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Abstract 

Tliis thesis investigates some problems related to graph colouring, or. more 
precisely. graph re-colouring. Informally, the basic question addressed can be 
phrascd as follows. Suppose one is given a graph G whose vertices can be prop-
erly fc-coloured. for some k > 2. Is it possible to transform any fc-colouring 
of G into any other by recolouring vertices of G one at a time, making sure 
a proper fc-colouring of G is always maintained? If the answer is in the affir-
mative, G is saicl to be k-rnixing. The related problem of deciding whether, 
given two fc-colourings of G7 it is possible to transform one into the other by 
recolouring vertices one at a time, always maintaining a proper fc-colouring 
of G, is also considered. 

These questions can be considered as having a hearing on certain inathe-
matical and "rcai-world" problems. In particular, being able to recolour any 
colouring of a given graph to any other colouring is a necessary pre-requisite 
for the method of sampling colourings known as Glauber dynamics. The 
results presented in this thesis may also fìnd application in the context of fre-
quency reassignment: given that the problem of assigning radio frequencies 
in a wireless communications network is often modelled as a graph colour-
ing problem. the task of re-assigning frequencies in such a network can be 
thought of as a graph recolouring problem. 

Throughout the thesis. the emphasis is 011 the algorithmic aspects and the 
computational complexity of the questions described above. In other words, 
how easily. in terms of computational resources used, can they be answered? 
Strong results are obtained for the k = 3 case of the first question, where a 
characterisation theorem for 3-mixing graphs is given. For the second ques-
tion. a dichotomy theorem for the complexity of the problem is proved: the 
problem is solvable in polynomial time for k < 3 and PSPACE-complete for 
k > 4. In addition, the possible length of a shortest sequence of recolourings 
between two colourings is investigated, and an interesting connection between 
the tractability of the problem and its underlying structure is established. 

Some variants of the above problems are also explored. 
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1 
Introduction 

Graph theory deals with the abstract study of connections between objects. It is a 
fundamental branch of combinatorial mathematics with a very wide range of applications. 
Its origin is usually attributed to Leonhard Euler's solution of the Seven Bridges of 
Königsberg Problem in 1735. The city of Königsberg in Prussia (now called Kaliningrad, 
and situated in Russia), set on the river Pregel, included two large islands connected to 
cadì otlier and the mainland by seven bridges. Allegedly, the residents had long asked 
thcmselves whet.her it was possible t,o tour the city crossing each bridge exactly once, 
cnding up at the point from which one had started. Euler proved, in what is widely 
accepted to be the first paper in the history of graph theory [21], that no such tour is 
possible. 

Rouglily speaking, a graph is a set of vertices—which may be thought of as represent-
ing objects—and a set of edges between pairs of vertices—which may be thought of as 
connections between pairs of objects. As a basic way of representing the Connectivity 
properties of a set of objects, graphs are used to model, for example, road and railway 
networks, components on an electrica! circuit board, flows through a. system of pipes, the 
structure of molecules, computer networks, and the Internet. In ail these contexts, many 
interesting problems can be cast in graph-theoretic terms, and can therefore be attacked 
employing the tools of graph theory. But graphs do not serve just as models for physical 
connections between objects. Many other, more abstract problems, such as how best to 
timetable a set of exams, or how best to assign a set of jobs to a given set of people, can 
also be explored using graph-theoretic techniques. 

This thesis concentrâtes on the area of graph theory known as graph colouring. The 
origins of graph colouring can be traced back to the middle of the 19th Century when. 
in 1852. Francis Guthrie asked whether four colours are enough to colour the régions 
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Chapter 1. Introduction 

of any map drawn in the plane in such a way that regions with a common boundary 
receive different colours. It was not until 1976 that this question was settled in the 
affirmative by Appel and Haken [2, 3], though some researchers argue that their proof is 
not completely satisfactory. Part of Appel and Haken's proof relies heavily on the use of 
a computer for extensive case-analysis, and the part that is supposedly hand-checkable 
is still extraordinarily complicated. Some twenty years later, another, simpler and more 
easily verifiable proof (indeed independently verified)—though still relying on the use 
of a computer—was provided by Robertson, Sanders, Seymour and Thomas [56]. Ever 
since this first graph colouring problem was posed a century and a half ago. the subject 
has grown continually and is now vast. The fact that many non-mathematicians know of 
Guthrie's question or of the subsequent Four Colour Theorem is testament to its status. 

Indeed graph colouring now occupies a central position in discrete mathematics: it has 
developed into an elegant theory with many applications, sometimes surfacing in unex-
pected areas. It deals with the basic problem of partitioning a set of objects according 
to certain prescribed rules or constraints. Typically, the constraints specify, for each pair 
of objects, whether both objects are allowed in the same class or not. Sequencing and 
scheduling problems are important applications which fall into this category. As a basic 
example, consider the following problem. Suppose we wish to construct a timetable for 
a set of exams, taking care to use the smallest number of time-slots as possible. This 
problem can be modelled as a graph colouring problem by letting each exam be repre-
sented by a vertex, and joining two exams by an edge if there is some student sitting 
both exams (which therefore require different time-slots). If we think of time-slots as 
'colours', an assignment of colours to the vertices of the graph that gives vertices joined 
by an edge different colours—a colouring—yields a timetable. Hence a colouring using 
the minimum possible number of colours will yield the desired timetable. Another im-
portant application of graph colouring, which we will examine in some detail later in this 
chapter, is the task of assigning radio frequencies in a wireless communications network. 

The field is still a very active area of research, and many important questions remain 
unresolved. An abundance of graph colouring open problems, together with detailed 
annotations, historical notes and references can be found in the monograph of Jensen 
and Toft [37]. 

The results in this thesis can more precisely be described as concentrating not on graph 
colouring, but on graph re-colouring. Basically, we investigate the following two prob-
lems. 
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Chapter 1. Introduction 

1. Given a graph. is it possible to recolour any colouring of the graph to any other by 
recolouring vertices one at a time, always maintaining a colouring of the graph? 

2. Given a graph and two colourings of the graph, is it possible to recolour one colour-
ing to the other by recolouring vertices one at a time, always maintaining a colour-
ing? 

Our primary focus is on the algorithmic aspects of these questions. In particular, we 
study the computational complexity of the décision problems associated with them: that 
is, how easily, in terms of computational resources used, can we answer them? 

We also examine relatcd issues. For example, we provide some answers to the following 
questions. Can we characterise the graphs for which tlie answer to the first question is 
'yes'? Is there anything remarkable or particular about the colourings of such graphs? 
For the second question, if, for a particular instance, we know that the answer is in the 
affirmative, how easily can we find a sequence of recolourings that achieves the transfor-
mation? How long is such a sequence, and how long is a shortest possible sequence? On 
the other hand, if we know the answer is in the negative, can we achieve the transforma-
tion by using relatively few extra colours? How many are actually necessary? 

Before proceeding, in the rest of this chapter, to provide some motivation for studying 
these problems and to give an overview of the thesis, we describe our basic terminology 
and notation, together with some fundamental concepts and définitions. 

1.1 Preliminaries 

Most of our mathematica! terminology and notation is standard. Let us point out some 
particulars. The cardinality of a set X is denoted by |X|, and the set-theoretic différence 
between X and any other set Y by X\Y. We do not count 0 as a naturai number, and, 
for k e M, [k\ is the largest integer less than or equa! to k. 

We assume familiarity with the basic concepts of graph theory and computational com-
plexity theory. For an introduction to the former we refer the reader to any standard 
textbook on graph theory such as, for example, Diestel [17] or West [61]; for an introduc-
tion to the latter, see Garey and Johnson [24] or Papadimitriou [53]. The reader should 
also find définitions for concepts and terminology not defined here in these references. 
We presently revise some of the basics of graph theory and describe some particular con-
ventions used in this thesis. Following this, we will give some définitions necessary for a 
precise description of our results. 
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Chapter 1. Introduction 

Basic graph-theoretic concepts and conventions used in this thesis 

We denote the set of vertices of a graph G by V{G) and its set of edges by E (G). When 
there is no danger of confusion, or the graph in question is given implicitly, we will write V 
and E. Throughout this thesis we consider only finite graphs with no loops or multiple 
edges. Thus for any graph G, V will be a finite set and E will be a set of unordered pairs 
of elements of V, where elements in any given pair are distinct . We will often write n 
for |V| and m for For simplicity and ease of reference, we will also often deliberately 
confuse a graph with its set of vertices. 

We denote an edge between vertices u and v by uv (or, equivalently. by vu), saying 
vertices u and v are adjacent, or neighbours, and that the vertex u is incident with, or an 
end-vertex of, the edge uv. We write d{v) for the degree of v. which is the number of edges 
incident with v. If we need to distinguisi! the graph G in which the degree is measured. 
we will write dc{v). The maximum and minimum degree of G are respectively denoted 
by A (G) and S(G). If it is clear from the context which graph is under considération, we 
will simply write A or 6. 

A path between vertices u and v—a (u, i;)-path—is a sequence of distinct vertices, starting 
at u and ending at v, sucli that pairs of consecutive vertices in the sequence constitute 
an edge of the graph. The distance between vertices v and w, denoted d(v,w), is the 
number of edges in a shortest path between v and w; if there is no path between v and w 

we say that the distance between them is infinite. If we need to distinguish the graph G 
in which the distance is measured, we will write dc(v.w). The diameter of G. diam(G), 
is defined as max{d(îi, v) | u, v E V}. 

For a subset X of V, we denote by G — X t.he graph that has V\X as its vertex set and 
whose edges are the edges of G that have both end-vertices in V \X. For X a subset 
of E, G - X denotes the graph with vertex set V and edge set E\X. 

A graph G is said to be connected if any two of its vertices are linked bv path. It 
is k-connected if it has at least k + 1 vertices and for every set X C V with |X| < k, 

G - X is connected. 

If H is a subgraph of G, we write H Ç G. The degeneraci/ of G. deg(G), is defined 
as the largest minimum degree of any subgraph of G. That is, deg(G) = max{ô(H) | 
H C G}. This quantity is also known as the colouring number or rnaxirnin degree of G. 
It is an easy exercise to verify that a graph lias degeneracy r if and only if there is an 
ordering V\. vn of its vertices such that for 1 < i < n, the vertex vt has at most r 
neighbours Vj with j <i. Such a graph is described as r-degenerate, as is any associated 
vertex-ordering. 
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Chapter 1. Introduction 

A drawing of a graph G on a surface S (that is, a compact 2-dimensional manifold without 
boundary) is a graphical representation of G on S, with each vertex assigned a distinct 
point on S, and curves joining points which correspond to vertices forming an edge. 
The drawing is said to be an embedding if no two curves intersect (other than at vertex 
points), and G is embeddable on S if there exists an embedding of G on S. If a graph is 
embeddable on the sphere it is said to be planar, since the plane is homeomorphic to a 
sphere with a point removed. 

Two graphs G\ arid G2 are said to be isomorphic, written G\ = G2, if there exists a 
bijection ip : V(Gi) -> V(G2) such that uv 6 E(Gi) if and only if <p(w)<£>(v) 6 E(G2). 

We denote the cycle on n vertices (or n-cycle) by Cn, and the complete graph on n vertices 
by Kn. The graph C3 = X3 is known as the triangle. Quite often we will describe a cy-
cle Cn by just listing its vertices i'i, v 2 . . . . ,vn, with the edges i>i'V2- V2V;i:... .vn ...ivn.vnv\ 
being read implicitly. 

Colourings and recolouring: the colour graph 

In this section we recall some basic definitions about colouring, and formalise our notions 

about recolouring graph colourings. 

All colourings considered in this thesis are proper vertex colourings. That is, for a natural 
number k > 2, we define a k-colouring of a graph G as a function Q : V —> {1, 2 , . . . . k] 

such that a(u) ^ a(v) for all uv € E. If G has a ¿-colouring, we say it is k-colourable. (We 
insist that k > 2 in order to avoid trivialities—there is not much to say about 1-colourable 
graphs.) For 1 < i < k, the preimages o Ui) are termed colour classes. The smallest k 

for which a fc-colouring of G exists is called the chromatic number of G, We will 
generally use lower case Greek letters a J3, . . . to denote specific colourings, and we will 
often describe a fc-colouring of a path or cycle by just listing the colours as they appear 
on consecutive vertices. 

Definition 1.1 

Let G be a fc-colourable graph. The k-colour graph of G, denoted Ck{G), is the graph 
that has the ¿-colourings of G as its vertex set, with two k~colourings joined by an edge 
in Ck(G) if they differ in colour 011 precisely one vertex of G. If Ck(G) is connected, we 
say that G is k-mixing. 

The colour graph allows us to talk about recolourings and possible sequences of recolour-
ings in a graph-theoretic language: we may now meaningfully talk of adjacency, paths 
and distances between colourings. 
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Chapter 1. Introduction 

A fc-colouring of G that forms an isolated node in Ck{G) is said to bc frozen. Note that 
the existence of a frozen fc-colouring of a graph immediately implies that the graph is not 
fc-mixing. If G lias a fc-colouring a, then we say that we can, from a, recolour G with ß 
if aß is an edge of Ck(G). If v is the unique vertex on which a and ß differ, then we also 
say that we can recolour v. Given a fc-colouring cï, a colour is available for a vertex v if 
neither v nor any of its neighbours are assigned that colour. If there is a patii between a 
and ß in Ck{G) we will say that we can recolour a to ß. 

We will sometimes describe recolourings explicitly, and sometimes implicitly. In either 
case, it will often be useful to think of a sequence of recolourings as a list of ordered 
pairs (v, c) where, at any stage in the sequence, v is the vertex to be recoloured with 
colour c. 

Décision problems about recolouring 

We are now in a position to formally state the décision problems corresponding to the 
two questions stated at the beginning of this introduction, and whose computational 
complexity will be the central question addressed in this tliesis. 

Corresponding to the first question (given a graph, is it possible to recolour any colouring 
of the graph to any other by recolouring vertices one at a time, always maintaining a 
colouring of the graph?) we have the problem k-MIXING. 

FC-MIXING 

Instance : A connected grapli G. 
Question : Is G fc-mixing? That is, is Ck{G) connected? 

Corresponding to the second question (given a graph and two colourings of the graph, is 
it possible to recolour one colouring to the other by recolouring vertices one at a time, 
always maintaining a colouring?) we have the problem fc-COLOUR PATH. 

FC-COLOUR PATH 

Instance : A connected graph G together with two fc-colourings of G, a and ß. 

Question : Is there a path between a and ß in Ck{G)? 

Note that k is never part of the input. In other words, we have two classes of problems, 
each consisting of an infinite number of problems parametrised by k. Note also that we 
always insist that the instance graph G is connected. If G is not connected, then it is easy 
to see that G is fc-mixing if and only if H is fc-mixing for every connected component H 
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Chapter 1. Introduction 

of G. Similarly, there is a path between ¿-colourings a and ß of G if and only if. for 
every connected component H of G, there is a path between the colourings induced by a 

and ß on H. Thus we may always reduce our problems to connected graphs, and will 
therefore, as a general rule, take graphs to be connected. 

1.2 Background and motivation 

Our main motivation for studying the problems described above is for their own sake. 
The questions are simple and fairly natural, and lead to, in the author's opinion, some 
interesting mathematics. However, the questions can certainly be regarded as being 
motivateci by other lines of research, or indeed as having applications. We proceed to 
outline two such motivating applications. 

Sampling colourings via Glauber dynamics 

The question of when the ¿-colour graph is connected is not new. It has been looked at, 
as a subsidiary issue, by researchers in the Statistical physics community studying the 
Glauber dynamics of an anti-ferromagnetic Potts model at zero temperature. Associated 
witli that research is the work on rapid mixing of Markov chains used to obtain efficient 
algorithms for almost uniform sampling of ¿-colourings of a given graph. We give a brief 
description of the basic ideas involved in these areas of research. 

Randomness plays an important role in many parts of combinatorics and theoretical com-
puter science. Indeed results from probability theory have led to major developments in 
both fields. It is therefore unsurprising that researchers are often interested in obtaining 
random samples of particular combinatorial structures. For example, much attention 
has been devoted to the problem of sampling from an exponential number of structures 
(exponential in the size of the object over which the structures are defined) in time poly-
nomial in this quantity. One of the reasons for this is that being able to sample almost 
uniformly from a set of combinatorial structures is enough to be able to approximately 
couiit such structures—see [38] for an example illustrating the method in the context of 
graph colourings, and [39] for full détails. 

Quite often, the sampling is clone via the simulation of an appropriately clefined Markov 
chain. Here the important point is that the Markov chain should be rapidly mixing. 

This means, loosely speaking, that it should converge to a close approximation of the 
stationary distribution in time polynomial in the size of the problem instance. For a 
precise description of this concept and further détails we refer the reader to [39]. 
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Chapter 1. Introduction 

In the context of the particular Markov Chain used for sampling k-colourings of a graph 
known as Glauber dynamics—originally defìned for the anti-ferromagnetic Potts model 
at zero temperature (see below)—we have the following. For a particular graph G and 
value of k, let us denote the Glauber dynamics for the fc-colourings of G by Mk{G) = 

o- The state space of M.¿(G) is the set of /c-colourings of G, the initial state 
is an arbitrary colouring, and its transition probabilities are determined by the following 
procedure. 

1. Select a vertex v of G uniformly at randoin. 

2. Select a colour c Ci {1. 2 , . . . , k} uniformly at random. 

3. If recolouring vertex v witli colour c yields a proper colouring, then set Xt+i to be 
this new colouring. Otherwise, set X-t+\ = XL. 

The relation of Mk{G) to the fc-colour graph of G should be obvious: a simulation of 
the chain corresponds to a walk in Cfc(G), since two k-colourings a, (3 of G forni an edge 
of Cjfe(G) if and only if Pr(Xi+ ] = [3 | Xt = a) > 0, in whieh case 

Pv(Xt+1=(3\Xt = a)= 1 
k\V\' 

Clearly M.k{G) is irredueible if and only if G is fc-mixing. Thus the fact that a graph is 
/¿-mixing is a necessary condition for its Glauber dynamics Markov chain to be rapidly 
mixing. (This should go some way to explaining our choice of terrninology for describing 
a graph with a connected A> colour graph!) Let us remark, however, that a graph being 
/¿-mixing is not sufficient for its Glauber dynamics Markov chain to be rapidly mixing. 
An example showing this is given by the stars K 1?m, which are fc-mixing for any k > 3 
(see Theorem 2.7 in Section 2.1) but whose Glauber dynamics is not rapidly mixing for 
k < ml~£, for fixed e > 0 (proved in [44]). 

We tura to a brief and informai description of the Potts model. This is a statistical 
mechanics model for studying the interaction of spins (intrinsic angular momenta) of the 
particles in a crystalline lattice. It is used as a theoretical description for ferromagnetism 
and ot.her phenomena of solid-sate physics. In the ferromagnetic case, like spins of neigh-
bouring particles are encouraged by a certain lowering of the total energy of the system 
for every neighbouring pair with like spins. In the anti-ferromagnetic case, neighbouring 
particles are encouraged to have différent spins. The temperature of the system reflects 
the extent of 'encouragement': the lower the temperature, the more the energy of the 
system is lowered by a given neighbouring pair of particles having like/unlike spins. At 
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zero temperature, this encouragement becomes an inviolable requirement. Thus the zero-
temperature anti-ferroinagnetic k-state Potts model of a particular lattice—where each 
particle has one of k possible spins, and neighbouring particles cannot have the same 
spin—has as its set of configurations the set of ¿-colourings of the graph corresponding 
to the lattice. The Glauber dynamics of this model describes the transitions between the 
spin states of the system in precisely the same manner as described above. 

Let us point out that much of the work on rapid mixing of the Glauber dynamics Markov 
chain (as well as that of its many generalisations and variants) has concentrated on 
specific graphs, or on values of k so large that the connectedness of the ¿-colour graph is 
guaranteed. In particular, because of its focus on crystalline structures, the Potts model 
has been widely studied on very regular and highly symmetric graphs such as integer 
grids. In contrast, we address the question of the irreducibility of the chain in a wider 
sense, asking what can be said in general, for any graph and relatively small values of k. 

Radio frequency reassignment 

Besides its use in sequencing and scheduling, another important application of graph 
colouring is that of modelling the assignment of frequencies in radio-communication net-
works. The basic aim of the Frequency Assignment Problem (FAP) is to assign frequen-
cies to users of a wireless network, minimising the interference between them and taking 
care to use the smallest possible range of frequencies. Because the radio spectrum is a 
naturally limited resource with a constantly growing demand for the services that rely on 
it, it has become increasingly important to use it as efficiently as possible. As a result, 
and because of the inherent difficulty of the problem, the subject of frequency assignment 
is huge. For an introduction and survey of different approaches and results we refer the 
reader to [43] and [48], 

The FAP was first considered as a graph colouring problem by Hale in [28]. In this 
setting, we think of the available frequencies (discretised and appropriately spaced in 
the spectrum) as colours, transmitters as vertices of a graph, and we add edges between 
transmitters that must be assigned different frequencies. In order to better capture the 
subtleties of the 'real-world' problem, this basic model has been generalised in a multitude 
of different ways. Typically this might involve taking into account the fact that radio 
waves decay with distance obeying an inverse-square law. For instance, numerical weights 
can be placed on the edges of the graph to indicate that frequencies assigned to the 
end-vertices of an edge must differ by the amount given by the particular edge-weight. 
Another example is provided by the well-known L(2, l)-labelling problem: this asks for 
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the smallest ¿ such that the vertices of a graph cari be labelled with values from the set 
{1 ,2 , . . . , k] in a way such that labels on adjacent vertices differ by at least 2, and labels 
on vertices at distance two differ by at least 1. See [36] for a survey of graph colouring 
and labelling techniques applied to the FAP. 

One of the the major factors contributing to the growth in demand for use of the radio 
spectrum has been the dramatic increase, in recent vears, of mobile télécommunication 
systerns. In such systems, where new transinitters are continually added to meet increases 
in demand, an optimal or near-optirnal assignment of frequencies will in general not 
remain so for long. On the other hand, it inight just be the case that., because of the 
diffîculty of finding optimal assignments, a sub-optimal assignment is to be replaced with 
a recently-found better one. It thus beconies necessciry to think of the assignment of 
frequencies as a dynamic process, where one assignment is to be replaced with another. 
In order to avoid interruptions to the running of the system, it is desirable to avoid a 
complete re-setting of the frequencies used on the whole network. In a graph colouring 
framework, this leads naturally to our problems. 

Not much attention seerns yet to have been devoted to the problem of reassigning fre-
quencies in a network. Some first results can be found in [4, 6, 29, 47]. The work in 
[4, 6, 29] describes some specific heuristic approaches to the problem, as well as some 
associated computational simulations. 

A more general approach, with a theoretical bent which gives rise to problems similar 
to the ones we study, can be found in [47]. Here the authors describe a problem they 
call colour switching: given a graph G and two proper vertex colourings of G, the colour 
switching problem asks for a sequence of vertex recolourings that transforms the first 
colouring into the second, with ali intermediate colourings being proper. This looks 
remarkably similar to the problem ¿-COLOUR PATH, but is quite différent. Firstly, 
colour switching is a combinatorial problem (it asks for a sequence of recolourings) 
while ¿ - C O L O U R PATH is a décision problem (it asks for a yes or no answer). Thus 
colour switching is always possible (by using enough extra colours), while the question 
in ¿ - C O L O U R PATH might well be answered in the negative. This is because of the more 
important fundamental différence between the problems: for ¿ - C O L O U R PATH we in-
sist that ail colourings considered (both the input colourings as well as ali intermediate 
colourings) are ¿-colourings, while in colour switching no such restriction is imposed. 

A tight bound on the minimum number of extra colours necessary to guarantee one can 
always find a solution to colour switching is given in [47]. We have obtained the saine 
resuit independently, with very similar examples illustrating tightness. We will describe 
this resuit in Chapter 6. The authors of [47] also consider the question of finding bounds 
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on the number of recolourings necessary to transform one colouring into another when 
the number of extra colours used is minimal, or nearly so. Indeed tliis is an issue we hâve 
also addressed (for k- COLOUR PATH. wliere no extra colours are allowed), and to which 
we devote our attention in the latter sections of Chapters 4 and 5. 

1.3 Outline of the thesis 

In Chapter 2 we prove some basic resuit s about fc-colour graphs and the /¿-mixing prop-
erties of graphs. We first look for values of k that ensure a graph will be Â>mixing, 
considering possible bounds in terms of the chromatic number and the degeneracy. We 
also examine the case k — x{G)- showing that if k = XÌ&) is 2 or 3, then G is not 
A> mixing. On the other hand, we show that for ail k > 4 there are fc-chromatic graphs 
that are /c-mixing. and fc-chromatic graphs that are not fc-mixing. 

Chapter 3 addresses the computational complexity of deciding whether a given graph is 
3-mixing. Given that 3-chromatic graphs are never 3-mixing. we focus our attention on 
bipartite graphs. We give two équivalent characterisations of 3-mixing bipartite graphs 
and prove that deciding if a given bipartite graph is 3-mixing is coNP-complete. We also 
prove that for planar bipartite graphs the problem is decidable in polynomial tiine. 

Chapter 4 gives a polynomial time algorithm for 3 - C 0 L 0 I J R PATH. The algorithm can 
be used to exhibit a path between the two 3-c:olourings, if this exists. It also allows us to 
deduce that the connected components of Cs(G) always have diameter at most quadratic 
in the size of the graph. 

In Chapter 5 we examine the complexity of fc-COLOUR PATH for values of k > 4, proving 
that in this regime the problem is PSPACE-complete. We also show, by means of explicit. 
construction, that in these cases the distance between colourings can be superpolynomial 
in the size of the graph. 

Chapter 6 describes some miscellaneous results. In particular, we provide an answer to 
the following question: given any graph G together with two fc-colourings, what is the 
least number of extra colours necessary to guarantee that it is possible to recolour the 
first /c-colouring to the second? We show that the answer to this question is x(G) — 1. 
We also examine the complexity of finding some particular types of Är-colouring of a given 
/c-colourable graph. 

We close in Chapter 7 with a discussion of our work. We also describe related work and 
mention some possibilities for further research. 

Most of the work presented in this thesis is the resuit of joint work. Some parts of it 
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hâve been published and other parts are in the process of being accepted for publication. 
The main results of Chapter 2 are to be found in [10]; Chapter 3 corresponds entirely 
to [11], Chapter 4 to [12], and Chapter 5 to [7]. The results of Section 6.1 are also joint 
work with Jan van den Heuvel. 

Note 

It has recently corne to the author's attention that very sirnilar results to those presented 
in Chapter 5 appear in [35], a dissertation which is otherwise unpublished. In that thesis. 
the problem of deciding whether two given colourings of a graph are connected, where 
the number of colours k is part of the input, is proved to be PSPACE-complete. The 
réduction in [35] also proves the existence of graphs with colourings at superpolynomial 
distance, but not by means of any explicit construction. The resuit showing that \(G) ~ 1 
extra colours are always enough to recolour a given fc-colouring of a graph to a second 
given fc-colouring of the graph, and that this bound is best possible—presented in Chap-
ter 6, and proved independently in [47]—can also to be found in [35]. We will make a 
comparative study of ail these results in Chapter 7. 
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2 
First results on mixing 

In this chapter we prove some first results about the mixing properties of graphs. After 
making some preliminary observations, we look for values of k that will ensure a graph 
is /.'-mixing; we consider possible bounds in terms of various graph invariants including 
the chromatic number and the degeneracy of a graph. We also study this question for 
graphs embeddable on a particular surface. In Section 2.2 we examine the case k = x(G): 
showing that if G is a graph with chromatic number k £ {2,3}, then G is not /¿-mixing. 
On the other hand, we prove that for all k > 4 there exist /¿-chromatic graphs that are 
/¿-mixing, as well as /¿-chromatic graphs that are not /¿-mixing. 

2.1 Basic properties of mixing 

The A -̂colour graph of a given graph G is a complex structure containing much information 
about G. Indeed it turns out that for k > x (^ ) ^ actually determines G. in the sense 
that non-isomorphic ^-chromatic graphs have non-isomorphic /¿-colour graphs, as long 
as k > X: [32]. Clearly if G is not /¿-colourable, Cfc(G) is just the null graph (though note 
that, strictly speaking, we have defined the /¿-colour graph only for /¿-colourable graphs). 
In general, Ck{G) will have exponential size, with \V{Ck{G))\ — Pc(k), where Pc is the 
chromatic polynomial of G. 

Let us make some simple observations. Notice that for any k and any graph G, Ck{G) 

is an induced subgraph of C^+i(G), since a /¿-colouring of G can be regarded as a 
(non-surjective) {k + l)-colouring, and any possible recolouring in Ck{G) is also possible 
in Cfc+i(G). 

Let Qp{k) be the generalised p-dimensional cube. This graph has vertex set {1 ,2 , . . . , k}p, 
the set of all sequences of length p with entries from {1, 2 , . . . . /¿}, and an edge between any 
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two sequences that differ in precisely one entry. If we denote the empty graph on n vertices 
(that is, the graph consisting of n isolated vertices) by Un, we have Ck{Un) = Qn(k). On 
the other hand, for the complete graph on n vertices, Kn, we have Cn(Kn) = Un\. 

In what follows we investigate the relationship between the mixing properties of a graph 
and two of the most important graph invariants relating to colouring: the chromatic 
number and the degeneracy of a graph. This leads naturally to the exploration of the 
mixing properties of a graph embeddable on a certain surface. 

Mixing and chromatic number 

Let us briefly consider the 2-mixing properties of 2-chromatic graphs. A connected 
2-chromatic graph has exactly two frozen 2-colourings, so its 2-colour graph consists 
of two isolated vertices. If G is a disconnected 2-chromatic graph (so G is bipartite and 
contains at least one edge), then there is a path between a pair of 2-colourings of G 

if and only if the colourings agree on every connected component that contains more 
than one vertex. It is an easy exercise to show that if such a G has p isolated vertices 
and q other connected components, then ^ ( G ) has 2q connected components, each of 
which is isomorphic to the p-dimensional cube Qp(2). To see this, observe that from any 
given 2-colouring of G, only isolated vertices may be recoloured, and that they may be 
recoloured freely (by which we mean that any isolated vertex may be recoloured at any 
time). Thus the set {1,2}P can be thought of as representing the 2p possible colourings 
of these p isolated vertices, with adjacent colourings differing in precisely one entry. Be-
cause each of the other q connected components has two possible 2-colourings (which are 
frozen), we see that ^ ( G ) consists of 2q disjoint copies of Qp(2). In any case, whether G 

is connected or not, we have the following result. 

Proposition 2.1 

Let G be a graph with chromatic number 2. Then G is not 2-mixing. 

Note that these observations immediately render the decision problems 2-MIXING and 
2-Co LOUR PATH trivial. We will examine the /¿-mixing properties of A;-chromatic graphs 
for k > 3 later in this chapter, in Section 2.2. 

At first one might expect that if k is sufficiently large compared with the chromatic 
number of a graph, then the graph will be /¿-mixing. We now show that no such result 
is possible. 

For m > 3, let Lrn be the graph obtained from the balanced complete bipartite graph 
Km m by removing the edges of a perfect matching in Km m. More formally, we have the 
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1 2 3 4 m 

1 2 3 4 m 

Figure 2.1 The graph Lm together with a frozen m-colouring. 

following définition. 

Définition 2.2 
Let m > 3. The graph Lm has 

• vertex set V(Lm) = {t>i,v2, • • • .Vm.wi, W2: - • •, wm } , and 

• edge set E{Lm) = {viWj \l <i,j <m, i j}. 

Note that Lm is 2-chromatic. Sinee m > 3, it is obvions that there are many ways to 
eoloitr Lm with m colours. But suppose that we colour the vertices in each part of the 
bipartition of Lm with the colours 1,2, . . . . m. where vertices in opposite parts that were 
originally connected by an edge from the removed perfect matching are given the sanie 
colour. For example, we could set K(vt) = k(WÌ) = i. for 1 < i < m. The graph Lm 

together with this m-colouring is shown in Figure 2.1. This m-colouring is clearly an 
isolated node in the colour graph Cm(Lrn), and so Lm is not m-mixing. This proves 
the following. 

Proposition 2.3 

There is no expression (p(x) in terms of the chromatic numberx, so that for ail graphs G 

arid, integers k > v?(x(GQ)- G is k-mixing. 

It is înteresting and worth observing that the graphs Lm are mixing for ail other values 

of k > 3. 
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Proposition 2.4 
For any fixed m > 3, the graph Lm is k-mixing if and only if k > 3 and k ^ m. 

Proof. We have observed that Lrn is not m-mixing; because it is 2-chromatic, neither is 
it 2-mixing. We show that for ail other k it is /¿-mixing, distinguishing the cases k < m 
and k > m. 

Let Lm have vertex bipartition { X , y ) and consider a fc-colouring of Lm with 3 < k < 
rn — 1. Since X contains m vertices, there is at least one colour C\ that appears on more 
than one vertex of X. But this means that no vertex in Y is coloured with c\. Hence 
it is possible to recolour ail vertices in X with c\. Once this is done, we can choose a 
second colour c>i ^ c\ and recolour every vertex in Y with C2. Thus we have shown that 
anv fc-colouring of Lm is connected to some 2-colouring of Lm. It is an easy exercise to 
show that if k > 3, ail 2-colourings of Lm are connected in Ck(Lrn). This can be seen 
by observing that if it is not possible to directly recolour a given 2-colouring of Lrn to 
another distinct 2-colouring—by recolouring ail vertices in one part of the bipartition 
to their required colour, followed by recolouring ail vertices in the other part—then this 
must be because the two 2-colourings use the same two colours. But then recolouring 
ail vertices in X. say, with a third colour (possible since k > 3) allows us to recolour ail 
vertices in Y to their target colour and finally reach the target 2-colouring by recolouring 
ail vertices in X. This proves that Ck(Lm) is connected for 3 < k < m - 1. 

If we colour Lm with k > m + 1 colours, then again we have that a certain colour is not 
used on y . By a similar argument to t.hat in the case above, it follows that Ck{Lm) is 
connected for k > m + 1. • 

Proposition 2.4 also allows us to deduce that, unlike colouring. mixing is not a monotone 
property; a fact which might seem, at first glance, a little surprising. 

Proposition 2.5 
There exist graphs G for which there exist numbers k\ < fc<2 such that G is ki-mixing but 

not k-2-mixing. 

Even though a particular graph G may not be fc-mixing for k arbitrarily larger than 
its chromatic number, it is obvions that there always exists a value k' such that G is 
guaranteed to be k-mixing for ail k > k'. We can take k' = \V(G)\ + 1, for example. A 
better bound on such a value k' is to be found via the maximum degree of G, a fact first 
observed by Jerrum [38] in the context of sampling colourings via Glauber dynamics. 
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Proposition 2.6 (Jerrum [38]) 
For any graph G and integer k > A (G) -f 2 , G is k-mixing. 

We omit the proof of this proposition due to its similarity to that of Theorem 2.7 below, 
which in fact refines the resuit. Observe that the bound on k is best possible: the 
complete graphs Kn, which hâve maximum degree n — 1, are not ri-mixing since every 
n-colouring is a frozen colouring. Similarly, the graphs Lm h ave maximum degree m — 1 
but are not m-mixing. 

Mixing and degeneracy 

The degeneracy is a particularly useful invariant for studying the colouring properties of 
a graph. We will find it is also highly relevant to the mixing properties of a graph. 

Let us recali that a graph G with degeneracy r can always be coloured with at most r +1 
colours. Such a colouring can easily be found by following an r-degenerate ordering of 
the vertices of G, colouring each successive vertex with the first available colour (that is, 
the lowest colour not appearing on any of the neighbours of the vertex to be coloured). 
At most r + 1 colours will be necessary because, at any stage in the process, a vertex to 
be coloured will have at most r neighbours that hâve already been coloured. 

In contrast with the chromatic number, we find that if k is sufficiently large compared 
with the degeneracy of a graph, then the graph will be fc-mixing. The following resuit is 
proved in [20] as a lemma leading to a further resuit on the colouring of random graphs. 
We give a proof for completeness. 

Theorem 2.7 (Dyer, Flaxman, Frieze and Vigoda [20]) 

For any graph G and integer k > deg(G) + 2, G is k-mixing. 

Proof. We use induction on the number of vertices of G. The resuit is obviously true 
for the graph with one vertex, so suppose G lias two or more vertices. Let v be a vertex 
with degree dG(v) < deg(G), and set G' = G - {v}- Note that deg(G') < deg(G), hence 
we also have k > deg(G') + 2. By induction we can assume that Ck{G') is connected. 

Take two fc-colourings a and ß of G, and let a', ß' be the k-colourings of G' induced 
by a,ß. Since Ck{G') is connected, there exists a sequence a' = -yf0, 7 } , . . . , 7^ = ß' of 
Ar-colourings of G' so that for i = 1 , . . . , N, 7^1 and ^ differ in the colour of exactly one 
vertex of G'. Denote this vertex by v{ and denote the new colour 7 ^ ) by c2. We now 
try to take the sanie recolouring steps to recolour G. starting from a. If for some i it 
is not possible to recolour vertex Vi, this must be because m is adjacent to v and v at 
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that moment has colour c%. But because v has degree at most deg(G) < k — 2, there is 
a colour c ^ Ci that does not appear on any of the neighbours of v. Hence we can first 
recolour v to c, then recolour Vj to c\ and continue. 

In this way we find a sequence of fc-colourings of G, starting at a. and ending in a 
colouring in which all the vertices except possibly v will have the saine colour as in ß. 
But then, if necessary, we can also recolour v to give it the colour from ß. This gives a 
path between a and 3 in C&(G), completing the proof. • 

Since for any graph G, deg(G) < A(G), Theorem 2.7 immediately refines Proposition 2.6. 
There are many graphs that show the bound in Theorem 2.7 is best possible. For example, 
the graphs Lm have degeneracy m — 1 and are not m-mixing, and the graphs Kn have 
degeneracy n — 1 and are not n-mixing. 

We mention that the best known lower bound on the number of colours needed for rapid 
mixing is ^ A(G), proved by Vigoda [59]. We also observe that the expression in terms 
of the degeneracy that guarantees mixing cannot guarantee rapid mixing of the Glauber 
dynamics Markov chain. For instance, the stars K\_m have degeneracy deg^A^m) = 
but it is shown in [44] that the Glauber dynamics Markov chain for these graphs is not 
rapidly mixing for k < ml~£, for fixed £ > 0. 

Mixing on surfaces 

We examine what can be said about the mixing properties of a graph if we know it is 
embeddable on a certain surface. 

Let us begin by recalling some basic, definitions and facts about surfaces. For concepts 
not defined here, as well as for a thorough exploration of the topic of embeddings of 
graphs on surfaces, we refer the reader to the monograph by Mohar and Thomassen [52]. 
A surface S is a compact 2-dimensional manifold without boundary. Every surface is 
either homeomorphic to an orientable surface Sg of genus g > 0 or to a non-orientable 
surface Ng of non-orient able genus g > 1. The genus of the surface Sg can be consid-
ered as the number of handles added to a sphere, and the non-orientable genus of the 
surface Ng as the number of cross-caps added to a sphere. Thus the surface So is the 
sphere and Si is the torus; N\ is the projective plane and N2 is the Klein bottle. The 
Euler genus e(S) of S = Sg is 2g and that of S = Ng is g. The Euler genus of a surface, 
together with its orient ability, determine the surface up to homeomorphism. 

We examine first the case of the sphere. Let G be a planar graph with n vertices, m edges 
arid / faces. Euler's formula asserts that n — m + / = 2. One can easily deduce from 
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1 1 
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2 

(a) (b) 

Figure 2.2 (a) a planar graph with a frozen 5-colouring, and (b) a planar 
graph with a frozen 6-colouring. 

tins that G must contain a vertex of degree at most 5 (a planar graph has at most 3n — 6 
edges, so its average degree, is strictly less than 6), and from this it follows tliat 
deg(G) < 5. Theorem 2.7 then tells us that for any k > 7, a. planar graph is ¿-mixing. 
This bound is tight: for every k < 6, there exists a planar graph that is not ¿-mixing. 
In fact, a stronger statement is true: for every k < 6, there exists a planar graph with 
a frozen ¿-colouring. For k < 4, this follows trivially from the fact that the complete 
graphs K2,K-ì and K,\ are planar. For k — 5 and k = 6 we need to look harder: K5 

and I<Q are not planar, and neither are the graphs and L6, other graphs which we 
hâve observed to have frozen 5- and 6-colourings. Examples of the required graphs and 
colourings are shown in Figure 2.2 (the graph in (b) is actually the icosahedron). This 
means we have a sharp threshold in the value of k which guarantees tliat any given planar 
graph will be ¿-mixing. 

Given a surface S, let us define the mixing number of S as the smallest integer ¡i{S) 

such that for any graph G embeddable on S and any k > ¡i{S), G is guaranteed to be 
¿-mixing. Thus we have just seen that the mixing number of the sphere is /¿(So) = 7. 
Can we say anything about, the mixing number of other surfaces? Before providing an 
answer. let us review some facts about the colouring of graphs embeddable on a certain 
surface. The minimum number of colours 7(e) necessary to guarantee that any graph 
embeddable on a surface S of Euler genus e can be coloured with 7(5) colours is called 
the chromatic number ofS. Clearly 7(e) = max{x((?) | G is embeddable on «S}. 

For both orientable and non-orientable surfaces, Euler's formula généralisés to the Euler-
Poincaré formula n — m + / = 2 — e. From this it is possible to deduce that for any 
graph G embeddable on a surface S with £ > 1, we have deg(G) < H(e) - 1 , where H(e) 
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is the Heawood number, given by 

„ , . 7 + V T + 2 4 Ì 
^ = [_ 2 

A proof of this result may be found in [52]; specifically, see Theorem 8.3.1 on p. 230. 

In 1890, Heawood [31] conjectured that 7(5) = H{e). (He in fact conjectured this only 
for orientable surfaces, but the conjecture easily generalises and, as we shall see shortly, 
is nearly as true for a non-orient able surface as for an orientable one.) It is clear that 
7(e) < H(e). For £ > 1. this follows from the fact that deg(G) < H(e) — 1 for any 
graph G embeddable on S. For e < 1, we are in fact dealing with the sphere. In this case 
equality follows from the Four Colour Theorem [2, 3, 56], which asserts that 7(0) : 4. 

It was not. until 1968 that Ringel and Youngs (see [55] and references therein) managed 
to complete the proof that 7(s) > H ( e ) holds for all surfaces with e > 1 except the 
Klein bottle. They did this by showing how a complete graph on H(e) vertices embeds 
011 any S ^ N2 of Euler genus e. (In fact, it is also true that any graph with chromatic 
number H{e) embeddable on 5 / with e > 1 contains a complete graph on H(e) 

vertices as a subgraph—this was proved by Dirac [18, 19] for the torus and e > 4. and 
by Albertson and Hutchinson [1] for e = 1 and e — 3.) Franklin [23] showed that for the 
Klein bottle we do not have a maximum chromatic number of H(2) = 7 but of 6. (He 
also showed that there are 6-chromatic graphs embeddable on the Klein bottle that do 
not contain a KQ.) Thus Heawood's conjecture is true for all surfaces except the Klein 
bottle; in particular, it is true for all orientable surfaces. 

All these results imply the following. 

Theorem 2.8 

Let S be any surface, excluding the sphere and the Klein bottle, and let S have Euler 

genus £. Then ß{S), the mixing number of S, is given by ¡.i(S) — H(e) + 1, where H(e) 

is the Heawood number of S. 

Any graph embeddable on the Klein bottle is guaranteed to be 8-mixing since such a graph 
is 6-degenerate. Franklin [23] also proved that K-j is not embeddable on this surface, but 
that Ke> is; we thus have a non-6-mixing graph embeddable on the Klein bottle. Whether 
all graphs embeddable on the Klein bottle are 7-mixing or not remains an open question. 
We point out a result that hints at the fact that determining the mixing number of the 
Klein bottle is unlikely to be as straightforward as for all other surfaces. This result 
states that there is no 6-regular graph embeddable on the Klein bottle which has frozen 
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7-colourings, and is a conséquence of the following resuit of Hlinëny [33]. Let us say that 
a graph G is a cover of a graph H if there exists a surjection ip : V(G) —• V(H) such that 
for every vertex v of G. ip maps the neiglibours of v in G bijectively to the neighbours 
of <p(v) in H. Thus a cover of a complete graph is precisely a (k — l)-regular graph 
that has frozen fc-colourings. Hlinény [33] proves, amongst other results. the following. 

Theorem 2.9 (Hlinény [33]) 
The complete graph K-j has no cover which is embeddable on the Klein bottle. 

Tliis means that if there is a graph embeddable on the Klein bottle which has frozen 7-
colourings, it cannot be 6-rcgular. On the other hand, if there are no graphs embeddable 
on with frozen 7-colourings. and /¿(A^) = 8, proving that this is the correct number— 
that is, proving that there are non-7-mixing graphs embeddable on the Klein bottle— 
will in ali likelihood require some ingenuity. Similarly, if it happens that /¿(iV2) = 7, 
proving this will require an argument beyond the simple recolouring procedure provided 
by following a degenerate ordering. 

2.2 Mixing fc-colourings in fc-chromatic graphs 

We have seen that 2-chromatic graphs are not 2-mixing. What about the /e-mixing 
properties of fc-chromatic graphs for values of k > 3? In this section we prove that 
3-chrornatic graphs are not 3-mixing, and that, for k > 4, a fc-chromatic graph may or 
may not be fc-mixing. 

Graphs with chromatic number 3 

Let G be a 3-colourable graph. To orient a cycle in G means to orient each edge on 
the cycle so that a directed cycle is obtained. If C is a cycle, then by C we dénoté the 
cycle with one of the two possible orientations. Given a 3-colouring a, the weight of an 

edge e = uv oriented from u to v is 

/ +1, i f a ( « )a ( i ; ) e {12 ,23 ,31 } ; 
w[uv<a) = < (2.1) 

[ - 1 , if a(u)a(v) G {21, 32, 13}. 

The weight W(C.a) of an oriented cycle C is the sum of the weights of its oriented 

edges: 
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W(C1a)= ^^ w(ûv.a). 
ûveE(C) 

Lemma 2.10 
Let a and (3 be 3-coloumngs of a graph G that contams a cycle C. If a and (3 are in the 
same component of Cs(G), then W(C.a) = W(C,j3). 

Proof. Let a and a' be 3-colourings of G that are adjacent in Cj(G), and suppose the 
two 3-colourings differ on vertex v. If v is not on C, then we certainly have IV(C.a) 

If' v is a vertex of C, then ail its neighbours must have the same colour in a, for otherwise 
we would not be able to recolour v. If we dénoté the in-neighbour of v on C by V{ 
and its out-neighbour by vQ, then this means that w(vïv,a) and W(WQ, a) have opposite 
sign, hence w(vïv, a) + w(mu), a) = 0. Recolouring vertex v will change the signs of 
the weights of the oriented edgcs vîv and vv*0, but they will remain opposite. Therefore 
w(vïv, a') + a') = 0, and it follows that W(C, a) = W(C, a'). 

From the above we immediately obtain that the weight of an oriented cycle is constant 
on ail 3-colourings in the saine component of C^{G). • 

We observe that the converse of Lemma 2.10 is not true. Given a 3-colouring of an 
oriented 3-cycle, consider a second 3-colouring obtained by changing the colour on each 
vertex to that of its unique out-neighbour in the original colouring. The two colourings 
are not connected—they are in fact both frozen - -but the weight of the cycle is the same 
for each. 

Lemma 2.11 
Let a be a 3-colouring of a graph G that contains a cycle C. If W(C, a) / 0, then G is 

not 3-mixing. 

Proof. Let (3 be the 3-colouring of G obtained by setting. for each vertex v of G: 

It is easy to check that for each eclge e of C, a) = —w(e, (3). which gives \V{C, a) = 
-W(C,P). Since W{C,a) + 0, we must have W{C,a) ^ W(C,0), and so, by 

W{C,OL'). 

Lemma 2.10, a and (3 belong to différent components of C^(G). • 
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Theorem 2.12 
Let G be a graph with chromatic number 3. Then G is not 3-mixing. 

Proof. As G has chromatic number 3, it contains a cycle C of odd length. Let a be a 
3-colouring of G, and note that as the weight of each edge in C is +1 or — 1, W(C, a) / 0. 
We are done by Lemma 2.11. • 

Given this result, one may now ask about the 3-mixing properties of bipartite graphs. 
We study this question in detail in the following chapter. 

Graphs with chromatic number at least 4 

For any k > 4, it is easy to find graphs with chromatic number k that are not /¿'-mixing. 
For example, the complete graph K^ or any /¿-chromatic graph that contains it as an 
induced subgraph is not fc-mixing. We now show that, in contrast to the results we 
have seen for graphs with chromatic number 2 or 3, for k > 4, there exist graphs with 
chromatic number k that are k-mixing. The following definition describes examples of 
such graphs. 

Definition 2.13 

Let m > 4. The graph Hrn has 

• vertex set V(Hm) = {u, V1.V2,..., vm-\,wirw2, • • ., wm-i}. and 

• edge set E(Hm) = {iHVj | 1 < i < j < m — 1} U {wtwj 11 < i < j < m — 1} 
U {uiH | 2 < i < m - 1} U {'¿¿w?; | 2 < i < m - 1} U {v iw } } . 

It is easy to verify that the graphs Hm are m-chroinatic. This actually follows from 
the fact that Hm is obtained from two copies of Km using Hajos' construction; see, for 
example, [17, pp. 117-118]. This also means that it is m,-critical, which means that 
removing any vertex or edge from Hm will yield a graph with chromatic number less 
than m. We observe that the two set of vertices \v2- v-i, . . . , vm i } and {u'2, w^, . . . . w m -1 } 
induce two complete graphs isomorphic to Km -2- This allows for a simple representation 
of Hm, as the sketch in Figure 2.3 shows. Note that the degeneracy of Hm is m — 1 and 
so by Theorem 2.7, Hm is /¿-mixing for all k > m + 1. In fact: 

Theorem 2.14 

For every fixed m > 4, the graph Hm is m-mixing. 
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We shall prove Theorem 2.14 via the following sequence of claims, first giving some 
definitions. Let us divide the m-colourings of Hm into classes according to the colour 
of v\ and w\. An m-colouring a is a (c,c')-colouring if a(vi) = c and a(wi) = c'. If 
also = c, we call a a standard (c, c')-colouring. 

We will show that Hm is m-mixing by showing that 

• every m-colouring is connected to a standard colouring; 

• for any pair c, c', the set of all standard (c, c')-colourings is connected; and 

• for any two pairs c, c' and d. d'. each standard (c. c')-colouring is connected to a 
standard (d, (¿^-colouring. 

Claim 2.15 
Let c andc' be distinct colours. Let a be a (c.c')-colouring of Hm where = c". Then 

there is a path from a to a standard (c, c')-colouring or to a standard (c",c')~colouring 

of Hm inCm(Hm). 

Proof. Let us assume c c", for else we are done. Note that as cv(t»i) — c. o(t^) ^ c for 
2 < i < m — 1. If it is not possible to immediately recolour u with c to obtain a standard 
(c, cA)-colouring, then there must be a vertex Wj, j E { 2 , . . . . m — 1}, such that a(wj) = c. 

If c" — c', then, as two of the m — 1 neighbours of Wj are coloured cr, there is some 
colour d not used on either Wj or any of its neighbours. Recolour Wj with d and then u 

with c to obtain a standard (c, c^-colouring. 
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If c" ^ c', then no neighbour of v\ is coloured c". By recolouring v\ with c". we immedi-
ately obtain a standard (c", c^-colouring. • 

Claim 2.16 

For each distinct pair of colours c and d, all standard (c, c')-colourings belong to the sam,e 

connected component of C^Hm). 

Proof. Let a and ß be distinct standard (c, c')-colourings and let x be the first vertex in 
the ordering i>2, - . . , vm~i, W2, - - -. at which a and ß disagree. To prove the claim, 
we show that from a we can recolour to obtain a standard (c, c')-colouring that agrees 
with ß on x and all vertices prior to it in the ordering. 

Suppose that x = Vi for some i 6 {2 , . . . , m — 1}. We simply recolour V{ with ß(vi) unless 
there is a vertex vj such that ot(vj) — ß{vi)\ in which case, by the choice of x, j > i. Note 
that a total of m — 1 colours are used on u, v\...., vm \ in any standard (c, c')-colouring, 
so there is a colour d available for Vj. Recolour v3 with d and then recolour vx with ß{vi). 

The other possibility is that x = w\ for some i E {2, . . . , m — 1}. Much as before, 
recolour W{ with ß(wj.) unless there is a vertex Wj, j > i, such that a(wj) = ß(wi). In 
this case, however, there is no colour available for Wj. Hence we find, if necessary, a 
vertex v\ G {v2-,----,vm [ } coloured c' and recolour it with its available colour. In any 
case, u can now be recoloured c' and so c is now available at w3. Finally we perform the 
following sequence of recolourings : Wj with c. Wi with ß(wi), Wj with a(u.'i), u with c 

and, if such a vertex was found, Vi with 0(7,7). n 

Claim 2.17 

Let a be a standard (c, c')-colouring of Hm. Then there is a path from a to a standard 

{c'.c")-colouring of Hm for any c" £ {c, c ' } . 

Proof. From a, we describe a sequence of recolourings that lead to a standard (c', c")-

colouring. First, if one of v2i •.., f r a - i is coloured c', it is recoloured with its available 
colour. Then u is recoloured cf. Next, if one of W2,.. • ,wm-\ is coloured c", it is re-
coloured c. Then w\ is recoloured c" and v\ is recoloured cf. • 

Proof of Theorem 2.14- Let. a and ß be two m-colourings of Hm ; we must show that 
they are connected. By Claim 2.15, we can assume that they are standard colourings. So 
suppose that a is a standard (c, c')-colouring and that ß is a standard (d, if )-colouring. 
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By Claim 2.16, it is sufficient to find a path from a to any standard (d, ri^-colouring. 
There are a number of cases to consider. 

Suppose that d = c!. If d'^ c, then the theorem follows immediately from Claim 2.17. If 
d' = c, then let b and b' be distinct colours not in {c, c'}. (As m > 4, such colours can be 
found. This need to h ave four colours available, explains, in essence, why the theorem is 
not correct for smaller m.) Now we repeatedly apply Claim 2.17: from a we can find a 
path to a standard (c', fr)-colouring, then to a standard (b. ò')-colouring, then a standard 
(b', c')-colouring and finally a standard (c', c)-colouring. 

Suppose that d = c. Then if d' = c' the resuit follows from Claim 2.16. Otherwise, 
applying Claim 2.17, we find a path from a to a standard (c',6)-colouring (for some 
colour b distinct from c, c' and d'), then to a standard (ò, c)-colouring, and then to the 
required standard (c, d'j-colouring. 

If d £ {c, c7} and d' ^ c7, then Claim 2.17 gives a path from a to a standard {c'.d)-

colouring and then to a standard (<i, d')-colouring. Otherwise, for d! = c', we can recolour 
a to ß via a standard {c!, ò)-colouring arid a standard (6, d)-colouring, for some b distinct 
from c, c' and d,. as above. This complétés the proof. • 

Graphs that are mixing for specified values only 

The results proved in tins chapter allow us to characterise ali positive integers l and 
sets F with min F > l such that there exist graphs G with x{G) = l that are fc-mixing if 
and only if k £ F. 

Theorem 2.18 
Let l > 2 be an mteger, and F a set of integers with min F > l, if F / 0 . Then the 

following two statements are équivalent. 

(i) There exists a graph G with chromatic number l such that for all k > l, G is 

k-mixing if and only if k £ F. 

(ii) The set F is finite, and if l e {2,3}, then l G F. 

Proof. By Theorem 2.7, a graph can be non-fc-mixing for a finite number of k only. By 
Proposition 2.1 and Theorem 2.12, a graph with chromatic number l € {2,3} cannot be 
¿-mixing. Hence statement (i) implies statement (ii). 

Before proving the converse, let us make some basic observations and recollections. If a 
graph G is the disjoint union of graphs G\,..., Gs, then we obviously have that x{G) is 
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max{ x{Gi) | i = 1, • • •, s } , and G is £;-mixing if and only each Gì, 1 < i < .s, is fc-mixing. 
We have just seen that for m > 4, Hm has chromatic rmmber m and is /e-mixing if and 
only if k > m, Similarly, the complete graph I\m is m-chromatic and is k-mixing only for 
k > m + 1. since deg( Km) — m — 1. Let us also recali the graphs Lrn from Definition 2.2: 
for every rn > 3, Lm has chromatic number 2 and is fc-mixing if and only if k > 3 and 
k ^ m. 

Now let l and F be as in the theorem and suppose that statement (ii) holds. If F = 0 . 
we are in the case l > 4 and the graph Hj will do the trick for (i). Hence we can assume 
that F is not empty and finite. Let us write F = {pi,... ,pt}, with p\ — minF. Then 
if l F (so pi = l) the disjoint union of X/, LP2Ì..., Lpt has chromatic rmmber l. and 
for k > L the graph is k-mixing if and only 
P\ > l > 1, and then the disjoint union of 
holds. 

if k F. Otherwise, if l £ F, we must have 
Hi, L p i , . . . , LPt yields a graph for which (i) 
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3 
Mixing 3-colourings 

In tliis chapter we investigate what can be said about the 3-mixing properties of a given 
graph. Having already considered some facts about 3-colourings (of 3-chromatic graphs) 
in Chapter 2, we will refer to définitions and results from the relevant section, Section 2.2. 
Recali that we saw in Theorem 2.12 that if G is a 3-chromatic graph, then G is not 
3-mixing. For this reason we focus exclusively on bipartite graphs in this chapter. 

In Section 3.1 we give two équivalent characterisations of a 3-mixing bipartite graph; 
one in terms of the possible 3-colourings it rnay have, the other in ternis of its struc-
ture. In Section 3.2 we consider the problem of deciding whether a given bipartite graph 
is 3-mixing, and prove that this problem is coNP-complete. In the final section, Sec-
tion 3.3, we describe an algorithm that answers this question for bipartite planar graphs 
in polynomial time. 

3.1 Characterising 3-mixing graphs 

Let us make some preliminary observations about the 3-mixing properties of some specifìc 
graphs, noting in particular that there exist 3-mixing bipartite graphs as well as non-
3-mixing bipartite graphs. By Theorem 2.7 we know that any 1-degenerate graph is 
3-mixing. Hence ali trees are 3-mixing. The cycle on four vertices, C,\, is also 3-mixing--
this is easily verified by band after noting that any 3-colouring of a 4-cycle has a pair of 
vertices at distance two which are coloured the sanie. Ali other even cycles, however, are 
not 3-mixing. Given a cycle C2m with 2m > 6, it is easy to construct a 3-colouring a 
of C*2m so that W{C2m: « ) 0: just use the colour pattern 1,2, 3,1, 2, 3 , . . . for as long 
as possible, making sure that the final vertices are properly coloured. Lemma 2.11 then 
guarantees that the cycle C2 m is not 3-mixing. 
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In Theorem 3.1 below we distinguish between 3-mixing and non-3-mixing bipartite graphs 
in terms of their structure and the possible 3-colourings they may hâve. Before being 
able to state it we need two simple définitions. 

If v and w are vertices of a bipartite graph G at distance two. then we define a pinch on v 
and w as the identification of v and w (together with the replacement of ail double edges 
by single edges). We say that G is pinchable to a graph H if there exists a sequence of 
pinches that transforms G into H. 

Theorem 3.1 
Let G be a connected bipartite graph. Then the following statements are équivalent. 

(i) The graph G is not 3-mixing. 

(ii) There exists a cycle C in G and a 3-colouring a of G with W(C, a) ^ 0. 

(iii) The graph G is pinchable to the 6-cycle Gg. 

To prove Theorem 3.1, we need some définitions and technical lemmas. For the rest of this 
section, let G = (V, E) denote a connected bipartite graph with vertex bipartition X, Y. 

Given a 3-colouring a of G, let us define a height function for a with base X as a 
function h : V —> Z satisfying the following three conditions. (See [5, 25] for other, similar 
définitions and uses of height functions.) 

(Hl) For ail veX, h{v) = 0 (mod 2); and for ali v E Y, h.(v) = 1 (mod 2). 

(H2) For ail uv G E, \h{v) - h(u)\ = 1. 

(H3) For ail v € F, h(v) = a{v) (mod 3). 

If h : V —> Z satisfies conditions (H2), (H3) and also 

(Hl') For ail v€X, h(v) = 1 (mod 2); and for v G Y, h(v) = 0 (mod 2), 

then h is said to be a height function for a with base Y. 

Observe that for a particular colouring of a given G. a height function might not exist. 
An example of tins is the 6-cycle Ce coloured 1-2-3-1-2-3. 

Conversely, however, a function h : V —• Z satisfying conditions (HI) and (H2) induces 
a 3-colouring of G: the unique a : V —• {1, 2,3} satisfying condition (H3), and so h is in 
fact a height function for this a. Observe also that if h is a height function for a with 
base X. then so are h + 6 and h — 6; while h + 3 and h — 3 are height functions for a 
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with base Y. Because we will be concerned solely with the question of existence of height 
functions, we assume henceforth that for a given G, ail height functions hâve base X . 
Thus we let Tix{G) be the set of height functions with base X corresponding to some 
3-colouring of G, and, following [25], we define a metric m on Hx{G) by setting 

for /¿i, h'2 € TCx{G). Note that condition (Hl) above implies that m{hi,ii2) is always 
even. 

For a given height function h. h(v) is said to be a local maximum (respectively, local 

minimum) if h{v) is larger than (respectively, smaller than) h{u) for all neighbours u 

oîv. Again following [25], we define the following height transformations on h. 

An increasing height transformation takes a local minimum h(v) of h and transforms h 

into the height function h! given by 

A decreasing height transformation takes a local maximum h(v) of h and transforms h 

into the height function h' given by 

Note that these height transformations give rise to transformations between the corre-
sponding colourings. Specifically, if we let a' be tlie 3-colouring corresponding to h', an 
increasing transformation yields a'{v) = ot(v) - 1 and a'(x) = a(x) for all x ^ v, while a 
decreasing transformation yields a'(v) = a(v) + 1 and a'(x) ~ q(.t) for ail x ^ v, where 
addition is modulo 3. 

The following lemma, a simple extension of the range of applicability of a similar lemma 
appearing in [25], shows that ail colourings with height functions are connected in ^(G'). 

Lemma 3.2 (Goldberg, Martin and Paterson [25]) 
Let a, ß be two 3-colourings of G with corresponding height functions ha, hp. Then there 

is a path between a and ß in Cs(G). 

Proof. We use induction on 7ïi(hQ, hß). The lemma is trivially true wlien 'ffi(ha, hß) - 0, 
since in this case a and ß are identica!. 

vev 

hf(x) 
h(x) + 2, if x = v; 
h{x), if x ^ v. 
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Suppose therefore that m(ha,hp) > 0. We show that there is a height transformation 
transforming ha into some height function h with m(h, hp) = m(ha, hp) — 2, from which 
the lemma follows. 

Without loss of generality, let us assume that there is some vert ex v £ V with ha(v) > 
hp(v), and let us choose v with ha(v) as large as possible. We show that such a v must 
be a local maximum of ha. Let u be any neighbour of v. If hQ(u) > hp(u): then it follows 
that ha(v) > ha(u), since v was chosen with hQ(v) maximum, and |ha(v) — /ia(w)| = 1. 
If, on the other hand, ha(u) < hp(u), we have ha(v) > hp(v) + 1 > hp(u) > ha(iL). which 
in fact means ha(v) > ha(u). 

Thus ha(v) > ha(u) for ail neighbours u of v. and we can apply a decreasing height 
transformation to ha at v to obtain h. Clearly m(hJip) = m(ha. hp) — 2. • 

In the sanie way that we consider weights of oriented cycles in a 3-coloured graph, let us 
consider weights of oriented paths. For a path P in a graph G, let P denote one of the 
two possible oriented paths obtainable from P. If G is 3-coloured with a, we define the 
weight W(P. a) of P as the sum of the weights of its oriented edges: 

where w(ûïha) takes values as defined in équation (2.1). 

The next lemma tells us that for a given 3-colouring, non-zero weight cycles are, in some 
sense, the obstructing configurations forbidding the existence of a corresponding height 
function. 

Lemma 3.3 
Let a be a 3-colouring of G with no corresponding height function. Then G contains a 

cycle C for which W{ C, a) ^ 0. 

Proof. Let us observe that if a 3-colouring of a certain graph does have a height function, 
it is possible to construct one by fixing a vertex x of the graph. giving x an appropriate 
height (satisfying conditions (HI) and (H3)) and then assigning heights to ail vertices in 
the graph by following a breadth-first ordering from x. 

Whenever we attempt to construct a height function h for OÎ in sudi a fashion, we must 
come to a stage in the ordering where we attempt to give some vertex v a height h(v) 
and find ourselves unable to because v lias a neighbour u with a previously assigned 
height h(u) and |h{u) — > 1. Letting P be a path between u and v formed by 

ûveE(P) 
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vertices that have been assigned a height, and choosing the appropriate orientation of P. 

we have W(P,a) — |h(u) — h(v)The lemma now follows by letting C be the cycle 
formed by P and the edge uv. • 

The following lemma is obvious. 

Lemma 3.4 

Let u and v be vertices on a cycle C in a graph G, and suppose there is a path P beUveen u 

and v in G internally disjoint from C. Let a be a 3-colouring of G. Let C' and C" be the 

two cycles formed from P and edges of C, and let C'.C" be the orientations of C'.C" 

induced by an orientation C of C (so the edges of P have opposite orientations in C' 

and Cf). Then W(C,a) = W{C',ot) + W(C',a). 

Note this tells us that W(C, a) / 0 implies W{C', a) ± 0 or a) ± 0. 

Proof of Theorem 3.1. Let G be a connected bipartite graph. 

(i) = > (ii). Suppose Cs(G) is not connected. Take two 3-colourings of G. cv and ß, 

in different components of Cs(G). By Lemma 3.2 we know at least one of them, say a. 
has no corresponding height function, and by Lemma 3.3, there is a cycle C in G with 
W(C.A) ^ 0. 

(Ü) (iii). Let G contain a cycle C with W(C,a) ^ 0 for some 3-colouring a of G. 

Because W(C4,ß) = 0 for any 3-colouring ß of C4, it follows that C = Cn for some even 
n > 6 . If G = C, then it is easy to find a sequence of pinches that will yield Cg. If G 
is C plus some chords, then Lemma 3.4 tells us that there is a smaller cycle C' with 
W ( C', «•) 0 and we can again easily find a sequence of pinches that will yield CQ. Thus 
if G C. we can assume that V(G) ^ V(C), and we describe how to pinch a pair of 
vertices so that (ii) remains satisfied (for a specified cycle with G replaced by the graph 
created by the pinch and a replaced by its restriction to that graph, also denoted a); by 
repetition, we can obtain a graph that is a cycle and, by the previous observations, the 
implication is proved. 

Note that we shall choose vertices coloured alike to pinch so that the restriction of o to 
the graph obtained is well-defined and proper. If C has three consecutive vertices u. v, w 

with a(u) - a(w), pinching u and w yields a graph containing a cycle G' ~ Cn-2 with 

W(C',a) == W(C,a). Otherwise C is coloured 1-2-3 1-2-3. We can choose u,v,w to 
be three consecutive vertices of C, such that there is a vertex x (¡z V{C) adjacent to v. 

Suppose, without loss of generality, that a(x) = a(ii), and pinch x and u to obtain a 
graph in which W(C, a) is unchanged. 
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(iii) = > (i). Suppose G is pinchable to Cq. Take two 3-colourings of CE not connected by 
a path in CS(CQ): 1-2-3-1-2-3 and 1-2-1-2-1-2, for example. Considering the appropriate 
orientation of CE, note that the first colouring has weight 6 and the second lias weight 0. 
We construct two 3-colourings of G not connected by a path in C^(G) as follows. Consider 
the reverse sequence of pinches that gives G from Cq. Following this sequence, for 
each colouring of Cq, give every pair of new vertices introduce«.! by an 'unpinching' the 
sanie colour as the vertex frorn which they originated. Iii this manner we obtain two 
3-colourings of G, a and ß, say. Observe that every unpinching maintains a cycle in G 

which has weight 6 with respect to the colouring induced by the first colouring of CE 

and weight 0 with respect to the second induced colouring. This means G will contain a 
cycle C for which W{C. a) = 6 and W(C ,ß) = 0, showing that a and ß cannot possibly 
be in the sanie connected component of C;-$(G). 

This complétés the proof of the theorem. • 

3 . 2 The complexity of 3 - M I X I N G 

Let. us now turn our attention to the computational complexity of deciding whether or 
not a 3-colourable graph G is 3-mixing. From Theorem 2.12 we know that we can restrict 
our attention to bipartite graplis, so the case k = 3 of our décision problem fc-MLXLNG 
we formally define as follows. 

3 - M I X I N G 

Instance : A connected bipartite graph G. 

Question : Is G 3-mixing? 

Observing that Theorem 3.1 gives us two polynomial time verifiable certificates for 
when G is not 3-mixing, we immediately obtain that 3 -MIXING is in the complexity 
class coNP. By the sanie theorem, the following décision problem is the complément of 
3 - M I X I N G . 

PINCHABILITY-TO-C 6 

Instance : A connected bipartite graph G. 

Question : Is G pinchable to C6? 

We will prove the following resuit. 
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Theorem 3.5 
The décision problem 3-MlX]NG is coNP-complete. 

Our proof will in fact show that PINCHABIUTY-TO-C 'E is NP-complete. We will obtain a 
réduction from the following décision problem. 

R E T R A C T A BILITY-TO-C 6 

Instance : A connected bipartite graph G with an induced 6-cycle S. 
Question : Is G rétractable to S? That is, does there exist a homomorphism 

It is mentioned in [60], without references, that Tomás Feder and Gary MacGillivray 
hâve indcpendently proved that RETRACTA BIUTY-TO-C'G is NP-complete by a réduction 
from 3-COLOURABLLLTY. For completeness, we give a sketch proof. 

3-COLOlJRABIIJTY 
Instance : A connected graph G. 

Question : Is G 3-colourable? 

Theorem 3.6 (Feder; MacGillivray; see [60]) 
The décision problem RETRACTABILTTY-TO-C 6 is NP-complete. 

Proof. That R E T R A C T A B I L I T Y - T O - C 6 is in NP is clear. 

Given a connected graph G, construct a new graph G' as follows: subdivide every edge uv 

of G by inserting a vertex yuv between u and v. Also add new vertices o, b, c, d, e together 
with edges za.ab.bc. cd, de. ez. where 2 is a particular vertex of G (any one will do). 
The graph G1 is clearly connected and bipartite, and the vertices z,a,b,c,d,e induce a 
6-cycle S. We will prove that G is 3-colourable if and only if G' retracts to the induced 
6-cycle S. 

Assume that G is 3-colourable and take a 3-colouring r of G with T(Z) = 1. From r we 
construct a 6-colouring a of G'. For this, first set a(x) = r(x), if x G V(G). For the new 
vertices yuv set 

r : V{G) -v V(S) such that r(v) = v for all v G 1/(5)? 
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and for the cycle S take a(a) = 4, a(b) = 2, a(c) = 5, cr(d) = 3 and <r(e) = 6. Now 
define r : V(Gr) V(S) by setting 

z, if a{.X = 1, 
a, if o{x ~ 4, 

b, if a(x] = 2; 

c. if a(x] = 5, 
d. if a(x = 3, 

if a(x] = 6. 

It is easy to check that r is a retraction of G' to S. 

Conversely, suppose G' retracts to S. We can use this retraction to define a 6-colouring 
of G' in a similar way to that in which we defined r from o in the preceding paragraph. 
The restriction of this 6-colouring to G yields a proper 3-colouring of G, completing the 
proof. O 

Our proof of Theorem 3.5 follows [60], where, as a special case of the main result ofthat 
paper, the following problem is proved to be NP-complete. 

CÜMPACTABILITY-TO-Gß 

Instance : A connected bipartite graph G. 
Question : Is G compactable to Ge? That is, does there exist an edge-surjective homomor-

phism c : V(G) V(C6)? 

If an edge-surjective homomorphism c : V(G) —• V(Ge) exists, we call it a compacüon. 

In [60] a polynomial time reduction from RETRACTABLLLTY-TO-CFC to COMPACTABILITY-

TO-GFE, with k > 6 even, is given. We will use exactly the sarne transformation (for k = 6) 
to prove that P INCHABILITY-TÜ-G 6 is NP-complete. 

Proof of Theorem 3.5. As mentioned before, we will show that 3 - M I X I N G is coNP-
complete by showing that PINCIIABILITY-TO-G6 is NP-complete. This we do by giving 
a polynomial time reduction from R E T R A C T A B I L I T Y - T O - G 6 to P I N C H A B I L I T Y - T O - G 6 . 

Consider an instance of RETRACTABILITY-TO-GG: a connected bipartite graph G with 
an induced 6-cycle S. From G we construct, in tirne polynomial in the size of G, an 
instance G ; of P I N C H A B I L I T Y - T O - C 6 such that 

G retracts to S if and only if G' is pinchable to C6- (*) 
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a 

Figure 3.1 The subgraph of G' added around a vertex a G G a \ Sa. together 
with the 6-cyele S. 

b 

Figure 3.2 The subgraph of G' added around a vertex b € GB\SB , together 
with the 6-cycle S. 

Assume G has vertex bipartition {Ga, Gb)- Let V(S) = S^USB, where Sa = {ho, h,2, h^} 

and Sb = {hi, hz, h5}, and assume E(S) = { h0hi,.... h4h5, h5h0 }. 

The construction of G' is as follows. 

• For every vertex a G G a \ Sa, add to G new vertices u". a°2. uf[. y". y?2. together 
with edges îif ho, au %, w\J13, awf, u\wl, y({ h5. y?2 h2, u^y". w'{ya2. itfit^. y ? yg • 

• For every vertex ò (E Gb\Sb, add to G new vertices Wj. Wj. y^, y.^ together with 

edges wj/io, wì/13, bwb2i ^ M » Vi^s, y^2, « j^j , «>îî& » M , yïî& 

• For every edge afr G -E'(G) \ E (S), with a G G^ \ SA and b G GB\ SB, add two new 
vertices : x"6 adjacent to a and w"; and adjacent to b. w\ and x"}b. 
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From the construction it is clear that G' is connected and bipartite. Note that G' con-
tains G as an induced subgraph, and note also that the subgraphs constructed around a 
vertex a eGA\SA and a vertex be GB\SB are isomorphic. These graphs are depicted 
in Figures 3.1 and 3.2. 

We will prove (*) via a sequence of claims. 

Claim 3.7 
Suppose G retracts to S. Then G is pinchable to C(i. 

Proof. The fact that G retracts to S means we have a homomorphism r : V(G) —> IX(.S') 
such that, r(v) = v for all v E V{S). Define a partition {R, \ i = 0 ,1 . . . . , 5} of V{G) 
by setting v E <==> r(v) = hj. Because r is a homomorphism, we know any edge 
a, C E(G) has one vertex in Rj and another in Rj+i, for some j, where subscript addition 
is modulo 6. Using this partition of V(G), we show that G is pinchable to a 6-cvcle—to S, 
in fact. We describe how to pinch a pair of vertices such that the resulting (smaller) graph 
still has S as an induced subgraph; by repetition, this will eventually yield S. Supposing 
V(G) ^ V(S) (for else we are done), let E~ = E(G) \ E(S). Because G is connected, 
there must be an edge uv € E~ with u E V(S) and v 6 V(G) \ V(S). Suppose v E Rj, 
for some j E {0 ,1. . . . , 5}. Pinch v with h3, and note that the resulting graph remains 
bipartite, connected and contains S as an induced subgraph. Denote the resulting graph 
by G and repeat. • 

We now prove the 'only if' part of (*). 

Claim 3.8 
Suppose G retracts to S. Then G' is pinchable to C6. 

Proof. By Claim 3.7, G is pinchable to C6 . In fact, by the proof of Claim 3.7, we 
know G is pinchable to 5. Because G is an induced subgraph of G', we can follow, in G", 
the sequence of pinches that gives S from G. We now show how-, after following this 
sequence of pinches, we can choose some further pinches that will leave us with S. For 
a vertex v E V(G) \ ̂ (5) , we will pinch into S all vertices introduced to G' on account 
of V, yielding a smaller graph still containing S as an induced subgraph. By repetition, 
we will eventually end up with just S. 

First let us consider where a vertex a eGA\SA with no neighbours in GB\ SB might 
have been pinched to, and how we could continue pinching. There are three possibilities. 
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1. The vertex a has been pinched with h\. In that case pinch y" with h0, with h\, 
u1 with hi, with ho, and u/J with 

2. The vertex a has been pinched with /13. In that case pinch \f[ with h4. y2 with h.3, 
«J with /i5, with /¿4, and w" with 

3. The vertex a has been pinched with h$. In that case pinch y" with Ì14. y% with h^, 
Uj with /i5, with ho, and w* with ¡14. 

Similarly, let us consider where a vertex b G GQ \ SB with no neighbours in G A \ SA 
might hâve been pinched to, and how we could continue pinching. Again, there are three 
possibili ties. 

1. The vertex b has been pinched with ho. In that case pinch y\ with ho, yb with h\, 

u\ with h 1, w\ with /12, and w2 with h\. 

2. The vertex b has been pinched with h2. In that case pinch y\ with ho: y2 with h\. 

u\ with h\, w\ with h2. and w\ with /13. 

3. The vertex b has been pinched with h^. In that case pinch y\ with yb with 
u\ with /i5, w\ with h4, and w2 with 

Now let us consider the case where a vertex a G GA\SA is adjacent to a vertex b G GB\SB-

There are six cases to consider, corresponding to the six edges of S to which ab might 
hâve been pinched. Often there will be a choice of pinches- for each case we give just 
011e. 

1. The edge ab has been pinched to h\h2. We can use the previous case analyses to 
conclude that uf must be pinched with h\ and witli h2. Now we must deal 
with XQ0 and x^b. Pinching x^b with h2 and xf* with h\ gives us what we require. 

2. The edge ab has been pinched to h\ho. Then we conclude must be pinched 
with h\ and w\ with h2. Now pinch x^b with ho and xwith h\. 

3. The edge ab has been pinched to ^3^4. Then u" must be pinched with and w\ 

with /i4. Now pinch x^b with Ì14 and x f with /13. 

4. The edge ab has been pinched to h$h2. Then u\ must be pinched with /15 and w\ 

with h2. Now pinch with /14 and x%b with ì13. 

5. The edge ab has been pinched to h$ho. Then il® must be pinched with h5 and w\ 
with h2. Now pinch x f with ho and xj6 with h\. 
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6. The edge ab has been pinched to h5h4. Then uf must be pinched with h5 and w\ 
with h4. Now pinch xf with h4 and xf with h5. 

This complétés the proof of the claim. • 

We must now prove the 'if' part of (*). We do this via the next three claims. 

Claim 3.9 

Suppose G' is pinchable to C6. Then G' is compactable to C6. 

Proof. The fact that G' is pinchable to the 6-cycle C6 means there exists a homomor-
phism c : V(G') V(C6). In order to make this precise, let V{C6) = {fc0, fo^fci, M 

and E(Ce) = {k0ki,..., k4k5, k5k0}. Let us also define sets Pit for i = 0 ,1 , . . . , 5, as fol-
lows. Initially, set Pi = {k{}. Now let us consider the reverse sequence of 'unpinchings' 
that yields G' from C6. Following this sequence, suppose a vertex v G Pj is unpinched. 
Delete v from Pj and add to Pj the two vertices that were identifìed to give v in the orig-
inal pinch. Repeat this until G' is obtained, and now define c by setting, for v G V(G'), 
c(v) — ki <i=> v G Pi. Clearly the sets Pi form a partition of V{G') and so c is 
well-defined. In addition, by the way the sets Pi have been constructed, it is clear 
that any edge uv G E(G') has one end-vertex in P3 and the other in Pj+1, for some 
j G { 0 , 1 , . . . , 5}. This means c(u)c(v) G E(Cq) and so c is a. homomorphism. Moreover, 
it is edge-surjective: the Pzs are ail non-empty and there is at least one edge between 
every pair Pi,Pl+i. • 

The proof of the following claim is the same as the proof in [60] that shows that if G' is 
compactable to CQ, then GF retracts to S. 

We need some further notation. As usuai, for a set S and a function / , we let f(S) = 

{ / ( s ) | s G S}. Recalling that we denote the distance between vertices u and v in a 
graph H by dn{u. v), let us write, for a vertex u and set of vertices S of H, dtf(S, u) = 
min {djj (v.u) \ v G Î1}. 

Claim 3.10 (Vikas [60]) 

Suppose G' is pinchable to C&. Then G' retracts to S. 

Proof. By Claim 3.9 we know there exists a compaction C : V(G') —> V(CQ). (Recali 
that a. compaction is just an edge-surjective homomorphism.) We prove that c is in 
fact a rétraction to S. To do this, we must show that for ail v G V^S), c(i>) = v. 
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For convenience, we now use the same notation for C6 and S; that is, we let V{C6) = 
{h0ihi,...,h5} and E(C6) = { h0hu ..., h4h5, h5h0 }. 

Let U = {u\ \ v e V(G) \ V(S)} U {h0,huh5} and W = {w\ | v G V(G) \ V(S)} U 
{h2ì h3i h4}. Because both these vertex sets induce subgraphs of diameter 2 in G', c(U) 
and c(W) must each induce a path of length 1 or 2 in C6. We prove they each induce a 
path of length 2. 

Suppose that c(U) has only two vertices, adjacent in G6. Thus we let c(U) = {/¿0,M> 
with c(h0) = h0. (Due to the symmetry of C6, we can, if necessary, redefine c in this way.) 
Let U = U \ {h0}. Because h0 is adjacent to every other vertex in U. c(U~) = {hi}. 
It is easy to check that for any g G G', dGr(U~jg) < 2. But we have dc6(c(t/~), = 
dceihiJu) = 3, which means no g G G' can be mapped to h4 under c, contradicting the 
fact that c is a compaction. 

Hence c(U) induces a path on three vertices. By a similar argument, the same ap-
plies to c(W). By the symmetry of G6, we can without loss of generality take c(U) = 
{hi.ho. h$}. This means that c(h0) = h0. We now prove that c(/i3) = 

Let gg' be an edge of G' that is mapped to h3h2 or h3h4, with c(g) = h3l and c(g') = h2 

or c(g') = h4. Note that /i3 is at distance 2 from c(U) in C6 while h2 and h4 are at 
distance 1 from c(U) in CQ. This means that dG>{U,g) > 2 and dG>{U,g') > 1. Earlier 
we noted that the distance between U~ and any vertex of G' is at most 2, which means 
that dG'(U, g) < 2, so in fact dG>{U,g) = 2. Because G' is bipartite, dG>(U,g') = 1. 
Hence g is one of a, xf, h3ì y%, y\, tu|, and gf is one of b, xf, h2, h4,yf, y\, wf, for 
some a G G A \ SA, b G GB \ SB• Given that c(h0) = ho, we cannot have c(h$) = h2 

or c(h%) = h4. Aiming for a contradiction, let us suppose that c(hs) / h3. Then no 
edge of G' with h% as an endpoint covers h3h2 or h%h4. Hence g g' must be one of 
the following : axf, ab, au%, aw^ xf xf, xfh, xfw\, y^yty>ly^h2,yby\,ybw\,ybh2, 
wbw\.wbb. If ah2 or ah4 is an edge of G', then we also need to consider such an edge as 
a possible candidate for gg'. By previous assumptions, we have c(h3) = h\ or c(hs) = h§. 
We now prove that c(h3) ^ is impossible as follows. We first assume c(hz) = h\ and 
show that no possible edge for gg' covers h$h4, and then assume c{h3) = /15 and show 
that no possible edge for gg' covers h3h2. Thus let us assume c(h$) = h\. 

Let us suppose that for some v G V(G) \ V(S'), y2w\ covers h3h4, so 0(3/2) — an<^ 
c(w\) = h4. But c(h3) = hi, and since h:i an w\ are adjacent, we must have c(w\) = ho 
or c{w\) = h2, a contradiction. 

By exactly the same argument, we come to the conclusion that none of the edges awf, 
wbwb, xfw\ can cover the edge h$h4. A similar argument applies to y2h2. 
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Suppose that for some v € V(G) \ V(S), y»y\ covers h3h4, so c ( $ ) = h3 and c{y\) = h4. 
Now c(«ï ) = hy or c(u\) = h5, but since u\ and xj\ are adjacent we must have = h5. 
Because c « ) must be adjacent to c(y$) = h3, c ( ^ ) = h2 or c(wï) = h4. But u\ is 
adjacent to w\, so c{w\) = h4. This means covers h3h4, which we have already 

seen is impossible. 

Now suppose that for some b(EGB\ SB, w%b covers M 4 , so c{wb2) = h3 and c(b) = 

If c(6) = h4: we must have c ( ^ ) = h3 or c(u5) = h5. But c{h0) = /i0 means c(u\) --= ^ or 
c{u\) = /i5, so c(u}) = h5. This implies, since c(w\) = h2 or c(w{) = that c(w}) = h4. 

But this means that wb2w\ covers h3h4, which we have already excluded as a possibilité 

Assume that for some a e GA\SA, au § covers h3h4, so c(a) = /i3 and c(u%) = h4. 
Because and are adjacent, c(uf) = h3 or c(uf) = h5, but since wf is adjacent to h0 

and c(h0) = h0, we have c(uf) = h5. Similarly, c(wf) = h2 or c{w<{) = h4, but since w\ 
and uax are adjacent, we have c(wf) = h4. Hence aw^ covers h3h4, but we have already 
seen this is impossible. 

Now assume that for some a G GA \ SA, axf covers h3h4, so c(o) = h3 and c(xf) = /i4. 
Now c(îzf) = /ii or c(if?) = /i5. but since and xf are adjacent, we have = h5. 
Because c(u$) must be adjacent to c(a) = h3 as well as c(u\) = h5, we have c(u$) = h4. 
Hence au?, covers /i3/i4, but we have already seen this is impossible. 

Suppose that for some b G GB\SB, xfb covers h3h4, so c(xf) = h3 and c(b) = h4. Now 
c(u\) = h\ or c(u\) ~ h5, but since b and u\ are adjacent, we must have c(u\) = h5. 
Because c(wj) must be adjacent to c(xf) = h3, we have c(w\) = h2 or c(wb) = h4. 
But u\ and w\ are adjacent, so c(wb) = h4. This means xlbw\ covers h3h4, which we 
have already ruled out as a possibility. 

Now suppose that for some a G GA \ SA and some b G GB\ SB, ab covers h3h4, so 
c(a) = h3 and c(b) = h4. Since u2 is adjacent to a and we have seen au2 does not 
cover h3h4, we must have c(u%) = h2. Now c(iif) = h\ or c(«ï) = /i5, but since uj and 
are adjacent, we must have c(itf) = Also, c(x{f) must be adjacent to c(«f) = h\ 
and c{a) = h3, so c(x%b) = h2. Similarly, c(x%b) must be adjacent to c(x%b) = h2 and 
c(b) = h4, so c(x^b) = h3. But this means x^b covers h3h4, which we have already seen 
is impossible. 

Suppose that for some a e GA \ SA and some b G GB \ SB, x^bx^b covers h3h4l so 
c(x%b) — h3 and c(xf) = /i4. Since a is adjacent to x®b and we have seen axdoes not 
cover h3h4. we must have c(a) — Because c(6) must be adjacent to c(a) = /15 and 
c(xlb) — h3, we have c(b) = h4. But then xf>b covers h3h4, and we have seen this is 
impossible. 

50 



Chapter 3. Mixing 3-coIouriiigs 

Lastly, if ah2 (or ah4) is an edge of G', assuming c(a) = /i3 and c(/i2) = 4̂ (or c(a) = /i3 

and c(/i4) = /i4) immediately leads us to a contradiction, since c{h3) = hi. 

From ail this we obtain that assuming c(/i3) = h\ leads us to the conclusion that no edge 
of G' covers h3h4, contradicting the fact that c is a compaction. 

We now show that assuming c(h3) = h5 leads us to the conclusion that no edge of G' 
covers h2h3. 

Let us suppose that for some v G V(G) \ V(S), y%wf covers h3h2, so c(y%) = and 
c(w\) = h2. But c(hs) = /i5, and since h:i an wl{ are adjacent, we must hâve c{w\) = h{) 

or c{w\) = h4, a contradiction. 

By exactly the same argument, we corne to the conclusion that none of the edges awf, 
X°bhw\ can cover the edge h3h2. A similar argument applies to yv2h2. 

Suppose that for some v G V(G) \ V{S), yv2y\ covers h3h2, so c(y$) = h3 and c(y\) = h2. 
Now c(u\) = hi or c(uy) = but since u\ and y\ are adjacent we must have c(u") = h\. 
Because c(w\) must be adjacent to c{yQ = h3, c{wl{) - h2 or c(w\) = h4. But u\ is 
adjacent to w\, so c(w\) = h2. This means y2w\ covers h3h2, which we have already 
seen is impossible. 

Now suppose that for some b G GB\ SB, w\b covers h3h2, so c{w\) = h3 and c(b) — h2. 
lîc(b) — h2, we must have c(iz{) = h3 or C(ÎA{) = h\. But c(h0) = h0 means c{u\) — h\ or 
c{u\) = h5, so c{u\) = h\. This implies, since c{w\) = h2 or c{w\) = h4, that c(w\) — h2. 
But this means that W2ÏU\ covers h3h2. which we have already excluded as a possibility. 

Assume that for some a G G A \ SA, au2 covers h3h2, so c(a) = h3 and c(u2) = h2. 
Because u° and u2 are adjacent, c(uf) = h3 or c(u^} = hi} but since uf is adjacent to /z0 

and c(ho) = ho, we have c(wj) = h\. Similarly, c(wf) = h2 or c(wf) = h4, but since w® 
and are adjacent, we have c{wf) = h2. Hence awl{ covers h3h2, but we have already 
seen this is impossible. 

Now assume that for some a G G A \ SA, axf covers h3h2, so c(a) = h3 and c{xf) — h2. 
Now c(uj) = h\ or c(uf) = but since ttf and xf are adjacent, we have = h\. 
Because c(u2) must be adjacent to c(a) = h3 as well as c(iif) = h\, we have c(u2) = h2. 
Hence au2 covers h3h2, but we have already seen this is impossible. 

Suppose that for some b G GQ \ SB, xfb covers h3h2, so C{XLB) = h3 and c(b) = h2. Now 
c(u\) = h\ or c(u\) = /î-5, but since b and u\ are adjacent, we must have c(uj) = h\. 
Because c(w\) must be adjacent to ~ /i3, we have c(w\) = h2 or c(w\) = h4. 

But u\ and w\ are adjacent, so c{w\) — h2. This means xfw\ covers h3h2, which we 
have already ruled out as a possibility. 
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Now suppose that for some a G G A \ SA and some b G GB\SB, ab covers h3h2, so 
c(a) = h3 and c(b) = h2. Since is adjacent to a and we have seen does not 
cover h3h2, we must have c(u§) = h4. Now c(u?) = hy or = h5, but since wf and u\ 
are adjacent, we must have c « ) = h5. Also, c{xf) must be adjacent to c « ) = h5 

and c{a) = h3, so c(x%b) = h4. Similarly, c{xf) must be adjacent to c{xf) = h4 and 
c(b) = h2ì so c(xf) = h3. But this means xfb covers h3h2, which we have already seen 
is impossible. 

Suppose that for some a G GA \ SA and some b G GB\SBi xfxf covers h3h2, so 
c(xt) = h and c(xf) = h2. Since a is adjacent to xf and we have seen axf does not 
cover h3h2, we must have c(a) = hi. Because c(b) must be adjacent to c(a) = hi and 
c{xf) = h3, we have c(b) = h2. But then xfb covers h3h2, and we have seen this is 
impossible. 

Lastly, if ah2 (or ah4) is an edge of G', assuming c(a) = h3 and c(h2) = h2 (or c(a) = h3 

and c(h4) = h2) immediately leads us to a contradiction, since c{h3) = /i5. 

From ail this we obtain that assuming c(h3) = h5 leads us to the conclusion that no edge 
of G' covers h3h2, contradicting the fact that c is a compaction. 

From ali the above we obtain that c(h3) = h3, which means that c(W) — {h2, h3, h4}. 

Now we show c(/ij) ^ c(h5). To the contrary, assume c(hi) = c(/i5). Since c(/?,0) = h0, we 
have c{hi),c(hs) G {hi, /i5}. Due to symmetry, we can without loss of generality assume 
c(hi) = c(h5) = h\. Since c(U) = {hi,ho:h5}. it must be the case that c(u\) ~ for 
some v G V(G) \ V(S). Now C(WÏ) and c{h2) must both be adjacent to c{h3) = h3, so 
c{w\),c(h2) G {h2jh4}. Because c(u\) = /I5 and u\ and w\ are adjacent, c(w\) = h4. 
Similarly, because c(ho) = ho and h\ and h2 are adjacent, c(h2) = h2. Now c(y%) must 
be adjacent to c(h2) = h2 and c{w\) = ^4, so c ^ ) = h3. Also, c(y\) must be adjacent 
to c(h$) = h\ and c(u\) = h5, so c(y\) = ho- Thus we have that y\ and y% are adjacent 
in Gbut c(y\) = ho and 0(2/3) = are not adjacent in a contradiction. 

Hence c(h\) / c(hs). That is, c({/i],/i5}) = {hiJi5}. Without loss of generality, we 
can take c(h\) — h\ and c(hs) = Since c(h3) = h3, we have c{h2),c{h4) G {^2? ^4}-
Because h\ and h2 are adjacent in G' and the distance between c{h\) = h\ and h4 in CQ 
is 3, it must be that c(h2) ^ h4 and so c(h2) = h2. Similarly, because h5 and h4 are 
adjacent in G' and the distance between c(h$) — /i5 and h2 in Ce is 3. it must be that 
c(h4) ^ h2, and so c(h4) = h4. 

Thus c(hi) = hi for ail i = 0 ,1 , . . . . 5, and c : V(G') —> V(C6) is a retraction. • 

The last claim is a simple observation that complétés the proof of (*) and thus also of 
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Theorem 3.5. 

Claim 3.11 
Suppose G' is pinchable to C6. Then G retracts to S. 

Proof. By Claims 3.9 and 3.10 we know there exists a retraction r : V(G') V(S). 
Because S is an induced subgraph of G, and G is an induced subgraph of Grestricting r 
to G gives us what we need. n 

3.3 A polynomial time algorithm for 3-MIXING for planar 
graphs 

In this section, we prove the following. 

Theorem 3.12 

Restrict ed to planar bipartite graphs, the décision problem 3 - M I X I N G is in the complexity 
class P. 

To prove the theorem we need two lemmas. 

Lemma 3.13 

Let P be a shortest path between distinct vertices u andv in a connected bipartite graph H. 
Then H is pinchable to P. 

Proof. Let P have vertices u = v0, v\,..., vk-i, vk - v, and let T b e a breadth-first 
spanning tree of H rooted at u that contains P (we can choose T so that it contains P 
since P is a shortest path). Now, working in T, pinch ail vertices at distance one from u 
to v\. Next pinch ail vertices at distance two from u to v2. Continue until ail vertices at 
distance k from u are pinched to vk = v. If necessary, arbitrary pinches on the vertices 
at distance at least k + 1 from u will yield P. • 

In the following, when we say some vertices of a graph are properly precoloured, we just 
mean that they are assigned colours in a way such that the subgraph induced by these 
vertices is properly coloured. 
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Lemma 3.14 
Let H be a bipartite graph, and suppose the vertices of a 4-cycle in H are properly 

precoloured using colours from {1,2,3}. Then this 3-colouring can be extended to a proper 

3-coloiiring of H. 

Proof. Since any 3-colouring of a four cycle C4 has two vertices with the same colour, 
we can without loss of generality assume the four vertices are coloured 1-2-1-2 or 1-2-1-3. 
In the first instance, since H is bipartite, we can extend the precolouring to a colouring 
of H using colours 1 and 2 only. For the second case, we can use the same colouring, 
except leaving the vertex coloured 3 as it is. • 

The sequence of claims that follows outlines an algorithm that, given a connected bipartite 
planar graph G as input, determines in polynomial time whether or not G is 3-mixing. 
We first show how we can take the input graph to be 2-connected. 

Claim 3.15 
Let G be a connected bipartite planar graph, and suppose that G has a cut-vertex v Let 

be a component of G - {v} . Denote by G\ the subgraph of G induced by V{H\) U {v} , 
and let G2 be the subgraph induced by V(G) \ V(Hi). Then G is 3-mixing if and only if 

both G\ and G2 are 3-mixing. 

Proof. If G is 3-mixing, then clearly so are G\ and G2. Conversely, if G is not 3-mixing, 
we know by Theorem 3.1 that there must exist a 3-colouring a of G and a cycle C in G 
such that W(C,a) / 0. But because C must lie completely in G\ or G2, we have that Gi 
or G2 is not 3-mixing. • 

Let us now consider an embedding of our 2-connected bipartite planar graph G in the 
plane, and let us identify G with this embedding. (Throughout the rest of this section, 
we will usually, for ease of reference, identify a planar graph with a given embedding of 
the graph in the plane.) Given a cycle D in G, denote by Int(D) and Ext(D) the sets of 
vertices inside and outside of D, respectively. Note that the vertices of D itself are not 
included in Int(i>) nor in Ext(D). If both Int(D) and Ext(Z)) are non-empty, D is said 
to be separating. For D a separating cycle in G, let us write Gint(D) = G - Ext(D) and 
GExt(D) = G — Int(D), and note that D is part of both these graphs. 

We now consider the case that the planar embedding of G has a separating 4-cycle. 
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Claim 3.16 
Let G bea 2-connected bipartite planar graph, and suppose that G has a planar embedding 
with a separating 4-cycle D. Then G is 3-mixing if and only if Gìnt(D) and GExt{D) are 
both 3-mixing. 

Proof. To prove necessity, we show that if one of Gint(D) or GExt{D) is not 3-mixing, 
then G is not 3-mixing. Without loss of generality, suppose that Gìnt(D) is not 3-mixing, 
so there exists a 3-colouring a of Gini{D) and a cycle C in Gint{D) with W{C,a) ^ 0. 
By Lemma 3.14, the 3-colouring of the vertices of the 4-cycle D can be extended to a 
3-colouring of GExi(D). The combination of the 3-colourings of Glnt{D) and GE x t (D) 
gives a 3-colouring of G with a non-zero weight cycle, showing that G is not 3-mixing. 

To prove sufficiency, we show that if G is not 3-mixing, then at least one of Gint(£>) 
and GExt{D) must fail to be 3-mixing. Suppose that a is a 3-colouring of G for which 
there is a cycle C with W( C, a) ^ 0. If C is contained entirely within GInt (D) or GExt(D) 
we are done, so let us assume that C has some vertices in Int(D) and some in Ext(D). 
Then applying Lemma 3.4 (repea.tedly, if necessary) we can fìnd a cycle G' contained 
entirely in Gint(D) or GExt(£>) for w hich W(C', a) ^ 0, completing the proof. • 

We need two further claims to complete the description of our algorithm. We cali a. 
face of G with k edges in its boundary a. k-face, and a face with at least k edges in its 
boundary a > k-face. The number of > 6-faces of G—which we can now assume has no 
separating 4-cycle—will in fact determine if G is 3-mixing. 

Claim 3.17 
Let G be a 2-connected bipartite planar graph. Suppose that G has a planar embedding 

with no separating 4-cycle, and suppose that every internai face of the embedding is a 
4-face. Then G is 3-mixing. 

Proof. Let a be any 3-colouring of G and let G be any cycle in G. We show W(C, a) = 0 
by induction on the number of faces inside G. If there is just one face inside G, G is 
in fact a facial 4-cycle and W{C,a) = 0. For the inductive step, let G be a cycle with 
r > 2 faces in its interior. If, for two consecutive vertices u, v of G, we have vertices 
a, b e Int(G) together with edges ua.ab, bv in G, let C' be the cycle formed from G by 
the removal of the edge uv and the addition of edges ua, ab, bv. If not, check whether 
for three consecutive vertices u, v, w of G, there is a vertex a e Int(G) with edges ua, aw 
in G. If so, let C' be the cycle formed from G by the removal of the vertex v and the 
addition of the edges ua, aw. If neither of the previous two cases apply, we must have, 
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for u, v, w, x four consecutive vertices of C, an edge ux inside G. In such a case, let C' be 
the cycle formed from C by the removal of vertices v, w and the addition of the edge ux. 
In ail cases we have that C' has r - 1 faces in its interior, so, by induction, we can assume 
W(C', a) = 0. From Lemma 3.4 we then obtain W(C, a) = 0. • 

Claim 3.18 
Let G be a 2-connected bipartite planar graph. Suppose that G has a planar embedding 

with no separating 4~cycle, and suppose further that the embedding has an internai > 6-
face, and that the outer face is a > 6-face. Then G is not 3-mixing. 

Proof. We claim that G, under the given assumptions, is pinchable to C6. Denote the 
internal > 6-face by / , and the outer face by f0. We cali a cycle D in G /-separating if / 
lies inside D, where we include the possibility that edges on the boundary of / lie on the 
cycle D. (Note that the cycle bounding f0 is always an /-separating cycle, and thus an 
/-separating cycle need not be a separating cycle.) Obviously G contains no /-separating 
4-cycle, since such a cycle would constitute a separating 4-cycle. We now claim that if 
G is not a cycle, then it is possible to find a sequence of one or more pinches so that 
the resulting graph is a planar graph that has an internai > 6-face / ' , whose outer face 
is a > 6-face, and without, an /'-separating 4-cycle. (Note that bipartiteness is trivially 
maintained by pinching.) Repeating such a sequence of pinches will eventually transform 
G into a cycle of length at least six, proving that G is not 3-mixing. 

Let G be the cycle that bounds f : we will initially attempt to pinch vertices into G. Let 
x, y, z be three consecutive vertices of G with y having degree at least 3; if there is no 
such vertex y, then G is simply a cycle of length at least six and we are done. Let a be 
a neighbour of y distinct from x and z, such that the edges ya and yz form part of the 
boundary of a face adjacent to / . 

Suppose the resuit of pinching a and z introduces no /-separating 4-cycle. If so, we 
pinch a and z. Note that the resulting graph still contains the internal > 6-face / , and 
is planar since the edges ya and yz form part of a. common face. Note also that the 
outer face, though it might have decreased in size, remains a > 6-face: if it did not— 
so the edges ya and yz were originally part of the boundary of f0, which had length 
six—then we would have a contradiction to the fact that pinching a and 2 introduced no 
/-separating 4-cycle. We observe that pinching a and 2 might well introduce a cut-vertex 
into the graph, but that as long as such a vertex is not included twice on the boundary 
of the outer face, this is not a problem. (Note that such a situation cannot arise for 
the internal face / . ) If we do find that the boundary of the outer face now includes a 
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vertex v twice, then let us denote by G' the graph resulting from pinching a and 2. Let 
us also denote by C'0 and the two distinct cycles formed by the boundary of the outer 
face, with V(C'0) n V(CfJ) = {v}7 and where G'ini{C'0) is the subgraph of G' containing 
the internal face / (so C'0 must have length at least six, for otherwise we have introduced 
an /-separating 4-cycle). Now, considering an edge vw of C'^ we pinch G[nt(C^) to vw 
(using Lemma 3.13 and the fact that vw is a shortest path between v and w). Using this 
same sequence of pinches in G', followed by pinching vw into C'oi leaves us with a graph 
with the required invariants, and every vertex 011 the boundary of the outer face of the 
resulting graph distinct. 

Suppose pinching a and 2 does result in the creation of an /-separating 4-cycle. If so, this 
must be because the path a, y, z forms part, of an /-separating 6-cycle D. We now show 
how we can find alternative pinches which do not introduce an /-separating 4-cycle. 
The fact that D is /-separating means there is a path PCD of length 4 between a 
and z. Note that P cannot contain y, for this would contradict the fact that G has no 
/-separating 4-cycle. Consider the graph G' = Gint(D) - { y z } . We claim that the path 
P' = P U {y} is a shortest path between y and 2 in G'. To see this, remember that G 
is bipartite, so any path between y and 2 in G has to have odd length. We cannot have 
another edge yz G E(G') since G is simple. Now note that any path between y and 2 
in G", together with the edge yz. forms an /-separating cycle in G. Hence a path of 
length 3 between y and 2 would contradict the fact that G has no /-separating 4-cycle, 
and so Pr is indeed a shortest path between y and 2 in G'. Using Lemma 3.13, we see 
that G' is pinchable to P'. Using the same sequence of pinches in G will pinch G\nt(D) 
into D. Note this introduces no separating 4-cycle into the resulting graph, and note 
also that this graph is planar, since it is a subgraph of G. Moreover, note that the length 
of the cycle bounding the outer face remains the same, that the vertices of this cycle 
are all distinct, and that the cycle D now bounds an internal 6-face. It follows that this 
sequence of pinches is a sequence as required by the claim. This completes the proof. • 

The algorithm that decides 3-MIXING runs as follows. Given a connected bipartite planar 
graph G with n vertices, we first find the blocks of G. (A block of G is a maximal 
connected subgraph of G with no cut-vertex.) These can be found by a standard depth-
first search method (see, for example, [61, p. 157]) in time O(n). Note that a block which 
is not 2-connected is either a K\ or a K2, which are both trivially 3-mixing. 

Next, for each 2-connected component H of G. we perform the following procedure. Find 
an embedding of H in the plane. Let us recall that a planar embedding of a graph can 
be specified by a combinatorial embedding (a list of adjacencies for each vertex, with 
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adjacencies listed as they are found in a clockwise order around the vertex) together 
with the spécification of its outer face. There are fast algorithms, for instance the linear 
time algorithm of Mohar [50], to find such an embedding. We now check whether the 
embedding has a > 6-face, by traversing the edges of H as they forni faces, using the 
adjacency lists (this will take time at most 0(n7H), where nH is the number of vertices 
of H). If the embedding has a > 6-face, then we transform the embedding into an 
embedding in which this face is the outer face. This is done by reversing the order 
of vertices in each adjacency list and specifying the new face as the outer face, taking 
time 0{nH). We now check whether or not the embedding of H has a separating 4-cycle. 
A naive approach, which checks ail subsets of 4 elements of V(H), runs as follows. First, 
check whether a given 4-tuple forms a cycle, using the adjacency lists. If so. we check 
whether or not it has an empty interior (note that it will always hâve non-empty exterior, 
where the outer > 6-face is) by checking whether or not, for each vertex of the 4-cycle, 
the edges of the cycle are consecutive in the cyclic ordering of neighbours defining the 
embedding. This will take 0(n5H) time: 0(n%) to enumerate ail 4-tuples, multiplied 
by 0(nH), the time needed to check whether, for a given 4-tuple, we have a cycle and 
whether this has a non-empty interior. If H does have a separating 4-cycle, we apply 
Claim 3.16 and recurse on two smaller problems. If it does not, then we check for a 
> 6-face différent from the outside face (adding 0 ( n 2 H ) to the running time), and then 
either Claim 3.17 or 3.18 must apply to H. If at any stage in the process, for some H, 
Claim 3.18 applies, then the algorithm returns 'no'. Otherwise, the algorithm concludes 
that G is 3-mixing. 

If we denote the running time of the procedure we are running on H by T(nH), the 
recursive cali arising from finding a separating 4-cycle D leads to the récurrence relation 
T{uh) = T(nint)-{-T(nExt) + 0(n5H), where riInt and nExt are, respectively, the number of 
vertices of Hint(D) and HExt{D)- Noting that nH = nint+WExt-4, we may rewrite this as 
T{nH) = T(nInt) + T(nn ~ înt + 4) + 0(nòH), and because we have 5 < nInt < nH - 1, we 
see that we are in fact recursing on two smaller problems. After observing that T(5) = c 
for some constant c, a simple inductive argument yields that T{UH) is 0(n6H). Because 
we have less than n blocks in G, the running time of the algorithm is bounded by 0(n7). 

This complétés the proof of Theorem 3.12. 
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Paths between 3-colourings 

In this chapter we examine what can be said about possible sequences of recolourings 
between a given pair of 3-colourings. We determine how easy it is to find if a sequence 
exists, and also what its length may be if it does. Our main resuit is the following. 

Theorem 4.1 
The décision problem 3 - C O L O U R PATH is in the complexity class P . 

We prove Theorem 4.1 in Section 4.1 by describing an algorithm that décidés the problem 
in polynomial time. In doing so, we will see that in the case that two 3-colourings of a 
graph G belong to the same component of C3(G), our algorithm can be used to exhibit 
a path of length 0(\V{G)\2) between them. This proves the following. 

Theorem 4.2 
Let G be a 3-colourable graph with n vertices. Then the diameter of any component 
ofC3(G) is 0(n2). 

In Section 4.2 we turn our attention to what else can be said about the distance between a 
given pair of 3-colourings. We will prove that in many cases, the algorithm of Section 4.1 
in fact returns a shortest path between two 3-colourings which are connected in C3(G). 
We will also show that the quadratic bound on the number of recolourings can be met 
from below, constructing a class of instances G, a, ß such that a and ß are connected 
and at distance fî(|Vr(G')2|) in C3(G). 
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4.1 A polynomial time algorithm for 3-COLOUR PATH 

The algorithm that decides 3-COLOUR PATH stems from the proof of a characterisation 
of instances G,a,ft where a and ft belong to the same component of C3(G). We will 
describe this characterisation in Theorem 4.6 below. Before doing so, we examine what 
can forbid the existence of a path between 3-colourings a and ft of a graph G in C3(G). 
The proof of the characterisation of connected pairs of 3-colourings is via an algorithm 
that, given G,a,/3, either finds a sequence of recolourings between a and (3, or exhibits 
a structure which proves that no such sequence exists. Thus this algorithm also decides 
3-COLOUR PATH. 

Obstructions to paths between 3-colourings 

Let us examine what can stop us from being able to find a sequence of recolourings 
between a pair of 3-colourings a, ft of a graph G. Informally, we call a structure in G, a, ft 
forbidding the existence of a path between a and (3 in C3(G) an obstruction. For the 
remainder of this section we assume that we are dealing with some fixed graph G. 

We saw in Lemma 2.10 in Chapter 2 how a cycle C in G can act as an obstruction 
between a and (3: if its weight W{C ,a) in a is different to that in ft, W(C ,ft), then 
there can be no path between a and ¡3 in C3(G). 

A second obstruction is given by what we call fixed vertices. For a 3-colouring a, we 
define a vertex v as fixed if there is no sequence of recolourings from a which will allow 
us to recolour v. In other words, a vertex v is fixed if for every colouring (3 in the 
same component of C3(G) as a we have (3{v) = a(v). For example, if a cycle with 
0 mod 3 vertices is coloured 1-2-3-1-2-3 1-2-3, then every vertex on the cycle is fixed 
(as none can be the first to be recoloured); we call this a fixed cycle (with respect to 
the 3-colouring a). Similarly, a path coloured • • • 3-1-2-3-1-2-3-1 , both of whose end-
vertices lie on fixed cycles, cannot be recoloured and is called a fixed path. 

Given a 3-colouring a of G, we denote the set of fixed vertices of G by Fa. We shall 
shortly prove the following. 

Proposition 4.3 
Let a be a 3-colouring of G. Then every v 6 Fa belongs to a fixed cycle or a fixed path. 

The next lemma, which illustrates how fixed vertices may act as an obstruction, follows 
immediately from the definitions. 
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Lemma 4.4 
Let a and (3 be two 3-colounngs ofG. Then if a and (3 belong to the sanie component 

we must have Fa = Fp and a(v) — (3{v) for each v G Fa. • 

The following lemma, very similar to Lemma 2.10, shows a third type of obstruction. 

Lemma 4.5 

Let a and ¡3 be 3-colourings of G with Fa = Fp ^ 0 and a(v) = (3{v) for ail v G Fa, and 
suppose that G contains a path P with end-vertices u and w, where u,w G Fa. Then if a 
and (3 are in the same component ofC3(G), we must have W(P,a) = W(P,j3). 

Proof. Let a and a' be 3-colourings of G that are adjacent in C3(G), and suppose the 
two 3-colourings difïer on vertex v. Note that v cannot be a vertex in Fa, so neither can 
it be an end-vertex of P. If v is not on P, then we certainly have W(P, a) = W{P, a'). 

If v is an internai vertex of P, then ali its neighbours must have the same colour in a. 
for otherwise we would not be able to recolour v. If we denote the in-neighbour of v 
on P by vì and its out-neighbour by va, then this means that w(û[v: o ) and a) 

have opposite sign, hence w(v{L), a) + w(vvt, oc) = 0. Recolouring vertex v will change 
the signs of the weights of the oriented edges v̂ v and w?0i but they will remain opposite. 
Therefore w(vïv, a') + c/) = 0, and it follows that W(P, a) = W{P, a'). 

From the above we immediately obtain that the weight of an oriented path between fixed 
vertices is constant on ali 3-colourings in the same component of C3(G). • 

Lemmas 2.10, 4.4 and 4.5 give necessary conditions for two 3-colourings a and (3 of a 
graph G to belong to the same component of C3(G). From Lemmas 4.4 and 2.10 we 
obtain, respectively: 

(Cl) Fa = F0 and a(v) = (3{v) for each v G Fa\ and 

(C2) for every cycle C in G, W{C,a) = W(C,p). 

If for two 3-colourings a and (3 of G we take condition (Cl) to be satisfied, Lemma 4.5 
gives a third necessary condition for a and (3 to belong to the sanie component of C3{G): 

(C3) for every path P between fixed vertices, W{P, a) — W(P,(3). 
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Figure 4.1 Two 3-colourings of a graph G not connected in C3(G). 

Bearing in mind that we are only considering condition (C3) if condition (Cl) is already 
satisfied, let us observe that neither conditions (Cl) and (C2) taken together, nor con-
ditions (Cl) and (C3) taken together, are sufficient to guarantee the existence of a path 
between 3-colourings a and p. 

To see that conditions (Cl) and (C2) are not sufficient, consider the graph and two 
3-colourings shown in Figure 4.1. It is easy to check that (Cl) and (C2) are satisfied (note 
that only vertices on the 3-cycles are fixed), but the two colourings are not connected: 
fix an orientation of the path between the two 3-cycles, and observe that the weight of 
this oriented path is +3 in one colouring and —3 in the other. 

To see that conditions (Cl) and (C3) are not sufficient, consider two 3-colourings a and ¡3 
of a 5-cycle that differ only in that the colours 1 and 2 are swapped: (Cl) and (C3) are 
satisfied (since Fa = Fp = 0), but there is no path between the two colourings as the 
5-cycle has différent weights in the two colourings. 

We now prove that if ail three conditions are satisfied by a pair of colourings a and ¡3 
of G, then they are in the same component of C${G). 

A characterisation of connected pairs of 3-colourings 

The proof of the following characterisation of connected pairs of 3-colourings will yield 
a polynomial time algorithm for 3-COLOUR PATH, proving Theorem 4.1. We will also 
prove Theorem 4.2 in the process. 

Theorem 4.6 
Two 3-colourings a and ¡3 of a graph G belong to the same component of C3(G) if and 

only if 

(Cl) Fq — FP and a(v) = ¡3(v) for each v G FA; 

(C2) for every cycle C in G, W(C,a) = W(C,P); and 
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(C3) for every path P between fixed vertices, W(P,a) = W{P,f3). 

The necessity of the three conditions lias already been established. We prove that they 
are sufficient by outlining an algorithm whose input is a graph G and two 3-colourings a 
and (3 of G, and whose output is either a path in C3{G) from a to (3, or an obstruction 
that shows that (Cl), (C2) or (C3) is not satisfied, so no such path exists. 

The first step of the algorithm is to find FA and F P. We claim that the following procedure 
finds the fixed vertices of a graph G with 3-colouring a. 

• Let Si, and S3 initially be the three colour classes induced by a. 

• For i G {1, 2,3}, and for each vertex v € Sl: let S, = S A M unless v has neighbours 
in each of the other two sets. 

• Repeat the previous step until no further changes are possible. Return S = SI U 

S2 U S3. 

Claim 4.7 
The above procedure returns S = Fa. 

Before proving the claim, let us give some définitions. Fix a vertex v of G and set 
L t - - M - F o r * = i?2 : --- : let a vertex u belong to Lf if u has a neighbour 
w G L^ i and a(u) = a(w) + 1 (mod 3). (So, for example, if v is coloured 3, then Lf 
contains ail neighbours of v coloured 1, Lf contains ail vertices coloured 2 that have a 
neighbour in Lf, and so on.) For j = 1,2,. . . , let a vertex u belong to Lj if u has a 
neighbour w G Lj_1 and a(u) = a{w) - 1 (mod 3). We cali these sets the levels of v, 
and the sets can be categorised as positive or negative according to their superscript. 

Observe that v lies on a fixed cycle if and only if there is a vertex u G Lf fi LJ y for 
some i,j > 0. To see this, note that if v lies on a fixed cycle C, then v G L+(v) and 
v G L~(v), where p is the number of edges of C. Hence there is a u G Lf fi LJ, for 
some > 0. Conversely, if we have a u G Lf N Lj for some i7j > 0, then there 
is a path P f in G formed by vertices v = ,pf,... ,pf — u. where pf G Lf(v) for 
0 < k < i, and there is also a path P~ in G formed by vertices v = .pj,... ,pj = u, 
where p]~ G for 0 < k < j. Note that we can assume that u is distinct from ail of 

Po jPÎ, • • • ipt-i a n ( l PÔ iP\ •> • • • iPj-v ^^^ i s ' w e c h° o s e « and j to be as small as possible. 
Then the graph induced by P+ U P~ forms a fixed cycle of G in a. 

Similarly, v lies on a fixed path with end vertices u and w (each on a fixed cycle) if and 
only if w G Lf fi Lf for some i' > i > 0 and w G Lj, n Lj for some f > j > 0. To 
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see this, first observe that if v lies on a fixed path with end-vertices u and w, we can 
conclude, without loss of generality, that u E Lf and w E LJ for some i,j > 0. Then, 
because u and w are each part of a fixed cycle, by the argument above we have that 
u E Lf for %' = i + p, and w E LJ for j' = j + q, where p and q are the respective 
lengths of the fixed cycles of u and w. Hence u E Li n L^, where ï > i > 0, and 
w E Lj n Lj>, where f > j > 0. For the converse, suppose we have u E Lt n L,/, for 
some %' > i> 0, and w E Lj D Lf, for some f > j > 0. Ensuring that %' > i > 0 and 
f > j > 0 are all chosen as small as possible, we can then consider a sequence of vertices 
v = PoiPÎi - ' - iPi = u ,pf+ v - , P $ = u, where p+ E L+{v) for 0 < k < ï, and such 
that . . . ,pf form a fixed path and pj,... induce a fixed cycle. We can choose 

a similar sequence of vertices from the negative levels of v which includes w (twice) to 
complete the proof. 

Proof of Claim, 4.7 (and Proposition 4,3). Suppose the procedure described above 
is run on G, a, and has terminated. Note that a vertex that lies on a fixed cycle or path 
is certainly in S. We shall show that for each vertex v E V(G), either 

• v lies on a fixed cycle or path (so is both fixed and in S), or 

• v is neither fixed nor in S. 

This will prove that S = Fa, and also Proposition 4.3. 

Fix a vertex v of G and consider the levels of v. We have observed that if there is a 
vertex that is in Lf, for some i > 0, and also in LJ, for some j > 0, then v lies on a 
fixed cycle. Also, if there is a vertex that belongs to Lf and L f , for some i' > i> 0, and 
another vertex that belongs to LJ and LJ, for some j' > j > 0, then v lies on a fixed 
path. 

If neither of these two properties hold, then either the positive or negative levels (or 
both) are disjoint and thus only finitely many of them are non-empty. We show that this 
means we can recolour v and so v is not fixed. Let us assume therefore that Lf — 0 or 

— 0 for some t > 0. Without loss of generality, let us assume Lf — 0 . Thus each 
vertex u E Lf_1 can be recoloured with a(u) + 1 (mod 3). Then each vertex w E Lf_2 

can be recoloured with a(w) + 1 (mod 3), and so on, until v is recoloured. The fact 
that v can be recoloured implies it is not in S: every vertex in S has a pair of differently 
coloured neighbours, so no vertex in S can be the first to be recoloured. • 

Claim 4.7 allows us to find Fa and Fp. If Fa ^ Fp, or if there is a vertex v E Fa such 
that a(v) (3(v), then there is no path from a to (3. The algorithm outputs Fa, Fp and, 
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if necessary, v. 

Henceforth we assume that condition (CI) is satisfied, so Fa = Fp and for all v G Fa, 
a(t;) = ¡3(v). 

If FA ± 0 , we construct, from G, a new graph G / by identifying, for I = 1,2,3, all 
vertices in Si and denoting the newly created vertex by In other words: 

• y(Gf) = (V(G)\Fa)U{f1J2jf3}1e,ud 

• E(Gf) = {uv G E(G) \u,ve V(G) \ Fa} U { / i / 2 , / i / 3 , hh) 

u U {ufi I u G V(G) \ FQ and 3v G Sz with uv G E(G)}. 
¿=1,2,3 

If G has no fixed vertices with respect to a, then we set Gf — G. 

It is convenient to assume that all edges are retained so that G and G f have the same 
edge set. Since Si,S2,S3 are independent sets (they are subsets of the colour classes of 
the colouring a), this means Gf is a graph with possibly multiple edges, but no loops. 
Let ctf and ftf be the colourings induced on Gf by ex and ft. It is easy to observe that if 

• / l , ¡2 and / 3 are the only fixed vertices of Gf in af and ftf, and 

• fh f'2 and / 3 induce a (fixed) 3-cycle in Gf in both colourings. 

Note that if a and ft belong to the same component of C3(G), this component is isomorphic 
to the component of C3(G^) that contains and ftf. Hence we have the following. 

Claim 4.8 

There is a path from a to ft in C3{G) if and only if there is a path from a f to ftf in C3(Gf). 

To prove Theorem 4.6, we shall prove the following claim. 

Claim 4.9 

Two 3-colourings af and ftf of a graph Gf belong to the same component of C3(Gf) if 

and only if 
(C2') for every cycle C in Gf, W(C,af) = W(C,ftf). 

Let us first establish that the claim implies the theorem, recalling that we are assuming 
condition (CI). Let C be an oriented cycle in G. In Gf, the oriented edges of C form 
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a set of edge-disjoint oriented cycles. (Here we are using the convention that ail edges 
from G are retained in Gf.) Since these cycles contain the sanie edges as C, similarly 
oriented, it is easy to see that the sum of the weights of these cycles is equal to W{ C, a). 
Thns if G*, af and $ satisfy (C2'), then G, a, (3 satisfy (C2). 

—> 

Now, let P be an oriented path between fixed vertices in G. If the end-vertices of P 

hâve the same colour, then the oriented edges of ~P again forni a set of edge-disjoint 
oriented cycles in G*, and (C2') implies that W{P,a) = W(P,P). If the end-vertices 
of P hâve a différent colour, then we can suppose, without loss of generality, that the 
end-vertices of P are coloured 1 and 2 and that ~P is oriented from the end-vertex 
coloured 1 towards the end-vertex coloured 2. This means that the union of the ori-
ented edges of P and the edge f2fi forms a set of oriented cycles in Gf. Since we 
have w ( / 2 / i V ) = w Q t f ^ p f ) , (C2') again implies that W(P,a) = W(P:(3). Hence 
if satisfy (C2'), then G, a, (3 satisfy (C3). 

Conversely, if there is a cycle C in Gf such that W(C, af) ± W{C;(3f), then this same 
cycle can be found in G or, if C intersects { / i , / 2 , / 3 } , then there is a path between fixed 
vertices in G that has différent weights under a and (3. This shows that if o/,/?•>* do 
not satisfy (C2'), then one of (C2) or (C3) fails for G, a, ¡3. 

Proof of Claim 4.9. To prove the claim we describe an algorithm that either finds a 
path from af to (3} in C3(Gf), or finds a cycle C in Gf such that W(C, af) ± W{C, /3f). 

The algorithm attempts to find a sequence of recolourings that transforms a f into (3f. 
It maintains a set F Ç V(Gf) such that the subgraph induced by F is connected and for 
each v G F, the current colouring of v is (3f (v). Initially, if Fa and Fp were not empty, 
we let F = {fi, f'2,h}- Otherwise, we set F = 0. We then try to increase the size of F 

one vertex at a time. 

We show how to extend F if F ^ V(Gf). If F ^ 0 , then choose a vertex v £ F such 
that. v is adjacent to a vertex u G F. If F = 0 , then we choose an arbitrary vertex v, and u 

does not exist. Suppose the current colouring is a'. If a'(v) = ¡3f(v), we can extend F 

to include v immediately. Otherwise, let us assume that a f(v) = 2 and (3̂  (v) = 3. Note 
that this means that a'(n) = 1 (if u exists), since a'(w) = ft (u) and u is adjacent to v. 

Now we attempt to find the positive levels of v in ar. This is easily done algorithmi-
cally: L^(v) contains those neighbours of v coloured 3; L^ (v) contains neighbours of 
vertices in Lf(v) coloured 1, and so on. We stop if either 

(LI) we reach a level Lf that is empty, or 

(L2) we find a level that contains a vertex w G F. 
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Note that one of (LI) or (L2) must occur. This is because any vertex not in F belongs 
to at most one level (if a vertex belongs to two levels it is fixed, and ail fixed vertices 
are in F). Hence we eventually reach either a level that contains a vertex tu G F, or an 
empty level. If F is empty, then, of course, (LI) must occur. 

If (Ll) occurs, then we can recolour each vertex z in L+, j = i ~ 1, i - 2 , . . . , 0, with 
a'(z) + 1 (mod 3), starting with the highest level and working down. Thus, ultimately, v 
is recoloured 3 and we can now add v to F. If there are stili vertices not in F, we repeat 
the procedure. 

Suppose (L2) occurs. Then there is a path P from u to w coloured 1-2-3-1-2-3 a'(w). 
Moreover, no internai vertex of P is in F. As u and w are in F, and F induces a 
connected subgraph, we can extend P to a cycle C using a path Q = w,.. -, u in F. We 
claim that W(C,a') ± W{C,j3f), and hence the cycle C is an obstruction that shows 
that a' and (3? do not belong to the same component of C3(C). Because a f and c/ do 
belong to the same component of C3(G), this cycle is also an obstruction showing that a f 

and fif do not belong to the saine component of C3(G). 

To see that W(C.a') / W{C,j3f), choose the orientation C so that the edge uv is 
oriented from u to v. The weight of C is the sum of the weights of P and Q (taking P 
and Q to have the same orientation as C). Let W(Q,a') — k. As vertices in F are 
coloured alike in a' and f3f, W(Q,(3f) = k. Let p be the number of edges in P. Then 
W(P,a') — p. since each edge has weight +1. But W(Q, (3*) < p, since w(ïw, fit) = — 1. 
Thus we find W(C, < k + p = W{C, a'). 

Ali the above was done under the assumption that a'{v) — 2 and (3^(v) = 3. In the cases 
a'(v) = 3, fif(v) = 1 and a'(v) = 1, /3^(v) = 2 we do exactly the same, again using the 
positive levels Lf(v). In the other three cases, we follow the same steps, but now using 
the negative levels Lj(v) of v. This complétés the proof of the claim. • 

This complétés the proof of Theorem 4.6. 

Note that if a and (3 are in the same component of C3(G) and G lias n vertices, the 
algorithm in the proof of Claim 4.9 will use at most ^n(n + 1 ) recolouring steps: each 
time a vertex is added to P, we have recoloured ail vertices not in F at most once. This 
proves Theorem 4.2. 

Note also that the procedure which finds the fixed vertices of a given 3-colouring, the 
construction of Gf from G, and the algorithm in the proof of Claim 4.9 can clearly be 
performed in polynomial time. This proves Theorem 4.1. 
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Using Theorem 4.6, it is now possible to give an alternative proof of Theorem 4.1. We 
describe a modification of the algorithm that proves Theorem 4.6 which, given a graph G 
together with two 3-colourings a and (3 as input, décidés whether or not a and (3 belong 
to the saine component of C3(G) by simply checking conditions (Cl), (C2) and (C3). 

As before, we first check whether condition (Cl) is satisfied. We proceed by assuming 
it (else the algorithm terminâtes), and then transform the instance G, a, ¡3 into the in-
stance Gf We have already observed that these opérations can be performed in 
polynomial ti me. 

Having seen that condition (C2;) is équivalent to conditions (C2) and (C3), we now 
claim that condition (C2') can be verified in polynomial time. (Note that, a priori— 
that is, without having proved Theorem 4.1—, this is not immediately obvious, since the 
graph G^ may contain an exponential number of cycles.) In order to prove this claim, 
we need to recali some définitions. 

Let H be a connected graph with n vertices and m edges. It is well-known that (the edge 
sets of) the cycles of H form a vector space over the field F2 = {0,1}, where addition 
is symmetric différence. This vector space is known as the cycle space of H. Given any 
spanning tree T of H, adding any of the m — n+1 edges e E E (H) \ E(T) to T yields 
a unique cycle Ce of H. These m — n -(-1 cycles are called the fundamental cycles of T, 
and they form a basis of the cycle space of H known as a cycle basis. In fact, it is easy 
to prove that for every cycle C. 

C = £ a, 
e£E{C)\E{T) 

where addition is as in the vector space (F2)m. We refer the reader to [17, Section 1.9] 
for full détails. 

That we can check if Gf ,a.f ,($f satisfies condition (C2;) in polynomial time follows from 
the following lemma. 

Lemma 4.10 
Let H be a connected graph with n vertices and m edges. Let a be a 3-colouring of H, T 
a spanning tree of H, and {Ce | e E E{H) \ E(T)} the set of fundamental cycles ofT. 
Then for any cycle C in H, W(C,a) is determined by the values of W(Ce,a), for ail 
e E E (H) \ E(T). 

Proof. Let C be any cycle in H, and write C = ^ Ce, with addition as in the 
eeE{C)\E(T) 

vector spa.ee (F2)Tn. Choose an orientation C for C. For each e E E(C) \ E(T), orient 
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the fondamental cycle Ce so that e has the same orientation in C and in (?e. We claim 
that 

where addition is now the normal addition of integers. We prove (4.1) by counting 
edge-weight contributions to both sides of the équation. 

Let e = uv be an edge of C, with orientation ûv on C. Clearly w{ûv, a) is counted exactly 
once on the left-hand side (LHS) of (4.1). To count the contributions that e makes to 
the right-hand side (RHS) of (4.1). we distinguish two cases, according to whether or 
not e is an edge of T. If e £ E{T). then the définition of Ce and the choice of the 
orientation Ce immediately give that e contributes exactly the weight w(wv,a) to the 
RHS. If e = uv G E(T). we claim that it appears oriented as uv exactly one more time 
than it appears oriented as uv in the cycle expansion of C. Note that uv is a cut-edge 
of T and, as such, its removal splits T into two subtrees Tu and Tv, with u G V{TU) 
and v G V{Tv). We also hâve V{TU) U V(Tv) = V(H). Let / G E(C) \ E(T) with 
uv G E(Cf). Then, in fact, we can take / = xy with x G V(TU) and y G V(Tv). If / has 
the orientation xy in C, then it has the same orientation in C'j, and hence the edge uv 
has the orientation uv in Cf. The reverse is the case if / has the orientation xy in C. 
Going along the oriented edges of the cycle C, we have the same number of edges xy 
with x G V(TU) and y G V(Tv), as we have edges between V{TU) and V(Tv) going in the 
other direction. But since uv is one of the edges of the first count, we get exactly one 
more edge xy uv of C with x G V(TU) and y G V{Tv) oriented as xy than oriented the 
other way round. This means that in the sum on the RHS of (4.1) we have exactly one 
more contribution of the form w(ûv,a) than of the form w(uv,et). 

Now suppose that e = uv is not an edge of C. Clearly this edge makes no contribution 
to the LHS of the équation. Again, to count the contributions of this edge to the RHS 
of the expression, we distinguish the cases where e is an edge of T and where it is not. If 
e = uv G E(T), we can argue as in the preceding paragraph to see that this time we have, 
in the RHS of (4.1), exactly the same number of contributions of the form w(ûv,a) as of 
the form w(tîv,a). Hence the net contribution to the RHS is zero. Lastly, if e ^ E(T) 
it makes no contribution either, since the fondamental cycle Ce to which it corresponds 
does not appear in the cycle expansion of C. 

This complétés the proof of the lemma. • 

(4.1) 
eeE(C)\E(T) 
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4.2 Distances between 3-colourings 

We have seen that if a and p are 3-colourings of a graph G that are in the same component 
of C3(G), then they are at distance 0{\V{G)\2). In this section we show that this bound 
on the distance between 3-colourings is of the right order. Before doing so, we prove that 
in the case that a and (3 are connected and Fa ^ 0 (so Fp ± 0 and for all v £ Ftt, 
a(v) = p(v)), the algorithm described in Section 4.1 finds a shortest path from a to 
¡3 in C3(G). Once again, throughout this section, G will denote a fixed 3-colourable 
connected graph. We also use the notation and terminology introduced in the previous 
section. 

Finding shortest paths between 3-colourings 

Theorem 4.11 

Let a and (3 be two 3-colourings of a connected graph G that are in the same component 
ofCs(G), and suppose that Fa ± 0. Then the algorithm described in Section 4-1 finds a 
shortest path between a and p. 

Proof. Our algorithm in fact finds a path from to p? in Gf, but, as we observed ear-
lier, the relevant components of the two colour graphs are isomorphic. For a 3-colouring 7 

of G? let us denote by the component of C3((7^) containing 7. Note that since we are 
assuming that a and (3 are connected, so are af and P?; that is, Caj — Cpf. 

Recall that G^ has exactly three fixed vertices /1, f'2- /;-t in the colourings a^ and (3?. 

Let 7 be a 3-colouring in Cpf. For any vertex v of G?, let P be an oriented path from fi 
to v. Then the height of v in 7 is defined as 

h(v,7) = |W(P,7)--W^P,/?7)!. 

We need to prove that this definition is independent of the choice of P. If there are two 
oriented paths P\ and P2 from f\ to v, then, noting that their union is a set of oriented 
cycles and applying Lemma 2.10, we have 

w(Pi, 7) - w(p2n) = w(pltp-0 - w(P2,pf). 

Rearranging, we obtain 

\W(PU7) " W(P^pf)\ = \W(P2,*y) ~ W(P2,pf)|. 

Now let 7 and 5 be adjacent 3-colourings in Cpf and let w be the unique vertex on which 
they differ. Note that this means that all neighbours of w are coloured the same as one 
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another, and all these neighbours are coloured the same in both 7 and S. Let P be an 
oriented path from fi to some vertex v and let us consider how the height of v changes 
as 7 is recoloured to S. If w is not on P , then clearly h(v. 7) = h{v, 6). We know w ± fi: 

as fi is fixed. If w is an internal vertex of P , then the sum of the weights of the two 
edges of P incident with w is zero for both 7 and <5, so again h(v, 7) = h(v, S). If w = v, 
then the sign of the weight of the edge of P incident with v changes as we recolour. So 
in this last case we have \h(v,j) - h(v, <5)| = 2. 

Note that finding a path from af to is equivalent to finding a sequence of recolourings 
that reduces the height of every vertex v from h(v, af) to zero. In the previous paragraph 
we saw that each time we recolour, only the height of the vertex being recoloured changes, 
and it either increases or decreases by 2. So if we can find a sequence of recolourings that 
always reduces the height of the vertex being recoloured, we will have found a shortest 
path. We show that this is indeed what the algorithm of Claim 4.9 does. 

Recall that the algorithm starts with a set P = {fi , f '2,f3} and then repeatedly adds 
vertices v to P, where v has a neighbour u e F. To add v to P, the vertices in either 
all its positive levels or all its negative levels are recoloured before v itself is recoloured. 
Assume that we are in the case that to recolour v all positive levels need to be recoloured; 
the other case is proved in the same way. Let y be a vertex that is about to be recoloured 
at some stage in this process (this can be v itself, or any of the vertices in the positive 
levels of v). We must show that its height will be reduced. Let 7 and S be the colourings 
before and after y is recoloured. Let Q be an oriented path from u to y that contains one 
vertex from each non-negative level of v. So if there are k edges in Q, then W{ Q, 7) = k. 
Thus W(Q,5) = k — 2, since the edge of Q incident with y has its weight changed from 1 
to —1 when y is recoloured. Let R be an oriented path from f\ to u containing only 
vertices in P, and let P be the union of R and Q. 

Since the colourings (3^ 7, <5 agree on P, we have W(R,{3f) = W{R, 7) = We 
also know that w(uv,(3^) = — 1, and since Q has k edges, this means 

W(Q,(3f) < k~ 2 = W(Q,S) < k = W{Qn). 

From this we can derive 

My, 7) = I wiP^-wOPrffy = \W(Qn)-W(Q^f)\ 

= = k-W(Q,0f) 

and similarly, 
h(y:5) = k-2 -W(Q,(3f). 
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Hence every recolouring indeed reduces the height of the Vertex being recoloured. This 
completes the proof. • 

Now let us observe that if there are no fìxed vertices, the algorithm may find a much 
longer path. For example, consider two colourings of a path that differ only on an end-
vertex v and its neighbour: o = 1-2-3-1-2-3-1 1-2-3 and ß = 2-1-3-1-2-3-1 1-2-3. 
The algorithm starts by setting F = 0 and then chooses an arbitrary first vertex to start 
the recolouring. If that first vertex is v, then the algorithm will start by recolouring 
every vertex on the path. But clearly it is possible to get from a to ß via only three 
recolourings. The reader can check that this shortest number of recolourings would be 
obtained if the first vertex chosen by the algorithm were any vertex other than v. 

We believe that the algorithm from Section 4.1 will also, with an appropriate choice of 
initial vertex, find a shortest path between two 3-colourings without fìxed vertices. 

Conjecture 4.12 
Let a and ß be two 3-colourings of a graph G that are in the same component ofCz(G), 

and suppose that Fa = Fß = 0 . For v <E V(G), let T(v) be the number of recolourings 

required by the algorithm in Section 4-1 when the algorithm starts by adding v to F = 0. 

Then the length of the shortest path between a and ß is equal to min^v^G') T(v). 

Pairs of 3-colourings at quadratic distance 

We construct a class of instances G, a, ß where, for each G, a and ß are connected and 
at distance ii(|V(G)|2) in C3(G). For TV € N, let us define the graph GN as the graph 
consisting of a 3-cycle with an attached path of length N. More precisely, let 

• T/(GÌV) = { / i , / 2 , / 3 } U {vi,v2,.. -,vN}, and 

• E(GN) = {flf2,flf3j2f3}V{f3VlyViV2lV2V3....,VN-1VN}. 

Let Q/v be the 3-colouring of Gjy given by c>!7v(/0 = i, for i = 1,2,3, and where the 
vertices v\, v2,..., vn are coloured 1, 2, 3,1,2,3, — Similarly, let ß^ be the 3-colouring 
of Gn given by ßN(fi) = h for i — 1,2,3, and where the vertices vi, v2ì..., v^ are 
coloured 2,1,3,2,1,3, — 

Theorem 4.13 

Let Ì V G N and let ßjy be as described above. Then the 3-colourings A/V and ßn 

of GN are connected and at distance ~N(N + 1) = ì2(|1/(GTV)|2) in C%(GN). 
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Proof. It is clear that GN, aN and (3N satisfy conditions (Cl), (C2) and (C3). Therefore, 
by Theorem 4.6, aN and (3N are connected in C3(GN). 

As in the proof of Theorem 4.11, we consider heights of vertices. For any vertex v of GN: 

let P be an oriented path from /3 to v, noting that f3 € FaN. Define the height of v 
in aN as h{v,aN) = \W(P,aN) - W(P,(3N)\. 

We have seen, in the proof of Theorem 4.11, that fïnding a shortest path from a N to pN 

is équivalent to finding a sequence of recolourings that reduces the height of every vertex 
in a N to zéro, and that, with each recolouring, we reduce the height of the reeoloured 
vertex by 2, while the height of ail other vertices remains the same. This enables us to 
calculate the distance between aN and (3N\ we just need to calculate the heights of ail 
vertices in ajv-

First observe that h{fi: aN) = 0, for i = 1,2, 3. For i = 1 , . . . , N, let Pi be the oriented 
path from f3 to and observe that W(Pi:aN) — i, while W(Pi,pN) = -i. This 
means that h(vi,aN) = \W(Pi,aN) - W(Pi,(3N)\ = 2i. We thus find that the distance 
between an and ¡3^ is equal to 

Since Gjv has N + 3 vertices, we obtain that this distance is indeed Q(|l/(G7v)|2). • 

1 
2 

N N 
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5 
Paths between fc-colourings 

We saw in Chapter 4 that the decision problem 3-COLOUR PATH is solvable in polynomial 
time. In this chapter we determine the complexity of the problem k-COLOUR PATH for 
values of k > 4, proving the following. 

Theorem 5.1 
For every fixed k > 4, the decision problem<, k-COLOUR PATII is PSPACE-complete. 

Moreover, it remains PSPACE-complete for the following restricted instances: 

(i) bipartite graphs and any fixed k > 4; 

(ii) planar graphs and any fixed 4 < k < 6; and 

(Hi) bipartite planar graphs and k = 4. 

The reader will also recali that we proved in Chapter 4 that if a and ß are two 3-colourings 
of a graph G connected in C3{G), then the distance between them is 0(\V(G)\2). Again, 
we will see that things are remarkably different for the case of general fc-colourings: 
we will prove that if k > 4, the distance between two fc-colourings of a graph can be 
superpolynomial in the size of the graph. More precisely, we will prove the following. 

Theorem 5.2 
For every fixed k > 4, there exists a class of graphs { G \ N e N} with the fol-

lowing properties. The graphs G^.k have size 0(N2), and for each of them there exist 

two k-colourings in the same component of Ck{Gw,fc) which are at distance Ü,(2N). More-

over. 

(i) the graphs G/v.fc may be taken to be bipartite; 
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(%%) for every 4 < k < 6, the graphs Gn k rnay be taken to be planar (in such a case the 
graphs actually have size 0(N4)); and 

(iii) for k = 4, the graphs Gmay be taken to be planar and bipartite (in such a case 
the graphs actually have size 0(N4)). 

The proofs of Theorems 5.1 and 5.2 both involve the construction of particular fc-COLOUR 
PATH instances. In both cases it will be convenient, in order to simplify the proofs, to 
first define some preliminary constructions. We do this in Seetion 5.1. We then prove 
Theorem 5.1 in Seetion 5.2 and Theorem 5.2 in Seetion 5.3. Theorems 4.1, 4.2, 5.1 and 5.2 
together suggest that the computational complexity of COLOUR PATH and the possible 
distance between fc-colourings are intimately linked. We investigate the extent of this 
correspondence in Seetion 5.4. 

5.1 Preliminaries 

List-colouring instances 

In Sections 5.2 and 5.3 we will construct particular ^ -COLOUR PATII instances G, a, ¡3: 
first for the PSPACE-hardness proof, and then for the superpolynomial distance proof. 
In both cases, it is easier to first define list-colouring instances: for such instances we 
give every vertex v a colour list L(v) C {1,2,3,4}. A proper list-colouring is a proper 
vertex colouring with the additional requirement that every vertex colour needs to be 
chosen from the colour list of the vertex. In the same way as that in which we define 
the colour graph Ck{G) of G with nodes corresponding to proper fc-colourings, we define 
the list-colour graph C(G,L) of G with nodes corresponding to proper list-colourings, 
where L represents the colour lists. The problem LIST-COLOUR PATH is now defined as 
follows. 

LIST-COLOUR PATH 

Instance : Graph G, colour lists L(v) C {1, 2, 3,4} for ali v e V(G), two list-colourings 
of G, a and (3. 

Question : Is there a path between a and (3 in C(G, L)? 

Whenever colour lists are given for the vertices of the graph, 'proper list-colouring' should 
be read when we say 'colouring'. In figures we will write colour lists as 123 instead of 
{1,2,3}, for example. 
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A list-colouring instance can then be turned into a normal 4-colouring instance, for exam-
ple, by adding a complete graph KA on vertex set {UuU2,U^UA}. Since any 4-colouring 
of Ka is frozen, we may without loss of generality assume that = i in all colour-

ings k in the component of the colour graph we consider. Now adding edges vui if and 
only if i £ L(v) turns the graph into a 4-colouring instance, where in all 4-colourings k 
we consider, K(V) E L(v). The next lemma proves formally that this can be done for 
various k without increasing the size of the graph too much, even when we require that 
planarity and bipartiteness should be maintained. 

Lemma 5.3 
For any k > 4 , a LIST-COLOUR PATH instance G,L,a,(3 with lists L(v) C { 1 , 2 , 3 , 4 } 

can be transformed into a k-COLOUR PATH instance G', af, ft such that the distance 
between a and /? in C(G,L) (possibly infinite) is the same as the distance between a' 
and ft inCk{G'). Moreover, 

(i) if G is bipartite, this can be done so that G' is also bipartite, for all k > 4; 

(ii) if G is planar, this can be done so that G' is also planar, when 4 < k < 6; and 

(Hi) ifG is planar and bipartite, this can be done so that G' is also planar and bipartite, 
when k — 4. 

In all cases, the transformation can be accomplished in a way such that \V(G')\ < 
\V(G)\f(k) and \E(G')\ < \E(G)\ + \V(G)\g(k), for some functions f(k) and g(k). 

Proof. For our transformations we need: for every k > 4, a bipartite graph with a 
frozen ^-colouring; for every 4 < k < 6, a planar graph with a frozen ^-colouring; and 
a planar bipartite graph with a frozen 4-colouring. For the first case we can take the 
graphs described in Definition 2.2: we observed in Chapter 2 that these graphs satisfy 
our requirements. For the second we can use K4 and the planar graphs with frozen 
colourings shown in Figure 2.2. For the third case we just need to observe that the 
graph L4, which is in fact isomorphic the 3-dimensional cube, is planar. 

The transformation from a LIST-COLOUR PATH instance G, L, a, (3 to a k-COLOUR PATH 

instance G', a', ft is now as follows. Let F be a graph with a frozen Ar-colouring For 
every vertex v E V(G) and colour c E {1 \ L(v), we add a copy of F to G, 

labelled Fvx. We also add an edge between v and a vertex u of Fvx with K(U) = c. 

This yields G'. The colourings a' and ft are obtained by extending a and ¡3 using the 
colouring K for every FV)C. 
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231 1 4 4 2 2 3 3 1 4 • — — • • • • 

u v 

Figure 5.1 A (1, 3)-forbidding path from u to v. 

It is easy to see that every /c-colouring obtainable from a' or (3' by recolouring induces the 
same frozen colouring on every copy of F. Also, because of the way the edges between v 
and vertices of FVìC are added, ali these fc-colourings of G' correspond to list-colourings 
of G, and vice-versa. This proves that the distance between a and (3 in C(G, L) is exactly 
the same as the distance between a' and ¡3' in Ck(G'). 

When G and F are bipartite, the construction of Gr starts with a number of bipartite 
components, and edges are added only between different components. So in this case G' 
is also bipartite. It can also be seen that G' is planar when G and F are planar: start 
with a planar embedding of G and for each copy FV)C of F, consider a planar embedding 
that has a vertex with colour c on its outer face. These embeddings of Fvx can be inserted 
into a face of G that is incident with v. Now adding an edge between v and a vertex 
of FVyC with colour c can be done without violating planarity. 

Since for ali k > 4 we can choose F to be bipartite, for 4 < k < 6 we can choose F to be 
planar, and for k = 4 we can choose F to be both planar and bipartite, we are done. • 

Adding (a,6)-forbidding paths 

The next notion that will be used in the following sections is that of an (a, &)-forbidding 
path. For a, b <G {1,2,3,4}, an (a,b)-forbidding path from u to v is a (?f,i;)-path with 
colour lists L, with L(u), L(v) ^ {1.2, 3,4}, such that in any colouring, it is not possible 
that u has colour a and v simultaneously has colour b. Any other combination of colours 
for u and v (chosen from their colour lists) is possible. In addition, any recolouring of u 
and v is possible—perhaps after first, recolouring a few internai vertices of the path—as 
long as it does not yield the forbidden colour combination. (Note that if a / ò, an (a. b)-
forbidding path from u to v is not the same as an (a. ò)-forbidding path from v to u.) 
Figure 5.1 shows an example of a (1, 3)-forbidding path from w to u. We formalise these 
concepts in the following definition. 
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Définition 5.4 
A colouring K of a (u,v)-path is a (c,D)-colouring if = c and K(V) = d. A {u,v)~ 
path P with colour lists L, where a G L(u) and b G L(v) is an (a,b)-forbidding path if 
the following two conditions are satisfied. 

• A (c, (¿)-colouring exists if and only if c G L(u), d G L(v) and (c,d) ^ (a, b). Such 
a pair (c, d) is called admissible for P. 

• If both (c, d) and (c', d) are admissible, then for any (c, G?)-colouring, a sequence of 
recolourings exists that ends with a (c', d)-colouring, without ever recolonring v, 
and only recolouring u in the last step. A similar statement holds for admissible 
pairs (c,d) and (c,d'). 

In the constructions in the following sections we will often say 'add an (a, ò)-forbidding 
path between u and v\ This means that we add an (a, &)-forbidding (V, v')-path P with 
L(v!) = L(u) and L(v) = L(v') to the graph, and then identify u with u' and v with v'. 
Then for the colourings and recolourings of u and v in the resulting graph, the above 
properties will hold. This means that in our proofs we do not hâve to consider colourings 
and recolourings of the internai vertices of the path in détail; we cari simply assume that 
any recolouring of u and v is possible, as long as this does not respectively give them 
colours a and b. 

The next lemma shows that we do not even have to describe such an (a, ò)-forbidding 
path in détail; as long as L(u),L(v) ^ {1,2,3,4}. such a path always exists. 

Lemma 5.5 
For any Lu C { 1 , 2 , 3 , 4 } , Lv C { 1 , 2 , 3 , 4 } , a G Lu and b G Lv, there exists an (a,b)~ 
forbidding (u,v)-path P with L(u) = Lu, L(v) = Lv and ail other colour lists L(w) Ç 
{ 1 , 2 , 3 , 4 } . Moreover, we can insist P has even length at most six. 

Proof. Let c G {1,2, 3,4} \ L(u) and d G {1, 2, 3,4} \ L(v). If c^d then we let P be 
a path of length four with the following colour lists along the path: LUl {a, c}, {c, d}, 
{d, ò}, Lv. We prove it is an (a, 6)-forbidding path: if in a given colouring u has colour a, 
then the second vertex has colour c, the third colour d, the fourth colour 6, so v cannot 
have colour b. When v has colour b the reasoning is analogous. It can also be seen 
that for every admissible {x,y), an (x, y)-colouring exists. This colouring is unique if 
x — a or y = b. If not, then it can be verified that ail (x. y)-colourings can be obtained 
from each other by recolouring internai vertices of P only. Adjacent (x, y)- and (x, y')-
colourings are found as follows: if x — a, then both colourings are unique, and they 
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are adjacent. If x ^ a then we find adjacent colourings by, if necessary, colouring the 
vertex next to u with a, the middle Vertex with c, and the Vertex adjacent to v with 
colour d, in both colourings. Adjacent (x, y)~ and {x', ?/)-colourings are found similarly. 
We conclude that P with these colour lists is indeed an (a, ò)-forbidding path with the 
required properties. 

If c = d, then we let P be a path of length six with the following colour lists along 
the path: LUì {a,c}, {c,e}, { e , / } , { / , c } , {c,6}, Lv, for some e <G {1,2,3,4} \ {a,c} 
and / G {1,2,3, 4} \ {b,c} with e / / . As before, it can be verified that this is an 
(a, &)-forbidding path. • 

5.2 PSPACE-completeness of ^-COLOUR PATH 

In this section we prove Theorem 5.1. We recali that PSPACE is defined as the class 
of décision problems that are decidable by a deterministic Turing machine that uses at 
most a polynomial (in the size of the input) amount of work space. Similarly, NPSPACE 
is the class of décision problems decidable by a non-deterministic Turing machine using 
a polynomially-bounded amount of space. The PSPACE-hardness of k-COLOUR PATH 

will be shown using a réduction from SLIDING TOKENS, one of severa! décision problems 
defined and proved to be PSPACE-complete by Hearn and Demaine in [30]. We first 
reduce SLIDING TOKENS to LIST-COLOUR PATH and then apply Lemma 5 .3 to prove the 
existence of équivalent £;-COLOUR PATH instances. We first establish that k-COLOUR 

PATH is indeed in PSPACE. 

Claim 5.6 
The décision problem k-COLOUR PATH is in the complexity class P S P A C E . 

Proof. We actually prove that k-COLOUR PATH is in NPSPACE, and then appeal to 
Savitch's Theorem, which asserts that PSPACE = NPSPACE (see [53, p. 150] or [57] 
for détails). Given an instance G,a ,ß of fc-COLOUR PATH together with a sequence of 
recolourings transforming a into ß (the certificate), we can easily check the validity of 
the certificate using a polynomial amount of space. This means that k-COLOUR PATH is 
in NPSPACE. • 
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A PSPACE-complete problemi SLIDING TOKENS 

The main resuit of Hearn and Demaine [30] is the présentation of a new non-deterministic 
model of computation based on reversing edge directions in weighted directed graphs with 
minimum in-flow constraints on vertices. This model, called non-deterministic constramt 

logie, or NCL, is shown to have the same computational power as a space-bounded 
Turing machine, and several décision problems surrounding it are proved to be PSPACE-
complete. These décision problems are then used to prove the PSPACE-completeness of 
certain sliding-block puzzles such as Rush Hour and Sokoban. The last section of [30] 
gives an équivalent formulation of NCL in terms of sliding tokens along graph edges, and 
it is this formulation that we use for our réductions. We proceed to describe it, first 
giving some définitions. (The interested reader will find a more detailed description of 
NCL and its différent formulations in the Appendix.) 

A token configuration of a graph G is a set of vertices on which tokens are placed, in such 
a way that no two tokens are adjacent. (Thus a token configuration can be thought of 
as an independent set of vertices of G.) A move between two token configurations is the 
displacement of a token from one vertex to an adjacent vertex. Note that a move must 
resuit in a valid token configuration. 

Amongst others, the following décision problem, which we cali SLIDING TOKENS, is 
proved in [30] to be PSPACE-complete. 

SLIDING TOKENS 

Instance : Graph G, two token configurations of G, TA and 
Question : Is there a sequence of moves transforming TA into 

The réduction used to prove PSPACE-completeness of SLIDING T O K E N S in [30] actually 
shows that the problem remains PSPACE-complete for very restricted graphs and token 
configurations. Our réduction to L I S T - C O L O U R PATH is actually from a slightly wider 
class of restricted instances for which SLIDING TOKENS remains PSPACE-complete. but 
we do not give a réduction from the general problem. We proceed to describe the instances 
G.TAJTB of SLIDING TOKENS that we will use for our réduction. 

The graphs G are made up of token triangles (copies of A3) and token edges (this involves 
a slight abuse of terminology: when we say token edge, we actually mean a copy of K2). 

Token triangles and token edges are ail mutually disjoint, and joined together by edges 
called link edges, in such a way that every vertex of G is part of exactly one token triangle 
or token edge. Moreover, every vertex in a token triangle ends up with degree 3, and G 
has a planar embedding where every token triangle bounds a face. The graphs G have 
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\ 
\ 
\ 

Figure 5.2 An example of a restricted instance graph together with a stan-
dard token configuration. 

maximum degree 3 and minimum degree 2. 

The token configurations TA and TB are such that every token triangle and every token 
edge contain exactly one token on one of their vertices. In any sequence of moves from TA 

or Tj3, a token will never leave its triangle or its edge: the first time a token were to do 
so, we would cease to have a valid token configuration. Hence tokens will never slide 
along a link edge. (We remark that it is this limitation on possible token displacements 
that allows for a reasonably straightforward reduction.) Token configurations where 
every token triangle and every token edge contain exactly one token are called standard 
token configurations of G—thus TA and TB are standard token configurations. A simple 
example of a restricted instance graph G with a standard token configuration is shown 
in Figure 5.2, where token triangles and token edges are shown in bold. We insist: for 
these restricted instances, SLIDING TOKENS is PSPACE-complete. For further details, 
we refer the reader to the Appendix and [30]. 

The construction of equivalent LIST-COLOUR PATH instances 

Given a restricted instance G,TA.TB of SLIDING TOKENS as described above, we con-
struct an instance G',L}a,/3 of LIST-COLOUR PATH such that standard token configu-
rations of G correspond to list-colourings of G', and sliding a token in G corresponds to 
a sequence of vertex recolourings in G'. 

We first label the vertices of G: the token triangles are labelled 1 , . . . , m, and the vertices 
of triangle i are labelled tu, U2 and ¿¿3. The token edges are labelled 1, . . . ,ne, and the 
vertices of token edge i are labelled en and el2-

The construction of Gf is as follows: for every token triangle i we introduce a vertex ti, 
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with colour list L(U) = {1,2.3}. For every token edge i we introduce a vertex e* in G', 
with colour list Lfe) = {1,2}. Whenever a link edge of G joins a vertex tia with a 
vertex ejb, we add an (a, &)-forbidding pat.h (of even length at most 6) between tx and e3 

in G'. We do the same for pairs tia and tjbi and pairs eia and ejb. Note that this is a 
polynomial time transformation. 

Standard token configurations of G now correspond to colourings of G' as follows: a 
token configuration where the token of token edge i is on e^ (j = 1,2) corresponds to 
colourings of G' where e,- has colour j. Analogously, if the token of token triangle i is on 
Uj (j = 1, 2,3), this corresponds to colourings where U has colour j. Since tokens are not 
adjacent, it is possible to choose colours for the internal vertices of the (a, 6)-forbidding 
paths so as to obtain a proper colouring of G'. Two colourings a and ß corresponding 
respectively to TA and TB are constructed this way. Note that to a given standard token 
configuration of G there can correspond multiple colourings of G' because of the freedom 
in choice of colours for the internal vertices of the (a, 6)-forbidding paths. 

Claim 5.7 
The graph G' as constructed above is planar and bipartite. 

Proof. Let us consider a planar embedding of G where ail token triangles bound a face. A 
planar embedding of G' can be obtained from that of G by contracting all token triangles 
and token edges, and subdividing the remaining (link) edges. Ail (a, 6)-forbidding paths 
in G' have even length, so G' is bipartite. • 

Claim 5.8 
Let G,Ta,TB be a restricted instance of SLIDING TOKENS, and let G'.L,a,ß be a cor-
responding instance of LLST-COLOUR PATH as constructed above. Then G,TA,TB is a 
YES-instance if and only if G', L, a, ß is a YES-instance. 

Proof. Recali that a token configuration in which the token of token edge i (token 
triangle i) is on ê - (on Uj) corresponds to multiple colourings of G' where e\ (U) has 
colour j. Because of this multiplicity of colourings, we define colour classes of colourings: 
if two colourings rc and A of G' have k(U) = A (U) and «(e*) = A(e^) for every z, then k 
and A are said to be in the same colour class. 

Hence the correspondence between standard token configurations of G and colourings 
of G' defines a mapping between standard token configurations and colour classes. This 
mapping is in fact a bijection: (a, ?>)-forbidding paths restrict their end vertices from 
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having colours a and b respectively, but they pose no other restriction on the possible 
colours of their end vertices. So tia and ejb cannot both be occupied by a token in a 
token configuration if and only if no colouring n has k(U) = a and K(ej) = b. (Similar 
statements hold for pairs U and tj, and pairs e?: and ej.) 

Now we claim that if there exists a sequence of moves that transforms TA into TB, then 
there exists a sequence of recolourings that transforms a into ¡3. We mentioned earlier 
that any token configuration obtainable from TA is a standard token configuration. Hence 
every token move corresponds to recolouring a vertex U or a vertex a . Note that before 
recolouring t{ (or a), it may be necessary to first recolour some internal vertices of (a, b)-
forbidding paths incident with U (or e*), but by the definition of (a, 6)-forbidding paths, 
we know this is always possible. It can also be seen that when we finally arrive at the 
colour class that contains ¡3 in this way, the internal vertices of all (a, 6)-forbidding paths 
can be recoloured so that exactly the colouring (3 is obtained. 

Similarly, for every sequence of recolourings from a to (3 we can construct a sequence 
of token moves from TA to TB: whenever a vertex ti (e*) is recoloured from colour a to 
colour 6, we move the corresponding token from tia to tib (from eia to eib). This completes 
the proof. • 

Claim 5.8 shows that the instance G', L , a, (3 of LIST-COLOUR PATH we constructed above 
is equivalent to the given instance of SLIDING TOKENS. In addition, G' is planar and 
bipartite, by Claim 5.7. Now we can use Lemma 5.3 to construct equivalent fc-COLOUR 
PATH instances from G',L, a. (3. All of these transformations can be accomplished in 
polynomial time, and we saw in Claim 5.6 that A:-COLOUR PATH is in PSPACE. This 
completes the proof of Theorem 5.1. 

Let us now observe that the values of k in parts (ii) and (iii) of Theorem 5.1 are tight. 
We saw in Chapter 2 that a planar graph is always fc-mixing for k > 7. We saw this 
as a consequence of Theorem 2.7 and the fact that the degeneracy of a planar graph is 
at most 5. Hence any instance G,a,(3 of fc-COLOUR PATH, where G is planar and a, ¡3 
are /c-colourings with k > 7 is trivially a YES-instance. Similarly, if we note that the 
degeneracy of a bipartite planar graph is at most 3 and appeal to Theorem 2.7, we have 
that fc-COLOUR PATH is trivial for bipartite planar graphs and k > 5. The fact that 
for a bipartite graph G we have deg(G) < 3 can be seen as follows. Considering an 
embedding of G in the plane, let us write F{G) for the set of faces of G and, for 0 a 
face of G, let us denote the number of edges bounding <j> by d(cf)). Then, noting that 
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^ d ( v ) = = 2 m ' w e m a y w r i t e Euler's formula n - m + / = 2 as 
veV(G) 4>e F(G) 

] T (d(v)- 4 ) + £ - 4) = - 8 . 

Since G is bipartite, > 4 for ali (F> <E F(G). This means that for some vertices of G 
we must have d(v) < 4; that is, deg(G) < 3. 

Together with Theorems 4.1 and 5.1, the observations above allow us to completely 
determine the complexity of fc-C0L0UR PATH for planar and bipartite planar graphs. 

Theorem 5.9 
Restricted to planar graphs, the décision problem fc-CoLOUR PATH is PSPACE-complete 

for 4 < k <6, and in P for ail other values of k. 

Theorem 5.10 
Restricted to bipartite planar graphs, the décision problem COLOUR PATH IS P S P A C E -

complete for k = 4, and in P for ail other values of k. 

5.3 Distances between fc-colourings 

In this section we construct classes of A;-COLOUR PATH instances such that the distance 
between the two colourings is superpolynomial in the size of the graph. As in the proof of 
Theorem 5.1, we will do this by first constructing classes of LIST-COLOUR PATH instances 
and then applying Lemma 5.3. 

For every integer N > 1, we construct a graph Gn with colour lists L. (To avoid cluttering 
the notation, we will denote the colour lists of each GN by L\ which graph these lists 
belong to will be clear from the context.) The graphs GN will have size 0(Af2) and 
the list-colour graphs C(GN,L) will have a component of diameter Q(2N). Later in the 
section we will show how to obtain bipartite and planar instance classes with the saine 
property. In the case of planar instances, the graphs Gjv will have size 0(N4) and the 
list-colour graphs C(GPJ, L) will have a component of diameter 2N). 

The number N can be seen as the number of 'bits' that is used in the graph: the graph 
will have N vertices whose colour can be thought. of as a binary variable. For every 
combination of binary values there will exist a corresponding colouring of G^. These 
combinations can be mapped to values 0 , . . . , 2^ — 1 in such a way that one can only 
increase or decrease this value by one when recolouring GN. 
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For a given N, the graph GN is constructed as follows. Start with N triangles, each 
consisting of vertices v[ and v* with L(VÌ) = {1,2}, L{v[) = {1,2,3} and L(v*) = 

{3,4} , for i = 1 , . . . , N. In a colouring K where K(V*) = 3, triangle i is said to be 
locked, otherwise it is unlocked. Now between every pair v* and v* with i ^ j we add a 
(4,4)-forbidding path. Hence we have the following. 

Claim 5.11 

At most one triangle can be unlocked in any colouring. 

For every i, we add (a. 6)-forbidding paths from v* to every VJ with j < i: we acid a 
(4, l)-forbidding path from v* to VI-i, and (4, 2)-forbidding paths from v* to vj with 
j <i — 2. This ensures the following. 

Claim 5.12 

Triangle i can only be unlocked in a colouring K when = 2 and N(VJ) — 1 for 

ail j < i — 2. 

This yields the graph GN-

Claim 5.13 
The graphs GN have 0(N2) vertices and 0(N2) edges. 

Proof. The graph GN consists of N triangles, N(N — l ) / 2 (4,4)-forbidding paths, 
and N(N — l ) / 2 paths that are either (1,4)-forbidding or (2, 4)-forbidding. 

Because by Lemma 5.5 we can assume that ali (a, ò)-forbidding paths have length at 
most 6, we get |V(GTV)| < + 5N(N - 1) and |£(GV)| < 37V + 6N(N - 1). • 

To show that there exists a pair of colourings of GJV such that exponentially many steps 
(exponential in N) are needed to go from one to the other, we need only consider the 
colours of the vertices VI. These can be seen as the N bits with value 1 or 2. We cali a 
colouring k of Gn A (cj, c2i • • • ,CJV)-colouring if rc(t/j) = C{ for ail i. Ail (c\,c2,.... CN)-
colourings together form the colour class (ci,c2,.. •,cpj). 

Claim 5.14 

Let ci G {1, 2} for 1 < i < N. Then the colour class ( c i , . . . , cjv) is non-empty. 

Proof. Consider a colouring K where K(VÌ) — Q, = 3 — Q and K(V*) = 3 for 
ali i. Since ail triangles are locked, this colouring does not violate any of the constraints 
imposed by the forbidding paths, and so can be extended to a full colouring of G^. • 
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Lemma 5.15 
Let (x\,x2ì...ìxN) and (2/1,3/2, — , 3 / j v ) be distinct tuples with allx^yi G { 1 , 2 } . 

• If the tuples differ only on position i, with Xi-i = 2 and x7- = 1 for ail j < i - l, 

then from any colouring in class (xi, x2,..., xN) we can reach some colouring in 

class (yi,y2,..., y M) via a sequence of recolourings, without ever leaving colour class 

(x\,x2,... ,XN) in the intermediate colourings. 

• Otherwise, there is no colouring in class (xi, x2,..., x^) that is adjacent to a colour-
ing in class (yuy2,...,yN). 

Proof. Let {xi,x2,..., xN) and (yi,y2,.... yn) be tuples as described above, and sup-
pose that the conditions described in the first bullet point hold. We show that any colour-
ing K in class ( x i , x 2 , . . . , XN) can be recoloured to a colouring in class {yì:Y2,..., IJN)-

Note that by the définition of (a. £>)-forbidding paths, we may ignore ail recolourings of 
the internai vertices of these paths, since we know that any necessary recolouring of these 
vertices is always possible. 

We first show how to recolour K, to an (xj,x2,..., XJV)-colouring in which only triangle i 

is unlocked. If ail triangles are locked in k, we can immediately recolour v* to 4—this 
does not violate any of the constraints imposed by the forbidding paths. Otherwise, there 
is exactly one triangle which is unlocked. Let this triangle be triangle j , where j ^ i. We 
now lock this triangle. If we cannot immediately recolour Vj to 3, this must be because 
k(vj) — 3. We change this colour to n(vfj) = 3 — re(vj), and then triangle j can be locked. 
Next, triangle i can be unlocked: no other triangles are unlocked, so the (4,4)-forbidding 
paths pose no restriction. Since = 2 and ft(vj) = 1 for ail j < i — 1, the (4,1) and 
(4,2)-forbidding paths starting at v* pose no restriction either. At this point, we can set 
k(v^) = 3, and then set /î(î^) = yi to obtain a colouring in class [y\,..., yw). This proves 
the first statement. 

Now let a be an (xi, x2,..., x^)-colouring, let (3 be a {y\, y2...., ?/jv)-colouring, and 
suppose that that a and ¡3 are adjacent. This means they differ only on one vertex, and 
because the tuples are distinct, a and (3 must therefore differ precisely on a vertex for 
some i. This means triangle i is unlocked in both colourings. Because of the (4,1)- and 
(4,2)-forbidding paths starting at v*, a(vt-i) = 2 and a(vj) = 1 for ail j < i - 1. This 
proves the second statement. • 

It follows from Lemma 5.15 that every colour class is adjacent to at most two other colour 
classes (we use the concept of adjacency of colour classes with the obvious meaning). 
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1111 2111 2211 -> 1211 

1221 2221 -»• 2121 1121 -»> 
1122 ->• 2122 2222 1222 -> 
1212 2212 2112 -> 1112 

Figure 5.3 Colour classes visited in a shortest path between a (1,1,1,1)-
colouring and a (1,1,1,2)-colouring of G 4. 

Firstly, the colour of vj can always be changed. In addition, there is at most one Vi such 
that Vi-1 has colour 2 and vj has colour 1 for ail j < i - 1; this is the only other vertex of 
v i , . . . , VN whose colour can be changed without first changing that of one of the others. 
Figure 5.3 shows ail colour classes of G4 and the order in which these need to be visited 
in order to go from a. (1,1,1, l)-colouring to a (1,1,1, 2)-colouring of G4—ail 16 différent 
classes need to be visited. We now prove this formally for every N. 

Theorem 5.16 
Every graph GN has two colourings a and (3 in the same component O/C(GTV,L) which 

are at distance at least 2N — 1. 

Proof. For the colouring a we choose a colouring in class (1 , . . . , 1). Colouring (3 will 
be a colouring in class (1 , . . . , 1,2). Such colourings exist by Claim 5.14. We first prove 
by induction that such colourings are connected, using the following induction hypothesis. 

Induction hypothesis 
There is a path in C(GNI L) from any colouring a' in class (1,..., 1, XQ, XI, ..., £/v-n) to 

some colouring (3' in class (1,..., 1,3 — xo, x\,..., xj\r_n). 

The colourings differ on vertex vn: we have A'(vn) = XQ and (3'{vn) = 3 — xo, while 
for ail j / n, we have af(vi) = (3'{vi). If n = 1, the statement follows directly from 
Lemma 5.15. If n > 1, then from a' we recolour to a (1 , . . . , 1, 2, xo, x\...., xjv-n)-
colouring (which differs from the initial class only in the (n — l)-th position), using the 
induction hypothesis. Then we recolour to a (1 , . . . , 1,2,3 — . . . , X7v^n)-colouring, 
using Lemma 5.15. Finally, using the induction hypothesis again, we can recolour t-o a 
(1 , . . . , 1,1,3 — xo, x i , . . . , xjv-n)-c°l°uringî which proves the statement. 

Now we show that to go from a (1 , . . . , l)-colouring to a (1 , . . . , 1,2)-colouring, at least 
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2N -2 other colour classes need to be visited, using the following induction hypothesis. 

Induction hypothesis 

To gofrom a ( 1 , . . . , 1,1, xu ..., xN_n)-colouring to a (1 , . . . , 1, 2, yi,..., yN-n)-colourmg, 
at least 2n - 2 other colour classes need to be visited. 

Let us denote the vertex recoloured from 1 to 2 (appearing before the vertex coloured 
xi and yi) by vn. If n = 1, the statement is obvious. If n > 1, then consider a 
shortest path between two colourings in these classes, if it exists. At some point in 
the sequence of recolourings, the colour of vn is changed for the first time; before this 
we must have a (1 , . . . , 1,2,1, z\...., 2:/v_n)-colouring, by Lemma 5.15 (in this colouring, 

has colour 2). By the induction hypothesis, at least 2n~l - 2 colour classes have 
been visited before this colour class was reached. Now changing the colour of vn to 2 
yields a (1 , . . . , 1,2, 2, z\,..., zjv-^-colouring. Using the induction hypothesis again, at 
least 2 n _ 1 - 2 colour classes need to be visited before class (1 , . . . , 1, 2, y i , . . . , yN-n) is 
reached. This means that in total, at least 2n — 4 + 2 intermediate colour classes have 
been visited in the recolouring procedure. This complétés the proof. • 

Claim 5.13 and Theorem 5.16 show that GAT with its colour lists L is a list-colouring 
instance such that C(GN,L) has a component of diameter superpolynomial in the size 
of GN. Unfortunately, the graphs G/v are neither bipartite nor planar. We now use 
the graphs Ĝ v to construct bipartite and planar list-colouring instances with the same 
property. 

Making the graphs planar and bipartite 

We start with a copy of GN with lists L and obtain a bipartite graph Gjy with lists L 

as follows. For every iy we remove the edge vlv*: this does not influence the possible 
colourings and recolourings of Vi and v* since the colour-lists of these vertices are disjoint. 
Ail forbidding paths can be chosen of even length by Lemma 5.5, and since ail vertices V{ 
and v* are now in the sanie part of the bipartition, the resulting graph is bipartite. As 
before, we can find two colourings a and ¡3 of Gfj that are at distance at least 2 ^ - 1 . 
The size of these graphs is not significantly différent to that of the graphs G ,v. 

Claim 5.17 

The graphs have 0{N2) vertices and 0(N2) edges. 
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Next, we use the graphs Gfj to construct bipartite planar LIST-COLOUR PATH in-
stances Observe that can be drawn in the plane so that only edges of forbidding 
paths cross; that is, so that edges that were formerly part of the triangles never cross. Us-
ing such a drawing of (without too many crossings, see Claim 5.20 below), we replace 
every (a, ò)-forbidding path P on which there are r crossings by a long path consisting 
of r + 2 new paths Q0,... ,Qr+i, drawn along the same curve as the old path. We do 
this in a way such that the paths Qi contain exactly one crossing, for 1 < i < r, and Q0 

and Qr+1 contain no crossings. For 0 < i < r, the paths Qi and Qi+1 share a vertex with 
colour list {1, 2}. For 1 < i < r, the path Qt will be a (1, 2)-forbidding path; Q0 will be 
an (a, 2)-forbidding path and Q r + 1 will be a (l,6)-forbidding path. Together, these even 
length paths form an (a, 6)-forbidding path of even length, as can be seen from repeated 
application of the following observation. 

Claim 5.18 
Let Q be an (a, b)-forbidding path from u to v, and let Q' be a (c, d)-forbidding path from v 
to w such that V{Q)nV(Qr) ~ where L(v) = {b,c}. Together, Q and Q' form an 
(a, d)-forbidding path from u to w. 

After this is done for every (a, ò)-forbidding path that contains crossings. we end up with 
a drawing where the only crossings occur between (l,2)-forbidding paths, where both 
end vertices of both paths hâve colour list {1,2}. Ail such pairs are now replaced with a 
crossing component such as that depicted in Figure 5.4: the figure shows an example of 
the crossing component for an (n, s)-path and a (w, e)-path that are both (1,2)-forbidding 
paths. 

After replacing ail such crossings we obtain a planar graph. Note that bipartiteness is 
maintained: previously ail end vertices of (a, ò)-forbidding paths were in the same part 
of the bipartition, and this is also true for the end vertices of the crossing component. In 
addition, ail cycles in the crossing component are even. We cali the resulting graph G 
The following lemma shows that, with regard to the possible colourings and recolourings 
of the end vertices n,s, w, e. this crossing component behaves in exactly the same way as 
the two old forbidding paths. 
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Figure 5.4 A crossing component corresponding to two (1, 2)-forbidding 
paths. 

Lemma 5.19 
The crossing component of Figure 5.4 has the following properties. 

• For CN^CSICWICE G {1,2}, a colouring K with K(U) ~ cn, K{S) = cs, K(W) = cw and 
K;(e) = ce exists if and only if 

-i(Cn = 1 A cs = 2) A ^{cw = 1 A ce = 2). 

• For any colouring K with K(S) = 1, there exists a sequence of recolourings that ends 

by changing N{n), without ever changing K{S), K(W) or «(e). Similar statements 

holdfor recolouring s when K(n) = 2, recolouringw when /t(e) = 1 and recolouring e 

when K(W) = 2. 

Proof. The vertex c is the central vertex of the crossing component. The graph consists 
of four branches around c, called the north, south, west and east branches. Before we 
begin the proof of the above statements, let us make the following observation, which 
spares us a lot of case analysis: swapping colours 1 and 2 in the lists of the crossing 
component corresponds to mirroring the drawing in the bottom-left to top-right diagonal, 
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and swapping colours 3 and 4 corresponds to mirroring in the top-left to bottom-right 
diagonal. So whenever we prove a statement for the north branch, the sanie statement 
holds for the east (west) branch when we swap the colours 1 and 2 (3 and 4) in the 
statement. Swapping both 1 with 2 and 3 with 4 yields a correct statement for the south 
branch. 

If c has colour 3, then n must have colour 2 (arguing along the right patii of the north 
branch). If c has colour 2, then n again has colour 2 (consider the left path in the north 
branch). In general we find, for a colouring K: 

• if K[C) G {2,3}, then rc(n) = 2; 

• if K(C) G {1,4}, then «(s) = 1; 

• if K(C) G {2,4}, then K{W) = 2; 

• if «(c) G {1,3}, then «(e) = 1. 

Since either C G {2,3} or c G {1,4}, it follows that K(TÌ) = 1 and K(S) = 2 cannot 
occur simultaneously; similarly for w and e. It can also be seen that whenever c is not 
coloured with 2 or 3, there exist colourings of the north branch where n has colour 1, and 
colourings where n has colour 2. Similar statements hold for the other three branches. 
All this proves that for every combination of colours cn. cs. cw. ce for the four vertices, 
a corresponding colouring n exists, except when cn = 1 and cs — 2, or when cw = 1 
and ce — 2. This proves the first statement about possible colourings. Now we consider 
possible recolourings of the crossing component. 

We prove that we can always recolour n, as long as s has colour 1, without ever recolour-
ing w or e. Whenever c has colour 1 or 4, it is easy to see that we can recolour the north 
branch and change the colour of n without any recolouring of c or of the other branches. 

Now suppose Aì(c) = 3. This means K(n) = 2 and n(e) = 1. In this case we first change 
the colours of ali vertices adjacent to c to 2 or 4, without changing «;(n), K(S), K{W) 

or n(e). 

• It is obvious this can be done in the west branch. 

• For the east branch we use the fact that K{e) = 1. 

• For the south branch we use the fact that n{s) = 1. 

• For the north branch we use the fact 'that n{n) = 2. 
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At this point we can recolour c to 1. Now it can be checked that the vertices in the north 
branch can be recoloured so that n gets colour 1. 

Similarly, when K(C) - 2 ail of c's neighbours can be recoloured to 1 or 3 without 
recolouring n, s, w or e. Then c can be recoloured to 4, which in turn allows n to receive 
colour 1, after a few steps. 

This shows that we can always recolour n whenever K(S) — 1. For the other three 
branches, similar statements follow from the above mentioned symmetries. • 

Claim 5.18 and Lemma 5.19 show that after replacing forbidding paths with multiple 
forbidding paths, and replacing crossings with crossing components, the new structures 
act like the old forbidding paths with regard to possible colourings and recolourings of 
Vi, v[ and v* (though perhaps 'a few' more recolourings of internai vertices are needed). 
So the statements from Lemma 5.15 and Theorem 5.16 can be proved for these graphs. 
Adapting the two colourings of Gn to colourings of G^ is straightforward. It remains 
only to consider the size of the graphs G^-

Claim 5.20 
The graphs G^ have 0 (N 4 ) vertices and 0(N4) edges. 

Proof. We start with a drawing of GN in which only (a, 6)-forbidding paths cross. It is 
easy to see that a drawing can be found such that every pair of forbidding paths crosses 
at most once. An informai proof runs as follows. First embed the 3N vertices in the N 
triangles along a circular closed curve in the plane, where the three vertices of each 
triangle are placed consecutively along the circle. The edges of the triangles are then 
placed along the circle, or outside it. The forbidding paths are now added as straight 
lines across the interior of the circle. If more than two paths go through the same point, 
then this can be corrected by small perturbations. This yields the desired drawing. 

The graph G}y has 0(N2) forbidding paths, so the drawing we have just described lias 
at most 0(N4) crossings. For every crossing we introduce a number of new vertices that 
is bounded by some constant (closely related to the number of vertices in a crossing 
component), so the number of vertices, which was 0(N2), increases to at most 0(N4). 
So the number of vertices of Gjj is 0(N4). Since G^ is planar, its average degree is less 
than six, so the number of edges is 0(N4) as well. • 

We have constructed bipartite LIST-COLOUR PATH instances with size 0(N2) (Claim 5 .17 ) 

and bipartite planar LIST-COLOUR PATH instances with size 0(N4) (Claim 5.20). The 
pairs of colourings for each of these instances are at distance at least 2^ — 1, just as for 
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the original LIST-COLOUR PATH instances, proved in Theorem 5.16. Lemma 5.3 shows 
that these can be transformed into fc-COLOUR PATH instances without a significant size 
increase. This complétés the proof of Theorem 5.2. 

5 . 4 Tractability of ^ - C O L O U R P A T H and distances between 
fc-colourings 

In this section we examine the relationship between the tractability of fc-COLOUR PATH 

and the possible distances between fc-colourings. 

Let us first examine the relationship between Theorems 5.1 and 5.2. In terms of the 
well-known N P ^ P S P A C E conjecture, Theorem 5.1 means the following. Loosely speak-
ing, having established that fc-COLOUR PATH is PSPACE-complete, asserting that N P ^ 

P S P A C E is équivalent to saying that for every possible YES-certificate for k-COLOUR 

PATH, there exist instances for which the certificate cannot be verified in polynomial 
time. Theorem 5.2 of course shows this only for a particular certificate—the certificate 
for a YES-instance consisting of a list of colourings constituting a path from the first 
colouring to the second colouring—but this is in some sense the the most naturai cer-
tificate. It is for this reason that we consider the construction of these instances to be 
of independent interest. In addition, they have a clear bearing on the limitations of 
sampling colourings via Glauber dynamics. 

Theorems 4.1 and 4 . 2 from Chapter 4 tell us that 3 - C O L O U R PATH is polynomial time 
solvable and that for any YES-instance G, a, ¡3 of this problem, the distance between a 

and (3 in C${G) is at most quadratic in the size of G. On the other hand, Theorems 5.1 
and 5 .2 establish a connection between instance classes for which k-COLOUR PATH is 
PSPACE-complete and possible superpolynomial distances in the k-colour graphs of these 
instances. How strong is this connection between PSPACE-completeness and superpoly-
nomial distances in the colour graph? For completeness let us point out, that artificial 
graph classes can be constructed for which k-COLOUR PATH is easy, but which stili 
contain instances with colourings at superpolynomial distance. This can be done, for 
example, using the graphs from Section 5.3. 

We remark that the reason why we cannot make the values of k in parts (ii) and (iii) of 
Theorem 5.2 larger by a straightforward extension of our methods rests fundamentally 
on the fact that for a planar graph G, deg(G') < 5, and that for a bipartite planar 
graph G. deg(G) < 3. These considérations, together with Theorems 5.9 and 5.10, beg 
the following question: is it true that for a planar graph G and k > 7, or G a bipartite 
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planar graph and k > 5, Ck(G) always has polynomial diameter? More generally, given 
that an instance of fc-CoLOUR PATH is always a YES-instance for k > deg(G) + 2, is it 
true that for any graph G and k > deg(G) + 2, Ck{G) has polynomial diameter? Noting 
that the proof of Theorem 2.7 only gives an exponential upper bound, we conjecture that 
this is indeed the case, and that in fact a quadratic bound is the correct answer. (Let us 
remark that in [7], the paper containing the results of this chapter, it is in fact a cubic 
upper bound which is conjectured.) 

Conjecture 5.21 

For a graph G with ri vertices and k > deg(G) + 2, the diameter of Ck(G) is 0(n2). 

For values of k > 2deg(G) + 1, we are in fact able to prove this bound. 

Theorem 5.22 
For a graph G with n vertices and k > 2deg(G) + 1, the diameter of Ck(G) is 0(n2). 

Proof. We can itérâtively delete vertices of degree at most deg(G) until no vertices are 
left. Using such an élimination ordering, we label the vertices v\, . . . , vn so that every 
vertex has at most deg(G) neighbors with a lower index. (The label vn corresponds to the 
first deleted vertex.) Using this vertex ordering, we first prove the following statement 
by induction on n. 

Induction hypothesis 
Let a and f3 be distinct k-colourings of G, and let i be the lowest index such that 

a(vi) / (3(vi). There exists a recolouring sequence that starts with a and ends with 

recolowring vz to j3(vi), where every Vj with j < i is never recoloured, and every Vj with 

j > i is recoloured at most once. 

The statement is trivial for n = 1. If i = n, then vn can be recoloured to /3(vn) be-
cause (3 is a proper colouring that coincides with a on ail other vertices. Now suppose 
i < n, and let G' — G — {vn}. Let a' be the fc-colouring of G' induced by a. By induc-
tion we can assume there exists a recolouring sequence starting with a ' that ends with 
recolouring vt to (3(vì), in which vertices Vj with j < i are not recoloured, and vertices Vj 

with j > i are recoloured at most once. So for every vertex we can identify an old colour 
and a new colour in this recolouring sequence (which may in fact be the same). Because 
there are at least 2deg(G) + 1 available colours, and vn has at most deg(G) neighbours, 
a colour c can be chosen for vn that is not equal to the old colour or new colour of any of 
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its neighbours. First recolour vn to c if necessary, and then recolour the rest of the graph 
according to the recolouring sequence for G'. By the choice of colour c, ali intermediate 
colourings are proper, so this is the desired recolouring sequence for G. 

Now we can keep repeating the above procedure, each time for a new vertex Vi with 
a higher index, since the colours of the vertices with a lower index are not changed. So 
every vertex vl is considered only once this way, and for every Vf only n — i recolour-
ings of other vertices are needed before it can be reeoloured to (3{vì). This will yield (3 
after 0(n2) recolouring steps. • 

Let us now observe that if in Conjecture 5.21 we replace the degeneracy with the maxi-
mum degree, we again obtain a quadratic bound on the diameter of the k-colour graph. 
This answers a question of Bill Jackson. 

Proposition 5.23 
For a graph G with n vertices and k > A (G) + 2, the diameter of Ck(G) is 0(n2). 

Proof. Let a and ¡3 be distinct fc-colourings of G. We claim that it is possible to 
recolour a to (3 using at most An recolouring steps. Let v\, v2, ..., vn be an arbitrary 
ordering of the vertices of G, and consider the following recolouring procedure that trans-
forms a into (3. For i = 1,2, . . . , n, we attempt to recolour Vi to (3{vi). If for some i this is 
not possible, this must be because Vi has a. neighbour w that is currently coloured (3{vi). 
But because w has degree at most A < k - 2, there is a colour c / /?(u») that does not 
appear on any of the neighbours of w. Hence we can first recolour w to c, and repeat 
the same procedure for any other neighbour of Vi coloured (3{vi). This allows us to then 
recolour V{ to f3(vt) and continue. Because any vi has at most A such neighbours, and 
once vertex Vi has colour (3{vt) it will not be necessary to recolour it again, we reach (3 
after at most An recolourings. Noting that A < n - 1 yields the resuit. • 

If we now observe that for a regular graph G, A (G) = deg(G), Proposition 5.23 allows 
us to deduce that Conjecture 5.21 is true for regular graphs. 
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6 
Miscellaneous results about 
recolouring 

In this chapter we prove some miscellaneous results obtained during the development of 
this thesis. In Section 6.1 we explore the problem of finding a sequence of recolourings 
between two fc-colourings of a graph when we are allowed to use some extra colours. 
Section 6.2 covers some results about the complexity of finding alternative colourings of 
graphs. Specifically, we investigate severa! versions of the following décision problem: 
given a graph G together with a fc-colouring of G. how easily can we decide whether 
there exists a fc-colouring of G with certain specific properties? 

6.1 Recolouring using extra colours 

Suppose we are given a graph G and two fc-colourings of G, a and ß. We hâve seen that 
these colourings may or may not be connected in £*((?), and that deciding if they are is 
in general a PSPACE-complete problem. If we are very keen to recolour one to the other 
(as may be the case in a frequency reassignment context), with perhaps the use of some 
extra colours, how many extra colours are enough to guarantee that such a recolouring 
is possible? It is obvious that this can always be done for a sufficiently large number of 
extra colours, but it should also be obvious that we might want to minimise the number 
of extra colours used. The problem can be put another way: what (reasonably small) 
value of q will guarantee that ail fc-colourings of a graph G are in the sanie connected 
component of Cg(G)? The theorem below provides an answer to this question, originally 
put to us by Steve Noble. 
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Theorem 6.1 

Let a and ß be two k-colourings of a graph G, and let G have chromatic number x- Then 

for any q>k + (x-\), there is a path between a and ß in Cq{G). 

Proof. We show that we can recolour a to ß with the use of \ ~ 1 new colours. Consider 
a ^-colouring 7 of G: this gives a partition of the vertex set of G into independent sets 
ri,r2,....rx. We recolour a to ß using 7 . First we recolour, from a, all vertices in 
with colour k + i, for 1 < i < x - 1. It is clear that no recolouring in this sequence 
violates the constraint that we maintain a proper-colouring of G. Vertices that are not 
recoloured in this way are precisely those in the set Tx, but because Tx is independent, 
we can recolour all vertices in this set to their colours in ß. It is easy to see that we 
can now recolour all vertices v e V \ Tx to ß(v) without introducing any edges with 
end-vertices coloured alike. This completes the proof. • 

Note that this proof requires knowledge of a x-colouring of G, which in general will not 
be readily available since determining the chromatic number of a graph is NP-hard. The 
best bound we have on the number of sufficient extra colours supported by a constructive 
proof—that is, one that will allow us to actually recolour a to ß without knowledge 
of a x-colouring—is of k — 1 new colours. The idea is similar to that of the proof of 
Theorem 6.1. From a, we recolour all vertices coloured i to k + i, for 1 < i < k — 1, and 
then recolour to /?, recolouring vertices coloured k in ß last. 

We now show that Theorem 6.1 is best possible, in the sense that no lower number of extra 
colours will always be enough to guarantee a path between any two given /¿-colourings. 
That is, we show that x ~ 1 extra colours are sometimes necessary. 

Theorem 6.2 
For every k > x ^ 2, there exists a x~chromatic graph G that has two k-colourings which 

are not connected in Cq(G), where q = k 4- (x — 2). 

Proof. We let G be the categorical (or tensor) product of Kx and , which we denote 
by Bx k' This is the graph with vertex set {(¿, j ) 11 < i < X-, 1 < 3 < and edge 
set {{i,j){i',j0 \ i ^ i' and j / / } . (An example of such a graph—the graph -B3.4—is 
depicted in Figure 6.1.) We will think of the is as indexing rows and the j s as indexing 
columns of For the two fc-colourings of we take a and ß given by &((?, j)) = i 
and ß((i,j)) = j• Note that a is in fact a x-colouring, but because k> x we can actually 
regard it as a /¿-colouring. We prove the graphs B x k are x-chromatic by showing that 
n o ^ _ l)-colouring of Bx¿ exists. Let us assume the contrary. Observe that given any 
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Figure 6.1 The graph B3,4. 

colouring of BxjCi if in some row there are two vertices with the same colour, this colour 
cannot appear in any other row (and similarly for columns). Thus if we are considering 
a (x — l)-colouring of Bxwe cannot have all rows each containing two vertices with 
the same colour. This means there is at least one row with all its k vertices coloured 
differently, but since k > x~~ 1, we have a contradiction. 

We now prove that it is not possible to recolour a to (3 using x — 2 new colours. Suppose it 
is possible, and consider a sequence of recolourings that accomplishes the transformation. 
Note that a is a colouring where all vertices in any given row of B x ^ have the same colour, 
and (3 is a colouring where no two vertices in a given row have the same colour. Hence 
there must come a point in the sequence of recolourings where for the first time we see 
a row that has all its vertices coloured differently—row i*, say. Consider this colouring 
in the sequence: how many different colours do we see on Bxjc? Because any row other 
than row i* has at least two vertices with the same colour, we see at least x ~ 1 different 
colours on rows other than row i*. Because none of these colours can appear on row i*. 
which has its k vertices coloured differently, in total we see at least k + x - 1 different 
colours. This contradiction completes the proof. • 

We note that the results of Theorems 6.1 and 6.2 have been obtained independently in 
[35] and [47]. In fact, the graphs of Theorem 6.2 that illustrate the tightness of the result 
are the same in [35] and (with a minor modification) in [47]. The result in [35] analogous 
to Theorem 6.1 is in fact a refinement of our result: the author considers /¿-colourings 
as possibly using different sets of colours, and proves, for a a fc-colouring using colour 
set A and (3 a ^-colouring using colour set B, that the recolouring can be achieved using 
max{0, \A D B\ - 1} extra colours. 
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6.2 The complexity of finding alternative colourings 

The results in this section are motivateci by the following question of Peter Winkler: 
what is the complexity of deciding whether the Ar-colour graph of a fc-colourable graph G 
contains an isolated node? We answer this question below, in Theorem 6.3, first giving 
a formai définition of the problem. 

FROZEN ÄT-COLOURING 

Instance : A connected graph G together with a fc-colouring a of G. 

Question : Does G have a frozen fc-colouring? 

It is obvious that the décision problem FROZEN 2-COLOURING is trivial: the 2-colouring 
given with a connected bipartite graph is frozen. We now prove that for any k > 3, the 
problem is NP-complete, initially giving a réduction from 3-COLOURABILITY (defined 
formally in Section 3.2) to the k = 3 case. 

Theorem 6.3 
For every fixed k>3, the décision problem FROZEN FC-COLOURLNG is NP-complete. 

Proof. That FROZEN FC-C0L0URING is in NP is clear. We first prove that FROZEN 

3-COLOURING is NP-complete by giving a polynomial time réduction from 3 - C O L O U R -

ABILITY, and then show that FROZEN /C-COLOURING is reducible to FROZEN (FC + 1 ) -

COLOURING. 

Given an instance G of 3-COLOURABILITY, we construct an instance G' of FROZEN 

3-COLOURING such that G is 3-colourable if and only if G' has a frozen 3-colouring. 
We obtain G' from G as follows. We replace every edge uv of G with two internally 
disjoint paths between u and v, one of length 2 and another of length 4, effectively 
obtaining a 6-cycle between every two vertices that were previously joined by an edge. 
More formally, for every edge e = uv of G, we delete e and add vertices we, xe, ye. ze 

and edges uwe, wevyuxe, xeyeiyeze, zev to obtain G'. Note that G' is bipartite so we can 
trivially find a 3-colouring of G' to form part of the instance of FROZEN 3-COLOURING. 

Now suppose G is 3-colourable, and consider a 3-colouring r of G. An observation: given 
any 6-cycle C with two vertices at distance two precoloured with two différent colours 
from {1,2,3}, we can extend this precolouring to obtain a frozen 3-colouring of G. It is 
now clear how to obtain a frozen 3-colouring of G': we just use this observation on every 
6-cycle of G' that contains vertices we,xe,ye, ze in G', for some specified edge e of G. 
On the other hand, suppose G' has a frozen 3-colouring TJ. Restricting TF to vertices 
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originally in G yields a proper 3-colouring of G: otherwise, for some vertices u, v of G' 
originally forming an edge e of G we have rf(u) = Tf(v), and this contradicts rf being 
frozen, for we conld then recolour we. 

To show that FROZEN ¿-COLOURING is reducible to FROZEN (&+1)-COLOURING it suffices 
to take an instance G, a of FROZEN /C-COLOURING and form the graph G' by adding a 
new vertex v adjacent to ail vertices of G. We can easily obtain a (k + l)-colouring a' 
of Gf by setting a'{v) = k H- 1 and a'{x) = a{x) for all x ± v. Clearly G has a frozen 
/b-colouring if and only if G' has a frozen (k + l)-colouring. • 

Given that 3-COLOURABJLLTY remains NP-complet,e for planar graphs of maximum de-
gree 4, we readily conclude from the above proof that FROZEN 3-COLOURING remains 
NP-complete for planar graphs of maximum degree 8. We observe that by arguments 
similar to those of Lemma 5.3 (ii), we can deduce that FROZEN Ä:-COLOURING remains 
NP-complete for planar graphs and 4 < k < 6. For k > 7, it should be clear that any 
planar instance of FROZEN FC-COLOURLNG is a NO-instance. 

Similarly, the réduction to FROZEN 3-COLOURING yields a bipartite graph, and arguments 
similar to those of Lemma 5.3 (i) can then be used to see that FROZEN FC-COLOURLNG 

actually remains NP-complete for bipartite graphs and ail values of k. 

We observed in Section 2.1 that finding a frozen k-colouring of a partieular (k - 1)-
regular graph G is équivalent to verifying that G is a cover of the complete graph I<k. 
(Remember that we define a graph G as a cover of a graph H if there exists a surjection 
<p : V(G) —> V(H) such that for every vertex v of G, <p maps the neighbours of v in G 
bijectively to the neighbours of ip(v) in H, and thus deciding if G is a cover of Kk is 
équivalent to deciding if G has a frozen ft-colouring.) In [40] it is proved that deciding if 
a given graph G is a cover of Kk, for any fixed k > 4, is NP-complete. Hence other than 
for k = 3, Theorem 6.3 is not new. 

We can also regard the décision problem FROZEN /C-COLOURING as related to the problem 
of determining whether a given fc-colourable graph is uniquely fc-colourable. This asks, 
given a graph G together with a fc-colouring a, whether G admits a ft-colouring that in-
duces colour classes différent to those induced by a. and is known to be NP-complete, [16]. 
Note that if a graph is uniquely &-colourable, its fc-colour graph will consist of k\ isolated 
nodes. We now study two other problems related to deciding unique colourability. 
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ALTERNATIVE ^-COLOURING 

Instance : A connected graph G together with a fc-colouring a oî G and two vertices 
H, v of G with a(u) = a(v). 

Question : Does there exist a fc-colouring ß of G with ß(u) f ß{v)1 

ALTERNATIVE &-COLOURING II 

Instance : A connected graph G together with a &-colouring a of G and two vertices 
u, v of G with a(u) / a(v). 

Question : Does there exist a /c-colouring ß of G with ß(u) — ß(v)1 

Again we find the same dichotomy for the computational complexity of these problems: 
trivial for k = 2 and NP-complete for any k > 3. For both, we give an initial réduction 
to the k = 3 case from the problem 3-PRECOLOURING EXTENSION, proved NP-complete 
in [41], even when restricted to planar graphs. 

3-PRECOLOURING EXTENSION 

Instance : A connected bipartite graph G with some vertices properly precoloured 
with colours from {1,2,3}. 

Question : Does the precolouring of G extend to a 3-colouring of Gì 

Theorem 6.4 
For every fixed k > 3, the décision problems ALTERNATIVE /¿-COLOURING and A L T E R -

NATIVE /C-COLOURING I I are N P - c o m p l e t e . 

Proof. Both problems are clearly in NP. For each, we first give a réduction from 
3-PRECOLOURING EXTENSION to the k = 3 case. Before doing so, we show how we may 
first simplify a general instance of 3-PRECOLOURING EXTENSION SO that we can assume 
that only 3 vertices of the graph are precoloured. (This trick is from [34, Lemma 2.2].) 
Let G be an instance graph of 3-PRECOLOURING EXTENSION and let X, Y be the bipar-
tition of G. Note that if we identify two vertices x, x' G X that are precoloured the same 
we end up with an équivalent bipartite instance, in the sense that the new instance is a 
YES-instance if and only if the originai one is. Hence we can assume that G is precoloured 
in such a way that each colour occurs at most once in X and at most once in Y. We 
now add two new disjoint sets of vertices to G, X' = {x'1; x^x'^} and Y' = {y[, y^y'z}, 

so that (X U X'), (Y U Y') is the bipartition of the new graph G' formed by introducing 
the following edges, where x e X.y £ Y and i, j G {1,2, 3}: 

• x'i is adjacent to yj- if and only if i / j ; 
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• x'i is adjacent to y G Y if and only if y is precoloured with a colour distinct from i; 

• y'j is adjacent to x G X if and only if y is precoloured with a colour distinct from j. 

If we now consider G' as an instance of 3-PRECOLOURLNG EXTENSION, where only 
vertices x'^x'^x^ are respectively coloured with colours 1,2,3, we obtain an instance 
équivalent to the original instance. 

We now transform our simplified instance G1, x[, x'2, x3 of 3-PRECOLOURING EXTENSION 

into an instance G*,a,u,v of ALTERNATIVE 3-COLOURING. TO obtain the graph G*, we 
simply add to G new vertices a, b, c together with edges ab, bc, ca, x[c, x2c, x'3a, x3b, 

putting u = x\ and v = x'2. To obtain a 3-colouring a of G* with = a(v), we 
set a{x) = 1 for ail i Ç l U l ' \ {x'3}; a(x'3) = 3; a(y) = 2 for ail y G Y U Y'- and 
a(a) = 1, a(b) = 2, a(c) = 3. It is straightforward to check that the precolouring of G' 

extends to the whole of G' if and only if there is a 3-colouring of G* where u and v receive 
différent colours. 

For ALTERNATIVE ^-COLOURING II the réduction is even simpler: we transform G',x[, 

x'2,x'3 with its precolouring into G*,a,u,v by adding a single new vertex a and edges 
to Gand putting u = a and v = x3. The colouring a is obtained by 

setting c * ^ ) = 1, a(x'2) = 2, a(x) = 1 for ail £ G X U X' \ {x\,x'2}: a{y) = 3 for ail 
y G Y U Y', and a (a) = 3. Note c*(it) = 3 ^ 1 = a{x3) and that the precolouring of G' 

extends to the whole of G' if and only if there is a 3-colouring of G* where u and v receive 
the same colour. 

For both ALTERNATIVE /C-COLOURING and ALTERNATIVE k-COLOURING II, a fc-colouring 
instance is easily reduced to a k + 1-colouring instance by adding a new vertex adjacent 
to ail other vertices and extending the colouring accordingly. This complétés the proof. • 

We note that Theorem 6.4 has been obtained independently by Rackham [54]. In that 
paper, however, both the approach to the problem and the réduction that proves NP-
hardness are différent. The réduction is from 3-COLOURABILITY, and the problems 
ALTERNATIVE /C-COLOURING and ALTERNATIVE AJ-COLOURING II are studied in the 
context of extending precolourings of a graph. In particular, Section 6 of [54] considers 
the following problem: given a graph G, a fc-colouring of G, and two vertices of G 
properly precoloured with colours from {1 ,2 , . . . , k}, does the precolouring extend to a 
proper A;-colouring of G? It is shown that this problem can be solved in polynomial time 
when k > A (G), but that it is NP-complete for k < A (G) - o(k). 

Chlebik and Chlebikovâ [14] show that the precolouring extension problem with any 
number of precoloured vertices is solvable in polynomial time when k > A (G). This 
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shows that the precolouring extension problem is in P for graphs of maximum degree 
3: given a graph G, an integer k > 2 and a precolouring of G using at most k colours, 
we can decide whether the precolouring extends to a fc-colouring of G as follows. If 
k > A(G) = 3, we just use the aforementioned algorithm described in [14]. Otherwise 
k = 2 and the problem is reduced to deciding if the precolouring extends to a 2-colouring, 
which is easily solvable in polynomial time. 

In contrast, it is also proved in [14] that 3-PRECOLOURING EXTENSION remains N P -

complete for planar bipartite graphs of maximum degree 4. 
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7 
Conclusion 

We close in this chapter with a discussion of the results presented in this thesis. We first 
attempt to put our work into a wider context, examining results related to our own in 
Section 7.1. Section 7.2 summarises our results and outlines some open problems and 
possibilities for further research. 

7.1 Related work 

As was mentioned in Chapter 1, the study of the colour graph is not new. For instance, 
the question of its connectedness has been addressed by researchers interested in rapidly 
mixing Markov chains for sampling colourings of a graph. In addition, during the devel-
opment of this thesis we have come across a sériés of lines of research that can be thought 
of as related to the study of the colour graph. Some of them bear close similarity to our 
own, or even impinge on them directly—indeed we have seen that some of our results 
have been independently obtained by other researchers. Other lines can be considered 
as généralisations of the problems we have addressed. We proceed to give an overview of 
ail of these, beginning with results that, to some extent or other, match our own. 

Recolouring graph colourings 

In [35]—an unpublished graduate thesis—we find results which closely resemble those of 
Chapter 5. In particular, the author of [35] proves that the problem of deciding whether 
there exists a sequence of recolourings between two given colourings of a graph, using 
no extra colours, is PSPACE-complete. This is, in essence, the result of Theorem 5.1, 
but is significantly weaker in various respects. Firstly, for the problem as studied in 
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[35], the number of colours is part of the input. Secondly, the result is not proved for 
any restricted graph classes such as planar or bipartite graphs—in fact the construction 
used is highly non-planar. The reduction is also different; from the problem of deciding 
whether a space-bounded deterministic Turing machine will halt in an accepting state, 
and via several other decision problems involving word replacement on strings. Because 
deciding whether a space-bounded deterministic Turing machine will halt in an accepting 
state is known to possibly take a superpolynomial number of steps, and all the steps in 
the reductions involve problems with 'states', the proof of PSPACE-completeness in 
fact also yields a proof of the existence of superpolynomial paths between colourings. 
The intricacy of the reductions used, however, indicates that actually constructing such 
instances would be far from straightforward. 

We mentioned in Chapter 6 that Theorems 6.1 and 6.2 have also been independently 
obtained in [35], and that in fact the former is refined. The author of [35] also studies 
recolouring problems in an online setting, where vertices continually leave or join the 
graph whose colourings are under consideration. 

We saw that Theorems 6T and 6.2 were also obtained (independently of [35] and of 
this thesis) in [47] in the context of the so-called colour switching problem, described in 
Chapter 1. A rather surprising result on the algorithmic complexity of a variant of colour 
switching is to be found in [13]. Here it is shown that if, in requiring a transformation 
from a /¿-colouring to a /¿'-colouring of a given graph (with k' < k), we only care about 
the partition induced by the /¿'-colouring (and not on the actual colours used), then 
a shortest possible sequence of recolourings can be found in polynomial time. This is 
achieved by a reduction of the problem to the weighted matching problem on bipartite 
graphs, a well-known polynomial time solvable problem. 

Generalisations of the colour graph 

Instead of recolouring a single vertex, we could consider a different transformation be-
tween colourings: for example, that provided by a Kempe change. Given a graph G, 
a /¿-colouring û of G and colours Ci,C2 G {1,2, . . . . /¿}, let G(ci,c2) be the subgraph 
of G induced by vertices coloured C\ or c2. Switching colours C\ and c2 on any con-
nected component of G(CI,C2) yields a new /¿-colouring of G. This operation is known 
as a Kempe change, and two colourings are said to be Kempe-equivalent if one can be 
obtained from the other by a sequence of Kempe changes. Analogously to the way in 
which we define the /¿-colour graph of a graph G, we could consider the graph with 
vertex set the /¿-colourings of G and edges between colourings that are connected by a 
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single Kempe change. Note that Ck(G) is a subgraph of this graph, which we call the 
Kempe k-colour graph, and note that Kempe-equivalent colourings form the connected 
components of this graph. Questions similar to the ones we are interested in have been 
addressed in this context: Fisk [22] proved that all 4-colourings of an Eulerian trian-
gulation of the plane are Kempe-equivalent, and Meyniel [49] that all 5-colourings of a 
planar graph are Kempe-equivalent. Later Las Vergnas and Meyniel [42] showed that 
the property of Kempe-equivalence holds for all 5-colourings of a graph containing no K5 

minor, and more recently, Mohar [51] has done so for all /¿-colourings of a planar graph 
with chromatic number less than k. 

A generalisation in a different direction is considered by Brightwell and Winkler in [8, 9]. 
For a graph G and a constraint graph H (which may have loops), they define the graph 
Horn (G, H) as the graph with vertex set the homomorphisms from G to H, and two 
homomorphisms adjacent when they differ on precisely one vertex of G. (Recall that 
a homomorphism from G to H is a function <p : V(G) —> V(H) such that for every 
uv e E {G) we have ip{u)tp(v) G E (H), and note that a /¿-colouring of a graph G is nothing 
more than a homomorphism from G to the complete graph Kk.) They investigate an 
important dichotomy of constraint graphs, giving several equivalent characterisations of 
graphs H which they call dismantlable. Letting u, v be two vertices of a finite H with 
N(u) Ç N(v), where N(x) denotes the set of neighbours of a vertex x, they define a 
fold of H as the homomorphism from H to H - {it} mapping u to v and every other 
node to itself. The graph H is said to be dismantlable if there exists a sequence of 
folds reducing H to a graph with one node (looped or not). Amongst other things, they 
address the question of connectedness of Horn(G,H). In particular, they prove that a 
constraint graph H is dismantlable if and only if it is true that for any finite graph G. 
Hom(G, H) is connected. 

Mixing Boolean satisfiability solutions 

Remarkably similar results to those contained in this thesis, but for a wholly different 
problem, are to be found in [26]. The authors of [26] consider the exact analogues of 
our decision problems /¿-MIXING and /¿-COLOUR PATH in the context of the Boolean 
satisfiability problem. We proceed to examine their results in some detail, first giving 
some necessary definitions. 

A logical relation R is a non-empty subset of {0, l}fc, where k > 1 is the arity of R. 
For S a finite set of logical relations, a CNF(S)-formula over a set of variables V = 
{.TJ , X2: • • -, Xn) is a finite conjunction C\ A C2 A . . . A Cm of clauses built using relations 
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from S, variables from V7, and the constants and 0 and 1. Hence each C\ is an expression 
of the form R(ÇI,Ç2î • • -Ak)- where II is a relation of arity k, and each ^ is a variable 
in V or one of the constants 0, 1. 

The satisfiability problem SAT(S) associated with a finite set of logicai relations S asks: 
given a CNF(5')-formula <p, is it satisfiable? Schaefer [58] proved a celebrated dichotomy 
theorem for the complexity of SAT(S): for certain sets S—known as Schaefer sets— 
SAT(S) is solvable in polynomial time, while for ail other sets S: the problem is NP-
complete. We refer the reader to [58] for the full détails; a définition of Schaefer sets may 
also be found in [26]. 

For an instance p> of S A T ( 5 ) , the autliors of [26] define the graph G(ip) as the graph with 
vertex set the satisfying assignments of <p. and assignments adjacent whenever they differ 
in exactly one bit. The graph G(cp) is a subgraph of the n-dimensional hypercub<^-this 
is the graph with vertex set {0, l } n and edges between vertices that differ in exactly one 
bit. Hence a path in G(tp) corresponds to a sequence of différent satisfying assignments 
of </?, each obtained from the previous one by flipping precisely one bit. 

They define the following two décision problems, whose close resemblance to k-MIXING 
and k-COLOUR PATII should be obvious. 

CONN(S) 

Instance : A CNF(i>)-formula ip. 

Question : Is G(ip) connected? 

ST-CONN(S) 

Instance : A CNF(1S')-formula p) and two satisfying assignments of ip. s and t. 
Question : Is there a path between s and t in G(ip)? 

The authors of [26] prove dichotomy theorems for the complexity of both of these déci-
sion problems. They also prove a dichotomy theorem for the possible diameter of the 
graphs G(<p), finding, for both problems, the same correspondence between PSPACE-
complete instances and possible superpolynomial-length shortest-paths in the graph of 
satisfying assignments as we do for k-COLOUR PATH. The key concept on which their 
results rely is that of a tight set of relations S—see [26] for a precise définition of this con-
cept. The class of tight sets of relations properly contains the class of Schaefer relations: 
if S is Schaefer, then S is tight; the converse, however, is not true. 

In some detail, they prove the following results. 
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Theorem 7.1 (Gopalan, Kolaitis, Maneva and Papadimitriou [26]) 
Let S be a finite set of logicai relations. If S is tight, then C O N N ( 5 ) is in coNP; if it is 
tight but not Schaefer, then it is coNP-complete; otherwise, it is PSPACE-complete. 

Theorem 7.2 (Gopalan, Kolaitis, Maneva and Papadimitriou [26]) 
Let S be a finite set of logicai relations. If S is tight, then S T - C O N N ( S ) is in P ; otherwise, 
it is PSPACE-complete. 

Theorem 7.3 (Gopalan, Kolaitis, Maneva and Papadimitriou [26]) 
Let S be a finite set of logicai relations. If S is tight, then for every CNF (S)-formula Lp, 
the diameter of any component of G(ip) is linear in the nurnber of variables of (p; other-
wise, there are CNF (S)-formulas ¡p such that G(<p) has some component with diameter 
superpolynomial in the number of variables of (p. 

The authors of [26] in fact conjectured a trichotomy for the complexity of C O N N ( S ) , 

claiming that if S is Schaefer, then CONN(S) is actually in P (and showing that this 
is true for a particular type of Schaefer sets). This conjecture was recently disproved 
in [46], where a set of Schaefer relations for which the problem CONN(£) remains coNP-
complete is exhibited. In a recent updated version of [26], Gopalan, Kolaitis, Maneva and 
Papadimitriou [27] formulate a (modified) trichotomy conjecture for the complexity of 
C O N N ( 5 ) , where it only remains to determine the complexity of CONN(£>) for a certain 
subset of Schaefer sets of relations. 

We summarise their results, along with those of Schaefer [58], in Table 7.1 below. 

S S AT (S) C O N N ( S ) S T - C O N N ( S ) Diameter 

Schaefer P coNP P 0(n) 

Tight, non-Schaefer NP-complete coNP-complete P 0(n) 

Non-tight NP-complete PSPACE-compl. PSPACE-compl. 

Table 7 . 1 The complexity of S A T ( S ) , CONN(S') and ST-CONN(S' ) , together 
with the possible diameter of components of G((p), for various types of relation 
sets S. 

We note that despite the close parallelism between the results presented in this thesis 
and those of [26], the proofs are, in each case, very différent. 
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7.2 Discussion and open problems 

We have studied the basic properties of mixing, exploring the relationship between the 
mixing properties of a graph and certain graph invariants, notably the chromatic number 
and the degeneracy. 

We have also obtained strong results for the computational complexity of the décision 
problems k-MIXING and k-COLOUR PATII. In particular, we have settled the complex-
ity 3-MIXING, finding an important distinction between the general problem and its 
restriction to planar graphs. (Given that most NP-complete décision problems relating 
to 3-colouring become no easier for planar graphs, it is a curious fact that 3-MIXING, 
a coNP-complete problem, becomes polynomial time solvable when restricted to planar 
graphs.) We have also characterised those graphs which are 3-mixing. 

The complexity of ZC-COLOUR PATH has also been settled, and an important and what 
appears to be fundamental relationship between the tractability of the problem and its 
underlying structure has been established. In terms of the number of colours k and 
the degeneracy deg(G) of the instance graph, we have proved a full dichotomy for the 
complexity of k-COLOUR PATH. If k < 3 or k > deg(G) + 2, the problem is in P. In 
ail other cases, the problem is PSPACE-complete (note that the réductions that prove 
Theorem 5.1 yield instances with deg(G) = k — 1). Moreover, we have seen how this 
completely détermines the complexity of k-COLOUR PATH for planar and bipartite planar 
graphs. 

We have also shown that for k < 3 or k > 2deg(G) + 1, the components of Cfc(G) always 
have quadratic diameter. On the other hand, for 4 < k < deg(G) + 1, there exist graphs 
whose fc-colour graph has components of superpolynomial diameter (the reader can easily 
verify that the graphs of Theorem 5.2 also have degeneracy k — 1). Thus it remains to 
determine whether for every graph G, the diameter of Cfc(G) is polynomial (perhaps even 
quadratic) in the size of G when k > 4 and deg(G) + 1 < k < 2deg(G) + 1. If true, 
this would provide a complete correspondence between the PSPACE-completeness of 
FC-COLOUR PATH and possible superpolynomial diameter components in C^(G), according 
to our classification of instances by number of colours and degeneracy. 

Our most obvious open problem is determining the complexity of k-MIXING for k > 4. 
An intimately related problem is of course finding a characterisation theorem for k-mixing 
graphs. Using the fact that fc-COLOUR PATII is in PSPACE, Claim 5.6, we can at least 
determine that fc-MLXLNG is in PSPACE. 
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Claim 7.4 
The décision problem Ar-MixiNG is in the complexity class PSPACE. 

Proof. Given a graph G with n vertices, we can determine whether its fc-colour graph 
is connected using a polynomial (in n) amount of space by the following procedure. Let 
us assume that the vertex set of G is {^i, v2, •.., vn} and observe that given a string 
s ~ s\s2 .. • sn from {1 ,2 , . . . , k}n we can check in polynomial space whether or not this 
corresponds to a proper A;-colouring a of G where a(vi) = s*. Now, given two strings s 

and s' from {1 ,2 , . . . , k}n corresponding to fc-colourings of G, Claim 5.6 tells us that 
checking whether these colourings are connected in Ch(G) also takes a polynomial amount 
of space. Given these observations, ail we need to do is sequentially run through ail k2n 

pairs of strings (using the obvious ordering), checking whether or not they correspond to 
colourings of G, and if they do, then checking if they are connected in Ck{G). Because we 
are running through the strings in order, at each stage we can re-use our working space, 
which is always polynomially bounded. • 

A first step towards determining the complexity of /c-MixiNG (for k = 4, at least) might 
be provided by an answer to the following question. Let G be a 3-chromatic graph and 
let a and ß be two 3-colourings of G not connected in C3{G). Note that by Theorem 6.1 
these colourings are connected in Cs(G). What is the complexity of deciding if they are 
connected in C4{G)1 

Our main results, together with the complexity of Ar-COLOURABILITY, are summarised 

in Table 7.2 below. 

k /c-COLOURABILITY fc-MlXING fc-C0L0UR PATH Diameter 

2 P P P 0 

3 NP-complete coNP-complete P 0(n2) 

> 4 NP-complete PSPACE PSPACE-complete 

Table 7 . 2 The complexity of fc-COLOURABLLLTY, /C-MIXING and fc-C0L0UR 

PATH, together with the possible diameter of components of Ck(G), for dif-
férent values of k. 

It is very interesting to compare the results from Tables 7.1 and 7.2: the similarity be-
tween them is striking. The comparison suggests that k-MIXING might well be PSPACE-
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complete for k > 4; this is also hinted at by the complexity of A;-COLOUR PATH. If true, 
this would provide an example of a decision problem exhibiting a trichotomy of complex-
ity, much the same as CONN(S) would, if the conjecture in [27] (that for any set S of 
relations, CONN(S) is PSPACE-complete, coNP-complete, or in P) is true. 

Given the similarity between Tables 7.1 and 7.2, it would be interesting to try to find 
a relationship between the problems, perhaps expressing the problems /¿-MIXING and 
/¿-COLOUR PATH within the framework of [26]. This seems unlikely to be straightforward. 
A standard first approach would be to encode a /¿-colouring of a graph as a satisfiability 
problem by introducing a variable for every vertex, colour pair (v, c) which is set to true 
when v is coloured c. This, however, would not yield a correspondence between flipping 
bits in the graph of satisfying assignments and recolouring vertices of the graph being 
coloured. 

Let us briefly turn our attention to list-colouring versions of our problems. We saw 
in Chapter 5 that the problem LIST-COLOUR PATH is PSPACE-complete, and that in-
stances of this problem all have colour lists contained in {1,2,3,4}. The reader will have 
no trouble verifying, however, that the reduction that proves the PSPACE-hardness of 
this problem (from SLIDING TOKENS) actually yields instances where each colour list 
has size at most 3. Hence the problem equivalent to 3 -COLOUR PATH for list-colourings 
is PSPACE-complete. This fact has also been independently observed by Jan van den 
Heuvel and Zsolt Tuza, who also proved that for colour lists of size at most 2, the problem 
is solvable in polynomial time, [32]. In this case the list colouring problem is reducible 
to a 2-SAT problem where the (?,', c)-encoding mentioned above yields a correspondence 
between flipping bits in the graph of satisfying assignments and recolouring vertices of 
the graph. Then a result of [26] shows it is possible to verify the connectedness of two 
satisfying assignments (list-colourings) in polynomial time. 

It would also be interesting to further explore the properties of colour graphs themselves. 
For example, what sort of structures might we find in colour graphs? On the other hand, 
what graphs can occur as colour graphs? Let us mention at this point two results related 
to the structure of colour graphs, which we phrase in the terminology of this thesis. In the 
context of finding Gray codes for /¿-colourings of a graph G, MacGillivray and Choo [15] 
prove that if k > deg(G) + 3, then Ck{G) is Hamiltonian. Macaj [45] proves, further to a 
study of the metric structure of the category of finite sets and mappings between them, 
that the /¿-colour graph of the complete graph Kn is vertex-transitive for any k > n, and 
that for these same values the automorphism group of Ck{Kn) is in fact isomorphic to 
Snx Sk, where Sm denotes the symmetric group. 

We recall two other questions that this thesis leaves unanswered. One, what is the mixing 

111 



Chapter 7. Conclusion 

number of the Klein bottle? And two, is it true that the algorithm for 3-COLOUR PATH 

from Chapter 4 can be implemented so as to always find a shortest path between two 
given 3-colourings? 

Closing, we mention a question related to the rapid mixing of Markov chains for sampling 
colourings, the field from whence the inspiration for this thesis arose. If Ck(G) is not 
connected, what might be sensible edges to add between certain fc-colourings to ensure 
that it is connected? That is, what additional moves might ensure that the state space of 
the chain is irreducible? This is a question that is often addressed when trying to obtain 
efficient algorithms for sampling fc-colourings of particular graphs, but can anything be 
said in general? 
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Non-deterministic constraint logic 

We describe the non-deterministic constraint logic (NCL) model of computation of Hearn 
and Demaine [30], together with some associated decision problems. We also describe how 
the restricted instances of SLIDING TOKENS used to prove the PSPACE-completeness of 
K-COLOUR PATH in Theorem 5.1 arise. 

An NCL machine is specified by an undirected graph together with an assignment of 
non-negative integer weights to its vertices and edges; the vertex weights are minimum 

in-flow constraints. A configuration of the machine is specified by an orientation of its 
edges such that the sum of incoming edge-weights at each vertex is at least the minimum 
in-flow constraint of the vertex. A move from one configuration to another is simply the 
reversal of a particular edge direction such that all minimum in-flow constraints remain 
satisfied. 

The authors of [30] present the following three decision problems associated with NCL 

machines. 

1. Given an NCL machine together with a particular configuration, can a specified 
edge be eventually reversed by some sequence of moves? 

2. Given an NCL machine together with two particular configurations A and B, is 

there a sequence of moves from A to B1 

3. Given two edges e A and CB of an NCL machine, and orientations for each, are there 
configurations A and B such that eA has its desired orientation in A, has its 
desired orientation in B, and there is a sequence of moves from A to B'l 

We remark that it is the second problem that we use for our definition of SLIDING 
TOKENS in Chapter 5, after some suitable transformations which we now describe. 
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It turns out that certain vertex configurations in NCL machines are of particular interest. 
A vertex with minimum in-flow constraint 2 and three incident edges with weights 1,1,2 
behaves as a logicai AND: the edge with weight 2 can be directed outwards only when the 
other two edges are directed inwards. Such a vertex is called an AND vertex. Likewise, 
a vertex with minimum in-flow constraint 2 and three incident edges with weights 2,2, 2 
behaves as a logicai OR: a given edge may be directed outward if and only if at least one 
of the other two is directed inwards. Such a vertex is called an OR vertex. 

The authors of [30] claim without proof that every NCL graph is reducible in logarithmic 
space to an équivalent (in terms of the given décision problems) A N D / O R constraint 
graph—this is a. graph composed exclusively of AND and OR vertices. They then prove 
ail three of the above décision problems to be PSPACE-complete for such graphs. Note 
that this unproved claim is not used in our réductions, and is therefore unnecessary for 
our results: our réductions are always from A N D / O R constraint graphs, or rather, their 
sliding-token versions (see below). 

The three problems are then shown to remain PSPACE-complete for 3-connected planar 
A N D / O R graphs; this is achieved by the construction of a suitable crossover gadget and 
a suitable connectivity-augmentation gadget. After describing some applications of NCL 
and the above décision problems by proving strong PSPACE-completeness results for a 
variety of sliding-block puzzles, the final section of [30] contains an alternative formulation 
of A N D / O R constraint graphs in terms of sliding tokens along graph edges. 

In this context, the 'machine' is again an undirected graph G. A token configuration of a 
graph G is a set of vertices on which tokens are placed, in such a way that no two tokens 
are adjacent. (Thus a token configuration can be thought of as an independent set of 
vertices of G.) A move between two token configurations is the displacement of a token 
from one vertex to an adjacent vertex. Note that a move must resuit in a valid token 
configuration. 

The simulation of NCL AND and OR vertices via sliding-token gadgets is depicted in 
Figure A.l. The gadgets are in fact the vertex configurations within the dotted lines and 
the edges that cross the dotted lines are termed port-edges—these connect the gadgets. 
For the AND sliding-token gadget, the two lower port-edges correspond to the edges of 
an NCL AND vertex with weight 1. A token on an outer port-edge vertex represents an 
NCL edge directed inwards, and a token on an inner port-edge vertex represents an edge 
directed outwards. 

Hence given an A N D / O R constraint graph and configuration, a corresponding sliding-
token graph can be constructed by joining AND and OR vertex gadgets and placing 
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Figure A. l (a) an AND sliding-token gadget, and (b) an OR sliding-token 
gadget. 

the port tokens appropriatela Moreover, it is not hard to see that such a sliding-token 
instance is équivalent to the original NCL instance. The AND gadget satisfies the same 
constraints as an NCL AND Vertex: the upper token can slide in precisely when both 
lower tokens are slid out. Similarly, the OR gadget satisfies the same constraints as an 
NCL OR Vertex: the upper token can slide in when either lower token is slid out—the 
internal token can then be displaeed to allow the upper token to slide in. 

We finish by making some remarks about the way we describe these sliding-token in-
stances in Chapter 5. The token triangles of our SLIDING TOKENS instances—copies 
of —are precisely the triangles in OR configurations; token edges—copies of K2—are 
the port edges on the boundaries of both AND and OR configurations. Because the orig-
inai instances of NCL can be taken to be planar, we can see that every sliding-token 
instance has a planar embedding where every token triangle bounds a face. Moreover, 
because the NCL instances can be taken to be 3-connected, every sliding-token gadget is 
connected to three other gadgets and so we can take our instances of SLIDING TOKENS 

to have minimum degree 2. 
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