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Supramolecular cation salt of adamantane rotator with 

a dithiolene complex, 

(fluoroadamantylammonium+)([18]crown-6)[Ni(dmit)2]
- (1) 

was synthesized. The fluorine atom of the adamantane unit 

showed a large thermal factor elongated latitudinally, 

suggesting molecular rotation in the solid state. Crystal 1 

exhibited a large dielectric response by applying an AC 

field along the a axis. 

 

 

A large number of artificial molecular machines, such as 

molecular motors and molecular gyroscope, have been 

extensively studied.
1,2

  We have reported a solid state 

supramolecular rotator (m-FAni
+
)(DB[18]crown-6)[Ni(dmit)2] 

(m-FAni
+
 = m-fluoroanilinium

+
, DB[18]crown-6 = 

dibenzo[18]crwon-6, dmit
2-

 = 

2-thioxo-1,3-dithiole-4,5-dithiolate) which exhibited a 

ferroelectric transition at 346 K due to the flip-flop motion of 

the m-FAni
+
 cation causing an inversion of the dipole moment 

in the solid state.
3
  

The ferroelectric transition temperature should be 

affected by the potential energy barrier for the molecular 

rotation in the solid state. Supramolecular rotators of 

adamantylammonium
+
 (AD-NH3

+
) cation derivatives with 

crown-ether stators may have smaller energy barrier for the 

rotation than that of the flip-flop motion of the anilinium
+
 

cation with C2 rotation axis, due to the higher symmetry and 

round shape of the adamantane moiety.
4
 In the present study, a 

supramolecular cation based on a fluorine-substituted 

adamantylammonium
+
 cation (F-AD-NH3

+
) and [18]crown-6 

was introduced into the crystal of [Ni(dmit)2]
-
 anion in order 

to develop a molecular ferroelectric material with a smaller 

energy barrier for molecular rotation. The crystals of 

(F-AD-NH3
+
)([18]crown-6)[Ni(dmit)2]

-
 (1) showed a large 

dielectric response at higher temperatures, which is discussed 

based on the molecular packing motif.  

Black block single crystals of  

(F-AD-NH3
+
)([18]crown-6)[Ni(dmit)2]

-
 (1) were prepared by 

the standard diffusion method from acetone (15 mL) solution 

of (Bu4N)[Ni(dmit)2] (23 mg, 0.034 mmol), [18]crown-6 (100 

mg, 0.38 mmol), and (F-AD-NH3
+
)Cl

-
 (37 mg, 0.18 mmol) for 

one week under nitrogen atmosphere at 30 °C.
4,5

 The chemical 

formula of 1 was confirmed by X-ray crystallographic and 

elemental analyses.
6-8

 

Figure 1 shows a packing motif of crystal 1 at 93 K. In 

this crystal, one F-AD-NH3
+
 cation, one [18]crown-6, and one 

[Ni(dmit)2]
-
 were crystallographically asymmetric. The 

[18]crown-6 and F-AD-NH3
+
 cation molecules were arranged 

parallel to the a/(b+c) plane (Figure 2(a)). The [Ni(dmit)2]
-
 

molecules were arranged to form two dimensional sheets 

parallel to the a/(b+c) plane. Alternate stacking of the cationic 

and anionic layers was observed along the b direction. In the 

cationic layer, two [18]crown-6 molecules formed a dimer 

structure. Distances between the nitrogen atom of the 

F-AD-NH3
+
 cations and the six oxygen atoms of the 

[18]crown-6 molecule are summarized in Table 1. Atom 

labels are summarized in Figure S1. The shortest distance 

between N-H
+
···O atoms was observed at N(1)-H

+
···O(4) 

(2.963(1) Å) in the cation, which is comparable to the 

standard N-H
+
···O hydrogen bond distance.

9
 Supramolecular 

cations were formed between F-AD-NH3
+
 and [18]crown-6 

through the hydrogen bonds in the asymmetric unit. The angle 

between the mean-plane of the six oxygen atoms and 

N(1)-C(1) direction was almost perpendicular. In the 

supramolecular cationic layer, fluorine atoms on the cation 

arranged anti-parallel along the a axis to cancel the dipole 

moments. No orientational disorder of the fluorine atom was 

observed by X-ray crystallographic analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Packing diagram of crystal 1 at 93 K. Thermal 

ellipsoids indicate 50% of electron densities. Hydrogen atoms 

are omitted for clarity. Gray: carbon, red: oxygen, yellow: 

sulfur, green: nickel, light yellow: fluorine, blue, nitrogen. 

 

Table 1.   Distances (Å) between the nitrogen atom of 

F-AD-NH3
+
 and the oxygen atoms of [18]crown-6 in the 

asymmetric unit. 

N(1)-O(1) 3.027(1) N(1)-O(4) 2.963(1) 

N(1)-O(2) 2.972(1) N(1)-O(5) 2.968(1) 

N(1)-O(3) 3.031(1) N(1)-O(6) 2.988(1) 
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Figure 2. Molecular arrangements in (a) cationic and (b) 

anionic layers in crystal 1. In Figure 2(b), t1 to t3 indicates 

molecular interactions between the [Ni(dmit)2]
-
 molecules. 

 

To evaluate the molecular motions of the supramolecular 

cations in crystal 1, the potential energy barriers for the 

molecular rotation of the F-AD-NH3
+
 cation was calculated by 

a restricted Hartree–Fock (RHF) method using the 

RHF/6-31(d) basis set.
10

 The model structure of the 

supramolecular cations in crystal 1 for the calculation is 

shown in Figure S2. These structures differed from the real 

stoichiometry of the salts. The atomic coordinates based on 

the X-ray crystal structure analyses of the salt at 93 K were 

used in the calculation. The rotation was performed in 30° 

steps around the N(1)–C(1) axis. The relative energies were 

calculated using fixed atomic coordinates. Thus, the results of 

the calculations overestimated the actual energy barriers. 

Figure 3 shows the potential energy curves for crystal 1. A 

quasi-double-minimum potential curve for the molecular 

rotation of F-AD-NH3
+
 cation was obtained. The local maxima 

were observed to be 115 and 105 kJ mol
–1

 at 90 and 270°, 

respectively. In the case of (AD-NH3
+
)([18]crown-6 

derivatives)[Ni(dmit)2]
-
, triple-minimum potential curves with 

the maxima of 13~18 kJ mol
–1

 at 60, 180 and 300 for the 

molecular rotation of AD-NH3
+
 were obtained.

4
 On the other 

hand, the F-AD-NH3
+
 rotator showed an asymmetric potential 

curve due to the asymmetric molecular arrangement around 

the F-AD-NH3
+
 molecules (see Figure S1). The energy 

barriers were larger than the thermal energy at room 

temperature (2.5 kJ mol
–1

) because the relaxation of atoms 

was not taken into account. The energy barrier was calculated 

to be 250 kJ mol
–1

 by the same calculation method for 

(m-fluoroanilinium)(DB[18]-crown-6)[Ni(dmit)2] which 

showed flip-flop motion.
11-14

 Thus, the molecular rotation of 

the F-AD-NH3
+
 cations in crystal 1 should be possible around 

room temperature. An elongated thermal factor of the fluorine 

atom in the circumferential direction already observed at 93 K 

became much larger at 300 K, suggesting the rotation of 

F-AD-NH3
+
 in the solid state (see Figure S2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Potential-energy curve of the F-AD group rotation 

in crystal 1. The structure unit for the calculation of 1 was 

(F-AD-NH3
+
)([18]crown-6)2[Ni(dmit)2]

-
3. The solid line is a 

guide for the eyes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Temperature dependent dielectric constants (1) of 

crystal 1 along the a axis. The electric fields with frequencies 

of 1 (black), 10 (red), 100 (blue), and 1000 (green) kHz were 

applied along the a axis, which were perpendicular to the 

rotation axis of the F-AD-NH3
+
 cation. 

 

The result of temperature dependent dielectric constants 

(1) for crystal 1 supported the molecular motion of the 

F-AD-NH3
+
 cation in the crystal. Figure 4 exhibits 

temperature dependent dielectric constants (1) for 1, applying 

the external electric field perpendicular to the rotation axis of 

the F-AD-NH3
+
 with the frequencies of 1, 10, 100, and 1000 

kHz. The dielectric responses are affected by molecular 

motion in the solid state. A large enhancement in the dielectric 

response may be observed due to the change of dipole 

moments associated with molecular rotation.
15

 From 20 K to 

200 K, crystal 1 showed temperature independent 1. A rapid 

increase of 1 at all frequencies appeared above 200 K. The 

higher 1 was observed with lower frequency implying that the 

response originated from molecular motion. In the case of the 

ferroelectric crystal (m-FAni
+
)(DB[18]crown-6)[Ni(dmit)2], 

the increase in dielectric constant with increase in temperature 

was observed above 250 K.
3
 These results suggested that the 

F-AD-NH3
+
 rotated in the solid state with smaller energy 

barrier than the m-FAni
+
 rotator.  



 

In the anionic layer, molecular interactions, t1-t3, between 

neighboring [Ni(dmit)2]
-
 anions through sulfur-sulfur contacts 

(3.5669(4)-3.67298(5) Å) shorter than sum of the van der 

Waals radii (< 3.7 Å) were observed. Transfer integrals, t1-t3, 

calculated by the extended Hückel method were 27.7, -7.76 

and 11.2 meV,
16

 respectively, which were the same order of 

the other crystals based on the supramolecular cations and the 

[Ni(dmit)2]
-
 anion showing the Curie-Weiss behavior with 

antiferromagnetic interactions.
3-4,11-14,17

 However, a small 

amount of isomorphous crystals grew simultaneously with 

crystal 1 which prevented obtaining reproducible magnetic 

susceptibilities. 

In conclusion, the supramolecular rotator using 

F-AD-NH3
+
 was successfully introduced into the solid state. 

Round-shaped rotators such as F-AD-NH3
+
 can realize lower 

potential energy barriers for the molecular rotation. By 

combining these rotators with magnetically and electronically 

active [M(dmit)2]
n-

 (M = Ni, Pd, Pt; 0 < n ≤ 2) anions will give 

multifunctional materials such as multiferroic compounds.
 

11,12,17,18 
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Molecular rotation with low potential energy barrier in the solid state may be realized by using a spherical 

molecular rotator of adamantane derivatives to show dielectric response. 

 

 


