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POSITIVE LINEAR OPERATORS IN SEMI.-ORDERED
LINEAR SPACES

By

Tsuyoshi ANDO

Since in 1907 O. Perron [9] discovered a remarkable spectral
property of positive matrices and shortly later G. Frorenxius [1], [2]
and R. Jentzscu [4] investigated and generalized it further, many
authors have considered special properties of positive linear operators.
Especially M. Krein and M. A, Rurmanx [5]™ considered with success
a generalization to Banach spaces with a cone. They obtained par-
ticularly important results, when the space is lattice ordered or the
cone has an interior point. In this paper, we consider spectral
properties of positive compact (=completely continuous) linear operators
on a universally continuous Banach space (= conditionally complete
Banach lattice). Our main aim is to generalize the results of G.
Frosentus [2] to infinite dimensional spaces. -

In §1 preliminary definitions are summarized. In §2 the funda-
mental theorem on the maximum positive spectrum is proved (Theorem
2.1). In §3 we define completely positive linear operators. The operators
of this class play a similar r6le as strongly positive operators in [5].
In §4 we obtain under some additional conditions a necessary and
sufficient condition for that a positive compact linear operator is quasi-
nilpotent (Theorem 4.7). In §5 the proper values with maximum
modulus of a positive compact linear operator are determined (Theorem
5.2).

§ 1. Preliminaries. We recall briefly definitions from the theory
of semi-ordered linear spaces and linear operators. A lattice ordered
linear space (with real scalar) R is said to be wuniversally contihuous, if

for any a,=0 (A€ 4) there exists Na,. A linear manifold N of R is
aea

said to be normal if there exists a positive linear projection [N] of R
onto N such that |x—[N]z| |yl =0 for x€R and y€N. The projection

¥) The author of the present paper expresses his thanks to Dr. S. YAMAMURO at
Institute for Advanced Study, Princeton, who kindly communicated the main results of [5],
which was not availablq to him.
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onto the normal manifold generated by a is denoted by [@]. Normal
manifolds and order-projections correspond to each other in one-to-one
way. ;
When we consider spectral problems, it is convenient to define a
complex extension R of R, whose elements consist of all pair of elements
of R, (a,b)=a-+1b, the absolute value of a+1b is defined by

(1. 1) la+4b| = U |acosf+bsinb|.

0<f<2rt

When R is normed, the norm, in this paper, satisfies the following
additional condition:

(1.2) la| < 1o implies |laj] =0,
The norm on R is defined, when R is normed, by
(1.3) lla+bl| = [l la+2b] ] .

A norm on R is said to be continuous if @, 1¢40 implies [|aaf]] 2¢40.
A bounded linear functional @ is said to be wuniversally continuous, if

@2 }2c40 implies inf |@(a,)|=0. R and R denote the space of all bounded
A€A

linear ,functionals' on R and that of all universally. continuous linear
functionals respectively. For the other notations and definitions, we
refer to [6].

For a bounded linear operator A on a complex Banach space R into
itself, 6(A) denotes the set of all spectra of A, and P(A) the resolvent
set. If (AI—A)x=0 has a non-trivial solution in R, 1 is said to be a
proper value and its solutions are proper elements. We put

(1.4) r(4) = sup [

(1. 5) R = Q@I[—-A)" for i€p(4).
It is well known (cf. [3]) that

(1.6)

r(A) = lim || 4%V

A is said to be quasi-nilpotent, if r(A)=0.

A bounded linear operator A is said to be compact if the unit
sphere is mapped by A into a compact set. We assume in this paper
the results of F. Rimsz ((10], chap. IV and V) concerning the spectral
properties of compact linear operators. If A is a compact linear operator,
every non-zero spectrum is a proper value and the corresponding proper
manifold is each finite dimensional. o(A) constitutes a totally discon-
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nected set with the only possible limiting point 0. For a non-zero
complex number 1 we can define a bounded linear projection operator

E (%) relative to A by
1 ¢
. D) =_—_
(1.6) , E Q) zni&R(C)dC

where the integration is formed along a Jordan curve surrounding 4,
whose boundary and interior intersect o(A) in A alone. The index 7 (A
of 1 is the samallest integer n satisfying ({I—Ay* E())=0 For other
~definitions in operator theories, we refer to [3].

Examples of universally continuous Banach spaces are: L, I,
(1<p<oo), and more generally modulared spaces studied in [6].

As we develop in the following a theory of positive compact linear
operators in a universally continuous Banach space, it has immediate

applications to the theory of integral equations or linear equations with
infinite unknowns in the spaces mentioned above.

§2. The maximum positive spectrum. Throughout the paper R
denotes a wumiversally continuous semi-ordered Bomach space and A a linear
operator on R into itself, if the contrary is not mentioned.

Though some of results are known under weaker conditions (see
[6]), we prove them for the sake of completenss, since under our con-
ditions proofs are sometimes simple.

A is said to be positive, if a=0 implies Aa=0.

Lemma 2.1. A positive linear operator is mecessarily bounded.

Proof. For @€R, putting b(x)=a(Ax), bis an (o)-bounded linear
functional on R, so by Theorem 81.8 in [6], is norm-bounded. This
means that the image of the unit sphere by A is weakly bounded.
The assertion follows from the known theorem on weakly bounded sets.

Theorm 2.1. If A is positive, r(A) is in o(A).
Proof. Suppose r=r(A) is not in 6(4). Then R(1) = o‘;“ 72—‘:% for
A>r and sup [IR(A)|| <weo. Since, considering R, by (1.3)

IRGe ) 2| < |[R(Nz||  for i>7r, 0<<27 and >0,

hence sup [|R(le”)|l<oo, this im_plies re’® ¢ a(A4), 0<0<2r, contradicting
: A>r R .

the assumption (ef. [3]). |
Corollary 2.1.1. If A is positive, R(1)=0 if and only if 1>r.

Proof. 1f R(1)=0, 1 is apparently real and by the resolvent equation
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([3], p. 99) R(z)—R@)z%M__(&?go for > Max @, 7). ‘Hence as in

Theorem 2.1 1>7r(A). The converse part is obvious.

Corollary 2.1.2. Let A be positive. If for a A>0, there exists xio
such that ix=Azx, then 1<r(A). o

Proof. If i€o(A), i<r(A) by Theorem 2.1. If i€p(A4), from the
hypothesis R(1) is not positive, the assertion follows from Corollary
2.1.1.

Concérning the indice on the circle of radius f:r(A), we obtain
Theorem 2.2. If A is positive compact with r=r(A)> 0,

(2.1) rD<p®) For 1il=r

Proof. By the Laurent resolution ([3], p. 109) sup e!M R (r+ e)ll < oo

for a small 8. Since from (1.8) " ||R(re*? +ee‘”)[l<e’“” |R(r+¢)l,
obtain u()<u ().
Theorem 2.3. If A is positive compact r=r(A)>0, A has a positive
proper element corresponding to the proper value r.
~ Proof. We know that lim e+ R(r+ &)=(A—rD)*~E(r) (8], p. 109)

Since R(r+¢)=0, (A— rI)""‘)"E'(r)>O there exists >0 with y=
(A—rD)*"-'E(r)x>0. We obtain that Ay=ry and y>0.

§ 3. Completely positive linear operators. A linear operator A is
said to be wumiversally continuous, if a, }zc,0 implies ﬂ | Aa; |=0.

Lemma 3.1. If A s positive, compact and umversally continuous, the
range of the conjugate operator A* is contained in R

Proof. Since A is positive and compact, for any a; | 1¢40 {Aa;}aeca
has a limiting point and it must be equal to 0. So li;n Aa,=0. This
implies that A*a@ is universally continuous for every @€R.

An element a of R is said to be complete, if [a]=I. A bonuded
linear functional @ is said to be complete if |@|(|a])=0 implies a=0. We
remark that if a is complete, aeR |a@|(Ja])=0 implies @=0.

Theorem 3.1. Let A be universally continuous, positive and compact with
r=r(A)>0. If A has a positive complete proper element, then p(r)=1 and
the proper element corresponds to r. , ‘

Proof. Let Aa=ia>0 and [a¢]=I. If rs#4, a(@)=0 for the positive
proper element of A* corresponding to r», which exists by Theorem
2.3 and is universally continuous by Lemma 3.1. This implies a=0. So
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Y

A must be equal to . Suppose that x(r)=2. There exists a positive
linear functional & =(A*—rI)*"'E*(r)Z as in Theorem 2.3. But by
Lemma 3.1 5(@)=0 and 3€R, this implies =0, contradicting the
assumption.

The special property of the proper manifold corresponding to is
contained in: :

Theorem 8.2. If A is positive compact and A* has a positive complete
proper element @, the proper manif old corresponding to r of A is a lmear
lattice manifold.

Proof. @ corresponds to 7 by Theorem 3.1. If Aa=ra, Aa*=ra*,
so we obtain @(da*—ra*)=0. Since @ is complete, this implies that
Aa=1ra. Hence the proper manifold corresponding to r is a linear
lattice manifold.

Corollary 8.2. Under the same assumption as Theroem 3.2, if a€ER is
a proper element corresponding to ¢ with |§|=r, A|a|=r]al.

Proof. By the definition (1.1), Aa=¢%a we have A- lal =rlal. The
assertlon follows as above.

As a special class of positive linear operators, we define : a positive
universally continuous linear operator A is said to be completely positive if

38.1) D;I[AVx] =1 for every x>0

This means that for a positive x>0, a~A4"2=0 (v=1, 2,--) implies a=0.
Lemma 8.2. If A is positive and wuniversally continuous, for a>0,
putting U [AYa]=[N], we obtain an invariant mormal manifold, that is,
oy =1 .

(3.2) A[N]=[N]A[N]

Proof. Since for x>0, [N] x= p;i(xm»(Aa+ ---+Ava)) and A is univer-
sally continuous, A[N]z= El A(@x~v(Aa+ ---+ AYa)) so we obtaine [A[N]«x]
< G [Aa+ -+ AYd]<[N] .

Complete positiveness corresponds to “Unzerlegbwrkezt” in [2] as is
seen in the following :

Theorem 38.3. A positive universally continuous linear operator is com-
pletely positive if and only if it has no non-trivial invariant normal manifold.
This is an immediate consequence of Lemma 3.2.
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Lemma 3.3. If A is compact and completely posztwe, every positive proper
element of A (and A*) is complete.

Proof. If a is a proper element of A, [a]=[A4"a] (»=1,2,---) and so
[@]=I. If @ is a proper element of A*, @(@)=0 implies a(AYa)=0 (v=
1,2,---). Since @ is in P by Lemma 3.1, a=0.

- Theorem 3.4. If A is compact and completely positive with r—=1r(A)>0,
the multiplicity of the proper value r is equal to 1 (cf. §5 later).

Proof. By Theorem 3.2 and Lemma 3.3, the proper space corre-
sponding to 7 is a linear lattice manifold. Since A is completely positive,
all positive proper elements are complete, so the multiplicity must be
equal to 1. .

Next we consider the distribution of proper values corresponding
to positive proper elements.

- For a bounded linear operator A on a complex Banach space R into
itself, the spectral radius of x, r(x, A) or r(x) (if there is no confusion),
is defined by

3.2) r(@, A) = r(x) = Om || 42|V
This functional satisfies the following properties:
1) 0<r<rd)
2) sup r (x) = r(4)
2ER
3) - r (ax) = r(x) for a0
4) r(@+y) < Max {'r(x), r(y)}
5) r(Az) = r(x)

We remark that r (x) ¢s nothing but the maximum modulus of singularities
of analytic continuation of R()x (1€L (A)).

Since the set of all spectra of a compact operator is a totally
disconnected set with the only possible 11m1t1ng point 0, the functional
r(x) is rather convenient.

Lemma 3.4. If A is compact, the functional r(x) satisfies the. following :
a) r(r) = Max {lz] : E(A)x;to} for x#0
b) r(x) s lower semi-continuous,

c) the range of r(x) coincides with the set { 14] 5 REa(A)} .
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IProof . a)is an immediate consequence of remarks stated above.
b) follows from a). c¢) is evident, since every non-zero spectrum is
a proper value. ‘

For a positive compact linear operator, we obtain: \

Treorem 3.5. If A ts positive, universally continuous and compact, the
set {r(x); r (®) >0, x>0} coincides with the set of all; non-zero proper values
corresponding to positive proper elements. ‘ :

Proof. For 1>0, the set S; = {x; r(|x])<<4} is a closed linear manifold
by Lemma 3.4. If0<z,1,2 (x,€S;), x€S,;, because E (¢) is universally
continuous, hence S; is normal. If there exists x€S; such that r (jz|)=4,
by formula (5) A[S.]=[S.]A[S:] and r(A[S;])=4 Hence by Theorem
2.1 there exists 0<<a, €S, such that Aa,=1a,. Conversely if Aa=pra>0,
r@=>. o | .

Theorem 3.6. Let A be positive, universally continuous and compact, with
r=r(A)>0, A is completely positive if and only if

a) Ahas a unique positive proper element (up to scalar) which is complete,
b) rx >0 Sor every x>0.
Proof. 1f A is completely positive, then by Theorems 3.2 and 3.4 the_

positive proper element is unique and complete. Since A* has a positive
complete proper element @ corrresponding to r, for any positive a>0,

r(a)= lTrﬁl&(A”a)l’;—:r. Conversely suppose that A satisfies a) and b).
Y »o0

If a normal manifold N is invariant relative to A, by b) r(A[N])>0
and by Theorem 2.3 there exists a positive proper element in N which
is not complete. ,

We may replace the condition b) by the condition

b’) A* has a complete positive proper element. _
Lemma 3.5. For a compact linear operator A on a Banach space R
sup ()<L if and only if ||AY[|I<M-rY v=12,--)
ldl=» .

Sfor some M, where r=r(A). And in this case

3.3) CE@) =lim L % 'WA_)'“
Voo Y k=1 \ 7
The proof is well known (cf. [10] and [5]). |
If the maximum spectrum is not simple, the following decomposition
holds : '
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- Theorem 3.17. Let A be positive, universally continuous and compact. If
A and A* both have positive complete proper elements, there exists a decompo-
sition of tidentity such that

(3.4 I=3w], [wlle]=0  G#p
- Afe,)]=[a]4 | - (v=L2,m)

and A is comjoletely positive on [a,]R (v=1,2,---,n).
Proof. By Lemma 3.5 and Theorem 8.2 the positive projection

E (r) is written in a form E(r)x— Z‘ a,,(x)a,, ‘such that-
Aa,;:m,,»>0, A*a, =ra,>0, a,(@,)=20d,, (v, p=1,2,---,m).

Since U la,] = U [@,]°=1 and Ala,]=[a,]A[a,], A*[a,]=[a,]A*[a,]

(»v=1,2,: -,n) A 1s completely positive on [a,]|R (v=1,2,---,n).

We define a somewhat weaker condition than complete positiveness:
a positive linear operator A is said to be natually decomposable, if there
exists a decomposition of identity [IV,] (€ 4) and[M]such that

I=3[N,]+[M], [No]N,J=0 @), [N,][M]=0

A[N,]=[N,]JA and A[M]=[M]A,
r(A[N,D>0 (Ped) and r(A[M)=0,
and A acts as a completely positive operator on [N,]1R (P€4).

Theorem 3.8 Let A be positive, universally continuous and compact. A
is naturally decomposable if and only <. f :

ule] = ular
where a) (and @) varies in all posztzve proper elements of A (and of A* re-
spectively).

Proof. If A is naturally decomposable with the decoinposition (3.5),
then by Lemma 3.3. Ula] = ul&]*= U[N »]. Conversely, let U[a]= L [&]".

We arrange the proper values of A correspondmg to positive proper
elements in the decending order A,>4,>---. Since each corresponding
proper manifold is finite dimensional, there exist maximum projectors
[p,] corresponding to i, (v=1,2,---). Analogously we obtain §, relative

3. 5)

to A* corresponding to ;)1> /12>’---. By hypothesis OLOJ [p,]= C [@.]% and
’ V=1 V=1
d+(p,)=0 if 2,%#pu,. We obtain [p,]=[¢,]* (v=1,2,---) and [p,]A=A[p,].
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Since (1—— G [p,,])A is quassi-nilpotent by Theorem 2.3, we obtain
y=1

the assertion by Theorem 3.7. :
Next we consider a characterization of natural decomposability

analogous to Theorem 3.6. For a projection [N], we put
r((N) = Sup r@x) and 7r*(N]) = sup r*(@)
Nlx=x

TLNI=% .
: — 1
where : r*(@) = lim || A*VE|| v
Y 550 .

Theorem 3.9. Let A be positive, universally continuous and compact, and
R semi-regular. A is naturally decomposable, if and only if it satisfies
a) ' r((N) =r*(N) Sfor every projection [N],

14%all _

b
) v=1.2, 7(x)"

Jor x>0 with r(x) >0 .

Proof. If A is naturally decomposable with the decomposition (8.5),
it is easy to see that for a projection [N] and x>0 ‘

r(ND =, sup r(AIN,) = r*(ND
r @ = sup r(4[N,)

L& g Ja#0
b) follows from Lemma 3.5. Converesely, suppose that a) and b) are
. satisfied. PutS,={x;r(z|)<1} and 5, ={a;aeR, r*(|a])<1}. By Lemma
3.4 and a) we have [S;] =[S:]% hence A[S;]=[S:]A. If @ and b are
positive proper elements corresponding to different positive proper values
4 and A, respectively. If [p]=[a][b]70, as in the proof of Theorem 3.6,

r (#D<Min {r(a), 76D} = Min {4, 4}
and

r*((p) = Max {r(a], r(6D} = Max {4, 4}
contradicting a). So a~b=0. Let A4,>1>--- be propér values of A
corresponding to positive proper elements in the descending order.
Putting [SV]:[SAV]‘—'[SRU+1]’ we have A[Su]:[‘su]A (”:1’ 2,3,---). By

Lemma 8.5 and b) we can prove that FE(1,)x>0 and r(x)=4i, for
0<z€[S,]R. Hence there exists 0<d@€R such that

A*a =2, and [@*=I[S,]"

Again using a), we obtain that there exists 0<a€R such that Aa=21,a
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and [a]=[S,]. Now Theorem 8.7 is applicable.

§4. Quasi-nilpotent operators. In this § we consider relations
between A and its restriction to normal manifolds.

Lemma 4.1. Let A be a compact linear operator on a Banach space R.
If F is a bounded linear operator such that F*=F and AF=FAF, then

4.1) o(A) = s(AF)~o(1—F)AI—F)),
(4.2) r(A) = Max {r(AF), r(I—F) AI—F))|

Proof. Let 0£2€P(AF~P(I—F)AI—-F). If AI—A)x=0, I—F)
WU—-A)yze=I—F)Q—IT—F)A(I—F))x=0 hence (I—F)x=0 and similarly
Fx=0, s0, x=0, hence 1€P(A). Conversely, if 1€p(4), AI—A)F' is one-
to-one on FR, hence by Riesz’s theorem i€p(AF). -Similarly 1€p (4*
I—F*)=p(I—-F)A(I—-F)).

For positive linear operators A and B such that A=B, it is evident
that r(A)=r(B). In particular, for any projection [N ], r(N]A[N])<r(4).

" Theorem 4.1. Let A be positive, universally continuous and compct with
r=r(A)>0. A is completely positive, if and only if for a projection [N]
r((N]A[N)D)=r(A) implies [N]=1. :

 Proof. Suppose first that A is completely positive. If r(N]A[N]
=7, by Theorem 2.3 there exists a>0 such that [N]A[N]a=ra. Since
Aa=ra, as in the proof of Theorem 8.2, we obtain Aa=ra. Complete
positiveness implies [IV]=[a]=I. Next suppose that A is not completely
positive. There exists by Theorem 3.3 a non-trivial normal manifold
[N] such that A[N]=[N]A[N]. Lemma 4.1 shows that Max {r(A[N])),
r(I—-[NDAUI—-[ND)}="r. |

Between a positive proper value distinct from r=r(4) and r(N]A
[V]) the following relation holds:

Theorem 4.2. Let A be positive and compact, and A a positive proper
value distinct from r=r(A). For any non-zero projection [N] there exists
a non-zero projection [M ] such that [N1=[M] and r(I—[M])AQ—-[M])=A.

Proof. There exists a0 such that Aa=2ia, so Aa*=2a* and
Aa~=ia". By Corollay 2.1.2, r(a*]A[a*])=4 (and r({a ]A[a"D=4) if
[a*]#0 (and [a"]#0). If [N][a]=0, we put [M]=[N]. If [N]{a]#0 and
o~ =0, we have Aa=2a>0 and r([a] A[a])=A. Since by Lemma 4.1 Max
{r(A[a]), r(I—[a) A(L—[a])} =7, we put [M]=[N][a]. If [N][a*]+#0 and
[@]540, we put [M]=[N][a*]. The other case is treated similarly.

Corollary 4.2. Under the same conditiosns as in Theorem 4.2, if p is
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a discrete element of R, r(1—[p]) A1 —[p])=A.
Proof. Since p is a discrete element, putting [N]= [p] [M] must
coincides with [NV].

Lemma 4.2. I f A, (1€ A) (4 being a dw'ected set), are compact linear
operators defined on a Banach space, such that lzm HA,L Al|=0, then

(4. 3) l1m a(A ) = o(A) n the sense of metmc,
4.4 | 11m r(Ay) = r(4). B

The proof is found in [8]

Lemma 4.3. Let F, (A€ A), (A being o directed set), be bmmdeol lmear
operators on o Banach, space R such that F% =F', (A€ A), F* =F sup |]F111<°o

and lim Fi,e=Fx (xe€R). If A is a compact linear operator on R then lim

AeA AEA
r(F,AF,;) —fr(F'AF). : \ TN
. Proof. Since the image of the unit sphere by a compact linear
operator is relatively compact, it is easy to see that l1m []FRAF,LA—

FAFA||=0. By Lemma 4.2, limr(F,AF, A)_r(FAFA) But since
T . 1 A . 1

r(FAFA)=Ilim H(FAI‘?’A)“H7 :1im (FAFYY—Alv <r(FAFY and r (FAFA)

= lim !I(FAFA)” v > 11m [ L |(].’7'AI4')‘“’H}Vi =r(FAF)?, we | obtain lim.
Y oo . - B . ) F

> L|IF|
r(Fy AF, A)=r(FAFY. Hence limr (I AFy)=r(FAF).

Theorem 4.3. Let R have no discrete element and b_é: of contmuousnorm
If A is positive compact, there exist p, € R (0<A<<r(A)), such that

- (4.5) - : [pa] < [py] o<Iy)
and . ; - r(pJAp) =4 0<i<r(4)

Proof. We choose Zorn’s lemma, a ‘maximal linearly ordered famﬂy
of projections [q,,] The assumptions on B and Lemma 4.3 imply that

sup r([qe] A [qe]) = 1nf fr([qe]A[qe]) We can choose [p,l] from [q,,] w1th_

r([qp]A[q,,]) A the remalnmg part is easily proved _
In the operator theory, it is important to study condltlons assurmg
non-quasi-nilpotentness. Naturally a problem arises whether complete
positiveness implies - non-quasi- n11potentness ~We have been able ‘to.
solve this problem only under some additional conditions.
A bounded linear operator A is said to be totally continuous, if for
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any positive a€ R and positive ael

4.6) [plz(Alplo)= S @ (q, P @ (dpx) z(dqe) for [p]<[e]and [p] < [a],
EPJXCPJ

for a fixed Borel function ¢((,p) on the product space @x& of the

proper space of R (see [7]$5). H. Nakano [7] proved that A ¢s totally

continuous tf and only if lay|<a (v=1,2,.--) s—lima,=0 (star-convergence)

Y ~»co

implies (0)—lim Aa,=0. (It is easy to prove that here star-convergence

Y —»oco

may be replaced by weak-convergence).

Lemma 4.4 For a bounded linear operator A on a Bomach space, put
B= 3 £
also. If A is positive and compact, B s so.

Proof. Since RQQ) = % I+ B, by the spectral mapping theorem (cf.

Sfor some 2>r(A). If B has a non-zero spectrum, A has one

[3] p. 122) a(A):{x— 11

; EEa(B)] , if o(B) contains non-zero
=+ f

number, ¢(A) does also. . v
| Lemma 4.5. Let R be reflexive as a Banach space. If A,, A (v =
1,2,.-) are positive compact such that

A<A<A; <+ and limA,a=Aa (aeR),

Y oo

then lim ||A,—A| =0

Proof. Considering A as a continuous function @(4a) on S x S,
where S and S are the positive unit spheres of R and R respectively,
topologized by weak topologies. Since SxS is compact, the assertion
follows from the well-known theorem of Dini and the definition of
norms of operators. '

Theorem 4.5. Let R be reflexive as a Banach space. If A is compact,
totally continuous and completely positive, then A is not quasi-nilpotent.

Proof. By Lemma 4.4 considering the compact positive operator
B, we may assume that [Ax]=I for every x>0. Further we may
assume that for some a>>0 and a>0 [a¢]=[a]*=I and @(a)=1. Suppose
that A is represented in a form (4.6). A’ satisfies the same conditions
as A and the corresponding function may be given by

7(@q,9) = § 2@, 8) (3, ) a(d5a)
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If 7(q,p) vanishes on a set of positive measure, from the measure
theory, there exists a measurable subset 9Ic@& such that

a) the measure of 9| is positive, (the measure being defined by
a(r]a). ] A
b) ‘ meas (B,)>0 for pe9l, where
B, = {0; {0@ 5 ¢ G, pa@dss =0}
¢ @(,p) is measurable with respect to q for pel.
If @(5,9)>0 on a set of positive measure € for some PeI &(q, §)=0
almost everywhere on B, x €, contradicting the assumption that [Ax]

=I for every x>>0. Thus @(p, q)=0 almost everywhere on & x 9, also
contrading the assumption. Hence 7 (7, )>0 almost everywhere. It is

known [7] that aRQa = n (rA’~aRQa) and r(@Ra)=1. Lemmas 4.5 and
‘ v=1 '
4.2 imply r(4%=r(A4)*>0.
Next theorem is proved in [11], but we give a somewhat different
proof. : ‘

Theorem 4.6. Let F', (0<A<1) be bounded linear operators defined on
a Banach space R such that F;=0, Fi=I, F;F,=Fyn,,u ond lim Fyx=
ot a

lim Foe=F,x (x€R). If A is a compact linear operator on R such that

[ §
AF,—F,AF, (0<i<1), then A is quasi-nilpotent.

Proof. Since by Lemma 4.1 Max {r(F,AF,), r({(I—F,) AI—F,)}=
r(A), there exists, by induction, sequences 2,17.,a and y,|5.,8 such that
r(Fu,—Fi,) AP, —F;,)=r(4), (+=1.2,---). But by Lemma 4.3 r(4)
=r((Fs—F.) A(Fs—F.). Continuing this method, we obtain r(4)=0.

Combining Theorems 4.5 and 4.6, we obtain a generalization of
criteria of Voltera-type ((10] p. 147).

Theorem 4.7. Let R be reflexive as a Banach space and have no discrete
element, and A be positive, compact and totally continuous. Then A s quasi-
nilpotent tf and only if there exist projections [N,] (0<<A<1), such that

@7 [NJ=0, [Ni]=U[Az], 0[N,]=U[N,]=[N,]
ANJ=[NJAND  0<i<l).

Proof. Since by Theorem 4.5 'any non-trivial invariant normal
manifold contains the other non-trivial one, the proof proceeds as in
Theorem 4.3.

§5. Proper values with maximum modulus. Here the distribution
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of proper values with maximum modulus of a positive compact linear
operator is considered.

Lemma 5.1. If A is compact and completely positive with r=r(A4)>0,
the proper values with maxitmum modulus are all simple and are the solutions
of the equation ,

5. 1) o - EF—r* =0 Sfor some k.

Proof. Since by Theorem 3.1 x(r)=1, the assertion follows from
Theorem 8.1 of [5].

Lemma 5.2. For a compact linear operator A on a Banach space R, the
Sfollowing conditions are equivalent to each other o

1) 0 w=limAz =FEQQ)x (xeR)
2) lim A% = E()% (@ER)
3) lim | 4¥ — E)]l = 0

4) r(A)<1 and 1 s the only possible proper value with modulus 1.
The proof is similar to that of Lemma 3.5.

Theorem 5.1. Let A be compact and completly positive with 'r(A) 1
The following conditions are equivalent :

1) 1 is the unique proper value with maximum modulus,
2) lim A”x exists and is complete for every x>0,

Y —poo

3) AY (yv=1,2, ---) are all completely positive.

Proof. By Theorem 2.1 and Lemma 5.2, 1) and 2) are equivalent.
Let 2) be satisfied. Since lim 4¥"x=F 1)z, 3) follows from 2) by the

-0

definition. Finally if 4Y (v=1,2, ---) are all completely positive and 2
is a proper value with |4 =1 distinct from 1, then by Lemma 5.1 there
exists a positive integer &k such that 1*=1, so 1 is a proper value of
A* of multiplicity greater than 1, contradicting the assumption by
Theorem 3.4.

Lemma 5.8. Let R be reflexive as a Banach space and A be compact.
If [Na]laea[N] and o ([N2] A[N.]) =o(4), then s((N]A[N])=c(4).

Proof. The reflexivity implies that that the norms of R and R
are both continuous. Since 11m I[N.] AN ]—[N]JA[N]]=0, by Lemma

4.2 s((N]JA[N)= hm a([Nl]A[Na])Ca(A)
Theorem 5. 2. Let R be reflexive as a Banach space. If A is positive
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compact, the proper values with maximum modulus coincides with the solutions
of the equation

5.2 ey =o0
where Fk,(i=1,2,---,n) are some positive integers.

Proof. Reflexivity of R implies universal continuity of A. Let 2
be a proper value with maximum modulus. Considering, by Zorn’s
lemma, a maximal linearly ordered family [N,],c, such that
A€o([N,] A[N,])=0(4). Putting [N]=N[N,], by Lemma 5.3, we obtain

A€o ([N]A[N])=0o(A4). Since r(N] A[Jsf D<r(A4), 2 is a proper value of
[N]A[N] with maximum modulus. By Lemma 4.1, the maximal
hypothesis implies that there is no 0<[M]<[N] with [N]A[M]=
[M]A[M], that is, [N]A[N] is completely positive. Hence by Lemma
5.1 2 is a solution of an equation £¢*=7r* for some k£ and all its solutions
are contained in ¢((N]A[N]))=o(A4). Since A has only a finite number
of proper values on the circle with radius r, this completes the proof.
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