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POSITIVE LINEAR OPERATORS IN SEMI.ORDERED
LINEAR SPACES

By

Tsuyoshi AND\^O

Since in 1907 $0$ . PERRON [9] discovered a remarkable spectral
property of positive matrices and shortly later G. FBOBENIUS [1], [2]
and R. JENTZSCH [4] investigated and generalized it further, many
authors have considered special properties of positive linear operators.
Especially M. KREIN and M. A. RUTMAN $[$5$]^{*)}$ considered with success
a generalization to Banach spaces with a cone. They obtained par-
ticularly important results, when the space is lattice ordered or the
cone has an interior point. In this paper, we consider spectral
properties of positive compact ($=completely$ continuous) linear operators
on a universally continuous Banach space ( $=$ conditionally complete
Banach lattice); Our main aim is to generalize the results of G.
FROBENIUS [2] to infinite dimensional spaces.

In \S 1 preliminary definitions are summarized. In \S 2 the funda-
mental theorem on the maximum positive spectrum is proved (Theorem
2.1). In \S 3 we define completely $pos^{t}it\dot{w}e$ linear operators. The operators
of this class play a similar r\^ole as strongly positive operators in [5].
In \S 4 we obtain under some additional conditions a necessary and
sufficient condition for that a positive compact linear operator is quasi-
nilpotent (Theorem 4.7). In \S 5 the proper values with maximum
modulus of a positive compact linear operator are determined (Theorem
5. 2).

\S 1. Preliminaries. We recall briefly definitions from the theory
of semi-ordered linear spaces and linear operators. A lattice ordered
linear space (with real scalar) $R$ is said to be universauy continuous, if
for any $a_{\lambda}\geqq 0(\lambda\in\Lambda)$ there exists $\lambda\in\Lambda|\urcorner a_{\lambda}$ . A linear manifold $N$ of $R$ is
said to be normal if there exists a positive linear projection $[N]$ of $R$

onto $N$ such that $|x-[N]x|_{\cap}|y|=0$ for $x\in R$ and $y\in N$. The projection
$\#)$ The author of the present paper expresses his thanks to Dr. S. YAMAMURO at

Institute for Advanced Study, Princeton, who kindly communicated the main results of [5],

which was not $availab*$ to him.
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onto the normal manifold generated by $a$ is denoted by $[a]$ . Normal
manifolds and order-projections correspond to each other in one-to-one
way.

When we consider spectral problems, it is convenient to define a
complex extension $\hat{R}$ of $R$ , whose elements consist of all pair of elements
of $R,$ $(a, b)\equiv a+ib$ , the absolute value of $a+ib$ is defined by

(1. 1) $|a+ib|=\cup|a\cos\theta+b\sin\theta 0\leq g\leq 2_{i}t|$ .
When $R$ is normed, the norm, in this paper, satisfies the following
additional condition:

(1. 2) $|a|\leq|b|$ implies $||a||\leqq||b||$ ,

The norm on $\hat{R}$ is defined, when $R$ is normed, by

(1. 3) $|$ ]$a+ib||=|||a+ib|||$ .
A norm on $R$ is said to be continuous if $a_{l}\downarrow\lambda\in\Lambda 0$ implies $||a_{l}||\downarrow l\in 40$ .
A bounded linear functional $\tilde{\alpha}$ is said to be $un\dot{w}$ersablly $cmtimms$, if
$a_{l}\downarrow R\in\Lambda 0$ implies $\inf_{\lambda\epsilon,1}|\tilde{a}(a_{R})|=0$ . $\overline{R}$ and $\overline{R}$ denote the space of all bounded
linear functionals on $R$ and that of all universally continuous linear
functionals respectively. For the other notations and definitions, we
refer to [6].

For a bounded linear operator $A$ on a c.omplex Banach space $R$ into
itself, $\sigma(A)$ denotes the set of all spectra of $A$ , and $\rho(A)$ the resolvent
set. If $(\lambda I-A)x=0$ has a non-trivial solution in $R,$ $\lambda$ is said to be a
proper value and its solutions are proper dements. We put

(1. 4) $r(A)=\sup_{\epsilon\in\sigma(A)}|\xi|$

(1. 5) $R(\lambda)=(\lambda I-A)^{-1}$ for $\lambda\in\rho(A)$ .
It is well known (cf. [3]) that

(1. 6)
$r(A)=\lim_{\nu\rightarrow\infty}\Vert A^{\nu}\Vert^{\frac{1}{\nu}}$

$A$ is said to be quasi-nilpotent, if $r(A)=0$ .
A bounded linear operator $A$ is said to be compact if the unit

sphere is mapped by $A$ into a compact set. We assume in this paper
the results of F. RIFSZ ([10], chap. $IV^{\cdot}$ and V) concerning the spectral
properties of compact linear operators. If A. is a compact linear operator,
every non-zero spectrum is a proper value and the corresponding proper
manifold is each finite dimensional. $\sigma(A)$ constitutes a totally discon-
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nected set with the only possible limiting point $0$ . For a non-zero
complex number $\lambda$ we can define a bounded linear projection operator
$E(\lambda)$ relative to $A$ by

(1.6) $ E(\lambda)=\frac{1}{2\pi i}fR(\zeta)d\zeta$

where the integration is formed along a Jordan curve surrounding $\lambda$ ,
whose boundary and interior intersect $\sigma(A)$ in $\lambda$ alone. The index pe $(\lambda)$

of $\lambda$ is the samallest integer $n$ satisfying $(\lambda I-A)^{n}E(\lambda)=0$ For other
definitions in operator theories, we refer to [3].

Examples of universally continuous Banach spaces are: $L_{p},$ $l_{p}$

$(1\leq p\leq\infty)$, and more generally modulared spaces studied in [6].
As we develop in the following a theory of positive compact linear

operators in a universally continuous Banach space, it has immediate
applications to the theory of integral equations or linear equations with
infinite unknowns in the space $s$ mentioned above.

\S 2. The maximum positive spectrum. Throughout the paper $R$

denotes a universally continuous semi-ordered Banach space and $A$ a linear
operator on $R$ into itself, if the contrary is not mentioned.

Though some of results are known under weaker conditions (see
[5]), we prove them for the sake of completenss, since under our con-
ditions proofs are sometimes simple.

$A$ is said to be posztive, if $a\geqq 0$ implies $Aa\geqq 0$ .
Lemma 2. 1. A positive linear operatOr is necessarily bounded.
Proof. For $\tilde{a}\in\overline{R}$ , putting $\sim b(x)=\tilde{\alpha}(Ax)$ , $\sim b$ is an (o)-bounded linear

functional on $R$ , so by Theorem 31.3 in [6], is norm-bounded. This
means that the image of the unit sphere by $A$ is weakly bounded.
The assertion follows from the known theorem on weakly bounded sets.

Theorm 2. 1. If $Ais$ positive, $r(A)$ is $in\sigma(A)$ .
Proof. Suppose $r=r(A)$ is not in $\sigma(A)$ . Then $R(\lambda)=\infty\sum_{\nu=0}\frac{A^{\nu}}{\lambda^{\nu+1}}$ for

$\lambda>r$ and $\sup_{r<l}||R(\lambda)||<\infty$ . Since, considering $\hat{R}$, by (1. 3)

$||R(\lambda e^{if})x||\leq||R(\lambda)x||$ for $\lambda>r,$ $ 0\leq\theta\leq 2\pi$ and $x>0$ ,

hence $\sup_{\lambda>r}||R(\lambda e^{i\beta})||<\infty$ , this implies $re^{i\theta}\not\in\sigma(A),$ $ 0\leq\theta\leq 2\pi$ , contradicting
the assumption (cf. [3]).

$C\sigma rollary2.1.1$ . If $A$ is posihve, $R(\lambda)\geqq 0$ if and only if $\lambda>r$ .
Proof. If $R(\lambda)\geqq 0,$ $\lambda$ is apparently real and by the resolvent equation
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([3], p. 99) $R(\lambda)-R(\mu)=\frac{R(\lambda)R(\mu)}{t^{l}-\lambda}\geqq 0$ for $/l>{\rm Max}(\lambda, r)$ . Hence as in

Theorem 2. 1 $\lambda>r(A)$ . The converse part is obvious.
CorolZCtry 2.1.2. Let $A$ be positive. If for a $\lambda>0$ , there exists $x$ lk $0$ ,

such that $\lambda x\geqq Ax$ , then $\lambda\leq r(A)$.
Proof. If $\lambda\in\sigma(A),$ $\lambda\leq r(A)$ by Theorem 2.1. If $\lambda\in\rho(A)$ , from the

hypothesis $R(\lambda)$ is not positive, the assertion follows from Corollary
2. 1. 1.

Concerning the indice on the circle of radius $r=r(A)$ , we obtain
Theo $em2.2$ . If $A$ is posztive compact with $r=r(A)>0$ ,

(2. 1) $\mu(\lambda)\leq\mu(r)$ $f\sigma r|\lambda|=r$

Proof. By the Laurent resolution ([3], p. 109) $\sup_{0<\epsilon<\delta}e^{\mu(r)}||R(r+e)||<\infty$

for a small $\delta$ . Since from (1.3) $e^{\mu(r)}||R(re^{i\beta}+\epsilon e^{lf})||\leq\epsilon^{\mu(r)}||R(r+\epsilon)||$ , we
obtain $\mu(\lambda)\leq\mu(r)$ .

Theorem 2.3. If $A$ is positive compact $r=r(A)>0,$ $A$ has a positive
proper element $c\sigma rresp\alpha ding$ to the proper value $r$ .

Proof. We know that $\lim_{\epsilon\rightarrow 0}\epsilon^{\mu(r)}R(r+\epsilon)=(A-rI)^{\mu(r)-1}E(r)$ ([3], p. 109).

Since $R(r+e)\geqq 0,$ $(A-rI)^{\mu(r)-1}E(r)\geqq 0$ , there exists $x>0$ with $y=$

$(A-rI)^{\mu(r)-1}E(r)x>0$ . We obtain that $Ay=ry$ and $y>0$ .
\S 3. Completely positive linear operators. A linear operator $A$ is

said to be $un\dot{w}$ersauy condinuous, if $a_{l}\downarrow\lambda\in,10$ implies $\bigcap_{l\in,1}|Aa_{\lambda}|=0$ .
Lemma 3. 1. If $A$ is positive, ccnnpact and universally continuous, the

range of the cmjugate operator $A^{*}$ is contained in $\overline{R}$ .
Proof. Since $A$ is positive and compact, for any $a_{l}\downarrow l\in\Lambda 0$ $\{Aa_{\lambda}\}_{l\in\Lambda}$

has a limiting point and it must be equal to $0$ . So $1{\rm Im} Aa_{\lambda}l=0$ . This
implies that $A^{*}\tilde{a}$ is universally continuous for every $\tilde{\alpha}\in\overline{R}$ .

An element $a$ of $R$ is said to be complete, if $[a]=I$. A bonuded
linear functional $\hat{a}$ is said to be camplete if $|\tilde{a}|(|a|)=0$ implies $a=0$ . We
remark that if $a$ is complete, $\overline{a}\in\overline{R}$

$|\overline{a}|(|a|)=0$ implies $\overline{a}=0$ .
Theorem 3. 1. Let $A$ be universaZly conbinuous, positive and compact with

$r=r(A)>0$ . If $A$ has a $posit^{\iota}\dot{w}e$ complete proper element, then $\mu(r)=1$ and
the proper element corresponds to $r$ .

Proof. Let $Aa=\lambda a>0$ and $[a]=I$. If $r\neq\lambda,\tilde{a}(a)=0$ for the positive
proper element of $A^{*}$ corresponding to $r$ , which exists by Theorem
2.3 and is universally continuous by Lemma 3.1. This implies $\overline{a}=0$ . So
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$\lambda$ must be equal to $r$. Suppose that $\mu(r)\geqq 2$ . There exists a positive
linear functional $\tilde{b}=(A^{*}-rI)^{\mu(r)-1}E^{*}(r)x\sim$ as in Theorem 2.3. But by
Lemma 3.1 $\sim b(a)=0$ and $\sim b\in\overline{R}$ , this implies $\sim b=0$ , contradicting the
assumption.

The special property of the proper manifold corresponding to is
contained in:

Theorem 3. 2. If $A$ is positive compact and $A^{*}$ has a $posit\dot{w}e$ complete
proper eZement $\hat{a}$ , the proper manifold $c\sigma rresp\sigma nd\prime ing$ to $r$ of $A$ is a linear
lattice manifoZcZ.

Proof. $\tilde{a}$ corresponds to $r$ by Theorem 3.1. If $Aa=ra,$ $Aa^{+}\geqq ra^{+}$ ,
so we obtain $\tilde{a}(Aa^{+}-ra^{+})=0$ . Since $\tilde{a}$ is complete, this implies that
$Aa=ra$ . Hence the proper manifold corresponding to $r$ is a linear
lattice manifold.

Corollary 3. 2. Under the same assumption as Theroem 3.2, if $a\in\hat{R}$ is
a proper element corresponding to $\xi$ with $|\xi|=r,$ $A|a|=r|a|$ .

Proof. By the definition (1.1), $Aa=\xi a$ we have $A\cdot|a|\geqq r|a|$ . The
assertion follows as above.

As a special class of positive linear operators, we define: a positive
universally continuous linear operator $A$ is said to be completely positive if

(3. 1) $\bigcup_{\nu=l}[A^{\nu}x]=I$ for every $x>0$

This means that for a positive $x>0,$ $a_{\cap}A^{\nu}x=0(\nu=1,2,\cdots)$ implies $a=0$ .
Lemma 3. 2. If $A$ is positwe and universauy continuous, for $a>0$ ,

puuing $\bigcup_{\nu\Rightarrow 1}[A^{\nu}a]=[N]$ , we obtain an invariant normal manifold, $th\rho jt$ is,

(3.2) $A[N]=[N]A[N]$

Proof. Since for $x>0,$ $[N]x=\bigcup_{\nu-1}(x_{\cap}\nu(Aa+\cdots+A^{\nu}a))$ and $A$ is univer-

sally continuous, $A[N]x=\bigcup_{\nu=1}^{\infty}A(x_{\cap}\nu(Aa+\cdots+A^{\nu}a))$ so we obtaine $[A[N]x]$

$\leq\bigcup_{\nu=1}[Aa+\cdots+A^{\nu}a]\leq[N]$ .
Complete positiveness corresponds to “ Unzerlegbarkeit” in [2], as is

seen in the following:

Theorem 3. 3. A positw$e$ universally continuous l,inear operator is com-
pletdy positwe if and only if it has no non-tr,$vid$ invariant ncyrmal rnanifold.

This is an immediate consequence of Lemma 3.2.
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Lemma 3. 3. If $A$ is compact and completely positw$e$ , every $posit\dot{w}e$ proper
element of $A$ (and $A^{*}$) is complete.

Proof. If $a$ is a proper element of $A,$ $[a]=[A^{\nu}a](\nu=1,2, \cdots)$ and so
$[a]=I$. If $\tilde{a}$ is a proper element of $A^{*},\tilde{\alpha}(a)=0$ implies $\tilde{a}(A^{\nu}a)=0(\nu=$

$1,2,$ $\cdots$ ). Since $\overline{a}$ Is in $\overline{R}$ by Lemma 3.1, $a=0$ .
Thewem 3. 4. If $A$ is compact and completely positive with $r=r(A)>0$ ,

the multiplicity of the proper value $r$ is equal to 1 (cf. \S 5 later).

Proof. By Theorem 3.2 and Lemma 3.3, the proper sp\‘ace corre-
sponding to $r$ is a linear lattice manifold. Since $A$ is completely positive,
all positive proper elements are complete, so the multiplicity must be
equal to 1.

Next we consider the distribution of proper values corresponding
to po\S itIve proper elements.

For a bounded linear operator $A$ on a complex Banach space $R$ into
itself, the spectra1 radius of $x,$ $r(x, A)$ or $r(x)$ (if there is no confusion),
is defined by

(3. 2) $r(x, A)\equiv r(x)=\varlimsup_{\nu->\infty}||A^{\nu}x||^{\frac{1}{\nu}}$

This functional satisfies the following properties:

1) $0\leq r(x)\leq r(A)$

2) $supr(x)=r(A)$

3) $r(ax)=r(x)$ for $a\neq 0$

4) $r(x+y)\leq{\rm Max}\{r(x),$ $r(y)\}$

5) $r(Ax)=r(x)$

We remark that $r(x)$ is nothing $bxt$ the maximum moclulus of singular,ties
of analytic continuation of $R(\lambda)x(\lambda\in\rho(A))$ .

Since the set of all spectra of a compact operator is a totally
disconnected set with the only possible limiting point $0$ , the functional
$r(x)$ is rather convenient.

Lemma 3. 4. If $A$ is compact, the functional $r(x)$ satisfies the following:

a) $r(x)={\rm Max}\{|\lambda|$ : $E(\lambda)x\neq 0\}$ for $x\neq- O$

b) $r(x)$ is lower $semi- c\sigma nbinums$ ,

c) the range of $r(x)$ coincides with the set $\{|\lambda|$ ; $\lambda\in\sigma(A)\}$ .
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Proof. a) is an immediate consequence of remarks stated above.
b) follows from a). c) is evident, since every non-zero spectrum is
a proper value.

For a positive compact linear operator, we obtain:
Treorem 3. 5. If $A$ is positive, universauy continuous and compact, the

set $\{r(x);r(x)>0, x>0\}c\sigma incides$ with the set of all; non-zero proper vdues
corresponding to $posit\dot{w}e$ proper elements.

Proof. For $\lambda>0$ , the set $S_{l}=\{x;r(|x|)\leq\lambda\}$ is a closed linear manifold
by Lemma 3.4. If $0\leq x_{\rho}\uparrow_{0}x(x_{\rho}\in S_{l}),$ $x\in S_{\partial}.$ , because $E(\xi)$ is universally
continuous, hence $S_{\lambda}$ is normal. If there exists $x\in S_{R}$ such that $ r(|x|)=\lambda$ ,

by formula (5) $A[S_{l}]=[S_{l}]A[S_{\lambda}]$ and $ r(A[S_{l}])=\lambda$ . Hence by Theorem
2. 1 there exists $0\leq a_{\lambda}\in S_{\lambda}$ such that $Aa_{\lambda}=\lambda a_{\lambda}$ . Conversely if $Aa=\rho a>0$ ,
$ r(a)=\rho$ .

Theorem 3. 6. Let $A$ be positive, $ur_{b^{\prime}}\dot{w}$ersally continuous and $c\alpha mpaci$ , with
$r=r(A)>0,$ $A$ is completely positive if and only if

a) $A$ has a unique wsitive proper element (up to scalar) which is complete,

b) $r(x)>0$ for every $x>0$ .
Proof. If $A$ is completely positive, then by Theorems 3.2 and 3.4 the

positive proper element is unique and complete. Since $A^{*}$ has a positive
complete proper element $\tilde{a}$ corrresponding to $r$ , for any positive $a>0$ ,

$r(a)\geqq\varlimsup_{\nu\rightarrow\infty}|\tilde{a}(A^{\nu}a)|^{\frac{1}{\nu}}=r$ . Conversely suppose that $A$ satisfies a) and b).

If a normal manifold $N$ is invariant relative to $A$ , by b) $r(A[N])>0$

and by Theorem 2.3 there exists a positive proper element in $N$ which
is not complete.

We may replace the condition b) by the condition
$b^{\prime})$ $A^{*}$ has a complete $posit\dot{w}e$ proper element.

Lemma 3. 5. For a compact l,inear operator $A$ on a Banach space $R$

$\sup_{I\lambda|=r}\mu(\lambda)\leq 1$ if and only if $||A^{\nu}||\leq M\cdot r^{\nu}$ $(\nu=1,2, \cdots)$

for some $M$, where $r=r(A)$ . And in this case

(3. 3) $E(r)=\lim_{\nu\rightarrow\infty}\frac{1}{\nu}\sum_{k=1}^{\nu}(\frac{A}{r})^{k}$

The proof is well known (cf. [10] and [5]).
If the maximum spectrum is not simple, the following decomposition

holds:
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Theorem 3. 7. Let $A$ be positive, $un\dot{b}versally$ continztous and compact. If
$A$ and $A^{*}$ both have positive complete proper elements, there exists a decompo-
sition of identity such that

(3. 4) $I=\sum_{\nu-1}^{n}[a_{\nu}]$ , $[a_{\nu}][a_{\mu}]=0$ $(\nu\neq\mu)$

$A[a_{\nu}]=[a_{\nu}]A$ $(\nu=1,2, \cdots,n)$

and $A$ is completely positive on $[a_{\nu}]R(\nu=1,2, \cdots, n)$.
Proof. By Lemma 3.5 and Theorem 3.2 the positive projection

$E(r)$ is written in a form $E(r)x=\sum_{\nu=1}^{n}\tilde{a}_{\nu}(x)a_{\nu}$ such that

$Aa_{\nu}=ra_{\nu}>0,$ $A^{*}\tilde{a}_{\nu}=r\tilde{a}_{\nu}>0,\tilde{a}_{\nu}(a_{\mu})=\delta_{\nu\mu}$ $(\nu, \mu=1,2, \cdots,n)$ .
Since $\bigcup_{\nu=1}^{n}[a_{\nu}]=\bigcup_{\nu=1}^{n}[\tilde{a}_{\nu}]^{R}=I$ and $A[a_{\nu}]=[a_{\nu}]A[a_{\nu}],$ $A^{*}[\tilde{a}_{y}]=[\tilde{a}_{\nu}]A^{*}[\tilde{a}_{\nu}]$

$(v=1,2, \cdots,n),$ $A$ is completely positive on $[a_{\nu}]R(\nu=1,2, \cdots,n)$ .
We define a somewhat weaker condition than complete positiveness:

a positive linear operator $A$ is said to be natuauy decomposahle, if there
exists a decomposition of identity $[N_{\rho}](\rho\in\Lambda)$ and $[M]such$ that

(3. 5) $I=\sum_{\rho\in,4}[N_{\rho}]\vdash[M],$
$[N_{\rho_{1}}][N_{\rho_{2}}]=0(\rho_{1^{-}}\neq\rho_{\sigma}\sim)$ , $[N_{\rho}][M]=0$

$A[N_{\rho}]=[N_{\rho}]$ $A$ and $A[M]=[M]A$ ,

$r(A[N_{\rho}])>0(\rho\in\Lambda)$ and $r(A[M])=0$ ,

and $A$ acts as a completely positive operator on $[N_{\rho}]R(p\in\Lambda)$ .
Theorem 3. 8 Let $A$ be positive, universally continuous and compact. $\dot{A}$

is naturally decomposable if and only $if$

$\cup[a]=\cup[\overline{a}]^{R}$

where a) (and a) varies in au pagitive proper elements of $A$ (and of $A^{*}$ re-
$spect\dot{w}dy)$ .

Proof. If $A$ is naturally decomposable with the decomposition (3.5),
then by Lemma 3.3. $\cup[a]=\cup[\tilde{a}]^{R}=\cup[N_{\rho}]0\in\Lambda$ Conversely, let $\cup[a]=\llcorner[\tilde{a}]^{R}$ .
We arrange the proper values of $A$ corresponding to positive proper
elements in the decending order $\lambda_{1}>\lambda_{2}>\cdots$ . $Since\sim$ each corresponding
proper manifold is finite dimensional, there exist maximum projectors
$[p_{\nu}]$ corresponding to $\lambda_{\nu}(\nu=1,2, \cdots)$. Analogously we obtain $\tilde{q}_{\nu}$ relative
to $A^{*}$ corresponding to $\mu_{1}>\mu_{2}>\cdots$ . By hypothesis $\infty\bigcup_{\nu\simeq 1}[p_{\nu}]=\bigcup_{\nu=1}^{\infty}[\tilde{q}_{\nu}]^{R}$ and
$\tilde{q}_{k}(p_{\nu})=0$ if $\lambda_{\nu}\neq\mu_{k}$ . We obtain $[p_{\nu}]=[\tilde{q}_{\nu}]^{R}(\nu=1,2, \cdots)$ and $[p_{\nu}]A=A[p_{\nu}]$ .
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Since $(1-\bigcup_{\nu=1}^{\infty}[p_{\nu}])A$ is quassi-nilpotent by Theorem 2. 3, we obtain
the assertion by Theorem 3.7.

Next we consider a characterization of natural decomposability
analogous to Theorem 3.6. For a projection $[N]$ , we put

$r([N])=\sup_{[N]x=x}r(x)$ and $r^{*}([N])=\sup_{\overline{\alpha}[N]=ae}r^{*}(\sim x)$

where $r^{*}(\sim x)=\varlimsup_{\nu\rightarrow\infty}||A^{*\nu\sim}x||^{\frac{l}{\nu}}$

Theorem 3. 9. Let $A$ be positive, $un\dot{w}$ersauy cmtinzeuyus and $c_{tJ}mp\sigma d$, and
$R$ semi-regular. $A$ is naturally decomposable, if and only if it safisfies

a) $r([N])=r^{*}([N])$ for every projection $[N]$ ,

b) $\sup_{\nu=1.2},\ldots\frac{||A^{\nu}x||}{r(x)^{\nu}}<\infty$ for $x>0$ wzth $r(x)>0$ .

Proof. If $A$ is naturally decomposable with the decomposition (3.5),
it is easy to see that for a projection $[N]$ and $x>0$

$r([N])=\sup_{[NKN_{\beta}]\neq 0}r(A[N_{\rho}])=r^{*}([N])$

$r(x)=\sup_{\rho[N]x\neq 0}r(A[N_{\rho}])$

b) follows from Lemma 3.5. Converesely, suppose that a) and b) are
satisfied. Put $S_{X}=\{x;r(|x|)\leq\lambda\}$ and $\overline{S}_{f}=\{\overline{a};\overline{\alpha}\in\overline{R}, r^{*}(|\overline{\alpha}|)\leq\lambda\}$ . By Lemma
3.4 and a) we have $[S_{\lambda}]=[\overline{S}_{l}]^{R}$ , hence $A[S_{l}]=[S_{1}]A$ . If $a$ and $b$ are
positive proper elements corresponding to different positive proper values
$\lambda_{1}$ and $\lambda_{2}$ respectively. If $[p]=[a][b]\neq 0$ , as in the proof of Theorem 3.6,

$r([p])\leq{\rm Min}\{r([a]),$ $r([b])\}={\rm Min}\{\lambda_{1}$ , $\lambda_{2}\}$

and

$r^{*}([p])\geqq{\rm Max}\{r([a]),$ $r([b])\}={\rm Max}\{\lambda_{j},$ $\lambda_{2}\}$

contradicting a). So $a_{\cap}b=0$ . Let $\lambda_{1}>\lambda_{2}>\cdots$ be proper values of $A$

corresponding to positive proper elements in the descending order.
Putting $[S_{\nu}]=[S_{1\nu}]-[S_{\lambda_{\mathcal{V}+1}}]$ , we have $A[S_{\nu}]=[S_{\nu}]A(\nu=1,2,3, \cdots)$ . By
Lemma 3.5 and b) we can prove that $E(\lambda_{\nu}|)x>0$ and $r(x)=\lambda_{\nu}$ for
$0<x\in[S_{\nu}]R$ . Hence there exists $0<\overline{(\iota}\in\overline{R}$ such that

$A^{*}\overline{\alpha}=\lambda_{\nu}\overline{t\iota}$ and $[\overline{\alpha}]^{R}=[S_{\nu}]$

Again using a), we obtain that there exists $0<a\in R$ such that $A\alpha=\lambda_{\nu}a$
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and $[a]=[S_{\nu}]$ . Now Theorem 3.7 is applicable.

\S 4. $Quasi\prime nilpotent$ operators. In this \S we consider relations
between $A$ and its restriction to normal manifolds.

Lemma 4. 1. Let $A$ be a compabet linear operatOr on a Banach space $R$.
If $F$ is a $\omega uMed$ linear operator such that $F^{-}=F$ and $AF=FAF$, then

(4. 1) $\sigma(A)=\sigma(AF)\cup\sigma((1-F)A(I-F))$ ,

(4. 2) $r(A)={\rm Max}\{r(AF),$ $r((I-F)A(I-F))\}$

Proof. Let $0\neq\lambda\in\rho(AF)_{\cap}\rho((I-F)A(I-F))$ . If $(\lambda I-A)x=0,$ $(I-F)$

$(\lambda I-A)x=(I-F)(\lambda-(I-F)A(I-F))x=0$ hence $(I-F)x=0$ and similarly
$Fx=0$ , so, $x=0$ , hence $\lambda\in P(A)$ . Conversely, if $\lambda\in\rho(A),$ $(\lambda I-A)F^{\prime}$ is one-
to-one on $FR$ , hence by RIESZ’S theorem $\lambda\in\rho(AF)$ . Similarly $\lambda\in\rho(A^{*}$

$(I-F^{*}))=\rho((I-F)A(I-F))$ .
For positive linear operators $A$ and $B$ such that $A\geqq B$ , it is evident

that $r(A)\geqq r(B)$ . In particular, for any projection $[N],$ $r([N]A[N])\leq r(A)$ .
Theorem 4. 1. Let $A$ be positive, $un^{\mathfrak{l}}\dot{w}$ersally contimvozes and compct wzth

$r=r(A)>0$ . $A$ is completely positive, if and only if for a projectt,on $[N]$

$r([N]A[N])=r(A)$ implies $[N]=I$.
Proof. Suppose first that $A$ is completely positive. If $r([N]A[N])$

$=r$, by Theorem 2.3 there exists $a>0$ such that $[N]A[N]a=ra$ . Since
$Aa\geqq ra$, as in the proof of Theorem 3.2, we obtain $Aa=ra$ . Complete
positiveness implies $[N]=[a]=I$. Next suppose that $A$ is not completely
positive. There exists by Theorem 3.3 a non-trivial normal manifold
$[N]$ such that $A[N]=[N]A[N]$ . Lemma 4.1 shows that ${\rm Max}\{r(A[N])$,
$r((I-[N])A(I-[N]))\}=r$.

Between a positive proper value distinct from $r=r(A)$ and $r([N]A$
$[N])$ the following relation holds:

Theorem 4. 2. Let $A$ be positive and compact, and $\lambda$ a positw$e$ proper
value distin$ct$ from $r=r(A)$ . For any non-zero projecticyn $[N]$ there exists
a non-zero projection $[M]$ such that $[N]\geqq[M]$ and $ r((I-[M])A(1-[M]))\geqq\lambda$ .

Proof. There exists $a\neq 0$ such that $Aa=\lambda a$, so $Aa^{+}\geqq\lambda a^{+}$ and
$Aa^{-}\geqq\lambda a^{-}$ . By Corollay 2.1.2, $ r([a^{+}]A[a^{+}])\geqq\lambda$ (and $ r([a^{-}]A[a^{-}])\geqq\lambda$) if
$[a^{+}]\neq 0$ (and $[a^{-}]\neq 0$). If $[N][a]=0$ , we put $[M]=[N]$ . If $[N][a]\neq 0$ and
$a^{-}=0$ , we have $Aa=\lambda a>0$ and $ r([a]A[a])=\lambda$ . Since by Lemma 4.1 ${\rm Max}$

$\{r(A[a]), r((I-[a])A(1-[a]))\}=r$ , we put $[M]=[N][a]$ . If $[N][a^{+}]\frac{-\neq}{/}0$ and
$[a^{\leftarrow}]\neq 0$ , we put $[M]=[N][a^{+}]$ . The other case is treated similarly.

Corollary 4. 2. Under the same $c\sigma ndit^{\gamma}iosns$ as in Theorem 4.2, if $p$ is
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a d,iscrete element of $R,$ $ r((1-[p])A(1-[p]))\geqq\lambda$ .
Proof. Since $p$ is a discrete element, putting $[N]=[p],$ $[M]$ must

coincides with $[N]$ .
Lemma 4. 2. If $A_{\lambda}(\lambda\in\Lambda),$ ( $\Lambda$ being a directed set), ($\iota re$ compact linear

operaWrs defined an a Banach space, such that $hm\lambda||A_{\lambda}$
– $A||=0$ , then

(4. 3) $\lim_{\lambda}\sigma(A_{\lambda})=\sigma(A)$ in the sense of mmtric,

(4.4) $\lim_{l}r(A_{\lambda})=r(A)$ .
The proof is found in [8].

Lemma 4. 3. Let $F_{\lambda}(\lambda\in\Lambda),$ ( $\Lambda$ being a directed set), be $\ovalbox{\tt\small REJECT} nded$ linear
operators on a Banach space $R$ such that $F_{\underline{\lambda}}=F_{\lambda}(\lambda\in\Lambda),$

$ F^{2}=F\sup_{\lambda\in\Lambda}||F_{R}||<\infty$

and $\lim_{\lambda\in\Lambda}F_{\lambda}x=Fx(x\in R)$ . If $A$ is a compact linear $\varphi eratw$ on $R$ , then $ hmR\in\Lambda$

$r(F_{\lambda}AF_{f}.)=\gamma(FAF)$ .
Proof. Since the image of the unit sphere by a compact linear

operator is relatively compact, it is easy to see that $\lim_{\lambda}||F_{1}AF_{l}A-$

$FAFA||=0$ . By Lemma 4.2, $\lim_{\lambda}r(F_{l}AF_{l}A)=r(FAFA)$ . But since

$r(FAFA)=\lim_{\nu\rightarrow\infty}||(FAFA)^{\nu}||^{\frac{1}{\nu}}=\lim_{\nu\rightarrow\infty}||(FAF)^{\nu-1}A||^{\frac{l}{\nu}}\leq r(FAF)^{z}$ and $r$ (FAFA)

$=\lim_{\nu\rightarrow\infty}||(FAFA)^{\nu}||^{\frac{1}{\nu}}\geq\lim_{\nu\rightarrow\rightarrow}\{\frac{1}{||F||}|(FAF)^{\S\nu}\Vert\}^{\frac{l}{\nu}}=r(FAF)^{2}$ , we obtain $\lim$

$r(F_{f}AF_{f}A)=r(FAF)^{9}$ . Hence $\lim_{h}r(F_{h}AF_{R})=r(FAF)$ .
.

Theorem 4. 3. Let $R$ have no discrete element and be of continuous norm.
If $A$ is $posit\dot{w}e$ compact, there exist $p_{\lambda}\in R(0\leq\lambda\leq r(A))$ , such that

(4. 5) $[p_{\lambda}]\leq[p_{\mu}]$ $(0\leq\lambda\leq\mu)$

and $ r([p_{\lambda}]A[p_{f}])=\lambda$ $(0\leq\lambda\leq r(A))$

.
Proof. We choose, ZORN’S lemma, a maximal linearly ordered family

of projections $[q_{\rho}]$ . The assumptions on $R$ and Lemma 4.3 imply that
$\sup_{\xi<\beta}r([q_{\xi}\wedge]A[q_{\xi}])=\inf_{\xi>0}r([q_{\xi}]A[q_{\epsilon}])$ . We can choose $[p_{\lambda}]$ from $[q_{\rho}]$ with
$ r([q_{\rho}]A[q_{\rho}])=\lambda$ , the remaining part is easily proved.

In the operator theory, it is important to study conditions assuring
non-quasi-nilpotentness. Naturally a problem arises whether complete
positiveness implies non-quasi-nilpotentness. We have been able to
solve this problem only under some additional conditions.

A bounded linear operator“ $A$ is said to be totauy cont’inuous, if for
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any positive $a\in R$ and positive $\overline{a}\in\overline{R}$

(4. 6) $[\overline{p}]\overline{x}(A[p]x)=\int\Phi(q, \mathfrak{p})[p]\times[\overline{\mathcal{D}}]R$ Ci $(dpx)x(dqa)$ for $[p]\leq[a]$ and $[\overline{p}]\leq[\overline{a}]$ ,

for a fixed Borel function $\Phi(W, D)$ on the product space $\mathfrak{E}\times \mathfrak{G}$ of the
proper space of $R$ (see [7] \S 5). H. NAKANO [7] proved that $A$ is totally
contin$ums$ if $a\gamma d$ only if $|a_{\nu}|\leq a(\nu=1,2, \cdots)s-\lim_{\nu\rightarrow\infty}a_{\nu}=0$ (star-convergence)

implies (0) $-\lim_{\nu\rightarrow\infty}Aa_{\nu}=0$ . (It is easy to prove that here star-convergence

may be replaced by weak-convergence).

Lemma 4. 4 For a $\ovalbox{\tt\small REJECT} nded$ linear operator $A$ on a Banach space, $wt$

$B=\sum_{\nu=l}^{\infty}\frac{A^{\nu}}{\lambda^{\nu+1}}$ for some $\lambda>r(A)$ . If $B$ has a mon-zero spectrum, $A$ has one

also. If $A$ is posihve and compact, $B$ is so.
Proof. Since $R(\lambda)=\div I+B$ , by the spectral mapping theorem (cf.

[3] p. 122) $\sigma(A)=\{$
$\lambda-\frac{1}{\frac,\lambda+\xi 1}$

; $\xi\in\sigma(B)\}$ , if $\sigma(B)$ contains non-zero

number, $\sigma(A)$ does also. .

Lemma 4. 5. Let $R$ be $\gamma eflex\dot{w}e$ as a Banach space. If $A_{\nu},$ $A(\nu=$

$1,2,$ $\cdots$ ) are positive compact such that

$ A_{1}\leq A_{2}\leq A_{3}\leq\cdots$ and $\lim_{\nu\rightarrow\infty}A_{\nu}a=Aa$
$(a\in R)$ ,

then $\lim_{\nu\rightarrow\infty}||A_{\nu}-A||=0$

Proof. Considering $A$ as a continuous function $\tilde{a}(Aa)$ on $S\times\overline{S}$ ,
where $S$ and $\overline{S}$ are the positive unit spheres of $R$ and $\overline{R}$ respectively,
topologized by weak topologies. Since $S\times\overline{S}$ is compact, the assertion
follows from the well-known theorem of Dini and the definition of
norms of operators.

Theorem 4. 5. Let $R$ be $reflex\dot{w}e$ as a Banach space. If $A$ is compact,
totctlly $wnt\dot{m}$uous and complately $posit\dot{w}e$ , then $A$ is not quasi-mlpotent.

Proof. By Lemma 4.4 considering the compact positive operator
$B$, we may assume that $[Ax]=I$ for every $x>0$ . Further we may
assume that for some $a>0$ and $\overline{a}>0[a]=[\overline{a}]^{R}=I$ and $\overline{a}(a)=1$ . Suppose
that $A$ is represented in a form (4.6). $A^{2}$ satisfies the same conditions
as $A$ and the corresponding function may be given by

$\Psi(0,0)=\zeta\Phi(q, B)\Phi(B, D)\overline{a}(dBa)$
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If $\Psi(q, \mathfrak{p})$ vanishes on a set of positive measure, from the measure
theory, there exists a measurable subset $\mathfrak{A}\subset \mathfrak{G}$ such that

a) the measure of $\mathfrak{A}$ is positive, (the measure being defined by
$\overline{a}([p]a))$ .

b) meas $(\mathfrak{B}_{p})>0$ for $0\in?l$ , where
$\mathfrak{B}_{p}=\{q;J\mathcal{O}(q, B)\Phi(B, \mathfrak{p})\overline{a}(dBa)=0\}$

c) $\Phi(q, \mathfrak{p})$ is measurable with respect to $J$ for $\mathfrak{h}\in?\downarrow$ .
If $\Phi(B, D)>0$ on a set of positive measure $\mathfrak{G}$ for some $D\in 91\Phi(q, B)=0$

almost everywhere on $\overline{\mathfrak{B}}_{p}\times C_{\backslash }^{t}$ , contradicting the assumption that $[Ax]$

$=I$ for every $x>0$ . Thus $\Phi(\mathfrak{p}, \mathfrak{g})=0$ almost everywhere on $\mathfrak{G}\times$ or, also
contrading the assumption. Hence $\Psi(J, \mathfrak{h})>0$ almost everywhere. It is
known [7] that $\overline{a}\otimes a=\bigcap_{\nu=1}(\nu A^{2}\leftrightarrow\overline{a}\otimes a)$ and $r(\overline{\alpha}\otimes a)=1$ . Lemmas 4.5 and
4.2 imply $r(A^{2})=r(A)^{2}>0$ .

Next theorem is proved in [11], but we give a somewhat different
proof.

Thewem 4. 6. Let I $\lambda(0\leq\lambda\leq 1)$ be bOunded linear operatOrs defined on
a Bana.$ch$ space $R$ such that $F_{0}=0,$ $F_{1}=I,$ $F_{\lambda}F_{\mu}=F_{\min(R,\mu)}$ and $\lim_{\rho\uparrow l}F_{\rho}x=$

$1{\rm Im} F_{\rho}x=F_{R}x(x\in R)$ . If $A$ is a compact linear operator on $R$ such that
$\rho\downarrow\lambda$

$AF_{l}=F_{\lambda}AF_{\lambda}(0\leq\lambda\leq 1)$ , then $A$ is $quasi-\dot{m}lwtent$.
Proof. Since by Lemma 4.1 ${\rm Max}\{r(F_{l}AP_{l}^{\iota}), r((I-F_{\lambda})A(I-F_{\lambda}))\}=$

$r(A)$ , there exists, by induction, sequences $\lambda_{\nu}\uparrow_{\nu=1}^{\infty}a$ and $\mu_{\nu}\downarrow_{\nu=1}^{\infty}\beta$ such that
$r((F_{\mu_{\nu}}-F_{l_{\nu}})A(F_{\mu_{\nu}}-F_{x_{\nu}}))=r(A),$ $(\nu=1.2, \cdots)$. But by Lemma 4.3 $r(A)$

$=r((F_{\beta}-F_{a})A(F_{\mathcal{B}}-F_{a}))$ . Continuing this method, we obtain $r(A)=0$ .
Combining Theorems 4.5 and 4.6, we obtain a generalization of

criteria of Voltera-type ([10] p. 147).

Theorem 4. 7. Let $R$ be $reflex\dot{w}e$ as a Banach space and have $nD$ discrete
dement, and $A$ be positive, compact and totauy continuous. Then $A$ is quasi-
nilpotent if and only if there exist projections $[N_{R}](0\leq\lambda\leq 1)$ , such that

(4. 7) $[N_{0}]=0,$ $[N_{1}]=\bigcup_{x\in R}[Ax],$ $0>t\cap[N_{\rho}]=\bigcup_{\rho<\lambda}[N_{\rho}]=[N_{\lambda}]$

$A[N_{R}]=[N_{x}]A[N_{l}]$ $(0\leq\lambda\leq 1)$ .
Proof. Since by Theorem 4.5 any non-trivial invariant normal

manifold contains the other non-trivial one, the proof proceeds as in
Theorem 4.3.

\S 5. Proper values with maximum modulus. Here the distrIbutIon
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of proper values with maximum modulus of a positive compact linear
operator is considered.

Lemma 5. 1. If $A$ is campact and completely $posit\dot{w}e$ with $r=r(A)>0$ ,

the proper values with maximum modulus are au simple and are the solutions
of the $equat\prime i\sigma n$

(5. 1) $\xi^{k}-r^{k}=0$ for some $k$ .
Proof. Since by Theorem 3.1 $\mu(r)=1$ , the assertion follows from

Theorem 8.1 of [5].

Lemma 5. 2. For a compact linear operator $A$ on a Banach space $R$ , the
folIOwmg conditiom are $equ\dot{w}$ctlent to each other

1) $w-\lim_{\nu\rightarrow\infty}A^{\nu}x=E(1)x$
$(x\in R)$

2) $\lim_{\nu\rightarrow\infty}A^{\nu}x=E(1)x$
$(x\in R)$

3) $\lim_{\nu\rightarrow\infty}||A^{\nu}-E(1)||=0$

4) $r(A)\leq 1$ and 1 is the only poss’ible proper value with modulus 1.
The proof is similar to that of Lemma 3.5.
Theorem 5. 1. Let $A$ be cmpact and complatly post,$t\dot{w}e$ with $r(A)=1$ .

The following conditions are $equ\dot{w}$dent:
1) 1 is the zmique proper value $w^{r}ith$ maximum mdulus,

2) $\lim_{\nu\rightarrow\infty}$ A $x$ exists and is complete $f\sigma r$ every $x>0$ ,

3) $A^{V}(v=1,2, \cdots)$ are all completely $posit\dot{w}e$ .
Proof. By Theorem 2.1 and Lemma 5.2, 1) and 2) are equivalent.

Let 2) be satisfied. Since $\lim_{n\rightarrow\infty}A^{\nu n}x=E(1)x,$
$3$) follows from 2) by the

definition. Finally if $A^{\nu}(v=1,2, \cdots)$ are all completely positive and $\lambda$

is a proper value with $|\lambda|=1$ distinct from 1, then by Lemma 5.1 there
exists a positive integer $k$ such that $\lambda^{k}=1$ , so 1 is a proper value of
$A^{k}$ of multiplicity greater than 1, contradicting the assumption by
Theorem 3.4.

Lemma 5. 3. Let $R$ be reflexive as a Banach space and $A$ be compact.
If $[N_{R}]\downarrow l\in\Lambda[N]$ and $\sigma([N_{l}]A[N_{R}])\subseteq\sigma(A)$ , then $\sigma([N]A[N])\subseteq\sigma(A)$ .

Proof. The reflexivity implies that that the norms of $R$ and $\overline{R}$

are both continuous. Since $\lim_{\lambda\in\Lambda}||[N_{l}]A[N_{\lambda}]-[N]A[N]||=0$ , by Lemma

4.2 $\sigma([N]A[N])=\lim_{R\in\Lambda}\sigma([N_{f}]A[N_{f}])\subseteq\sigma(A)$ .
Themem 5. 2. Let $R$ be reflexw $e$ as a Banach space. If $A$ is $wsit\dot{w}e$
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compact, the proper $vdu\ell s$ with maximum mddus ccancides with the solution.$s$
of the equation

(5. 2) $\prod_{i=1}^{n}(\xi^{k}-r^{k_{l}})=0$

where $k_{l}(i=1,2, \cdots,n)$ are some $posit\dot{w}$e’integers.

Proof. Reflexivity of $R$ implies universal continuity of $A$ . Let $\lambda$

be a proper value with maximum modulus. Considering, by ZORN’S
lemma, a maximal linearly ordered family $[N_{\rho}]_{\rho\in\Lambda}$ such that
$\lambda\in\sigma([N_{\rho}]A[N_{\rho}])\subseteq\sigma(A)$ . Putting $[N]=\cap[N_{R}]$ , by Lemma 5.3, we obtain
$\lambda\in\sigma([N]A[N])\subseteq\sigma(A)$. Since $r([N]A[N])\rho\leq r(A),$ $\lambda$ is a proper value of
$[N]A[N]$ with maximum modulus. By Lemma 4.1, the maximal
hypothesis implies that there is no $0<[M]<[N]$ with $[N]A[M]=$
$[M]A[M]$ , that is, $[N]A[N]$ is completely positive. Hence by Lemma
5.1 $\lambda$ is a solution of an equation $\xi^{k}=r^{k}$ for some $k$ and all its solutions
are contained in $\sigma([N]A[N])\subseteq\sigma(A)$ . Since $A$ has only a finite number
of proper values on the circle with radius $r$ , this completes the proof.
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