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We analyze total reaction cross sections, σR , to explore their sensitivity to the neutron-skin thickness of nuclei.
We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. The cross sections are calculated in the Glauber theory
using the density distributions obtained with the Skyrme-Hartree-Fock method in three-dimensional coordinate
space. Defining a reaction radius, aR = √

σR/π , to characterize the nuclear size and target (proton or 12C)
dependence, we find an empirical formula for expressing aR with the point matter radius and the skin thickness,
and assess two practical ways of determining the skin thickness from proton-nucleus σR values measured at
different energies or from σR values measured for different targets.

DOI: 10.1103/PhysRevC.89.011601 PACS number(s): 25.60.Dz, 27.30.+t, 27.40.+z, 27.50.+e

A systematic study of nuclear size properties tells us the
saturation property of atomic nuclei. Recently the nuclear
isovector size property, that is, neutron-skin thickness, has
attracted much interest. The knowledge of skin thickness gives
more insight into the properties of neutron-rich nuclei and
neutron stars, and the equation of state (EOS) of asymmetric
nuclear matter. For example, it is pointed out in Refs. [1–4]
that the skin thickness of finite nuclei constrains the symmetry
energy and the slope parameter L of the pure neutron matter
EOS at the saturation density, which is one of the key
ingredients for the two-solar-mass neutron star problem [5].

The skin thickness has also been studied experimentally.
The parity-violating elastic electron scattering [6] has been
performed to determine the skin thickness of 208Pb, yielding
0.33+0.16

−0.18 fm. Further measurement is planned to get more
precise data for 208Pb [7]. Since the neutron radius is difficult
to probe, measurements of the skin thickness are still not as
precise as those of the proton radius, which is extracted from
the charge distribution obtained by an electron scattering.

A hadronic probe is also useful to study the size properties
of nuclei. Proton elastic scattering measurements at 295 MeV
have been done to probe the nuclear distributions of heavy
stable targets, Sn [8] and Pb [9] isotopes. Electric dipole
response has been measured for 208Pb using a (p,p′) reaction
and the skin thickness is evaluated as 0.156+0.025

−0.021 fm by making
use of the dipole polarizability of 208Pb [10]. However, it
is difficult to extend such measurements to unstable nuclei
because of their short lifetimes.

Total reaction or interaction cross sections for unstable
nuclei are more easily and accurately measured as long
as they are produced sufficiently. Recent radioactive ion
beam facilities allow us to measure precise total reaction
cross sections for neutron-rich Ne and Mg isotopes on 12C
target [11–13]. The total reaction cross section on 12C target
primarily probes the matter radius, and therefore we need to
know neutron or proton radii to determine the skin thickness.
The charge radii of unstable nuclei is made available by
isotope shift measurements [14–16]. A combination of the

deduced matter and proton radii from the different experiments
gives us information on the skin thickness. The isotope shift
measurement is, however, at present possible only for some
limited cases; moreover, deducing the charge radius from
the measurement calls for extensive evaluations for various
corrections. The measurement of the charge-changing cross
section may be an alternative for probing the proton radius,
but that cross section does not always probe the proton
radius directly, and thus one needs some model-dependent
corrections to extract the proton radius [17].

The purpose of this study is to discuss the possibility of
using the total reaction cross sections to extract the skin
thickness. Recalling the fact that the neutron-proton total
cross section is larger than that of the proton-proton below
the incident energy of 550 MeV, we expect a proton target
to probe more sensitively the neutron distribution in the tail
region than a 12C target [18]. Based on the Glauber formalism
[19], we systematically analyze the total reaction cross sections
for many nuclei with mass numbers A = 14–86 of O, Ne,
Mg, Si, S, Ca, and Ni isotopes. The wave functions of those
nuclei are generated by the Skyrme-Hartree-Fock method on
three-dimensional coordinate space. The analysis of the cross
sections enables us to propose possible ways to extract the
skin thickness through the energy and target dependence of
the total reaction cross sections.

The total reaction cross section is calculated by

σR =
∫

db (1 − |eiχ(b)|2), (1)

where χ (b) is the phase-shift function for the elastic scattering
of a projectile nucleus (P ) and a target nucleus (T ) and
the integration is done over the impact parameter b. The
phase-shift function is defined by a multiple integration with
the ground state wave functions of the projectile and target and
its evaluation may be performed with a Monte Carlo technique
as was done in Ref. [21]. Here we use the so-called optical
limit approximation (OLA), which requires only the one-body
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densities of the projectile and target, ρP and ρT , respectively,

eiχ(b) = exp

[
−

∫∫
d rP d rT ρP (rP )ρT (rT )

×�NN (sP − sT + b)

]
, (2)

where sP (sT ) is the transverse component of rP (rT )
perpendicular to the beam direction, and �NN is the nucleon-
nucleon (NN ) profile function describing the NN collision at
incident energy E. The profile function is different between
proton-proton (pp) and proton-neutron (pn). The profile
function for neutron-neutron is taken the same as pp. The
integration in Eq. (2) is carried out using the proton and neutron
densities of the projectile and target.

We use a usual parametrization for �NN ,

�NN (b) = 1 − iαNN

4πβNN

σ tot
NN exp

[
− b2

2βNN

]
, (3)

where αNN is the ratio of the real to the imaginary part of
the NN scattering amplitude in the forward angle, βNN is
the slope parameter of the NN elastic scattering differential
cross section, and σ tot

NN is the total cross section of the NN
scattering. They are tabulated in Ref. [18] for a wide range of
energies. Though it misses some higher-order terms of �NN ,
the OLA describes the proton-nucleus scattering satisfactorily
[21]. However, the OLA for nucleus-nucleus collisions tends
to predict larger cross sections than measurement [22], and we
employ another expression called the nucleon target formalism
in the Glauber theory (NTG) [20]. The NTG requires the
same inputs as the OLA and reproduces σR fairly well. For
example, σR of 12C+12C calculated with NTG are improved
very much in a wide energy range [22]. The power of NTG
is also confirmed in applications to 22C [23], oxygen isotopes
[24], and light neutron-rich nuclei [25,26]. In this paper we
employ the OLA for the proton target and the NTG for the 12C
target.

For projectiles with large Z, the Coulomb force contributes
to σR via Coulomb breakup. Its effect may be taken into
account by, e.g., the Coulomb corrected eikonal approximation
[27–29]. Since Z involved in the present calculation is not
very large, the Coulomb interaction between the projectile and
target is ignored for the sake of simplicity.

We perform the Skyrme-Hartree-Fock (HF) calculation for
the density distribution of a variety of projectiles. The ground
state is obtained by minimizing the energy density functional
[30]. Every single-particle wave function is represented in the
three-dimensional grid points with the mesh size of 0.8 fm.
All the grid points inside the sphere of radius of 20 fm are
adopted in the model space. The ground state is constructed by
the imaginary-time method [31]. The angle-averaged intrinsic
one-body densities are used as the one-body densities required
for the Glauber calculation. For more detail, see Ref. [26].

We consider light to medium mass even-even nuclei with
Z = 8–16, 20, and 28, covering both proton- and neutron-rich
regions, that is, 14−24O, 18−34Ne, 20−40Mg, 22−46Si, 26−50S,
34−70Ca, and 48−86Ni. Two Skyrme parameter sets, SkM* [32]
and SLy4 [33], are employed. The SkM* functional is known

to well account for the properties of the nuclear deformation,
while the SLy4 is superior to SkM* in reproducing the
properties of neutron-rich nuclei. In Ref. [26] we study light
neutron-rich nuclei with even proton numbers Z = 8–16 and
discuss the deformation effects on σR for the 12C target. The
two interactions give a significant difference in σR due to the
nuclear deformation [26].

As is well known, σR carries information on the nuclear
size. It is convenient to define a “reaction radius” aR of the
nucleus-nucleus collision at incident energy E by

aR(N,Z,E,T ) =
√

σR(N,Z,E,T )/π, (4)

where N and Z are the neutron and proton numbers of the
projectile, and T stands for the target, either proton or 12C.
In what follows we omit T in most cases and mean by E the
projectile’s incident energy per nucleon. The reaction radius
depends on E through the energy dependence of the profile
function (3). The pn and pp total cross sections, σ tot

pn and
σ tot

pp , behave differently as follows [34]. At E = 100 MeV, σ tot
pn

is about three times larger than σ tot
pp . The difference between

them gets smaller as the energy increases and vanishes at about
550 MeV, and beyond 800 MeV σ tot

pp exceeds σ tot
pn . The above

energy dependence of the basic inputs of NN data is best
reflected in σR for the proton target, whereas it is averaged out
in the case of the 12C target. Thus we expect the proton target
to be advantageous for probing the neutron-skin part.

We define the point matter root-mean-square (rms) radius
rm(N,Z) and the skin thickness δ(N,Z) by

rm(N,Z) =
√

Z

A
r2
p(N,Z) + N

A
r2
n(N,Z),

(5)
δ(N,Z) = rn(N,Z) − rp(N,Z),

where rp(N,Z) and rn(N,Z) are point proton and point neutron
rms radii, respectively. Figure 1 displays the reaction radii of
the 91 nuclei as a function of rm(N,Z). As expected, aR shows
a linear dependence on rm(N,Z) at any incident energies,
which is the basis of extracting the matter radius from σR .
A closer look at the proton case shows, however, somewhat
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FIG. 1. (Color online) Reaction radii vs point matter rms radii
for O, Ne, Mg, Si, S, Ca, and Ni isotopes on (a) proton and (b)
12C targets at incident energies of 100, 200, 550, and 1000 MeV.
The SkM* interaction is used. The reaction radii of 550, 200, and
100 MeV are added by 1, 2, and 3 fm, respectively, for the sake of
illustration.
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FIG. 2. (Color online) Difference of the reaction radii at two
incident energies (E′,E) in MeV as a function of the skin thickness
for O, Ne, Mg, Si, S, Ca, and Ni isotopes on (a) proton and (b) 12C
targets. The SkM* interaction is used.

scattered distributions along the straight lines. This indicates
that the reaction radii for the proton target scatter depending
on the detail of the neutron and proton density profiles even
though rm(N,Z) values are the same, namely, the reaction
radii for the proton target carry some information on the skin
thickness. The same conclusion is drawn with SLy4 as well.

To substantiate the above statement on probing the neutron-
proton density profiles, we consider the difference of the
reaction radii at two incident energies


aR(N,Z,E′,E) = aR(N,Z,E′) − aR(N,Z,E). (6)

Figure 2 plots 
aR as a function of δ(N,Z). Four different
sets of energies are chosen. The isotope dependence of 
aR

is weak for both targets, and in each set 
aR for all the nuclei
tend to approximately follow a straight line. For proton target,
the 
aR vs δ(N,Z) diagram exhibits strong correlation as
revealed by a nonzero slope, that is, 
aR can be a quantity
sensitive to the skin thickness. The steepest slope among the
four sets is obtained for (E′,E) = (100,1000) MeV, which is
easily understood from the energy dependence of σ tot

pn and σ tot
pp .


aR values for the 12C target show a flat behavior, or the slope
is almost zero, which is a consequence of the fact that the pn
and pp profile functions are averaged because of the equal
numbers of protons and neutrons in 12C. Thus the 12C target is
never sensitive to the skin thickness.

We confirm that the above observation holds in the SLy4
case as well, namely, the 
aR vs δ(N,Z) diagram obtained
with the SLy4 interaction is almost the same as Fig. 2 obtained
with SkM*. It appears that this is never trivial because the
SkM* and SLy4 interactions predict different density profiles
as shown in Fig. 3, which compares rm(N,Z) and δ(N,Z)
values of Ne, Mg, Si, and S isotopes between the two
sets. As discussed in Ref. [26], the matter radii of the Ne
and Mg isotopes are correlated with their deformations that
strongly depend on the Skyrme interactions. In fact we see
the interaction dependence of σR or aR in particular in the
Z = 10–16 region as shown in Fig. 3, whereas very similar
results are obtained for O, Ca, and Ni isotopes. Despite this
difference, the two Skyrme interactions give virtually the same
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FIG. 3. (Color online) Comparison of the skin thickness and
point matter rms radius of Ne, Mg, Si, and S isotopes calculated
with the SkM* and SLy4 interactions. The radii of Mg, Si, and S
isotopes are added by 0.3, 0.6, and 0.9 fm, respectively, for the sake
of illustration.


aR vs δ(N,Z) diagram. Thus 
aR is sensitive to neither the
nuclear shape nor the density distribution, but it is sensitive to
the skin thickness.

The approximate linear dependence of both aR on rm(N,Z)
and 
aR on δ(N,Z) suggests the following ansatz:

aR(N,Z,E) = α(E)rm(N,Z) + β(E)δ(N,Z) + γ (E), (7)

where α(E), β(E), and γ (E) depend on the target as
well. Those coefficients are determined by minimizing
the mean square deviation, χ2(E) = ∑

N,Z[aHF
R (N,Z,E) −

aFit
R (N,Z,E)]2/N , where aHF

R and aFit
R are aR values calculated

with the HF densities and Eq. (7), respectively, and N = 91 is
the number of data points. We cover 17 incident energies from
40 to 1000 MeV. It may be questionable to apply the Glauber
theory to such low energy as E = 40 MeV for the proton
target, but we include it for the sake of convenience. The square
root of

∑
i χ

2(Ei)/17 for the proton target is found to be 0.052
fm for SkM* and 0.049 for SLy4, which is approximately 1%
of the mean aR value, 4.68 and 4.70 fm, of all the nuclei at 17
energy points, respectively. As displayed in Fig. 4, the resulting
coefficients show “universality,” that is, very weak dependence
on the Skyrme interactions, especially in the proton case.
It should be stressed that Eq. (7) is valid for all the nuclei
considered in this paper. We tried another ansatz by replacing
δ(N,Z) with δ(N,Z)/rm(N,Z), but the result was worse.

Both α(E) and γ (E) weakly depend on E above 100 MeV.
The term with α(E) is a major contributor to aR among the
three terms, and its weak energy dependence of less than a
few % for both proton and 12C targets explains the linearity
of aR on rm(N,Z) with almost equal slopes as displayed in
Fig. 1. The energy dependence of β(E) is strong for the proton
target. This is responsible for the scattered distributions of
the reaction radii for the proton case as noted in Fig. 1. It
is easy to understand that the linear dependence of 
aR on
δ(N,Z) shows up in the proton case but almost disappears in
the 12C target as the main α(E) terms are canceled out. In this
way the proton target probes the skin thickness sensitively but
the 12C target does not. The energy dependence of γ (E) is
similar between proton and 12C targets. The latter is obtained
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FIG. 4. (Color online) Coefficients of reaction radius, (a) α(E),
(b) β(E), and (c) γ (E) as a function of the projectile’s incident energy
per nucleon. The SkM* and SLy4 interactions are used.

by adding about 2.4 fm to γ (E) of the proton target, which is
understandable considering that the reaction radius of the 12C
target includes not only the radius of the projectile but also
that of 12C.

We have determined α(E), β(E), and γ (E) using the results
on the 91 nuclei obtained with the two Skyrme interactions. It
will be interesting to further test the universal relation between
aR and rm(N,Z) as well as δ(N,Z) in heavier nuclei using
different Skyrme interactions.

Because Eq. (7) is found to be valid to good approximation,
we can make use of it to know the skin thickness. Given
that two σR or aR values for a proton target are accurately
measured at different energies, we can extract rm(N,Z) and
δ(N,Z) values as follows. A crude estimate of those unknowns
is to solve a simultaneous linear equation based on Eq. (7).
Since precise values of α(E), β(E), and γ (E) may actually be
unknown, another way without recourse to them is preferable.
We assume some model density distributions for protons and
neutrons and calculate σR values. If those cross sections agree
with the measured cross sections simultaneously, rm(N,Z)
and δ(N,Z) are calculated from the assumed distributions.
Otherwise other density distributions are tested until the model
distributions reproduce the measured cross sections. Here the
model distribution may be, for instance, Fermi type. This
assertion is based on the fact that σR is not sensitive to the detail
of the density distribution but is determined by rm(N,Z) and
δ(N,Z). Conversely, two different density distributions predict
virtually the same σR value in so far as they give the same
rm(N,Z) and δ(N,Z) values. To corroborate the statement,
we compare in Table I σR values of p+40Si calculated using
Fermi distributions with different diffuseness parameters. The

TABLE I. p+40Si total reaction cross sections in mb at incident
energy E in MeV calculated with different Fermi distributions. Each
of the distributions is specified by the proton and neutron diffuseness
parameters in fm, ap and an, and the proton and neutron radius
parameters are set to reproduce the matter radius (3.46 fm) and skin
thickness (0.37 fm) of 40Si obtained with the SkM* HF calculation.
See Fig. 5.

(ap,an)\E 100 120 140 160 200 300 425 550 800 1000

(0.5, 0.5) 742 700 667 642 607 564 550 575 615 619
(0.6, 0.6) 752 706 672 646 609 565 551 577 619 622
(0.7, 0.7) 759 711 675 648 609 564 549 576 621 623
(0.5, 0.7) 756 708 673 646 608 563 549 575 617 620
HF(SkM*) 747 703 670 644 608 565 551 576 617 620

proton and neutron radius parameters of each distribution is
set to reproduce the rm(N,Z) and δ(N,Z) values of the SkM*
density. The tail parts of the densities are crucially important
to determine σR . Though the shapes of the distributions are
different as shown in Fig. 5, all the densities give σR very
close to the HF cross section at all the energies. Even at
100 MeV the deviation from the HF result falls within at most
1.6%, confirming our statement. For a practical measurement,
the two energies are to be chosen from low and high energy
regions, e.g., E � 200 and E � 550 MeV, to make use of
the sensitivity to the skin thickness as shown in the energy
dependence of β(E), and the difference of the two cross
sections has to be large enough to be distinguished beyond
experimental uncertainties.

Another possible way is to measure σR values on proton
and 12C targets. Assuming some model densities for protons
and neutrons, rm(N,Z) and δ(N,Z) can also be determined
by reproducing the σR simultaneously. The incident energy
for 12C target may be chosen arbitrarily because the aR on
12C target is only sensitive to rm(N,Z) as shown in Fig. 4.
For a proton target, it is advantageous to choose low energy,
say E � 200, for maximizing the sensitivity to δ(N,Z) as
much as possible. Table II lists σR on a 12C target obtained
with the different Fermi distributions. The deviation from
the HF result is about 5% for all E, which is not as small

0

 0.02

 0.04

 0.06
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0 2 4 6
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FIG. 5. (Color online) Matter, neutron, and proton densities of
40Si of Fermi distributions with different sets of the diffuseness
parameter. The HF densities with SkM* are also plotted for
comparison.

011601-4



RAPID COMMUNICATIONS

PROBING NEUTRON-SKIN THICKNESS WITH TOTAL . . . PHYSICAL REVIEW C 89, 011601(R) (2014)

TABLE II. Same as Table I but on 12C target in units of b.

(ap,an)\E 100 140 160 200 300 425 550 800 1000

(0.5, 0.5) 1.73 1.62 1.58 1.52 1.45 1.44 1.48 1.55 1.56
(0.6, 0.6) 1.78 1.66 1.62 1.56 1.48 1.47 1.51 1.59 1.60
(0.7, 0.7) 1.84 1.71 1.67 1.60 1.52 1.51 1.55 1.64 1.65
(0.5, 0.7) 1.80 1.68 1.64 1.57 1.49 1.48 1.53 1.61 1.62
HF(SkM*) 1.74 1.63 1.59 1.53 1.45 1.44 1.49 1.56 1.57

as that of a proton target. Because of this we must admit
that constraining rm(N,Z) through σR for the 12C target
contains some uncertainty. In Ref. [11], σR for proton and
12C targets are measured for neutron-rich Mg isotopes at
900 MeV, and rm(N,Z) of 32−35Mg isotopes are determined
within approximately 5% in the analysis with the Fermi density
distributions. Unfortunately σR on a proton target did not set a
constraint on δ(N,Z) because the proton data contained large
uncertainty and the profile function at 900 MeV is insensitive
to the neutron-skin thickness. It is necessary to reduce the
experimental uncertainty of σR on the proton target for a
precise determination of rm(N,Z) and δ(N,Z).

In summary, to explore a sensitive probe to the skin
thickness, we have made a systematic analysis of total
reaction cross sections, σR , on proton and 12C targets in the
Glauber model. The Skyrme-Hartree-Fock method is applied
to generate the densities of 91 even-even nuclei with A =
14–86 from Z = 8–16, 20, and 28 elements. Two different
interactions, SkM* and SLy4, are employed to test the nuclear
size properties.

We find a universal expression that linearly relates the reac-
tion radius, aR = √

σR/π , to the point matter radius rm(N,Z)
and skin thickness δ(N,Z). The proportional coefficients are
determined as a function of the incident energy by analyzing
σR calculated from the Hartree-Fock densities. Among others,
the coefficient proportional to δ(N,Z) in the case of a proton
target exhibits remarkable energy dependence. This sensitivity
of aR or σR to the skin thickness has enabled us to assess a
practical way of determining both δ(N,Z) and rm(N,Z) from
the measurements of proton-nucleus reaction cross sections at
two different energies or from a combination of two σR values
measured on both 12C and proton targets.

The work was in part supported by JSPS KAKENHI Grants
No. 24540261 and No. 25800121.
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