidler (1989) is constantly

uncertainty averse. In fact, as for every P ∈ ∆ either δ(P | P) = 0 or

δ(P | P) = +∞, the uncertainty index G : R×∆→ (−∞,+∞] in Equation

(2.8) satisfies,

G(λx+m,P ) = λx+m+ δ(P | P)

= λx+m+ λδ(P | P)

= λG(x, P ) +m

for all λ ∈ (0,+∞), m ∈ R, and (x, P ) ∈ R×∆.
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Chapter 5

Conclusion

In this dissertation we studied the problem of indifference pricing in the gen-

eral decision-theoretic framework of uncertainty averse preferences (Cerreia

Vioglio et al. (2011a)).

In the first part of the dissertation we studied the preferences that an uncer-

tainty averse decision-maker expresses through her indifference prices and

we found that they are consistent with the basic principles of rationality and

diversification (see Cerreia Vioglio et al. (2010)). We found, in particular,

that the indifference buyer’s price is a quasiconvex risk measure, and that

the indifference seller’s price is a cash-additive convex risk measure. We

found that the acceptance family of the indifference buyer’s price as well

as the acceptance set of the indifference seller’s price are completely char-

acterized by the decision-maker’s uncertainty averse preferences and by the

decision-maker’s constant initial wealth. We found that, as a result, the

maximal risk function representing the indifference buyer’s price as well as
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the minimal penalty function representing the indifference seller’s price are

completely described by the decision-maker’s uncertainty averse preferences

and by the decision-maker’s constant initial wealth. We provided explicit

expressions for the maximal risk function and for the minimal penalty func-

tions representing the indifference buyer’s price and the indifference seller’s

price defined by the variational (Maccheroni et al. (2006)), the multiplier

(Hansen and Sargent (2001), Strzalecki (2011)), and the multiple priors

(Gilboa and Schmeidler (1989)) representations of preferences.

In the second part of the dissertation we studied the different extents of

uncertainty aversion that a decision-maker’s expresses through her indiffer-

ence prices. We showed that a decision-maker is more (respectively, less)

uncertainty averse than another if and only if her indifference prices are

pointwise larger (respectively, smaller) than the other’s, and that a decision

is as uncertainty averse as another if and only if her indifference prices are

pointwise equal to the other’s. We also showed that a decision-maker is

increasingly (respectively, decreasingly) uncertainty averse if and only if her

indifference prices are increasing (respectively, decreasing) functions of her

constant initial wealth, and that a decision is constantly uncertainty averse

if and only if her indifference prices are constant functions of her constant

initial wealth.

We found that a decision-maker is increasingly (respectively, decreasingly)

uncertainty averse if and only if her indifference buyer’s price is a cash-

subadditive (respectively, cash-superadditive) quasiconvex risk measure, and

constantly uncertainty averse if and only her indifference buyer’s price is a

cash-additive convex risk measure. We found that a decision-maker is in-

creasingly (respectively, decreasingly) uncertainty averse if and only if her

indifference buyer’s price is less than (respectively, greater than) her indiffer-
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ence seller’s price whenever the latter is positive, and constantly uncertainty

averse if and only if her indifference buyer’s price is equal to her indifference

seller’s price irrespective of whether the latter is positive or negative.

In the last part of the dissertation we derived a technical condition on the

uncertainty index appearing in the uncertainty averse representation of pref-

erences of Cerreia Vioglio et al. (2011a) which allows to easily classify the

various particular specifications of the uncertainty averse representation of

preferences of Cerreia Vioglio et al. (2011a) into increasingly, decreasingly,

and constantly uncertainty averse. We found that the variational (Mac-

cheroni et al. (2006)) and, as a result, the multiplier (Hansen and Sargent

(2001), Strzalecki (2011)), representations of preferences are decreasingly

uncertainty averse, and that the multiple priors (Gilboa and Schmeidler

(1989)) representation of preferences is constantly uncertainty averse.

Further research might investigate the extension of the analysis of this dis-

sertation to a framework of optimal risk exchange. The problem of opti-

mal risk exchange was studied by Borch (1962), Arrow (1963), and Gerber

(1978) in the expected utility framework. The study of the problem of op-

timal risk exchange was extended by Barrieu and El-Karoui (2005), Jouini

et al. (2008) and Filipovic and Kupper (2008) to a more general framework

in which the relevant decision-makers evaluate the relative desirability of

alternative uncertain monetary endowments by cash-additive convex risk

measures. The study of the problem of optimal risk exchange was further

developed by Acciaio (2007), who considered decision-makers with concave

objective functions which are cash-additive but not necessarily monotone,

and by El Karoui and Ravanelli (2009), who considered decision-makers with

concave objective functions which are cash-subadditive and monotone. The

solution of the problem of optimal risk exchange was characterized under
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even less restrictive assumptions by Ravanelli and Svindland (2011) who

considered decision-makers with objective functions which are only concave

and monotone.

All the objective functions previously employed in the literature on optimal

risk exchange, with the exception of the non-monotone functions considered

by Acciaio (2007), are particular cases of the uncertainty averse representa-

tion of preferences of Cerreia Vioglio et al. (2011a) and, as shown in Section

4.2.3.2 of this dissertation, they can be classified based on whether they

exhibit increasing, decreasing, or constant uncertainty aversion. Thus, fu-

ture work might investigate the existence and the characterization and the

solution of the problem of optimal risk exchange in the general framework

of uncertainty averse preferences of Cerreia Vioglio et al. (2011a) and, along

the lines of this dissertation, it might examine how the equilibrium depends

on the different attitudes toward uncertainty of the decision-makers involved

in the exchange.
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