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Abstract. 

The symbol processing or "classical cognitivist" approach to mental computation 
suggests that the cognitive architecture operates rather like a digital computer. The 
components of the architecture are input, output and central systems. The input and 
output systems communicate with both the internal and external environments of the 
cognizer and transmit codes to and from the rule governed, central processing 
system which operates on structured representational expressions in the internal 
environment. The connectionist approach, by contrast, suggests that the cognitive 
architecture should be thought of as a network of interconnected neuron-like 
processing elements (nodes) which operates rather like a brain. Connectionism 
distinguishes input, output and central or "hidden" layers of nodes. Connectionists 
claim that internal processing consists not of the rule governed manipulation of 
structured symbolic expressions, but of the excitation and inhibition of activity and 
the alteration of connection strengths via message passing within and between layers 
of nodes in the network. A central claim of the thesis is that neither symbol 
processing nor connectionism provides an adequate characterization of the role of 
the external environment in cognitive computation. An alternative approach, called 
the External Tape Hypothesis (ETH), is developed which claims, on the basis of 
Turing's analysis of routine computation, that the Turing machine model can be 
used as the basis for a theory which includes the environment as an essential. part 
of the cognitive architecture. The environment is thought of as the tape, and the 
brain as the control of a Turing machine. Finite state automata, Turing machines, 
and universal Turing machines are described, including details of Turing's original 
universal machine construction. A short account of relevant aspects of the history 
of digital computation is followed by a critique of the symbol processing approach 
as it is construed by influential proponents such as Allen Newell and Zenon 
Pylyshyn among others. The External Tape Hypothesis is then developed as an 

alternative theoretical basis. In the final chapter, the ETH is combined with the 
notion of a self-describing Turing machine to provide the basis for an account of 
thinking and the development of internal representations. 
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Chapter 1. Introduction. 

Cognitive science has recently enjoyed a resurgence of main stream interest in a 
style of theorizing and computational modelling known variously as 
"connectionism" , "neural networks" and "parallel distributed processing" , which has 
existed in one form or another since the pioneering work of McCulloch and Pitts in 
the 1940's. Within the connectionist i  framework, there are numerous, sometimes 
substantial, differences of approach, but there is a unifying, shared belief that the 
rule based, symbol processing approach to cognitive computation, which has been 
dominant since the early days of computer modelling of mental structures and 
processes, has fundamental limitations. Proponents of the symbol processing 
approach have responded to the challenge of connectionism and a substantial debate 
about the foundations of cognitive science has been engendered. Since 
connectionism and symbol processing are both computational approaches to the 
study of cognition, one way to characterize the major differences between them is 
in terms of their relationship to Turing's machine model of computation which 
constitutes one member of the class of formally equivalent, basic models of routine 
computation. Roughly speaking, proponents of the symbol processing approach 
argue that the brain implements a Turing machine and that the mind can be 
described as a system in which symbolic expressions are processed according to 
rules. By contrast, connectionists argue that Turing's machine model is, by and 
large, irrelevant to the study of cognitive computation and urge the adoption of what 
is sometimes called "brain style" modelling, in which closer attention is paid to the 
neural basis of cognitive computation. At least one connectionist theorist, 
Smolensky (1988), has argued that connectionism may challenge the view that the 
class of well defined computations is co-extensive with the class of Turing machine 
computations. The position defended in this thesis claims that neither of these views 
is entirely correct and that a third approach based closely on Turing's original 

'Throughout this thesis I have used the term "connectionism" as a generic label for the whole 
framework. 
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analysis can illuminate both the others. 

1.1 Giant electronic brains. 

The possible links between computers and brains have been evident from the start, 
and in the early days of their development, digital computers were sometimes called 
"electronic brains" (cf. Bowden, 1953). Not many people knew much about them, 
but they were said to be capable of prodigious feats of calculation far outstripping 
the capacities of the apparently rather feeble human intellect. 

"These machines are similar to what a brain would be if it were 
made of hardware and wire instead of flesh and nerves. It is 
therefore natural to call these machines mechanical brains. Also, 
since their powers are like those of a giant, we may call them giant 
brains." 

Berkeley (1949, p.1) 

The early optimism, although accompanied by some limited successes in the 
production of apparently "intelligent" behaviour, quickly gave way to the realization 
that simulating the full scope of human cognition was a task of daunting scale and 
complexity. Curiously, perhaps; the capacity for more "intellectual" tasks such as 
chess and theorem proving turned out to be much easier to capture than the 
mundane business of "peripheral" tasks such as perception. The soubriquet 
"electronic brain" fell into disuse and unflattering comparisons were made, and 
continue to be made, between the computer metaphor and other, earlier 
technological metaphors. It is a commonplace that successive generations try to 
explain the mind in terms of their own technological innovations, and perhaps the 
sceptics are right to insist that the "computational metaphor" is just that; a metaphor 
which will, in due course, be seen to be no more substantial than its predecessors. 
The greater the effort made, the harder it seems to be to get a computer to produce 
anything like the flexibility of behaviour which is a characteristic product of the 
brain's activity. 

1.2 Alan Turing and the universal computing machine. 
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Despite the practical failure to realize early hopes, many cognitive scientists are 

convinced that computational ideas form a much more principled basis for the study 

of cognition than the term "metaphor" implies. The basis of this conviction lies in 

the work of Alan Turing and other mathematical logicians of the 1930's who 
developed formal models of the processes involved in routine computation. In his 
seminal paper "On Computable Numbers, With An Application To The 

Entscheidungsproblem", Turing showed that machines were, in principle, 
behaviourally much more flexible than had previously been suspected. He did this 
by providing a detailed logical blueprint for the construction of a machine which he 

called the universal computing machine. In the context of his paper, the machine 

was applied to the computation of functions of real numbers, but its true significance 

lay not in its initial realm of application but in its modus operandi. The machine 

merited the adjective "universal" because it was a general purpose instruction 

obeying mechanism which could carry out any task for which a complete and 

unambiguous set of instructions could be written. Turing showed that the 

specification of a set of task instructions was formally equivalent to the specification 

of a machine to carry out that task, and hence that a general purpose instruction 

follower was ipso facto a general purpose machine because it could do, by 

simulation, any task which could be done by a machine built specially for the 

purpose. 

1.3 Logical and Physical Descriptions. 

One of Turing's central ideas was "that mental processes are correctly described in 

the logical model independently of the particular physical embodiment, and so can 

be embodied in a physical form other than the brain." Hodges (1988,p.9). It may 

be useful to think of this idea as proposing a two tiered explanatory hierarchy and 

hence as an intellectual forebear of Marr's (1982) influential three level model. 

Turing's logical model corresponds to Marr's algorithmic level, i.e. the formal 

specification of what needs to be done to complete the task in hand, and Turing's 
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physical embodiment description corresponds closely to Mare s implementation level 2 . 

A fundamental implication of Turing's work for cognitive science is that the 
operations of the mind, at least in so far as it engages in Ong and reasoning, can 
be described functionally in terms of 'sets of instructions or programs, independently 

of their medium of realization. This leads, at a minimum, to the possibility of 

studying mental processes with computer simulations, because a computer program 
could mimic the "relation structure" (Craik 1943) obtaining among the elements of 
a mental process. More importantly, if mental processes are correctly characterized 
functionally, a powerful argument can be developed for the independence of 
psychology from neuroscience. 

1.4 Artificial Intelligence and Physical Symbol Systems. 

A further radical consequence of Turing's work which obtains if the criterial 

features of mentation are purely functional, is that an appropriately programmed 

computer would be as capable of cognitive processing as a human cognitive agent. 

This possibility provides a theoretical basis for the discipline of Artificial 
Intelligence and for the Physical Symbol Systems hypothesis (PSSH), first 

articulated by Newell and Simon (1976). According to this hypothesis, computers 

can quite properly be thought of as "electronic brains", because brains and 
computers have common organizational principles. This claim leads quite naturally 

to a symmetrical claim about brains, viz. that they are "biological digital 

computers". On this approach, human behavioural flexibility depends primarily on 
the fact that the brain is computationally universal, rather than, for example, on its 
being made of a biologically responsive stuff. 

The extent to which mental processes can be studied independently of their medium 

This invites a question about what, if anything, in Turing's work corresponds to Marr's 
computational level. For Marr, (1982,p.24), this level is "an abstract computational theory", which 
specifies the goal of a computation. The goal of Turing's 1936-37 paper was to provide a means "to 
somehow survey the class of all possible algorithms" Davis (1988a,p.154) so as to tackle "the 
Hilbertian Entscheidungsproblem", Turing(1936-37,p117). Turing's algorithmic specification of a 
universal machine showed, among other things, that the problem had no solution. 
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of implementation is an interesting and important question. Turing's abstraction of 
the logical steps of a computation from the details of its implementation certainly 
allowed him to describe the universal machine purely functionally in terms of finite 
sets of discrete states and discrete symbols. However, his analysis did not show, 
nor did he claim, that there were no physical constraints on the kinds of substrate 
which could be used to generate mind like behaviour using computational structures. 

Consider, as an uncontroversial example, the can opener, whose function is to 
enable its operator to gain access to the contents of a sealed metallic container. The 
fact that there is more than one way of implementing the can opening function 
suggests, by analogy with Turing's treatment of mental processes, that "can opening 
processes are correctly described in the logical model independently of the 
particular physical embodiment, and so can be embodied in a physical form other 
than the usual metallic me." While this is clearly true, and allows for diamond can 
openers, laser light can openers among others, it does not follow that can openers 
can be made from anything at all. The design of a can opener is constrained by 
facts such as the relative hardness of different materials which are relevant to the 
performance of the task. It would, for example, be difficult to make a can opener 
from rice pudding or from string and brown paper simply because these materials 
are too soft. Constraints on the suitability of various media for can opening arise 
from a clear understanding of what the functional description of can opening implies 
for its practical implementation, given the nature of the physical world as we 
currently understand it to be. Conversely, a given medium will be capable of 
supporting some functions but not others and an understanding of the nature and 
limitations of a medium will illuminate the study of the functionality it can support. 
A six storey building can be built of brick, but a sixty storey building cannot, 
because the structure will collapse under its own weight. 

Given that a function as simple as can opening has constraints limiting the media in 
which it can be realized, it is inevitable that there will also be constraints on the 
media in which the complex functionality of minds can be realized. It is also highly 
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likely that the functions of the mind will be illuminated by a study of its medium of 
implementation, and it is possible that various hypotheses about the nature of mind, 
including the hypothesis that the mind is a computer, will be ruled out when the 
functionality of its medium of implementation is understood. Unfortunately, there 
is a regrettable tendency on the part of some cognitive theorists to move prematurely 
from the conditional "If the mind is a computer then mental processes can be studied 
independently of their medium of realization" to the bald assertion that "because the 
mind is a computer psychology is independent of neuroscience" . One of the 
possibilities which needs to be considered is that neural tissue is not the sort of stuff 
in which binary switches can be implemented and hence that the mind is not a 
computer as they are commonly understood. 

1.5 Turing machine architecture and the generic computer theory of mind. 

Despite the cautionary tale about functionalism above, a computational account of 
mental phenomena is widely expected to succeed, and various theories of cognitive 
architecture have been developed on the basis of the idea that the brain realizes a 
Turing machine or digital computer of some kind. Turing machines and their 
computations are defined formally and discussed in Chapter 2. Informally, a Turing 
machine is a system consisting of two parts, a finite control machine and a 
potentially infinite, one dimensional tape. The tape is divided into squares, each of 
which can be blank or can contain a token of one of a finite alphabet of symbols. 
The control machine has access to the contents of just one square of the tape at any 
moment and can move along the tape in either direction. The control is equipped 
with a scanner with which it recognizes symbol tokens, and a printer with which it 
writes them. The single tape square to which the control has access is called the 
"scanned square" and the symbol on it is called the "scanned symbol" . The control 
machine has a finite number of internal states and its operations are usually 
described in a machine table. Because the machine works with a finite symbol 
alphabet and has a finite number of internal states, its operations can be exhaustively 
described by specifying how it behaves for each combination of internal state and 
scanned symbol. The essential characteristics of a Turing machine are the 
distinction between the tape and the control, the potential infinitude of the tape and 
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the fixed finite nature of the control. The tape serves as a symbolic memory. 
Digital computers are essentially practical versions of Turing machines, i.e. they 

exhibit the separation of control from memory but their memories are more tractable 
than uni-dimensional tapes. They are also equipped with transducers which translate 

external inputs into symbolic codings and vice versa. The keyboard and VDU of 

a computer are transducers. In normal operation, information about the outside 

world consists exclusively of symbolic representations of stimulus energies written 

into memory by the transducers. 

The first digital electronic computer, the ENIAC, spent much of its time idle 

because it suffered from a severe information input bottleneck as a result of its tiny 
internal memory. With the expansion of high speed memory in later machines, and 

with the development of the stored program concept it became possible to 

incorporate more and more of what was needed to complete a computation in high 

speed memory. The whole thrust of computer design thinking from von Neumann 

onwards was to cut down on the need for frequent communication with the low 

speed outside world. The goal was the communication of a completely specified 

task, i.e. both program and data, in a single transaction from the outside world, 

such that the machine could then complete its computation without the need for 

further external intervention. A properly functioning computer is a system in which 

everything of computational interest happens inside the machine. The environment 

serves as a source of data and as a repository for results, but computationally, the 

machine is autonomous. 

Proponents of the physical symbol systems hypothesis and related theories are 

committed to the view that the brain implements a practical version of the Turing 

machine architecture just as digital computers do. Theoretical differences of course 
abound, but the commitment to a fundamental architectural isomorphism between 
minds, digital computers and Turing machines is a hall mark of what may usefully 

be called the "generic computer theory of mind", or "generic theory" . According 

to the generic theory the senses provide input to, or function as, transducers which 

produce representations in the symbolic code with which the brain-ware Turing 
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machine does its computations. The cognitive computer does not have direct access 

to its environment but only to symbolic representations of it. Putnam (1975) 

provides a very clear example; 

"The Turing Machines I want to consider will differ from the abstract 
Turing Machines considered in logical theory in that we will consider 
them to be equipped with sense organs by means of which they can 
scan their environment, and with suitable motor organs which they 
are capable of controlling. We may think of the sense organs as 
causing certain 'reports' to be printed on the tape of the machine at 
certain times, and we may think of the machine as being constructed 
so that when certain 'operant' symnbols are printed by the machine 
on its tape, its motor organs execute appropriate actions. This is the 
natural generalization of a Turing Machine to allow for interaction 
with an environment." 

Putnam (1975, p.409) 

Putnam was one of the first theorists to develop the comparison between Turing 

machines and minds and his work has been very influential. One of the major 

claims of this thesis is that Putnam's and other similar models are not in fact the 
most "natural generalization" of a Turing machine for purposes of cognitive 

modelling. 

Jerry Fodor's (1980) arguments for methodological solipsism as a research strategy 

provide another example of the way in which ideas rather similar to Putnam' s can 

inform the development of a cognitive theory. Fodor argues that computational 

processing depends purely on the syntactic relations among the elements of a 

computational system. This is very clear in the case of a Turing machine. Fodor 

also assumes that the mental Turing machine communicates with its environment 

solely by having access to "oracles" 3  which enter symbolic representations of 
ambient environmental energies on to parts of the tape from time to time. 

Following Putnam, Fodor describes this model as "a natural extension of the 

computational picture of the mind", from which it follows that if computational 

'The term "oracle" was first used, in roughly Fodor's sense, by Turing in his 1939 paper on 
ordinal logics. 
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processes are purely formal then "the bearing of environmental information on such 

processes is exhausted by the formal character of whatever the oracles write on the 

tape", and the proper study for psychology is just the character of the internal 

symbolic representations. The argument is similar to one which he deploys for 
slightly different purposes in "The Modularity of Mind", as follows; 

"...if, as many of us now suppose, minds are essentially symbol-
manipulating devices, it ought to be useful to think of minds on the 
Turing-machine model ...However ...Turing machines are closed 
computational systems...the rest of the world being quite irrelevant 
to the character of their performance...If, therefore, we are to start 
with anything like Turing machines as models in cognitive 
psychology, we must think of them as embedded in a matrix of 
subsidiary systems which affect their computations in ways that are 
responsive to the flow of environmental events." 

Fodor (1983,pp.38-39). 

Newell (1980) provides a further example of the architectural assumptions of the 

generic theory. A physical symbol system, according to Newell, communicates with 

its environment by means of two operators "input" and "behave" . Newell 

acknowledges that "without some reliable transduction from external structure to 
symbols, the symbol system will not be able to produce reliable functional 
dependence on the external environment", Newell (1980,p.167), but he does not 

find this at all problematic. He assumes that reliable transduction will be achieved 

and that "From a formal viewpoint, the operation of these two operators [input & 

behave] can just be taken as given, providing in effect a boundary condition for the 

internal behavior of the system." Newell (1980,p.147). 

In general, accounts of cognitive architecture belonging to the generic theory 

tradition propose two sets of scanners. The first set consists of sensory transducers 

which convert ambient stimulus energy into tokens of symbols in the internal 

cognitive code, and the second set consists of mechanisms which read, write and 

manipulate expressions in the cognitive code produced by the sensory transducers. 

Cognitive computation is thus isolated from direct contact with sensory processes. 
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1.6 Connectionism and cognitive architecture. 

Connectionists are unconvinced by a number of characteristics of the generic 
account of the basic structuring of human cognitive architecture. Some theorists 
(e.g. Kohonen, 1988), explicitly question the suggestion that the brain has 
mechanisms reliable enough to support the complex articulated data structures, 
random access location addressing and extended chaining of logical steps which are 
characteristic of digital computation. It is of interest to note that von Neumann 
expressed similar reservations as early as 1948 when he argued that the "logical 
depth" of digital computation was of a different order from that of human 
computation and that a new system of logic would be needed to understand complex 
automata of both natural and artificial origins. It is not widely recognized by 
psychologists' how farsighted von Neumann was in this respect. Those who believe 
that the Boltzmann machine (Hinton & Sejnowski, 1986) represents an entirely new 
departure will find food for thought in the following; 

"...there are numerous indications to make us believe that this new 
system of formal logic will move closer to another discipline which 
has been little linked in the past with logic. This is thermodynamics, 
primarily in the form it was received from Boltzmann, and is that 
part of theoretical physics which comes nearest in some of its aspects 
to manipulating and measuring information." 

von Neumann (1987,p.407). 

Apart from questions about the nature of the basic mechanisms, most connectionists 
take issue with the notion that cognitive computation consists of the manipulation 
of explicit symbolic representations, and numerous connectionist counter proposals 
to the generic view are now being developed. However, much connectionist work 
consists of the development of models of specific cognitive capacities using 
feedforward networks and the backpropagation learning algorithm and it is not clear 
exactly how to relate such models to each other or to models derived from generic 
theory. There is, as yet, no fundamental theory which unites connectionist research 
in the way in which Turing machine theory unites proponents of the generic theory, 

4For an exception, see Boden (1988, p.2). 
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although useful theoretical work is being done, cf. Smolensky (1988), Churchland 

(1989), Bechtel & Abrahamson (1991), Clark (1993). One of the claims of the 

thesis is that a proper understanding of the nature of Turing's analysis of 
computation provides an account of the conceptual linkage between connectionism 

and the generic theory. 

A fuller discussion of connectionism and its relations to the External Tape 

Hypothesis is given in chapter 7. As an introduction to the approach taken here, it 

is useful to think of connectionist models as having two distinct phases, which might 
be called the training phase and the operational phase. One common way in which 

a connectionist project is conducted is to identify a cognitive capacity, such as the 

capacity to form the past tenses of verbs or to exhibit the functional asymmetry of 

the Stroop colour word naming phenomenon, as a target. A network with a given 
basic architecture is then trained using a suitable corpus of exemplars until a 

predetermined criterion of performance is reached with respect to that target 

capacity. During the training phase, the strengths of the connections between nodes 

in the network are modifiable. When criterial performance has been achieved, 

connection strength modification is discontinued and the structure can be considered 

fixed. During the operational phase, the network's capacity to produce the desired 

associations is assessed. In some cases, such as the modelling of past-tense 

acquisition, the training phase is of primary psychological interest as a model of part 

of the process of language acquisition. In such a case the performance of the 

network in the operational phase is significant only in so far as it provides a 
measure of the extent to which performance criteria have been met. In other cases, 

for example models of concept acquisition, the operational phase is of more 

psychological interest and the training phase is used solely to induce the connectivity 

needed to establish the set of input-output paired associations which constitute the 

basic performance of the system. What is generally then of most interest is the 

study of the extent to which performance generalizes to unfamiliar inputs and the 

exploration of the internal structures of connectivity which support such 

performance. These have been investigated using techniques such as cluster analysis 

and principal components analysis and are explored for the insights they might 
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provide into the way conceptual information is stored in the human cognitive 
system. Another technique which has been used is to alter the connectivity so as 
to simulate the effect of a brain lesion, for example, and to note whether observed 
changes in performance bear some measurable similarity to the pathology of actual 
cases of brain damage. 

The question which is raised briefly here, and discussed in more detail later, is how 
a network might best be characterized when it is considered as a fixed, entity, i.e. 
after its training has been completed, or, when a snapshot is taken of its structures 
at some moment during the training regime. The proposal made is that a fixed 
connectionist network, i.e. one which is not learning, is accurately construed as a 
finite state machine. The argument for this view is based on considering the set of 
inputs and outputs which such a network can handle, and the character of its internal 
activation states when it is in operation. In the light of the characterization of fixed 
nets as finite automata, the learning process can be thought of as transforming an 
initial finite automaton which may not compute a recognizable function, but none 
the less computes some function, into one which computes, to a more or less 
accurate degree, the associative function specified by the set of input-output pairs 
which form the corpus of training examples. The corpus of training examples, as 
well as providing data for the machine, also provide the means of specifying the 
error feedback which the machine receives at each training step. 

If this view is correct it suggests that in so far as connectionist models are intended 
to have realist interpretations they can be construed broadly as proposing that the 
brain is a finite state automaton. The importance of this point is that it agrees very 
closely with the view of Turing' s analysis of computation which the thesis argues 
is the proper view to take. The basic operation of a finite automaton is the state 
transition; this is a rule following operation, but it need not be explicitly rule 
governed. It is relatively easy to think of neurally plausible implementation schemes 
for state transitions. It seems quite reasonable, for example, to think of a state 
transition as a function from one stable pattern of neural firing to another, or as a 
network energy function of a Boltzmann machine. If we do think in this way, and 
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identify patterns of activation as the internal states of a connectionist network, then 
a system with n processing units or nodes each capable of k activation states, may 
be thought of as a finite state automaton with up to kn internal states. These states 
are determined by the activation function thresholds and connection strengths of the 
nodes in the network. A learning rule applied to a network alters the set of 
activation patterns which the network produces, primarily by modifying the 
weighted connections between pairs of nodes. Thus a learning rule changes the set 
of internal states of an automaton. Since an automaton is identified by its internal 
states and its state transition table, changing the internal states amounts to 
constructing a new automaton. Both supervised and unsupervised connectionist 
learning techniques can be seen in this light as methods for constructing finite 
automata. 

1.7 Implications of the finite state account of connectionist models. 

Connectionists have not yet gone far enough in following through the implications 
of the above account because they have not considered sufficiently carefully how 
radically the functional relationship between the machine in the head and the 
external stimulus environment changes when the internal machine is hypothesized 
to be a finite state automaton rather than a Turing machine. In the latter case, the 
external environment is of limited direct interest because the computational 
environment of a Turing machine is its tape and the tape of the cognitive Turing 
machine is hypothesized to be in the head. If the internal machine is considered to 
be a finite state automaton the situation is very different. The fundamental 
separation of memory from control seen in a Turing machine is absent and an 
independent internal memory capable of storing symbol tokens representing states 
of affairs in the external environment is not essential. The only mandatory internal 
machinery is that required to manage state transitions. Finite automata use the same 
set of internal states for control and for memory and state transitions are directly 
driven by the input. The neural networks of McCulloch and Pitts (1943) provide 
an example. Such networks, which do not learn, are equivalent to finite state 
automata; a finite state automaton can be constructed to compute the same function 
as any neural network and vice versa (Minsky, 1967) . This point may be taken to 
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support the claim made above about the characterization of connectionist networks 
when their connections are considered fixed. Neural networks are not equivalent 
to Turing machines although the claim that they are has sometimes been made. 
McCulloch and Pitts were clear about this and their original paper bears careful 
reading. What they actually say is this; 

"every net, if furnished with a tape, scanners connected to afferents, 
and suitable efferents to perform the necessary motor-operations, can 
compute only such numbers as can a Turing machine". 

McCulloch & Pitts (1943, p.37) 

Thus, a neural net connected to an appropriate environment computes like a 
Turing machine. This suggests that if the brain is a neural network and hence also 
a finite state automaton, then, to argue that the cognitive system has the 
computational power of a Turing machine, should require an argument to the effect 
that aspects of the external environment constitute a tape, and that the sensory and 
motor pathways of the peripheral nervous system provide the scanners and 
transducers. To a first approximation, the argument should be that human cognitive 
architecture is a synergetic system of organism and environment realizing a Turing 
machine. That seems to be the direction in which connectionist philosophy naturally 
leads. 

It is not clear that connectionists do, in fact, give the real environment such a 
prominent place in their models. Consider the following passage from Rumelhart, 
Hinton & McClelland (1986). Having argued in line with the suggestion above that 
a clear model of the environment is crucial and that both the history of inputs to the 
system and its responses may be relevant to that model, they then say; 

"In practice, most PDP models involve a much simpler 
characterization of the environment. Typically, the environment is 
characterized by a stable probability distribution over the set of 
possible input patterns independent of past inputs and past responses 
of the system. In this case, we can imagine listing the set of possible 
inputs to the system and numbering them from 1 to M. The 
environment is then characterized by a set of probabilities, pi  for i = 
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1 ,.. .,M. 

It is clear from this quotation that the primary focus of interest in PDP models is 
not the environment, but the processing characteristics of internal configurations of 
nodes and the learning rules which modify the connections among them. This 
emphasis is in one way entirely natural, since it is the presence of hidden units 
which enables connectionist systems to transcend the limitations on the powers of 
single layer perceptrons so notably identified by Minsky and Papert (1969). It is 
also possible that the capacity to deal with real world complexity will emerge from 
these initial restrictions to impoverished environments. Nevertheless, the 
methodology is curious given that one of the stated goals of connectionism is to 
overcome the domain specificity and "brittleness" of symbol processing systems. 

The input and output node layers of connectionist networks show a strong and 
perhaps more than coincidental resemblance to Newell's "input" and "behave" 
operators. In fact, in some respects they are weaker. Hanson & Burr (1990) 
remarked that the environment for a connectionist system will typically consist of 
"a set of stimuli defined in an arbitrary feature space." It may be, of course, that 
impoverished environments are chosen for sound methodological reasons. But it is 
dangerous to suppose that a model which works well in a restricted environment will 
also work under more realistic and complex stimulus conditions. 

1.8 Arguments for a new model. 

The moral to be drawn from both generic and connectionist architectures is that 
generic theory and connectionism, while differing (sometimes fundamentally) with 
respect to the details of structures and processing, nevertheless share the view that 
the important computational parts of the cognitive system are located entirely inside 
the skin of the organism which maintains contact with the external world by 
processing representations of it. Such a view is encouraged by the digital computer 
systems on which models are usually built and tested. Connectionism focuses on 
developing internal representational structure via associative learning, whereas 
generic theory focuses on exploiting existing internal structure by developing search 
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and proof techniques for managing symbolic knowledge bases. Neither position 

represents an entirely adequate approach to the problems of embodied cognition and 

a new approach is needed. The generic theory has produced models which are 
markedly brittle, despite the maximal behavioural flexibility which they enjoy, in 
principle, by virtue of their computational universality. Connectionist models by 
contrast, while less brittle and more able to handle degraded input, are known to 

have difficulty with tasks such as drawing inferences which require temporally 
extended sequences of processing. Even their celebrated capacity for generalization 
from training inputs to novel stimuli has been called into question (Norris, 1991). 

A particular point of focus for the thesis is that neither the generic approach nor 
connectionism offers a satisfactory treatment of the environment. The central point 

is that both approaches suppose that what the cognitive system has to do is to build 

or manipulate internal structure which reflects, represents, or imposes structure on 

the external world. The question is why this should be thought to be the best way 

to proceed. Given that there is elaborate and relatively permanent structure in the 

external world, why not use it directly? Brooks (1990, 1991) has reported work, 
admittedly with rather simple and strictly bounded systems, in which one of the 

guiding principles is that the world can, and must, serve as its own model in this 

way. Brooks's work is discussed in Chapter 6. 

It may be objected that such a suggestion represents a regressive move towards a 

behaviourist analysis in which the causes of action are sought in the organism's 

environment. The objection loses what force it might otherwise have when it is 
understood that the behaviour of a Turing machine is a function of two parameters, 
its current internal state and its current input. The choice of which of these to focus 

on is very much dependent on the nature of the activity the machine is engaged in. 

Likewise with human activity; sometimes we need to concentrate on what is 

happening internally, sometimes on what is going on in the outside world. Take a 

simple example. Suppose someone asks for directions and is told "Go straight 
along the road until you come to the first set of traffic lights and turn left." How 
should we think about their subsequent behaviour? While they are walking along 
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the road, it might be appropriate to think of control as being exercised by the state 
of mind "looking for a set of traffic lights." Behaviour will continue to be 
responsive to aspects of the environment, such as side turnings, roundabouts, etc. 
but is not controlled by them, except perhaps negatively, in the sense that these 
other things are recognized as "non traffic lights. " The point is that they do not 
lead to changes of internal state. When the traffic lights are reached, however, it 
might be appropriate to think of them as exercising control, because they, or at least 
the perceptions they generate, do lead to a change of internal state. Thus, the 
question of where control is said to be exercised is a matter of emphasis. Strictly 
speaking it is actually a matter for internal states and external structure equally. So 
it is with a Turing machine. A rather natural analogue of the pedestrian looking for 
traffic lights and then changing direction, is the Turing machine searching for a 
particular symbol on its tape and changing direction when it finds it. This sort of 
activity is fundamental to Turing's original analysis. While the machine is moving 
in a particular direction, and before it has found the required symbol, it is 
appropriate to think of its behaviour as being controlled by its internal state, and 
when the symbol is found as being determined by that symbol, which triggers a 
change of direction, but in fact a Turing machine's action is always locally caused 
by the pair (current state, symbol scanned). Further analysis of the relations among 
internal states, inputs and outputs is given in Chapter 2.6 and Chapter 3.8. 

1.9 The External Tape Hypothesis (E '1`H.) . 

The central claim of the thesis is that a computational account of cognition must be 
based on a proper understanding of the interactions between the human organism 
and the external environment. It is argued that these interactions are best modelled 
by regarding the embodied central nervous system as the finite state control of a 
Turing machine and selected aspects of the external environment as its tape. This 
approach is called the external tape hypothesis (ETH) and is derived directly from 
Turing's seminal analysis of routine computation. The ETH implies that the 
cognitive architecture is a synergetic system of organism and environment which 
realizes a Turing machine and the claim is that this is much the most natural 
generalization of Turing's original analysis. The argument is developed in detail in 
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Chapter 3. The term "synergetic" is not intended to convey the idea that the whole 
is greater than the sum of its parts, but to denote precisely, the notion of combined 

or co-ordinated action. Thus, the implication of the ETH is that cognitive activity 

is based on the combined and co-ordinated activities of an organism and its 
environment, interacting as the control and tape of a Turing machine. The approach 

is unbiased by the engineering considerations inherent in the design of digital 

computers and offers a new perspective on a variety of interesting problems in 

psychology. Cognition, according to the ETH, involves external objects directly. 

A crucial point is that cognitive processing need not involve internal, symbolic 

representations of the kind fundamental to the generic theory. There is a need for 

stable internal states, but these need not be representational in the sense of 

"designating" something other than themselves. The issues here are related to a 

fundamental distinction between tape memory and control memory which is 

introduced in Chapter 2 and subsequently explored and argued for extensively. It 

is a central claim of the ETH that this type of memory has been ignored and 
seriously underplayed by cognitive scientists, primarily because it does not figure 

prominently in the operation of digital computers owing to their design aims and 

construction methods. The claim is that internal states need not be semantically 

interpretable in the way argued by Pylyshyn (1984) and Newell (1980) for example. 

It is an empirical rather than a conceptual matter to determine whether there are 

representational states of the traditional kind. The ETH suggests that the primary 

relation between external stimuli and internal mechanisms is one of registration 

rather than representation. The view is consonant with, but not committed to, a 

connectionist account of internal states. The ETH goes beyond the predominant 

connectionist concern with the way in which stable spatial structures (often thought 

of in terms of sets of micro-features) form and interact with internal states, to the 

ways in which stable temporal structures of events and objects might also form and 

interact with internal states. This is an area with which connectionists are beginning 

to become concerned as difficulties become more manifest (Elman, 1990; Chater, 

1991). Recent important work in this area has been reported by Cleeremans (1993). 

The ETH differs from the generic theory in a variety of ways, perhaps most 

importantly in allowing that the nature of the computational substrate may be of 
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fundamental importance to the development of a satisfactory account of human 
cognition. Evidence from theoretical computer science and from the emerging 
technology of analogue VLSI, which models neural circuits in silicon, is presented 
to support this suggestion. 

1.9.1 Linear Tapes and Human motion. 

The linear nature of a Turing machine's tape imposes on the control the need for 
repeated traverses to retrieve information. This constraint, which has been cited as 
a major barrier to the practical utility of the Turing machine, becomes a source of 
interesting hypotheses when Turing's machine is adopted as a serious model of the 
human cognitive architecture considered as a system in which the organism interacts 
with the external environment, because it highlights human mobility as a factor in 
cognitive processing. It may be a simple minded observation, but it is striking that, 
like Turing machines, humans do not have random access to different parts of the 
environment. Moving from A to B involves traversing all intervening points, and 
moving back to A from B involves traversing them again. It may be 
computationally inefficient, but it has to be done. Thinking of the organism, 
walking around, sensing its environment, as akin to the Turing machine control 
shuttling up and down its tape, suggests that human mobility may be connected to 
our memory capabilities in a fundamental way. In Chapter 6, neurobiological 
evidence is cited which supports this view. 

Treating the mobile organism as a component of the cognitive system also aligns 
cognitive psychology more closely with robotics than has previously been 
conventional, and treating the brain and other parts of the CNS as a finite state 
automaton sharpens the links with neuroscience. The latter point is particularly 
important. If, as the physical symbol systems hypothesis suggests, the brain is 
organized like a digital computer, then arguments that neural structures are not, in 
and of themselves, representationally significant have considerable force. If, 
however, the brain is a finite state automaton, then structures realizing states of the 
automaton will have representational significance, because the states of a finite 
automaton both represent and control, and understanding the implementation of 
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cognitive states in the brain will need to be treated as a central part of the cognitive 

science enterprise. Churchland (1986) and Pellionisz (1988) offer arguments to this 

effect. 

1.9.2 Parallel and Serial Operation. 

The ETH assumes that the cognitive system is both parallel and serial in operation, 

thus suggesting that an either/or debate about the issue is sterile. Viewed from 

outside, i.e. from the perspective of an observer, the system can be seen to be 
producing behaviour in a serial fashion. This is literally so; it is not just as 

Smolensky (1989) puts it "an approximate description of the global behavior of a 

lot of parallel computation." The operations of the control, i.e. the brain, however, 

are obviously parallel. Curiously enough, although the early computer designers 

opted for serial operation for very good reasons, from the beginning parallel control 

was seen to be simpler in some respects. At a conference held in 1951 to 

inaugurate the Manchester University computer, Maurice Wilkes, read a paper in 

which he introduced the important concept of microprogramming. In the course of 

this paper he argued that control in a parallel machine was simpler because the 

electronic waveforms needed were easier to produce and of less critical shape. 

"In the case of a serial synchronous machine the waveform must rise 
at some critical moment relative to the clock and must fall at another 
critical moment, and its edges must be sharp. In a parallel 
asynchronous machine all that is needed is a single pulse whose time 
of occurrence, length, and shape are all non-critical." 

Wilkes (1951, p.182) 

There is an important general point implicit in these remarks. Computers are now 

so reliable that it is easy to forget the precision of the engineering required to make 

them work as they do, and all too easy to attribute to neural tissue, the same 

functional qualities (cf. Dennett 1984, p.149 note 21; 1987, pp.231-2 on wonder 

tissue.). Johnson-Laird does something of the sort at the start of "Mental Models". 

Having argued that mind can be studied independently of brain because programs 

can be studied independently of hardware, an argument which is reviewed in 
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Chapter 5, he goes on to suggest that 

"The neurophysiological substrate must provide a physical basis for 
the processes of the mind, but granted that the substrate offers the 
computational power of recursive functions, its physical nature places 
no constraint on the patterns of thought." 

Johnson-Laird (1983, p.9). 

This argument only goes through if it has already been shown that the brain is 
actually organized like a Turing machine and that mental processes stand in the 

same relation to brain processes as the software of a computer stands to its 

hardware. Johnson-Laird offers no argument to show that this is so. Without such 

an argument the observation above is of limited value. 

1.9.3 Representational Structures and Thinking. 

The ETH reduces the representational burden on internal structures and paves the 

way for a naturalistic approach to the semantics of mental states. If the primary 

relation between the brain and the external world is one of registration rather than 

representation, then there is no obligation to postulate internal structures which are 

articulated in ways which reflect the full combinatorial variety of object-event 

relations. It is argued that this approach not only reduces the representational 

burden on internal states, but also provides a way of considering how thinking and 

perception might be linked. It is clear that the cognitive system of the neonate is 

far from being a tabula rasa and that the perceptual system is innately structured to 

respond (i.e. to make state transitions) in highly specific ways to given forms of 

external input. Evidence that this is so comes from sources such as Spelke (1985, 

1990) It is hypothesized in Chapter 7 that thinking is enabled by the development 

of internal state transition trajectories, i.e. virtual machine processes, produced by 

a Turing computable process of self-description originally described by Lee (1963). 

The process redescribes internally, sequences of states and the external events and 

objects which cause transitions between them, in a form which is decoupled from 

the specific triggering objects/events, and provides free floating schemata which are 

proposed as the "vehicles" of thought. The innate structures with which the neonate 

is endowed get the process off the ground. A case may be made for thinking that 
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such a process may underlie the process of representational redescription which 
Karmiloff-Smith (1992) argues is an important part of the process of normal 
intellectual development. 

1.9.4 Program and Observer Perspectives. 
A further interesting consequence of the ETH is that it brings into play more social 
considerations than have customarily been favoured in cognitive theories. One way 
to see what is involved here is to consider two possible perspectives on a 
computation, that of the machine and that of an observer. Newell (1980, p.166), 
describing the behaviour of a universal machine program, summarized the 
perspectives succinctly as follows; 

"From the perspective of the program there is no choice and no 
decision; it simply puts one foot in front of the other so to speak. 
From the perspective of the outside observer a choice is being made 
dependent on the data." 

This is a very interesting observation. It is suggested that there may be grounds 

for identifying our own perspective on our actions with something like the program 

perspective and another's perspective on our actions with the observer's point of 

view. Thus it would appear that the observer is better placed to understand some 

aspects of our actions than we are ourselves. This suggests that a complete 

understanding of cognitive behaviour may require a social context in which 

feedback is available. G.H. Mead made just such a proposal in "Mind, Self, and 
Society" (1934). Mead's work, although rarely quoted by cognitive scientists5 , is 
remarkably contemporary in its preoccupations, which is particularly striking since 

it pre-dated not only the digital computer, but also the computer's prefiguration in 

the theoretical work of Turing and Church. von Neumann also, was concerned with 
the distinction between an observed system and its observer as early as 1932 

(Schnelle 1988, p.543). Schnelle suggests that von Neumann's concerns then were 

important precursors of the ideas set out in his General and Logical Theory of 

The only reference I have encountered is again in the work of Allen Newell (1982,p.109 
footnote 10). 
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Automata. The distinction between program and observer perspectives comes into 
play strongly in the context of the external tape hypothesis, by virtue of the fact that 
more of the cognitive machine is assumed to be on public view than is the case in 
most cognitive theories. Observers can see the objects which provide the 
computational symbols driving the cognitive Turing machine, and can see the 
responses of the machine. The only parts of the machine which are hidden are the 
internal mechanisms which constitute the control. 

The ETH also makes contact with the "intentional stance" of Dennett (1978,1987). 
Dennett sees himself as balanced "firmly on the knife-edge between the intolerable 
extremes of simple realism and simple relativism" (1987,p.37). He wants to argue 
that the observer's ascription of intentional states to a system, resulting from the 
perception of data dependent choices, is objective because observable patterns of 
action do exist, and at the same time observer dependent and potentially 
indeterminate. 

"it is always possible in principle for rival intentional stance 
interpretations of those patterns to tie for first place, so that no 
further fact could settle what the intentional system in question really 
believed." 

Dennett (1987, p.40) 

Treating the environmentally situated organism as a Turing machine seems to 
provide some support for Dennett's position. Some aspects of cognitive 
computation are visible since an observer can see what a person is doing. Other 
aspects, the internal states and transitions among them, are not visible. Hence 
ascriptions of intentional states, although based on objective patterns of behaviour, 
are defeasible because they are based on partial information. Further, even if state 
transitions were available for inspection, it would still be the case that a unique 
ascription of intentional content might be unavailable because multiple consistent 
interpretations of a Turing machine computation are always possible in principle. 

1.10 Objections to the External Tape Hypothesis. 
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Numerous objections to the ETH have been raised, both by its opponents and by 
those who are sympathetic towards the point of view. One important problem is 
precisely that which from another angle makes it so attractive, namely the 
immediacy of its interaction with the environment. What models based on the 
generic theory seem to provide is an autonomous internal computational environment 
in which such paradigmatically cognitive activities as planning and anticipation can 
be carried out (cf. Dennett 1978, ch.5; Newell 1990). A Turing machine control, 
by contrast, stands in a completely deterministic relation to its input, and appears 
to offer no scope for judgment, planning and deliberation. There seem to be two 
main ways of approaching this problem and it is not clear which is the better. 

The first approach accepts that although the relation is deterministic it allows more 
flexible responding than appears possible initially, particularly when the number of 
states of the system in question is large. This is obviously true of the brain. Even 
if it is supposed that all the information processing work of the brain is done by 
neurons, which is a conservative supposition, and that the operation of neurons is 
essentially digital, then the brain which has something like 10 10  neurons would have 
approximately 2 10° or 1.27 x 1030  total states. Even allowing for the fact that many 
of these neural states might be computationally identical, such a huge number means 
that behaviour can be dependent on input in highly complex ways and over extended 
time spans. This approach is discussed in more detail in the context of Turing's 
analysis of computation in Chapter 3. 

The second approach argues for a distinction between primary and secondary 
computational relations which is associated with the way in which thinking might 
be derived from experience via self-description as mentioned in Section 1.9.3. This 
is treated at greater length in Chapter 7 in the context of representational 
redescription. The essence of this approach perhaps represents a weakening of the 
most radical version of the ETH in that it allows a limited place for explicit, 
semantically transparent symbolic representations. 

Another problem area concerns the representational inadequacy of the state and 
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symbol form in which descriptions of Turing machines are normally couched. For 
the ETH to have any practical value, it will be necessary to have much richer 

descriptive forms for internal states and symbols. 

"In order that we can apply any insights which we may have about 
mechanisms we want this description to reflect the actual, concrete, 
structure of the device in a given state. On the other hand, we want 
the form of description to be sufficiently abstract to apply uniformly 
to mechanical, electrical or merely notional devices." 

Gandy (1980, p.127). 

In the paper from which the quotation was taken, Gandy used hereditarily finite sets 

to extend the scope of Turing's original analysis. One of the attractions of Gandy's 

approach is that it shows how to incorporate parallelism into the control of a 

machine whose global behaviour is serial. Gandy's work is more fully discussed 

in Chapter 6. Alternative forms of description which might be used are those of 

Hoare (1985) and Milner (1989). 

Another area of problems clusters around the character of a Turing machine tape 

and the symbols which are printed upon it. There are four principal characteristics 

as follows; 

1) that the number of symbols be finite, 
2) that the portion of the tape which can be observed by the control at any one 

time is finitely bounded. 
3) that the tape itself is, in principle, of unbounded length. 
4) that symbols remain unchanged once written, unless or until the control 

encounters them again. 

With respect to 4), the ETH is not in greater difficulty than the generic theory even 

though objects in the world do not behave like Turing machine symbols. Both 

accounts have difficulties. Another aspect of the same general problem focuses on 

the kinds of things that could count as computational symbols. The physical symbol 

systems hypothesis, for example, suggests that the right kinds of things are neural 

circuits (Newell 1990, p.132). The ETH suggests that they are primarily objects 

and events in the external environment. However, the kinds of results reported by 

Hochberg (1968) show how difficult it will be to give a satisfactory account of the 
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physical characteristics of objects which give rise to form perception independently 
of a perceiver. 

With respect to 3) the ETH faces no greater difficulty than any other computational 
account which requires computational universality and hence unbounded memory. 
In fact the proposal is more principled since large chunks of the external 
environment are potentially available as memory and the idealization is thus less 
severe. 

With respect to 2), it is clear that the limited acuity of our sensory systems, 
attention span and short term memory mean that there are indeed bounds on how 
much of the environment can be scanned at any one time. The ETH implies that 
cognitive theories of attention should constitute a central part of cognitive science. 
Attention is discussed in greater detail in the context of Turing's analysis of routine 
computation in Chapter 3. 

The problem with the finite bound on the number of symbols in 1) is more serious, 
in that there appears to be an unbounded number of environmental contingencies 
which could be sensed by an organism and which might therefore count as 
computational symbols for that organism. At least two separate sorts of problem 
can be discerned. 

Kirk (1986, p.443), discussing what he takes to be a fundamental disanalogy 
between a machine tape and the world, poses one sort of problem. He says "there 
is no definite limit to the number of kinds of human performance that could produce 
a token of, say '3', nor any definite limit to the number of things that would be 
acceptable as a token of '3'."  The point is that something can count as a token of 
'3' if it is intended by its producer to be such a token, and, if it can be perceived 
as such. Thus, as Kirk points out, we can perceive a pattern of stones in the desert 
or a vapour trail in the sky as a token of '3'.  I think a possible line of defence to 
this objection is to distinguish the primitive symbols forming the "alphabet" of a 
system from the interpretation placed on them. A universal Turing machine may 
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have a much smaller repertoire of symbols than a machine whose operations it 

simulates and yet be capable of simulation by encoding the target machine's symbols 

as sequences of the smaller set which it can handle. Thus the vapour trail and the 

pattern of stones need not, perhaps, be considered as separate symbols but may be 
thought of as composites. 

A second sort of problem with respect to environmental symbols is that many 
environmental quantities are continuous whereas Turing machine symbols are 

discrete. Headway may be made with this problem by considering the phenomena 
of categorical perception (cf. Hamad 1987), in which physically continuous stimuli 

are perceived to belong to discrete categories. Three more specific problems with 

the ETH are as follows6 . 

5) The world, unlike a tape, cannot be run backwards. 
6) The world, unlike a tape, cannot be blank. 
7) Since there are identical symbols on the tape (world) and TM control (brain) 

the ETH trivializes the whole problem of perception (and perhaps learning) . 

Problem 7 is the most important and is addressed in Chapter 2.6. In outline, the 

argument presented is that the control and tape need have identical symbols on them 

only if the control is implemented literally as a machine table. However, since the 

machine table is a form of description of an abstract machine rather than a blueprint 

for the implementation of a real machine, there is no need for explicit symbols as 

part of an implemented control although they are so convenient as to be almost 
inescapable as a means of describing an abstract control. 

Problem 6, that the world, unlike a tape, cannot be blank, is perhaps less difficult 

to resolve than it might initially seem. First, although a Turing machine's tape can 

be blank, it is not part of its definition that it ever must be and there are Turing 

machines, among them all universal machines, which must have non-blank tapes in 

order to function correctly. What is mandatory for a Turing machine is that no 

more than a finite number of squares can be non-blank at the start of a computation. 

6I am grateful to Professor Yorick Wilks for raising these problems. 
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This appears to amount to the stipulation that the world can be only finitely 

complex. Whether this is a serious problem is hard to determine. Second, and 

perhaps more convincingly, if the objection is well founded, it ought also to apply 
to the generic theory. The generic theory proposes that human memory is modelled 

as the tape of a Turing machine. But memory, unlike a tape, also cannot be blank. 

The various forms of amnesia which might seem to refute this suggestion are best 

thought of not as blanking the memory but as affecting retrieval, or, in extreme 

cases, as destroying the tape. Thus problem 6 appears to apply to many 

computational theories of cognitive architecture if it applies at all and is not 

therefore, specifically a problem for the ETH. 

Problem 5 can be resolved by considering the differences between the tape of a 

Turing machine and a reel of cinema film. These may be thought to be similar 

media in the sense that the one is divided into squares and the other into frames. 

If a cinema film is run backwards, effects appear to precede their causes which is, 

of course, physically impossible in the real world. This idea, applied to a Turing 

machine tape, appears to capture the intended force of the objection. The tape of 

a Turing machine, it is claimed, has the capacity of running backwards in time 

which is not characteristic of the real world in which time is uni-directional. 

However, for this objection to hold, it would have to be the case that the time of 

inscription of a symbol is uniquely associated with its position in the sequence of 

squares on the tape. It is an association of this kind which confers on a reel of film 

its own internal "film time" and hence the possibility of running it backwards. 

Consider a sequence of frames, f1 ... fm , of a cinema film. Each of the f  has a 

unique time at which it was shot, t(f), such that t(f) < t(f) <=>i < j. It is this 

biconditional association of position in the sequence of frames with time of shooting 

which gives sense to the notions of running a film "forwards" and "backwards". 

These notions, of course, apply only to "film time" and not to real time, because 

running a film backwards in "film time" requires forward movement in real time. 

There is no analogous internal notion of "tape time" in the case of a Turing 

machine, because there is no relationship of entailment between position on a Turing 

machine tape and the time of inscription of a symbol. In consequence, there is no 
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sense in which the tape can be said to run backwards. The proper terms for 

describing movement relative to a Turing machine tape are "left" and "right" not 
"forwards" and "backwards" . It is, of course, quite possible for a sequence of state 
transitions and tape movements to occur which exactly reverses a prior sequence of 

actions, leaving the tape as it was before the pattern of symbols resulting from the 

original sequence was inscribed. However, suppose the original sequence to have 

been started at some arbitrary time t I  and to have been completed k-1 time steps 

later at time tt . To reverse the sequence requires a further k time steps t t+l  to tom . 

Thus time continues to move forward as a sequence is reversed. The sense in which 

reversing a sequence would have undesirable theoretical consequences would be that 

in which reversing the sequence also reversed the flow of time such that the time 

at the end of the reversal of the sequence was the original t1  rather than tom . But this 

is not the case with a Turing machine. It appears therefore, that the only 
satisfactory formulation of the notion of running a tape backwards, i.e. reversal of 

a sequence of transitions, is one which does not damage the ETH. 

1.11. Outline of the thesis. 

In Chapter 2 formal definitions of finite automata and Turing machines are given 

and the properties of such machines are discussed. The application of the Turing 

machine concept to the study of cognitive architecture is expanded beyond the 

introduction given in chapter 1. In chapter 3, Turing's analysis of computation is 

discussed in detail and its divergence from the assumptions of the generic theory is 

documented. In Chapter 4, a short account of some of the principal features of 

digital computers and the history of their development is given with a view to 

reinforcing the notion that the digital computer is unsuitable as a literal model of 

human cognitive architecture. In Chapter 5. some prominent examples of the 

generic computer theory of mind are discussed in the light of Turing's analysis. In 

Chapter 6 the External Tape Hypothesis is developed in detail. Chapter 7 gives an  

account of the development of thought in terms of the ETH and self-reproducing 

machines. Chapter 8 summarizes the claims made, outlines areas of importance for 

further research and relates the ETH to other theoretical enterprises in cognitive 

science. 
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Chapter 2. Turing Machines and Finite Automata 

In this chapter the formal foundations on which the ETH is based are described. 
A Turing machine is essentially a mathematical abstraction which describes a 
potentially infinite output such as the decimal expansion of ir, in terms of a finite 
set of rules for its production, but Turing developed his ideas in the context of 

machines which might realize such sets of rules. Thus, in addition to the formal 
definition of a Turing machine, it is important to understand what kind of machine 
Turing had in mind and what one might be like if it were actually constructed. This 
is particularly important for the study of cognition where the concern is with the 

embodiment of intelligence rather than with the purely formal or functional means 

of its specification. Turing's genius lay in showing how the formal and the physical 
might be combined. What Turing aimed to produce was a mechanical model of the 

system consisting of a human "computer" working out a routine calculation with 

paper and pencil. The details of Turing's machine model and his analysis of 
computation are the basis for the ETH and are discussed in detail in Chapter 3. 
Turing's biographer suggests that he may have used the typewriter as his basic 
model for a machine, Hodges (1983, pp.96-98), whereas Hendriks-Jansen (1994) 

has claimed, much less plausibly, that Turing had in mind a manufacturing 
assembly-line as his basic model. Whatever the case, Turing was definitely a man 
with a practical bent, although apparently somewhat maladroit in his dealings with 

machinery, and it is clear that he had in mind the idea of a real machine, albeit one 

that was as simple as possible. In order for such a machine to do useful work it 

would need to be equipped with the means for reading symbols and for writing and 
erasing them. It would also need an indefinitely large supply of paper on which to 

record the potentially infinite results of its computations. 

2.1. The description and definition of Turing machines. 

Informally, a Turing machine consists of two parts. The first is a control machine 
which embodies or contains the rules defining the procedure it is to execute. The 

second part, which replaces the paper on which a human computer writes is a one-

dimensional tape, divided into squares, each of which can contain one of the finite 
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number of symbols which the machine can recognize. Its format is like a single line 
taken from a page of squared arithmetic paper. The tape is assumed to be 

indefinitely extendable so as to be able to contain an indefinitely long symbolic 

expression. The control machine is equipped with a scanner which enables it to 
read the symbol on a square, and with a printer which enables it to write a symbol 
on a square or erase the symbol currently there. The control machine is also able 

to move to the left or the right relative to the tape, so as to scan a different square. 
The way in which the control machine embodies or contains the rules defining the 
procedure which it executes is a matter which requires substantial discussion. 
Turing's analysis, arising as it did from the consideration of a human computer, 

treated the rules as a set of "states of mind" which were defined functionally in 

terms of their relations to each other and to the inputs and outputs of the machine. 

The Turing machine concept can be defined formally in a number of ways. These 

ways differ in detail, but turn out ultimately to be equivalent in the sense of 
encompassing the same set of functions. The following, slightly adapted, definition 

is taken from Lewis & Papadimitriou (1981,p.170); 

Definition 2.1 

A Turing machine is a quadruple (K, E, S,$), where 
K is a finite set of states, not containing the halt state h; 
E is a finite alphabet of symbols, containing the blank symbol #, but 
not containing the symbols L and R; 
s E K is the initial state; 
S is a function from K x E to (K U {h}) x (E U {L,R}). 

If q E K, a E E, and 8(q, a) = (p, b), then the machine M, when in state q and 

scanning symbol a, will enter state p, and (1) if b is a symbol in E, rewrite the a 

in the currently scanned tape square as b, or (2) if b is L or R, move its head in 

direction b relative to the currently scanned square. Since S is a function, the 

operation of the machine M is deterministic and it will stop only when S(q,a) = 

(h,b), or because the machine reaches a configuration for which the transition 

function 8 is undefined. In the latter case the machine is said to "hang". 
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Definition 2.1 differs from Turing's original specification in a number of details. 

The most noticeable of these is that at each invocation of the transition function 

the machines of Def. 2.1 either move or print a symbol but do not do both, whereas 

Turing's original machine design included both printing and moving as part of each 

instruction. However, definition 2.1 coincides with Turing's definition in the 

fundamental matter which is the nature of the transition function. This is a function 

of two arguments, q and a, the first of which is the current internal state of the 

machine, and the second of which is the currently scanned symbol. The internal 

state and scanned symbol together determine the behaviour of the machine. Turing 

called the pair (q,a) a "configuration", and distinguished this from the internal state 

alone, which he called an "m-configuration", and from the complete description of 
the current state of a machine, including the sequence of symbols on its tape which 

he called a "complete configuration" . These are important distinctions and the 

terms are used throughout the thesis in Turing's sense. Because both the set K of 

internal states and the set E of symbols are finite by definition, the number of 

possible configurations is also finite. In principle, the domain of the transition 

function S can be the whole of K x E but need not be. It is not the case, for 

example, in the example machine M described below. 

As an example of a rather simple Turing machine, consider the following machine 

M = (K,E,S,$) where K = {g0,g1 ,q2}, E ={#,(,),X,Y,N} and s = qo. This 
machine is a slightly modified version of a machine described by Minsky (1967). 

The transition function S can be described in terms of a machine table as follows; 

q a 	8(q,(1) 	g 	Q 	S(q,a) 	q 	Q 	(5(q,o) 

go 	# 	(qa,L) 	q1 	# 	(h,N) 	q2 	# 	(h,Y) 
qo 	X 	(q0 ,R) 	q1 	X 	(gt ,L) 	g2 	X 	(q2,L) 
go 	( 	(go,R) 	q1 	( 	(go,X) 	q2 	( 	(h,N) 
go 	) 	(011,X) 

M is a machine which takes strings of left and right parentheses as input, and, when 

started in state qo  on the leftmost element of such a string, eventually halts and 

prints 'Y' if the string is a member of a set P, 'N' if it is not. The tape is assumed 

to be blank throughout except for the expression which M is to evaluate. P is 
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defined recursively as follows as the set of strings of parentheses which are 
'grammatical' ; 

1. QisinP. 
2. IfEisinP, (E)isalsoinP. 
3. If E and F are in P, EF (the concatenation of E and F) is also in P. 
4. Nothing else is in P. 

The machine table is a common way of describing the logical structure of a Turing 

machine control which dates back to Turing's original analysis. An alternative 

means of description which has been developed since his pioneering work is the 

state transition diagram, usually abbreviated to "state diagram" . This is a very 

useful notation, which is often both more compact and easier to follow than a 
machine table. A state diagram for the machine M is shown in Figure 2.1. 

Figure 2.1 The State Diagram for machine M. 

States are shown as circles labelled with their identifiers. State transitions are 

shown as labelled arrows. It is clear that a transition can be made from a state back 

to itself. The symbol near the tail of an arrow is the symbol on the currently 

scanned square of the tape, and the symbol near the middle of an arrow indicates 
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the action taken which is either a movement or a printing action. Since the sets of 

print symbols and movement symbols are disjoint there is no confusion. 

Comparison of the machine table and state diagram for machine M shows that they 
contain exactly the same information. 

The operational characteristics of machine M and the strings it can evaluate are 

worth describing in greater detail, because they serve to introduce a number of 

important general features of the Turing machine. One distinction which is worth 

making at the start is between configurations with which the machine can deal and 

those with which it cannot. This is the distinction between recognizable and 

unrecognizable configurations. It is not the same as the distinction between well-

formed and ill-formed strings as defined by membership of the set P. The set of 

recognizable configurations contains all those for which M can reach the correct 

decision, i.e. it contains all those configurations which consist of an unbroken 

sequence of parentheses contained between blanks, such that M is started in state q0 

scanning the leftmost parenthesis of the expression. The point of making this 

distinction is to emphasize that a Turing machine computation requires not just that 

the string of input symbols meets some pre-defined criteria, but also that the 

relationship between the control and the input string is similarly constrained. This 

observation shows how closely intermeshed external structures on the tape and the 

internal organization of states of the control need to be in order for a computation 

to be executed correctly. The ETH hypothesizes that this intermeshing can be used 

to model the interlocking of organisms and environment which constitutes part of 

the ecology of a species. 

An example of a recognizable, well-formed string which the machine M might be 

required to evaluate is '#O(0)#' . Given this string M works as follows; from the 

starting configuration in which the machine is in state q0 scanning the leftmost 

parenthesis of the expression, it moves right still in state q0, until it encounters a 

right parenthesis, which it erases, writing an 'X' in its place. If the string is well 

formed, there will be a matching left parenthesis somewhere to the left of the 

current position. To determine whether or not this is so, the machine goes into state 
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ql and searches to the left. If it encounters a '#' while searching, there is no 
matching left parenthesis, the string is not well formed and the machine halts and 

reports the result. If a left partner for the 'X-ed' right parenthesis is found, this is 
also erased and replaced with an 'X' . The machine then re-starts its rightward 
search in q0 for another right parenthesis. When a '#' is encountered in this state, 
the right end of the string has been reached which means that all right parentheses 
have been accounted for. The machine then goes into state q2 and moves left. In 

this state if it encounters a left parenthesis the string is ill formed but if it 
encounters the '#' at the left end of the string, the string is well formed. In either 
case the machine halts and reports accordingly. For the string #Q(Q)# above, 

successive operations will produce the sequence of expressions #(X(Q)#, #XX(Q)#, 
#XX((X)#, #XX(XX)#, #XX(XXX#, #XXXXXX#, and the machine will report the 
string to be well formed. What happens, in general, is that a target string is treated 

as a concatenation of substrings, which are dealt with one at a time moving from 

left to right. Within each substring pairs are matched working outwards from the 

deepest to the shallowest nestings. The technique can be applied recursively to 
strings of arbitrary length and embeddedness. Broadly speaking, the individual 
states of the machine can be described as follows; state q0 is a state characterized 

by left to right movement with respect to the expression on the tape. Its sole 
purpose is to find an occurrence of a right parenthesis. State ql is a state 
characterized by right to left movement. Its basic purpose is to find a matching left 

parenthesis for the right parenthesis located by state q0. States q0 and ql act as a 

pair, locating and 'X-ing' pairs of matching left and right parentheses. State ql has 

an additional function, which is to report the target expression ill-formed if a left 

parenthesis is not found. State q2 is a right to left moving state. Its task is to 

determine whether there are any unmatched left parentheses in the expression. If 

there are it reports the expression to be ill-formed, if not, it reports the expression 

to be well-formed. 

2.2. The memories of Turing machines. 

A point of fundamental importance for the thesis is the fact that machine M can be 
said to have two sorts of memory. The first is the obvious symbolic memory 
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provided by the tape. The tape is the repository of the target symbolic expression 

and of all changes made to it while the machine is in operation. This memory is 

essentially static but fundamental. Without a tape, the class of computations which 
can be carried out is reduced. The second kind of memory is a dynamic memory, 

which might be thought of as a kind of working memory. 

Before describing this memory, it is important to distinguish the claim being made 

from another which, emphatically, is not being made. It is not being claimed that 

the machine has any memory, either implicit or explicit, of the sequence of states 
it has passed through or of the number of moments of time during which it has 

occupied the current state. The machine M does not know that it is "in" a particular 
state at a particular time. Thus when it is in q0, for example, the machine does not 

know whether it has just been started, whether it has always been in q0 or whether 

it was in ql at the previous time step and has just arrived back in state q0 as the 

result of a state transition caused by a '(' when the machine was in ql. Similarly, 

when it is in ql, even though at some prior moment of time the machine must have 

been in state q0, it has no knowledge or memory of this or of any other fact. The 

machine's horizons at a given moment, so to speak, are entirely local. Perhaps, 

more picturesquely, it might be described as living solely in the present or as being 

profoundly amnesic. Although, to an outside observer, a Turing machine like M 

has a history, the machine itself is entirely unconscious and knows nothing of its 

own history. To say this is not to claim that no Turing machine could be conscious. 

It might be that consciousness is a property, just like computational universality, of 

certain Turing machines which are organized in a particular way. Like universality, 

however, consciousness is not a defining feature of a Turing machine and machine 

M is certainly not conscious. Further, the control has no explicit knowledge of 

what is on the tape, even at the moment at which it scans a symbol. It does not 

know which tape square it is scanning because its horizons are limited to just the 

currently scanned square which is indistinguishable from any other square on the 

tape. Indeed, a simple Turing machine could not even be said to know that it had 

a tape. 
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The positive sense in which the machine can be said to have a memory other than 

the static memory of the tape, is that it can have an implicit memory for a symbol 

scanned at some indeterminate time in the past. Note that it is an implicit memory 

for a symbol not for a state. In the case of machine M, state ql constitutes an 

implicit memory for the occurrence of a right parenthesis. Despite the very limited 

capacities which a machine such as M enjoys, this way of speaking is justified by 

the following considerations. First, the machine never scans a right parenthesis 

when in state ql, i.e. in a manner of speaking it never has any direct experience of 

right parentheses in ql. Thus any effect of a right parenthesis on the machine in 
ql must be indirect or implicit. Second, however, a transition to ql from q0 is 

made if and only if a right parenthesis is encountered when the machine is in q0. 

In the case of a null expression or an expression consisting entirely of left 

parentheses the machine never enters state ql. Thus it is apparent that state q1 is 

fundamentally connected to the occurrence of right parentheses in some way. The 

nature of this connection becomes apparent from considering the behaviour of the 

machine if it scans a blank i.e. '#' in q1. In such a circumstance the machine halts 

and reports that the target expression was ill-formed. What this means, looking at 

the behaviour of M from the outside, is that M has failed to find a left parenthesis 

to match a previously scanned right parenthesis. It is for this reason that it is 

appropriate to talk of the machine in • ql as having an implicit memory for the 

previous occurrence of a right parenthesis even though it has no awareness, of any 

kind, of this fact. Finally, since the implicit memory lasts precisely for as long as 

the machine remains in state ql it seems appropriate to think of it as a kind of 

"short term" or "dynamic" or "working" memory. This terminology is perhaps not 

entirely felicitous because it is not a short term or working memory in the sense in 

which these terms are understood in cognitive psychology, cf. Baddeley (1986) for 

example, if only because there is no set limit on how long the implicit memory can 

last. Nevertheless some such usage captures the required distinction between the 

static memory of the tape and the more active memory of the control. The state 

diagram for M shows that the machine remains in ql for as long as it takes to 

traverse the current sequence of 'X'es on the tape. Since expressions in parentheses 

may be arbitrarily long, there may be also be arbitrarily many 'X's on the tape and 
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hence there can be no upper bound on the time that the machine spends in state ql 
implicitly remembering that a right parenthesis had been encountered. To avoid 
confusion with the normal psychological terminology, the implicit memory which 
machines may have for symbols as a result of the organization of their internal states 
is referred to from here onwards as "control" memory to distinguish it from tape 
memory. An additional point which may be worth emphasizing is that although the 
memory for a previously scanned symbol is implicit, the behavioural consequences 
of that implicit memory are, of course, quite explicit. 

The fundamental place of control memory in the approach to cognitive architecture 
which follows from the ETH cannot be overstressed and the issues are discussed 
further in Chapters 3 & 6. The basic point is that if the brain is not a complete 
Turing machine but is a finite automaton like the control of a Turing machine as the 
ETH suggests, then control memory must form an important part of human memory 
resources. Another point which emerges from the above discussion of states is that 
they may have multiple, overlapping functions. State ql implements the search for 
a left parenthesis at the same time as serving as an implicit memory for a right 
parenthesis. In more complex machines, which may have multiply embedded 
sequences of states, the complete functional description of a state may need to advert 
to descriptions at numerous levels of. functioning. More is said about this in 
Chapter 3. 

Another point which should also be mentioned here briefly is the caveat that internal 
states or m-configurations as they appear in machine tables and state diagrams are 
logical not physical entities. Part of Turing's achievement was to show clearly that 
the logical specification of a mental activity such as calculation could be specified 
independently of questions of its physical implementation. This does not mean, as 
the discussion in Chapter 1 shows, that there are no constraints on media for 
implementation. In practice, as the history of the development of digital computers 
shows, satisfactory implementations of logical states are hard to come by and the 
implementation of the set of instructions constituting a single logical state will 

typically be highly complex. 



46 

Furthermore, the internal states of a Turing machine are logically global, i.e. they 
are states of the whole machine. Thus the temptation to see a state diagram as a 
diagram of the parts of a physical machine must be treated carefully. There will 
always be numerous ways in which the logic of a system of states may be realized 
in practice. The interesting and psychologically important question of the 
relationship between logical and physical descriptions is discussed further below and 
in Chapter 3 in the context of Turing's universal machine description. 

2.3. The description and definition of finite automata. 

Two other classes of machine need to be discussed in this chapter. These are finite 
automata and universal Turing machines. The essential difference between finite 
automata and Turing machines is that the former cannot use a tape as memory in 
the way that Turing machines can. A deterministic finite automaton (DFA) consists 
of a finite state control machine and a tape. In these respects such a machine 
resembles a Turing machine. However, the control of a DFA can only read 
symbols from its tape, it cannot write on the tape, and it can move only to the right, 
assuming it to be started scanning the leftmost element of an input string. The tape 
is, therefore, nothing more than an input device which presents successive elements 
of a string of symbols to the machine. A subset of the finite set of internal states 
of the automaton is designated as the set of "final" or "accepting" states, and if the 
automaton ends up in one of these states at the end of a particular input string, that 
string is said to be "accepted" by the automaton, otherwise it is "rejected" . The 
language accepted by an automaton is the set of strings it accepts. Formally, again 
borrowing from Lewis & Papadimitriou (1981, p.51), a deterministic finite 
automaton can be defined as follows; 

Definition 2.2. 

A deterministic finite automaton is a quintuple D = (K,E,S,s,F) where 
K is a finite set of states, 
E is a finite alphabet of symbols, 
s E K is the initial state, 
F c  K is the set of final states, 

and S, the transition function, is a function from K x E to K. 



47 

The rules by which the next state is selected are built into the transition function, 

as is the case with Turing machines. Thus if D is in state q E K and the symbol 

read from the input tape is a E E, then S(q, a) E K is the uniquely determined state 

to which D passes. 

There are two principal differences between definition 2.2 and definition 2.1. First, 
definition 2.2 specifies a set of "final" states rather than the halt state h, and second 
the transition function of definition 2.2 does not specify an output symbol or a 

movement relative to the tape. Both of these points have been raised informally in 

the introduction to finite automata above. Apart from these differences it is readily 

apparent that the definition of a deterministic finite automaton is very much like that 

of a Turing machine. Hence it is appropriate to think of the control of a Turing 

machine as a deterministic finite automaton with added output and movement 

capacities. Some authors, e.g. Lipschutz (1976) use the term "finite state machine" 

to describe a finite automaton which is capable of output. 

There is one further class of finite machines, the non-deterministic finite automata, 

which need to be mentioned here. Such machines have a transition relation rather 

than a transition function describing their actions. A non-deterministic finite 
automaton is one in which a number of alternative actions may be available for a 
given configuration. Although non-determinism might seem to be a powerful 

property of a machine, the classes of deterministic and non-deterministic finite 

automata are provably equivalent because a non-deterministic machine can always 

be converted into an equivalent deterministic one. It has been argued, for example 

by Nelson (1989), that the class of non-deterministic finite automata is the 

appropriate class of machine models for modelling cognitive behaviour. For the 

purposes of the thesis however, the distinction between deterministic and non-

deterministic automata is not of primary importance and all further references to 

finite automata are to deterministic machines unless otherwise specified. The 

primary distinction which is explored in the thesis is that between Turing machines 

and finite automata. 
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2.4. The computational capacities of invite automata. 

Because they cannot write on their tapes and because they cannot change direction 
and revisit previously scanned squares, finite automata are more restricted in the 
computations they can perform than are Turing machines. The limits of their 
computations are well understood. They are restricted to recognizing members of 
the class of regular languages which are those languages which can be defined by 
regular expressions. Informally, the regular languages are those in which the 
amount of memory needed to determine whether or not a string is a member of the 
language can be fixed in advance and is dependent solely on the structure of the 
language and not on the length of the input string. This relates very naturally to the 
idea of a finite automaton as a machine which cannot use a tape as an auxiliary 
memory. The memories of finite automata are limited to what can be built into 
their internal state structures. One of the interesting features of the machine M, is 
that the language which it accepts, i.e. the set of strings which are elements of the 
set P defined above, is not regular. Thus, although the machine has a simple 
structure and the function it computes is also simple, it is a function which cannot 
be computed in its full generality by a finite automaton. The reason is easily 
understood. Consider expressions of the form (()k  for some natural number k, 
which consist of k instances of '(' followed by k instances of ')'. Thus 0)3 = ((0)). 
All such expressions are elements of P. Machine M evaluates such an expression 
by traversing the k left parentheses and then ticking off successive matching pairs 
from the inside out, i.e. ((XX)), (XXXX), XXXXXX. Suppose, however, that the 
expression was to be evaluated by a finite automaton. Because elements of the 
string cannot be revisited the machine would have to be structured so as to 
increment a count of the number of left parentheses as each was presented and to 
decrement the count as matching right parentheses were presented. A machine such 
as F in Figure 2.2 would suffice for the task with k = 3. 

State q0 is the starting state for the machine and also its only final or accepting 
state. It accepts all and only those strings for which it is in q0 when the end of the 
string is reached. Apart from accepting strings such as ((Q)), it also accepts (000) 
and ((0)(0)) and  any other of the countably infinite set of strings of parentheses 
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Figure 2.2. F: A finite automaton for parenthesis string recognition. 

which do not contain any nesting deeper than 3. However given any expression 
containing a substring of ( k)k, for k > 3, the machine will hang in q3, because its 
input will be a left parenthesis and the configuration "(' , q3 is one for which no 
transition is defined. Machine F is, therefore, limited to accepting only a subset of 
the elements of P, and it is clear that for any fixed machine with n states q0, ... gII_l, 
which has to count its inputs in this way, it will always be possible to specify an  

element of P which contains a substring of the form (n)° which the machine cannot 
accept. Thus no finite automaton can be structured which can accept all and only 
the strings in P. This is, of course, a limitation but it is worth flagging some 
considerations which are mathematically perhaps of no interest but which might be 
of considerable interest in the context of real creatures solving real problems in real 
time. Suppose a limit on the depth of nesting had been established such that it was 
known that the machine would not need to evaluate strings with nesting deeper than 
some arbitrary value n. In such a case an adequate automaton could be constructed 
for the task. Might there be any reason to prefer a machine of type F rather than 
type M? At first sight it seems improbable. Suppose, for example, the depth of 
nesting to be limited to 50. An automaton following the design of machine F would 
have to have 51 states in order to deal with inputs of maximum depth of nesting, 
whereas machine M with its three states would be adequate. However, if efficiency, 
defined as the number of state transitions needed to evaluate a string, is taken as the 
criterion of assessment the picture looks rather different. Considering strings of the 
form (k)k , a finite automaton designed like F has to make just 2k state transitions in 
order to complete such tasks, whereas machine M has to make 2(k+ 1) 2 +2k 
transitions. This means that machine M becomes relatively less and less efficient 
as the size of the input increases. For a depth of 50, 2(k+ 1) 2 +2k = 2701. Clearly 
the example is artificial and its connection with psychological subject matter is 
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remote, but it may be that the obvious limitations of finite automata have shifted 
attention unduly away from their possible advantages. By way of conclusion it is 

worth noting that automaton F provides another example of implicit memory. State 

ql implicitly remembers that one more left than right parentheses have thus far 

appeared in the input, q2 that two more left than right have appeared and so on. 

2.5. Universal Turing machines. 

Whereas a finite automaton is essentially a Turing machine without a tape, a 

universal machine, architecturally, is just like any other Turing machine, i.e. it 

consists of a finite state control and an indefinitely extendable tape. The differences 

come in the organization of its internal states and the nature of its data. The first 
machine table for a universal machine was constructed by Turing in his seminal 

paper Turing (1936-7). A universal machine is a single Turing machine, which can 

carry out any of the countably infinite number of different tasks or computable 

functions for which a special purpose Turing machine can be specified. At first 
sight the task of constructing a universal machine seems impossible. The difficulty 

lies in the finitude of K and E, the sets of states and symbols respectively, which 

define a Turing machine. Since the universal machine, U, is a Turing machine it 

has, by definition, a fixed, finite set of states K and a fixed, finite alphabet of 

symbols E. It would seem, therefore, that for any given specification for U, we 

could always think of a task which required a machine with a set K' of states where 

I K' I > I K Í  and/or an alphabet E' where { E' J > I E I . Such a task would be 

beyond the capacity of U which would therefore not be universal. The problem is 

similar to the difficulties faced in trying to design a finite automaton to tackle 

arbitrary depths of nesting in the parenthesis checking task. 

Turing's solution, which has not been improved upon in the essentials, required two 

techniques, the symbolic encoding of machine tables and the interpretive execution 

of symbolic encodings. First he showed that a code could be defined using a fixed, 

finite alphabet E, to represent any Turing machine. Turing called the encoding of 

a machine a "standard description", and it is analogous to a computer program. 

Second he showed that a machine table could be specified which would take the 
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"standard description" of a Turing machine as input, and produce the same output, 
for given input data, as the encoded machine would have produced. So, the 

universal machine consisted of a finite state control which could interpret and 
execute the standard description of any other Turing machine, plus a tape on which 
a standard description could be written as well as any other input. It is important 

to be quite clear that a universal Turing machine requires both a "program" or 

"standard description" and data on its tape, whereas a special purpose Turing 

machine requires only data. Turing's machine table for U was of the same kind as 

that for M above, in that it specified exactly how U was to behave while leaving 

open the question of its possible physical realizations. 

In one sense the universal machine was special purpose because it was "hard-wired" 

to carry out a single function, the execution of a standard description. This can be 
called the interpretive function. In another sense, however, it was multi-functional 

because its behaviour depended on the encoding of the particular Turing machine 

written on its tape. The machine's behavior was changed by substituting one 
encoding on its tape for another, which changed the function computed while 

leaving the "hardware" interpreter unchanged. Thus the essential difference 

between a special purpose and a universal Turing machine is that the latter is 

"programmed" to compute a function, whereas the former is "hard-wired" . Minsky 

(1967) gives an interesting and straightforward construction for a universal machine 

which has just over twenty internal states and uses a binary encoding for its target 

machines. 

Two points about universal machines which are relevant to their use as models of 

cognitive architecture are the following. First, because universal machines are 

Turing machines they conform to definition 2.1 and have a fixed alphabet of 

symbols and a fixed set of internal states. Their characteristic flexibility is derived 

entirely from their being structured so as to execute encodings of the machine tables 

of other Turing machines. This means that any cognitive theory which hypothesizes 

that the mind is, or contains, a universal Turing machine has to be committed to the 

notion that the mind deals with inputs which are rendered into a standard internal 

code. If this is so, it ought to be possible to obtain some evidence for the nature 
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of the internal code, for the basic symbolic resources from which it is structured and 
for the mechanisms which implement such encodings. If such evidence is not 
forthcoming after extensive empirical enquiry, the probability of the hypothesis 
being correct must be reduced. Fodor (1975) was one of the first theorists to take 
this challenge seriously. The second point is a point about efficiency. Universal 
machines are necessarily less efficient than the machines they simulate because for 

each configuration of the target machine, the universal machine must execute a set 

of transitions of its own to determine what the appropriate instruction for the target 
configuration is and to carry it out. Using a programmed version of Minsky's 
(1967) universal machine and an appropriate encoding of machine M, the universal 

machine required more than 80000 transitions to evaluate the binary equivalent of 
the input string '#Q#' for which M requires 10 transitions. Part of this prodigality 
derives from the linearity of the tape, but a modified version of the machine using 
two tapes still required more than 5000 transitions to carry out the same task. In 

modern digital computers which are essentially practical versions of universal 
machines, these costs are minimized or masked in two ways. First computers use 

addressing schemes which provide much more efficient memory access than the 
linear tapes of universal Turing machines and second, computers achieve state 
transitions at speeds of the order of micro-seconds or better, whereas neurons 
operate in the milli-second speed range. Despite these savings, however, the 
inefficiency of the universal machine method of function execution must lead to 

questions about its suitability as the architectural basis for the human cognitive 

system in which temporal efficiency is a matter of obvious importance. 

2.6. Logical and physical machine descriptions. 

The issue of the relationship between logical and physical machine descriptions 

which was raised briefly earlier in the chapter needs some further discussion, 
particularly in the context of one of the objections to the ETH raised in Chapter 1 

which can now be considered in the light of the formal definitions of Turing 
machines and finite automata discussed above. Problem 7 objects that since there 
are identical symbols on the tape and control of a Turing machine, the ETH 

trivializes the whole problem of perception and perhaps also the problem of 
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learning. It will be useful to have a name for the problem and a suitable one 

appears to be "the identical symbol problem". 

The image of an implemented Turing machine which supports the thinking leading 
to the identical symbol problem must suppose the control to be an explicit 
implementation of the machine table plus a reader. The reader observes the tape to 

pick up the input symbol, checks the internal state record to see what the current 
state is and uses this pair, i.e. the configuration, to determine which entry in the 
machine table is to executed. Having found the appropriate entry, the output 
symbol is inscribed on the tape, the state record is updated, and the next instruction 

can be executed. A Turing machine implementation of this kind is described by 
Wilks (1975). The fundamental question is whether a Turing machine control 

implementation must always have an explicit machine table and a reader. If the 

identical symbol problem is to be a problem for all implementations of Turing 

machines the answer must be yes, but it is far from clear that this is so, even though 
our experience with computers pushes us in this direction because computers are 
explicitly syntactic machines. 

Consider the parenthesis checking machine M and how it might be implemented. 

First M needs perceptual capacities to read symbols from its tape. These can be 
minimal. What is required is not recognition but discrimination. M does not need 
anything like the capacity to say "Now I am perceiving a '#'". Because M's symbol 

alphabet has just four symbols, its perceptual system needs only to be able to pass 

one of four distinct messages to the control. These messages might be four different 
voltage levels, four different positions of a lever, four different neural firing rates 

over a given interval or whatever else might reliably signal four different inputs. 

Similarly at the output side, we might imagine M to be equipped with something 

like a daisywheel, or more flexibly, the print head of an ink jet printer, which 

responds differentially to appropriate output signal differences. As a slight 

complication, output capacity must include movement left or right but it is not hard 

to see how this might be done. 
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In addition to input and output capacities, an implementation of the transition 
function is also required. The way in which this is to be done lies at the heart of 
the identical symbol problem. Multiple internal states provide the capacity for a 
machine be able to make more than one response to a given input. If a given input 
is always paired with the same output, then no more than one internal state need be 
postulated. Indeed, in such a case the notion of internal state is rendered 
superfluous because the state notion explains nothing which is not captured by the 
simple and more parsimonious specification of the associative pair. It was just this 
superfluity which early behaviourists originally hoped to demonstrate with respect 
to the idea of mental states. The demonstration that a one state universal Turing 
machine is not possible, ought then, in theory, to be taken to constitute a refutation 
of radical behaviourism, because it shows that there are mechanical processes which 
cannot be reduced to a set of I-O pairs. If a behavioural capacity is to be given a 
deterministic form, i.e. specified by an input output function, and yet to encompass 
the many cases in which a single input can be paired with more than one output, a 
second argument is needed to cope with the additional variability because a function 
can be a one-to-one, or a many-to-one but not a one-to-many relation. The role of 
the "state" parameter in the specification of a deterministic machine is to provide 
that second argument. As is apparent from the machine table method of specifying 
a transition function, the state need be nothing more than a column index. 
However, there is nothing in the functional specification of the state notion which 
precludes its being realized in other, less syntactic forms. 

Consider machine M in receipt of input 'X' . One of three different responses is 
required, (qO,R), (q1,L) or (q2,L), with the choice depending on the current state 
of the machine. On the assumption that the input can be organized in terms of, 

say, a set of distinct voltage levels, it is perfectly plausible to think of the internal 
states of a real M being implemented as, say, a system of servomechanisms and a 
switching network. Such a system would be an embodiment of the transition 
function of M, but need not contain anywhere, an explicit rendering of the machine 
table. It might assist clarity to call such a system a non-tabular implementation of 
a Turing machine control. Given the notion of a non-tabular implementation the 
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identical symbol problem can be 
restated as the claim that all Turing 

machine control implementations must 
be tabular, and the ETH can be stated 
as including the claim that non-tabular 
control implementations are perfectly 

plausible. 

For a familiar example of a function 
Figure 2.3. The state diagram for XOR1 

which can be given both tabular and 

non-tabular implementations consider 
the logical function XOR of two binary 

inputs. This is commonly specified as 

a truth table. A Turing machine to 

implement this function can easily be 
specified. XOR1 with K = 
{g0,gl,g2}, E = {#,0,1} and s = q0 is 
such a machine. The state diagram for 

XOR1 is shown in Figure 2.3. XOR1 

reads its first input in q0, replaces it Figure 2.4. The state diagram for XOR2. 

with a blank and goes to state q 1 if the input was a "0" and to q2 if it was a " 1 " . 

In either of these states the machine then moves right to scan the second input, 

which is replaced by the value of the function, following which the machine halts. 
XOR1 is a simple machine, but if the pairs 00, 01,10,11 are defined as single 

symbols an even simpler machine XOR2 can be specified with K = {q0}, E = 

{00,01,10,11,0,1,#} and s = q0. The state diagram for XOR2 is shown in Figure 

2.4. XOR2 is particularly simple because it embodies the function, as it were, 

directly. It is of interest in the current context because it has a non-tabular 

implementation which is shown in Figure 2.5. 

Figure 2.5 shows a network of threshold elements. Two of these take input, one 
produces output and three, using connectionist terminology, are hidden units. If the 
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2.5. A non-tabular implementation of 
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two inputs together are specified to 
constitute a complex symbol of the kind 

defined in the alphabet of XOR2, and if 

the output is printed on a square of the 
tape, then it is apparent that the network 

constitutes a realization of the control 

automaton of a Turing machine. One 

might imagine the network to be 

contained within a black box which is 

schematized by the dotted line in Figure 

2.5. Clearly the network is functionally 
equivalent to XOR2, it does not contain 

any explicit symbol tokens, it is non-

tabular and is therefore not a system to 
which the identical symbol problem applies. These points alone are insufficient to 
establish that the network is uniquely an implementation of XOR2 because it is also 

functionally equivalent, in the input-output sense, to XOR1. However, the point at 

issue is not whether a given implementation can be identified uniquely as the 

implementation of a particular Turing machine but whether a non-tabular 

implementation of a Turing machine control can be specified. The fixed XOR 

network of Figure 2.5 shows that such an implementation can be specified. This 

is of course to be expected from the work of McCulloch & Pitts (1943) who 

demonstrated the formal equivalence of finite automata and neural networks 

composed of fixed threshold elements. 

It is sometimes suggested, as discussed in Chapter 1, that McCulloch & Pitts 

demonstrated the logical equivalence between neural networks and Turing machines 

rather than finite automata. The basis for the suggestion may be a remark made by 

McCulloch in the discussion following von Neumann's talk at the Hixon symposium 

in 1948. McCulloch is reported as saying of his work with Pitts, "What we thought 

we were doing (and I think we succeeded fairly well) was treating the brain as a 

Turing machine". Aspray & Burks (1987,p.422) 
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Examination of the 1943 paper shows that McCulloch's later remark was perhaps 
not recorded entirely precisely. What the 1943 paper proves is that a McCulloch-
Pitts net can be used to model the finite automaton which constitutes the control of 
a Turing machine. In order for a net to compute exactly what is computed by a 
Turing machine it has to be supplemented by perceptual organs and a tape. "It is 
easily shown: first, that every net, if furnished with a tape, scanners connected to 
afferents, and suitable efferents to perform the necessary motor-operations, can 
compute only such numbers as can a Turing machine; second, that each of the latter 
numbers can be computed by such a net; and that nets with circles can be computed 
by such a net; and that nets with circles can compute, without scanners and a tape, 
some of the numbers the machine can, but no others, and not all of them." 
McCulloch & Pitts (1943, p.37). 

Another important point is that although the network connection strengths and 
thresholds are fixed in the network of Figure 2.5 it is clear that a network of this 
type could be trained to achieve the functionality displayed using error 
backpropagation. Notice, in this instance, that the tape plays no essential role as an 
external memory, and that the system can therefore, properly be thought of as a 
finite state machine with output. It is this sort of example which, in part, justifies 
the claim made in Chapter 1 that a connectionist network, whose connection 
strengths have been fixed after training, constitutes a finite automaton. 

To summarize, two main classes of computing machines have been defined and 
discussed. These are the classes of Turing machines and finite automata. The class 
of Turing machines includes both mono-functional and universal machines. The 
latter are those which are organized so as to treat part of their input as the 
specification of another Turing machine whose coded machine table they can decode 
and simulate. The class of finite automata can be divided into deterministic and 
non-deterministic automata, but the two classes are equivalent in computational 
power. 

In addition to these basic definitions, a number of points which are of importance 
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to the main argument of the thesis have been introduced. The first of these is that 
Turing machines have two sorts of memory, tape memory and control memory. 

Control memory is an implicit memory for one or more specific symbols which 
have appeared on a Turing machine's tape at some point in the past. The second 
point which relates to the issue of implementation is the demonstration that the 
"identical symbol problem" need not affect all Turing machine implementations. 

Non-tabular machine implementations are not open to this objection. 

The third point is the claim that a fixed neural network has the power of a finite 

automaton. This is a point which was first proved by McCulloch & Pitts (1943) 

with respect to networks constructed from fixed threshold elements. The novelty, 

if any, of the present approach is to claim that this result extends to networks whose 

architecture is such as to make them amenable to training of the kind studied by 

contemporary connectionism. It has been suggested that the capacity to learn 

falsifies the claim that a connectionist network has the power of a finite automaton 

because a network with hidden layers and the capacity to adjust its connection 

strengths can compute any arbitrary function and is thus a Turing machine'. 

It is hard to see how this can be the case for connectionist networks as they are 

currently studied. The critical point is that with regard to its input, output and 

potential for using auxiliary memory, a connectionist network is like a finite 

automaton. The sequence of inputs is not subsequently available to the network on 

a tape and the outputs of the network do not modify its inputs. Thus, like a finite 

automaton, a connectionist network has no auxiliary memory available to it and is 

therefore restricted, in its memory capacity, to whatever internal capacity it has in 

the fixed system of nodes and connections among them which constitutes its 

architecture. The implication of this fact is that unless such a network has infinite 

internal capacity, there will be functions, of which the parenthesis checking function 

of machine M is one, which can be computed by a Turing machine but not by the 
network, which cannot therefore be a Turing machine. The question then is whether 

71 am grateful to Professors Wilks and Marslen-Wilson for raising this objection. 
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a network can have infinite internal capacity, and the answer seems to be no. 

Infinite storage capacity would have to be bought by making connection strengths 

infinitely variable or by making thresholds infinitely sensitive, and neither of these 
options is plausible for realistic modelling and certainly not for implementation. 

The claim that connectionist networks are Turing machines by virtue of their 

capacity to be trained to implement arbitrary functions appears to take the flexibility 
of universal Turing machines to be a defining characteristic of Turing machines 

generally. That is not the case. Machine M is an example. It is a Turing machine, 

but it computes only a single function. If it computed a different function it would 

be a different Turing machine. What distinguishes a Turing machine from a finite 

automaton and also from a connectionist network is the capacity to use an 

indefinitely expandable auxiliary memory. A connectionist network which was 

capable of multiple internal states and which was able to take input from a tape and 

to write output on that tape is a different matter. A system of this kind would have 

the requisite capacity. But such a system would be more than just a network, and 

connectionists, with some exceptions, typically do not think of their nets as 

embedded in a larger system in this way. They are, of course, right to concentrate 

on the formidable learning capacities of networks with hidden unit layers, but they 

need also to think about how these nets should be brought into co-ooperative 

interaction with structured environments. 

In summary, Chapter 2 has prepared the ground for the detailed presentation of 

Turing's analysis of computation in Chapter 3 and for the subsequent elaboration of 

the External Tape Hypothesis. This chapter has defined and discussed Turing 

machines and finite automata. The major issue to which the thesis is devoted is 

which of these classes of machine is appropriate for modelling the human mind. 

The generic theory, introduced in Chapter 1 argues that the mind supervenes on the 

brain and that the brain should be considered as implementing a Turing machine. 

The ETH argues, on the basis of Turing's analysis of computation, that it is 

incorrect to think of the brain as a Turing machine. The brain should be construed 

as a finite automaton. This suggests, since minds obviously have at least the power 
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of Turing machines, that mind does not supervene on brain, but extends to those 

portions of the external environment with which the finite control system of the 

brain interacts. Thus mind is a property of the situated organism and the 

environment serves as an auxiliary memory for the human just as the tape serves as 

an auxiliary memory for a Turing machine. 
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Chapter 3. Turing's Analysis of Computation. 

The analysis of computation in terms of abstract machines which established Alan 

Turing as one of the most important mathematical logicians of the twentieth century 

is contained in his paper Turing (1936-7). The significance of this paper for the 

External Tape Hypothesis is twofold. First, it provides a machine model, of greater 

complexity than the Turing machines commonly discussed in the literature, which 
makes an excellent vehicle for a discussion of the nature of control memory. The 
concept of control memory was introduced in Chapter 2. It is the memory which a 

Turing machine's states provide and is distinct from its tape memory. Normally 

such memory is not thought of as particularly important because it is fixed and is, 
as it were, swamped by the unbounded memory provided by the tape. However, 

if the hypothesis that the brain realizes the finite state control automaton of a Turing 

machine rather than a whole Turing machine including a tape is correct, then control 

memory must be of primary importance for modelling human cognition. This 

represents a major departure from the tradition of modelling in cognitive science 

which has been referred to as the generic theory in Chapter 1. 

The second, more fundamental, contribution of Turing's analysis to the ETH is that 

it provides evidence for the hypothesis that the brain should be modelled as the 

finite state control of a Turing machine, rather than as a whole Turing machine 
including a tape. The evidence consists of Turing's own arguments to the effect that 

the brain is a finite automaton and that the tape is an external, auxiliary memory. 

The idea that the brain might be modelled as a whole Turing machine, and, in 

particular, the idea that the tape of a Turing machine might provide a model for 

human memory are not ideas which are found in Turing's paper. They are the ideas 

of a later generation of theorists whose primary inspiration was the digital computer 

rather than the abstract model on which the computer was based. The idea that 

human memory can be modelled as the tape of an internal Turing machine in fact 

contradicts Turing's arguments for the separation of the tape which is an external, 

unbounded memory resource from the mind of the human computer which is a 

finite, bounded resource. 
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3.1. Turing's introduction to computing machines. 

In his famous paper on computable numbers, Turing (1936-7) introduced the notion 
of a computing machine by considering what a person did in the process of 
computing a number. In 1936 when the work was written, a "computer" was a 
person who calculated rather than a machine. 

'We may compare a man in the process of computing a real number to a 
machine which is only capable of a finite number of conditions g1,g2,...,gR 
which will be called "m-configurations". The machine is supplied with a 
"tape" (the analogue of paper) running through it, and divided into sections 
(called "squares") each capable of bearing a "symbol". At any moment 
there is just one square, say the r-th, bearing the symbol S(r) which is "in 
the machine" . We may call this square the "scanned square" . The symbol 
on the scanned square may be called the "scanned symbol" . The "scanned 
symbol" is the only one of which the machine is, so to speak, "directly 
aware" . However, by altering its m-configuration the machine can 
effectively remember some of the symbols which it has "seen" (scanned) 
previously. The possible behaviour of the machine at any moment is 
determined by the m-configuration q, and the scanned symbol S(r). This 
pair qn , S(r) will be called the "configuration": thus the configuration 
determines the possible behaviour of the machine. In some of the 
configurations in which the scanned square is blank (i. e. bears no symbol) 
the machine writes down a new symbol on the scanned square: in other 
configurations it erases the scanned symbol. The machine may also change 
the square which is being scanned, but only by shifting it one place to right 
or left. In addition to any of these operations the m-configuration may be 
changed. Some of the symbols written down will form the sequence of 
figures which is the decimal of the real number which is being computed. 
The others are just rough notes to "assist the memory". It will only be these 
rough notes which will be liable to erasure. It is my contention that these 
operations include all those which are used in the computation of a number.' 

Turing (1936-7, pp.117-118) 

The first point to notice about this definition is that Turing derived the idea for a 

computing machine from considering a human "computer" in the process of 
calculating a real number using paper and pencil. Thus, although the Turing 

machine is abstract, it is an abstraction from a very familiar situation and the 

distinction between computing paper and human memory is neither arcane nor 

abstruse. 

A second important point is the distinction Turing makes between an "m- 
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configuration" which is an internal state of the finite control part of the system, and 

a "configuration" which is a pair consisting of an m-configuration and an external 

symbol. Configurations rather than either m-configurations or symbols alone control 
the behaviour of the machine from moment to moment. The implication is that 
although behaviour is directly responsive to external input it is not uniquely 
controlled by that input; behaviour is a function of two parameters, the input and 

the current internal state. This point was discussed in Chapter 2. 

The final, and most important, point for present concerns is that the person doing 

the computing is compared with "a machine which is only capable of a finite 

number of conditions." Turing's claim is that the appropriate model for the mind 

of the person is a finite automaton. The automaton is supplied with a tape which 

is the analogue of the paper on which a human computer calculates. Thus, the 
original Turing machine was a model of a system consisting of a person working 

with pencil and paper, and at the outset Turing established a clear distinction 
between the automaton with a finite number of states which models the human mind 

and the tape which models the paper on which the human computes. 

This is important because there is already a prima facie incompatibility between 

Turing's picture and those painted by various proponents of the generic theory. 

Pylyshyn (1984, p.69), for example, maintains that "a computer (or a brain, for that 

matter) is more appropriately described as a Turing machine than as a finite-state 

automaton, though clearly it is finite in its resources" . Pylyshyn's argument for this 

claim is slightly different from the language of thought and symbol systems 

arguments described briefly in Chapter 1. Pylyshyn's argument is based on the 

notion that a sequence of state transitions can count as a computation only if the 

constituent states are capable of semantic interpretation, and his claim is that this is 

true of the states of Turing machines but not of finite automata. Hence if the mind 

is to meet the dual requirements that its states be computable and semantically 

interpretable, it must be thought of as a Turing machine. Pylyshyn's approach has 

been criticized by Nelson (1987). If the approach described in this thesis is correct, 

Pylyshyn is right about computers but wrong about brains. 
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Briefly, the issues can be resolved by considering different ways of thinking about 
what constitutes a computational state. Turing distinguished three possible 

construals of the notion of "state" , to each of which he gave a different name. The 
first is the "state of mind"; this is what Turing refers to as an m-configuration. It 

is an element of the set {q 1 ,...q}. The second is an ordered pair (g i ,Si), where Si 
 is an element of the alphabet of the machine. Turing called such a pair a 

"configuration" and it is configurations which determine the moment by moment 

behaviour of a machine. In terms of the discussion of Chapter 2, the elements of 
configurations constitute the arguments to the transition function 3(q,a). The third 

construal of the "state" notion is the global picture of the machine at a given time. 

It includes the current configuration plus the entire sequence of symbols on the tape 

of the machine and the position of the reading head with respect to that sequence. 

Turing called this the "complete configuration" . It seems reasonable to require that 

successive complete configurations must be semantically interpretable for a 

computation to be of any value, but there can be no requirement that either 

configurations or m-configurations must be semantically interpretable independently 
of the context in which they occur. By insisting that states of mind must be 

semantically interpretable Pylyshyn is, in effect, insisting that they must be 
construed as complete configurations, and various passages in Pylyshyn (1984) 

support this reading. However, it is clear that Turing did not intend the tape of the 

machine to be construed as part of the "state of mind", and hence that Pylyshyn's 

proposal is in conflict with Turing's analysis. 

Another example of the conflict between Turing and the generic theory is to be 

found in the influential work of Newell and Simon (1976) who describe the mind 

as a physical symbol system, which is a universal machine by definition, and thus 

clearly not a finite automaton. Both Pylyshyn and Newell & Simon, identify the 

mind with a whole Turing machine, whereas Turing clearly identifies the mind with 

just the finite state control of a Turing machine, and not with the tape as well. 

Newell & Simon make a point about the study of Turing machines which bears on 

the discussion of control memory. "The finite state control system was always 
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viewed as a small controller, and logical games were played to see how small a state 

system could be used without destroying the universality of the machine. No 

games, as far as we can tell, were ever played to add new states dynamically to the 

finite control -- to think of the control memory as holding the bulk of the system's 

knowledge." Newell & Simon (1976, p.44) From a technical point of view there 

would, of course, be interest only in the attempt to reduce the number of states 

needed for a universal controller, cf. Minsky (1967, Ch.14) but it by no means 

follows that this is the right tactic for psychological research. Indeed, given that 

Turing had good reasons for thinking of the human mind as a finite control system, 
it seems clear that the predominant focus of interest on symbolic structures on the 

tape is simply misleading from the point of view of psychological research into 

memory. If Turing's model is taken seriously as a model of human cognitive 

architecture, then knowledge is indeed encoded in the states of a finite automaton 

and so is memory. Turing is explicit about this point; ' ...by altering its in-

configuration the machine can effectively remember some of the symbols which it 

has "seen" (scanned) previously.' Turing (1936-7, p.117). This suggests the 

implicit storage of symbols in states of the control and opens up the whole question 

of how knowledge is represented. The possibility of implicit representation makes 

plausible a very different picture of cognitive architecture from the traditional 

computer based model. 

3.2. Turing's definition of a computable number and his characterization of 

mind. 

Further evidence for the identification of the human mind with a finite automaton 

comes from Turing's definition of a "computable number". Computable numbers 

are the raison d'être of his paper and Turing defined them in the opening sentence 

as "the real numbers whose expressions as a decimal are calculable by finite 

means." The point of particular interest in the present context is the reason Turing 

gave for the restriction to finite means, namely "the fact that the human memory is 

necessarily limited." Turing (1936-7, p.117). This observation lies at the heart of 
Turing's analysis. 
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The fact that a number is computable by finite means does not imply that the 
number must have a finite decimal expression. ir , for example, is a computable 

number. Similarly, the fact that a computable number may have a non-terminating 
decimal expansion is not a reason for claiming that it cannot, in principle, be 
computed by a finite agent. What is required is that the finite agent be capable of 
cyclic processing and have access to unbounded resources of time and space. The 

essence of the Turing machine is thus the specification of a set of interactions 
between a finite agent and a potentially unbounded reservoir of external symbolic 
resources. Such a specification constitutes the production process for a particular 
computable number. Seen in this light, the identification of the (bounded) human 

memory with the (unbounded) tape of a Turing machine which is characteristic of 
the generic theory quite clearly runs directly counter to Turing's original analysis. 

Turing's argument for the assertion that the mind is "necessarily limited" is brief 
but clear. It is similar to the argument he advanced to show that the number of 

symbols allowed for computation must also be finite. Both arguments are presented 

in §9 of his paper. The argument for a finite number of symbols rests on the claim 

that 'If we were to allow an infinity of symbols, then there would be symbols 
differing to an arbitrarily small extent.' Turing (1936-7, p.135). This argument has 
a physical basis which is characteristic of Turing's style and which distinguishes his 
approach from purely abstract characterizations of computability. The emphasis on 
physical constraints on computability is, of course, entirely appropriate when 

considering questions about the nature of human cognitive architecture. Turing is 

making two particular points with his argument. The first is that for mechanical 
computation we must be able to regard symbols as "literally printed" Turing (1936-

7, p.135, footnote f) on a unit square and unless we are prepared to think of the 

square as divisible into an indefinitely large number of pixel like regions, we have 

to acknowledge a limit on the number of distinct points onto which symbols can be 

mapped. The second point arises from the fact that symbols must also be 

recognized. Members of an infinite set of symbols constrained to be printed on a 
square of a certain fixed size would not always be pairwise discriminable owing to 
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limitations on the resolving power of a finite recognition system. Thus the 

argument for a finite alphabet of symbols is an argument about perceivability. If 

the difference between a pair of symbols were made arbitrarily small they would 

become indistinguishable and deterministic computation would be impossible. But, 

as Turing pointed out, the effect of accepting such physical limitations on symbols 

is not serious, because compound symbols, consisting of sequences of tokens from 

the fixed alphabet, can always be used instead. 

The related argument for a finite number of states of mind is equally briefly stated 

but also perfectly clear. 'We will also suppose that the number of states of mind 

which need be taken into account is finite. The reasons for this are of the same 
character as those which restrict the number of symbols. If we admitted an infinity 

of states of mind, some of them will be "arbitrarily close" and will be confused.' 
(Turing, op.cit. p.136) . This is an assertion of the supervenience of states of mind 

on the brain. In his biography of Turing, Hodges (1983, p.108) suggests that by 

the time the work on computable numbers was written, Turing was becoming "a 

forceful exponent of the materialist view" . A finite bound on the number of states 

of mind follows from the finitude of the brain and the supervenience of states of 

mind on the brain. A significant point about this argument is Turing's further 

observation that "the restriction is not one which seriously affects computation, since 

the use of more complicated states of mind can be avoided by writing more symbols 

on the tape." Turing (1936-7, p.136). Clearly this observation has weight only if 

"states of mind" and "symbols on the tape" are distinct parts of the system. 

In summary, Turing's paper explores the notion of a computable number, which is 

a number whose expression as a decimal is calculable by finite means, i.e. by an 

algorithm. The algorithm will, in many cases, require unbounded resources of time 
and space. There is, therefore, a fundamental distinction to be made between the 

fixed structure realizing the algorithm and the resources needed for temporary 

storage and for recording the output of the computation. From consideration of the 

example of a human engaged in a routine calculation, Turing developed a machine 

model to capture the essential processes involved; the model consisted of a finite 
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control automaton which modelled the algorithm embodied in the mind of the 
human, and an indefinitely expandable tape which modelled the paper on which the 
calculation was worked. The identification of the human mind with the finite 

control system was supported by an argument for the claim that the human brain 
was capable of being in only finitely many different states. 

3.3. Turing's later work on computers. 

Turing's later work on computers is consistent with the ideas of his 1936 paper. In 

1946 he produced a report for the National Physical Laboratory, in which he 
provided a detailed design for a stored program computer to be called the ACE. 
The report had elements in common with von Neumann's influential draft design 
document for the EDVAC computer which Turing recommended should be read in 

conjunction with his report. This is discussed in more detail in Chapter 4. 
Although von Neumann suggested in passing that there was a correspondence 
between computer memory and the nervous system, there is no suggestion of such 
a parallel in Turing's ACE document. With respect to the storage requirements, 

Turing's outline is very much of a piece with the thinking of his 1936 paper. "It 

is evident that if the machine is to do all that is done by the normal human operator 
it must be provided with the analogues of three things, viz. firstly, the computing 

paper on which the computer writes down his results and his rough workings; 

secondly the instructions as to what processes are to be applied; these the computer 

will normally carry in his head; thirdly, the function tables used by the computer 
must be available in appropriate form to the machine. These requirements all 

involve storage of information or mechanical memory." Turing (1946, pp.20-21). 
Notice the clear distinction between the computing paper on which results are 
written and the instructions which are in the head of the computer. 

In 1947 Turing gave a lecture about the ACE project to the London Mathematical 

Society, in which he was quite explicit about the relationship between universal 

Turing machines and digital computers and also about the nature of the memory of 

digital machines. Digital computers were, he said, "practical versions of the 

universal machine." Turing (1947, p.112), and their memories were analogous to 
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the infinite tape of the universal machine. The major problem was that access to 
a one dimensional tape memory was unsatisfactory for a practical machine because 
of the time spent shuttling up and down looking for a particular piece of 
information. "This difficulty", he remarked, "presumably used to worry the 
Egyptians when their books were written on papyrus scrolls. It must have been 
slow work looking up references in them, and the present arrangement of written 

matter in books which can be opened at any point is greatly to be preferred." Turing 

(1947, p.107) The organization and size of the memory of the proposed ACE 

computer was clearly of paramount importance and Turing used a. good deal of the 

lecture to talk about it, "because I believe that the provision of proper storage is the 

key to the problem of the digital computer, and certainly if they are to be persuaded 
to show any sort of genuine intelligence much larger capacities than are yet available 
must be provided." Turing (1947, p.112). This is an interesting observation because 
it shows that Turing was thinking even at that early stage about the possibility of 

digital computers displaying intelligence and had identified a large memory as a 
crucial requirement. However, the fact that a computer would require a large 
symbolic memory with tape like characteristics in order to display intelligence is not 
an argument for supposing that human memory is of the same form, and Turing did 

not advance such an argument despite his interest in machine intelligence and his 
likely sensitivity to useful parallels between minds and computers. The reason why 

a computer requires a large internal symbolic memory is precisely because it lacks 

the complex perceptual apparatus which enables humans to engage in direct 

transactions with the external environment as required. By contrast, a computer 

which lacks such communicative ability must be provided in advance with all the 
information which will be relevant to the performance of whatever task it is engaged 
on plus storage for intermediate results and so forth. Hence the requirement for a 

large symbolic memory. It is clear that pre-storage of all the relevant information 
needed by a mobile machine interacting with a real environment poses formidable 
problems of both technical and conceptual origin. Technical problems include the 
development of representational and search methods which can cope with the ever 

present threat of combinatorial explosion, and conceptual problems include the 
difficulty of determining which aspects of the environment are relevant to a 
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machine. 

Finally, there are references in the very well known paper Turing (1950) which 
point to the identification of symbolic computer memory with the paper on which 
a human computer calculates and not with human memory. In the 1950 work 

Turing described the digital computer as a machine intended to carry out any 
operations which could be done by a human computer. The human computer "has 

an unlimited supply of paper on which he does his calculations" Turing (1950, p.43) 

and the digital computer has a store which "is a source of information, and 

corresponds to the human computer's paper" Turing (1950, p.44). Slightly further 

on, this correspondence is re-iterated. "The computer includes a store corresponding 

to the paper used by a human computer. It must be possible to write into the store 

any one of the combinations of symbols which might have been written on the 

paper." Turing (1950, p.47).  These remarks are firm indicators of a continuing link 

in Turing's thinking to the idea of the universal machine and to the distinction made 

there between the finite state control which modelled human memory and the tape 
which modelled the paper on which the human computer wrote. 

Turing also explicitly recognized a distinction, at least at one level, between the 

nervous system and computers. "The nervous system is certainly not a discrete-state 

machine. A small error in the information about the size of a nervous impulse 

impinging on a neurone, may make a large difference to the size of the outgoing 

impulse." Turing (1950, p.57). This is a somewhat puzzling observation because 

it appears to be in conflict with the notion of a "state of mind" which is a 

fundamental component of the Turing machine concept and of Turing's analysis of 

computation. The "state of mind" in the 1936 paper was certainly intended to be 

a discrete state in the sense in which Turing used the term in the 1950 paper. In 

an article written to mark the fiftieth anniversary of the Turing machine concept, 

Turing's biographer, Andrew Hodges, suggested that Turing's thinking about this 

issue was incomplete. "...we cannot feel that Turing had arrived at a complete 

theory of what he meant by modeling the mental functions of the brain by a logical 

machine structure." Hodges (1988, p.11). One possible answer is that Turing was 
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feeling his way towards an analysis of the issues in terms of a hierarchy of levels 
of explanation such as that proposed by Marr (1982). In Marr's terms the "state of 
mind" as Turing understood it is a construct at the algorithmic level whereas 

Turing's discussion of nervous activity is pitched at the implementation level. This, 
of course, is not an explanation of how discrete algorithmic states can be obtained 
from continuous nervous activity, but it replaces the apparent conflict with a 

question about how it might be possible to construct reliable discrete states from 
assemblies of real neural elements. von Neumann also gave some consideration to 
these issues at about the same time and wrote a notable early paper on the topic, 
which is reprinted in Aspray & Burks (1987, ch.13). von Neumann proposed a 
multiplexing scheme to control the global behaviour of circuits made from unreliable 
basic components and showed how the probability of a signalling error could be 

made arbitrarily small. From a different perspective, the phenomena of categorical 
perception, cf. Hamad (1987), whereby continuously varying physical dimensions 

are perceived as having discrete characteristics, suggest that Turing's analysis of 

mental functioning in terms of discrete states of mind enjoys considerable empirical 
support at an appropriate level of analysis. Notwithstanding the problems in 

understanding how to reconcile Turing's apparently divergent remarks, they do, in 

any case, provide further evidence for the suggestion that he was not trying to 

explain the workings of the nervous system in terms of digital computation. 

To summarize, the evidence of Turing's published work over more than a decade 

clearly supports the claim that to treat the tape of a Turing machine or the symbolic 
memory of a computer as a model of human memory is to make a major departure 

from the Turing machine concept as its originator understood it. The generic 
computer theory of mind makes just such a departure and cannot therefore be 

considered to enjoy the support of Turing's theoretical analysis. The ETH, by 

contrast, by treating the brain as a finite automaton and modelling memory as 
control memory, argues for precisely the distinction that Turing made. 

3.4. Turing's universal machine design. 

Part of the difficulty with the concept of control memory is that for the sorts of 
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reasons given by Newell & Simon (1976) which were briefly discussed earlier it has 
been a neglected topic. In a modern computer, control memory is nothing more 

than the contents of the registers of the CPU plus the set of basic operations which 
constitute the behavioural repertoire of the processor. The control of Turing's 

universal machine is a large, complex automaton which provides numerous 
interesting examples of the nature and uses of the control memory concept. For this 

reason it is worth examining in greater detail. From the point of view of the ETH 
it is the size and complexity of the automaton rather than the fact that it functions 
as a universal interpreter which is of primary interest. To understand the structures 
of the control it is necessary to introduce Turing's encoding scheme for the target 
machines which the universal interpreter was to simulate and to say something about 
Turing's notation and construction methodology. These are particularly interesting 
in the context of implementation issues. 

The universal machine operates by interpreting and acting upon the description of 
another machine which is known as the "target machine" . This description, which 

Turing called the "standard description", has to conform to certain syntactic 
conventions. Each instruction has five components; if one thinks of the instruction 

as a whole as a condition-action rule the first two components constitute the left 
hand side or condition, the remaining three the right hand side or action. The five 
components, in the order in which they appear in an instruction, are the current state 
(q; , 1 _< i . m), the scanned symbol (S i , 0 < j <_ n), the output symbol (SO, the tape 

movement indicator (Mu) and the next state (cu). This formulation differs slightly 

from the definition of a Turing machine given in Chapter 2. In that definition an 
instruction had four terms only, because a machine could either print a symbol or 
move, but not do both as part of the same instruction. The point is a purely 

technical detail. Turing's syntax specified that states were to be encoded by "D" 
followed by i occurrences of "A", symbols by "D" followed by j occurrences of 
"Cu, and tape movements by "L", "R" or "N" for left, right or no movement 

respectively. Thus, for example, the encoding of the instruction g 1 ,S 0,S3 ,R,g4 , was 

the string "DADDCCCRDAAAA" . Instructions were separated from each other by 
semi-colons. Turing also specified that target machines had to be started in state q1 
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= "DA" scanning a blank tape, and that the encodings for "blank", "0" and "1"  had 

to be So  = "D", S1  = "DC" and S2 = "DCC" respectively. These specifications 

can be understood in the light of Turing's primary concern with computable 

numbers. His formalism specified machines which printed out the binary encoding 

of a real number. Turing called this encoding the "sequence" computed by the 

machine. When he came to consider the universal machine, one of the requirements 

was that it too should print the sequence computed by the target machine. This 

would only be possible if the encoding used for the digits "0" and "1" was known 

in advance and was the same for all targets. The encodings for "0" and "1" are the 
only two which the universal machine "interprets" in the sense of substituting what 

they stand for. The specific encoding for "blank" was needed in order to make the 

first configuration of every target machine the same and hence to provide a starting 
point for the universal machine's interpretive operations. 

As a familiar example, consider machine M of Chapter 2. The definition of M, and 

its machine table are reproduced below. M = (K,E,S,$) where K = {g0,gl,q2}, E 

={#,(,),X,Y,N} and s = q0. The machine table is; 

q a b(q,a) q  a b(q,a) q  a  6(q, a) 

q0 # (q2,L) ql # (h,N) q2 # (h,Y) 
q0 X (qO,R) ql X (q1,L) q2 X (q2,L) 
q0 
q0 

( 
) 

(qO,R) 
(q1,X) 

qi ( (qO,X) q2 ( (h,N) 

As it stands, M is not suited to simulation by Turing's machine, partly because its 

starting state is not ql, partly because its starting symbol is not a blank, and partly 
because its instructions are specified as quadruples rather than as quintuples. 

Further, Turing did not specify a distinguished halt state. His machines would halt 

if they reached a configuration for which no action was defined. However, with 

minor modifications, a standard description for M can be produced. The first 

requirement is to change the state identifiers so that the starting state is ql. The halt 

state will be q4. Since no instructions are specified for q4, a transition which 

specifies q4 as the next state will cause the machine to hang which is the desired 
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result. The second requirement is to change the quadruples to quintuples. This is 
easily done as follows; first, whenever M prints an output symbol it does not move. 
So the movement symbol 'N' can be used in these cases. Second, whenever M does 
move, it does not print a symbol. The same effect can be had by specifying that the 
output symbol be the same as the input symbol. The use of 'N' as a movement 
symbol introduces a conflict with its use in the alphabet of M as an indicator of the 

status of a string at the end of a computation. This can be got round by replacing 

'Y' and 'N' for 'Yes' and 'No' with ' 1' and '0'. It is also evident that the condition 
that the machine be started in state ql scanning a blank could easily be implemented 
at the cost of an additional state. However, this is omitted here as the exercise is 
intended simply as an example. Putting the changes in place gives a revised 
machine table for a machine M' = (K,E,S,$) where K = €gl,g2,q3}, E = 

{#, (,),X,Y,0,1} and s = q1. M' is functionally equivalent to M. The machine 

table for M' is; 

q 	Q 	a (q, cr) 	q 	ff 	S (q,Q) 	q 	Q 	S(q,o) 

q1 	# 	(#,L,q3) 	q2 	# 	(O,N,g4) 	q3 	# 	(1,N,g4) 
ql 	X 	(X,R,g1) 	q2 	X 	(X,L,q2) 	q3 	X 	(X,L,g3) 
ql 	( 	((,R,ql) 	q2 	( 	(X,N,gI) 	q3 	( 	(O,N,g4) 
q 	) 	(X,N,g2) 

All that is then required is to specify standard encodings for the symbols ' (' ,' )' , and 

'X' and to make the appropriate substitutions. Setting '(' = DCCC, ')' = DCCCC 

and 'X' = DCCCCC, the machine table for M' in standard description format 

appears as follows; 
DADDLDAAA; 
DADCCCCCDCCCCCRDA; 
DADCCCDCCCRDA; 
DADCCCCDCCCCCNDAA; 

DAADDCNDAAAA; 
DAADCCCCCDCCCCCLDAA; 
DAADCCCDCCCCCNDA; 

DAAADDCCNDAAAA; 
DAAADCCCCCDCCCCCLDAAA; 
DAAADCCCDCNDAAAA 
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Two points are worth making. First it is clear that the encoding scheme could, in 
principle, be applied to transform any machine description into a standard 

description. Perhaps more important for present concerns is the obvious price paid 
for the behavioural flexibility of the universal machine. That price is complete 
inflexibility with respect to the encoding conventions. What this implies is that if, 

as the generic theory suggests, thinking is essentially the activity of an internal 

Turing machine, a process of encoding external stimulus energies into expressions 

in an internal alphabet which corresponds, however weakly to the process 

exemplified above, must be hypothesized to exist. 

In addition to the alphabet used to encode standard descriptions, Turing's universal 

machine required additional symbols to act as markers. One set of temporary 

markers was specified; Turing used the letters "u", "v", "w", "x", "y" and "z" for 

this purpose. He also used the colon, a double colon serving as a single symbol, 

and an inverted and reversed lower case "e", as permanent markers. For 
convenience here, the double colon is replaced by the asterisk "*" and the inverted 

"e" is replaced by "e" . Turing called the digits "0" and "1"  "figures" or "symbols 
of the first kind"; all other symbols were "symbols of the second kind". 

The tape of the universal machine was one-way infinite to the right of a fixed 

starting point which consisted of the symbol "e" printed on two consecutive squares. 

Turing considered the tape to consist of two alternating sequences of squares. 

Counting squares from the left, he called the odd numbered sequence "F-squares" 

and the even numbered sequence "E-squares". E-squares were used exclusively for 

markers which could be erased, whereas the symbols on F-squares formed an 

unbroken sequence. Once a symbol was printed on an F-square it was never 

altered. Thus the end of the sequence printed on F-squares could be identified by 

finding two consecutive blank squares and the start by finding the marker string 

"ee" . A symbol 'ß' on an F-square, and also the F-square itself were said to be 

marked by a symbol 'a' , if 'a' appeared on the E-square immediately to the right 

of the F-square containing 'ß'. Marking is a highly significant operation in the 

context of the universal machine. For example, it is the method by which the 
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current configuration is compared with the configuration of an instruction in the 

standard description of the machine being simulated. The universal machine was 

started on a tape which was blank except for the standard description of a target 
machine printed immediately to the right of the marker string "ee" and terminated 

with the symbol "a". 

Given the large symbol alphabet and the task of producing a universal interpreter 
which Turing was tackling de novo, it is unsurprising that the finite state control of 
the first universal Turing machine is a complex structure of several hundred states. 
To handle the complexity Turing developed an economical notation for the 

description of commonly used processes which includes ancestors of the concepts 

of a subroutine and of a formal parameter. It is not, however, a programming 

language in the modern sense, but a way of abbreviating the machine table 

description of a structural unit. The notation can be seen to point in two rather 

different ways when one is thinking of implementation. These different 

implementation possibilities are profoundly interesting in the context of the study of 

real cognitive systems because they relate to the nature of control memory. They 
can be explored by studying Turing's notation with the help of state diagrams. 

The essential elements of the notation were what Turing called "skeleton tables" or 

"m-functions" . An important example is shown in Table 1. 

m-config. 

f(C,B, a) 

fl(C,B,a) 

f2(C,B,a) 

Symbol 	Behaviour 	Final m-config. 

e 	L 	 fl(C,B,a) 
not e 	L 	 f(C,B,a) 
None 	L 	 f(C, B, a) 

a 	 C 
not a 	R 	 fl(C,B,a) 
None 	R 	 f2(C,B,a) 

a 	 C 
not a 	R 	 fl(C,B,a) 
None 	R 	 B 

Table I. The skeleton table for f(C,B,a). 
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The process described in Table I finds the leftmost occurrence on the tape of a 

symbol "a" if there is one. The scanning head is moved to the left until the end of 
tape marker "e" is encountered. Then it is moved to the right looking for the target 
symbol but also checking for the occurrence of two consecutive blanks indicating 
the other end of the tape and showing that the target symbol does not occur. 
Whereas an ordinary machine table would have named configurations in the first 
column, Table I has the parameterized expressions f(C,B,a), f1(C,B,a) and 
f2(C,B,a). These are m-configurations and the table as a whole is a skeleton table. 

Parameters C and B are also m-configurations and a is a symbol. A final transition 

is made to C if a is found and to B otherwise. 

Turing said that "skeleton tables are to be regarded as nothing but abbreviations: 
they are not essential." While this is true in a sense, it displays Turing's 

characteristic modesty and underestimates the value of the technique. Two points 

are particularly worth making. First, the m--function notation is very economical 

although it can be difficult to comprehend. Second, the technique invites the 

specification of complex structures in terms of simple parts. Turing used this 
technique wherever possible in the specification of the control of the universal 

machine even when simple, much more efficient alternative state structures could 
have been devised. In fact, all but 14 of the 420 states in the universal machine 

control were specified in terms of m-functions. To understand the technique both 

Turing's notation and state diagrams are useful. In Figure 3.1 the state diagram of 
f(C,B,a) and its relation to the machine table are shown. 

The states f, fl and f2 of Figure 3.1 are the realizations of f(C,B,a), fl(C,B,a) and 

f2(C,B,a) respectively and the target symbol a is 'a'. The three internal states of 

the structure and the relations among them are what would be common to any 

instance of the m-function. The transition arcs to states C and B are shown rather 
than the final states themselves. Although the "f-unit" as it can usefully be called, 
is an abstract logical structure, there is no reason why it should not be thought of 

as a structural unit akin to a logic chip. This kinship becomes even more apparent 
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Figure 3.1. The f-unit, the basic building block of Turing's machine.  

when its use in the specification of a more complex structure is examined. Suppose  

the task was to search for the first instance of symbol 'x' followed by the first  

instance of symbol 'y' if an 'x' was found, with a final transition to state C given  

both 'x' and 'y' found, and a final transition to state 'B' if either was not found.  

In Turing's notation this would be expressed as f(f(C,B,y),B,x), i.e. a nesting of  

two f-units. f(C,B,y) is specified as the state to which a transition is made if 'x' is  

found'. By contrast, in f(C,f(C,B,y),x), the search for 'y' is carried out only if 'x'  

is not found, because f(C,B,y) is parameter B in f(C,B,y). State diagrams for both  

of these nested structures are shown in Figure 3.2.  

Turing used a variety of other structures in addition to the f unit as foundations for  

the universal machine construction. Like the f-unit these structures reflect the  

organization of the tape.  

Figure 3.3 shows the structures f (a), q(a) and con(a) as well as the f-unit f(«)  .  

f («) is an f-unit augmented by a single state which positions the control one square  

The order of evaluation may initially be confusing for programmers. The outermost function  
is carried out first, followed by whatever is conditionally specified to follow. For example, in  

f(f(C,B,y),f(C,B,z),x) a search for 'x' is made first followed by a search for 'y' if 'x' is found or  
for 'z' if 'x' is not found.  
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Figure 3.2. Examples of function specification using nested f-units. 

to the left of the symbol found. In such instances the symbol found is almost 

invariably a marker. q(a) finds the rightmost occurrence of the symbol a. It is 
assumed that there is at least one instance of a on the tape. Con(a) is used to mark 

a configuration with the symbol a. A configuration is a sequence of symbols on F-

squares of the form DA(A*)D(C*), where (A*) and (C*) stand for zero or more 

occurrences of A and C respectively. Configurations determine the operations of 

Turing machines, hence their identification is a matter of fundamental importance. 

Since a configuration is a sequence on F-squares, the E-squares between them can 

be used for markers. DxAxDxCxCx is how the configuration DADCC marked with 

'x' would appear on the tape of the universal machine. 

In addition to structures for searching and marking, structures for erasing markers 

are also needed. Figure 3.4 shows the e(a), eall(a) and er(M) structures. e(a) is 

an f-unit to which a single state has been added which erases the symbol found. 
eall(a) has the same state structure as e(a) but the transition after an instance of the 

target symbol has been erased, reruns the whole process. er(M) is a simple 

structure which erases any markers found on the tape. 

The final m-functions which constitute components of the universal machine are 

those which write output on the tape. They represent a second order of complexity 
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Figure 3.3. rn-functions for searching and marking. 

as they include other m-functions as parts. Ce(v), pe(D) and pe2(0, :) are shown in 

Figure 3.5. ce(v) copies each symbol marked by a 'v' to the end of the tape and 

erases the markers. pe(D) is a component of ce(v). It uses an f-unit to position the 

scanning head over the first F-square and then scans successive F-squares until a 

blank one is found. Given Turing's conventions, the first blank F-square will be 

at the end of the used portion of tape. pe2(0,:) illustrates very clearly the 
inefficiency to which simple concatenation of structures can give rise because it 
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Figure 3.4. m-functions for erasing markers. 

involves an entirely unnecessary traverse of the used portion of the tape in both 

directions. 

With these preliminaries in place, Figure 3.6. shows the complete set of structures 

comprising the control of Turing's universal machine and Table II shows the 

machine table as Turing presented it. Figure 3.6 provides the basis for a discussion 

of control memory and implementation options. The circles indicate single states, 

the solid rectangles m-functions, and the dashed rectangles indicate regions of the 

structure which have a common purpose and are defined as multi-levelled m-

functions. The previous figures provide all the components needed to complete the 

full state diagram. A brief description of the processing cycle will motivate the 

discussion. The machine works by writing out successive complete configurations 

of the target machine, interspersed with the sequence of '0's and ' 1's which 
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Figure 3.5. m-functions for copying and printing 

constituted the number computed by the target. The machine is started on a tape 

which is blank apart from the standard description of the target machine which is 

written on F-squares at the left end of the tape and terminated with the symbol ' *' . 

Processing is initialized by having the machine write the first configuration, marked 

with 'y' at the end of the tape. This will always be DyAyDy indicating that the 

target machine was started in state ql scanning a blank. The matching configuration 

in the standard description of the target is found by a pattern matching search using 

the 'kom' and 'Imp' structures. The'kmp' structure is particularly interesting both 
for the brevity of its definition and for the complex task which is executed by a 

system composed of nothing other than f-units and erasers. It is an outstanding 
example of the concatenation of simple structures to produce a complex outcome 

and is discussed further below. Once the appropriate instruction in the standard 

description of the target has been identified, the 'sim' structures mark this 

instruction in preparation for the next stage of processing. The configuration, which 
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Figure 3.6. The state diagram for Turing's universal machine.  

was used to identify the instruction, is now redundant and is marked with blanks.  

The operations, i.e. the symbol to write and the movement indicator are marked  

with 'u', and the next state is marked with 'y'. Any remaining 'z' markers from  
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the pattern matching process are erased. Having marked the instruction, the 
machine then marks out the most recent complete configuration on the tape. The 

components of this, along with the appropriate parts of the marked instruction in the 

standard description make up the next complete configuration. To simulate the 
movement 

m-config symbol operations final m-config 

b f(bl,bl,*) 
b 1 RR:RRDRRA anf 

anf q(anfl,:) 

anfl con(kom,y) 

kom ; RzL • 	con(kmp,x) 

kom z LL kom 

kom not z or ; L kom 

Imp cpe(e(e(anf, y), sim,x, y) 

sim f (siml,siml,z) 

sim2 A sim3 

sim2 not A LyRRR sim2 

sim3 not A Ly e(mk,z) 

sim3 A LyRRR sim3 

ink q(mk, :) 
mkt not A RR mkt 

mkt A LLLL mk2 

mk2 C RxLLL mk2 

mk2 : mk4 

mk2 D RxLLL mk3 

mk3 not : RvLLL mk3 

mk3 mk4 

mk4 con(1(1(mk5)),B) 

mks Any RwR mks 
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mk5 None . sh 

sh f(shl,inst,u) 

sh 1 LLL sh2 

sh2 D RRRR sh3 

sh2 not D inst 

sh3 C RR sh4 

sh3 not C inst 

sh4 C RR sh5 

sh4 not C pe2 (in st, 0, : ) 

sh5 C inst 

sh5 not C  pe2(inst, 1, : ) 

inst q(1(instl),u) 

instl a RE instl(a) 

instl(L) ce5(ov,v,y,x,u,w)  

instl(R) ce5(ov,v,x,u,y,w)  

instl(N)  ce5(ov,v,xy, u, w) 

ov  er(anf) 

Table II. The machine table for Turing's universal machine. 

of the target machine relative to its tape, Turing used a convention in which the m-

configuration was written immediately to the left of the scanned symbol in the 

complete configuration. Thus the string DCCDCCDADCDCCDCC 

represents a machine in state ql scanning the '0' of the string '11011'.  Suppose the 

instruction for configuration D A D C specified a move left and a transition to state 

q2, the complete configuration DCCDCCDADCDCCDCC would need 

to be replaced by DCCDAADCCDCDCCDC C. Turing managed this 

with the following marking convention. The original complete configuration is 

marked by the'mk' structures as DvCvCvDxCxCxD_A_D_C_DwCwCwDwCwCw, 

where the underscore '' indicates marking with a blank. The part of the instruction 
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in the standard description indicating the output symbol and a transition to state q2 
would . have been previously marked as DuCuDyAyAy by the 'sim' structures. The 
simulation of movement is achieved by writing out the marked parts in the 
appropriate order. Turing did this with the set of ce(a) structures which is 
discussed below. For a move left the order is 'v','y','x','u','w' which, for the 
example given, yields D C C followed by D A A followed by D C C followed by 

D C followed by D C C D C C. Having written out the new complete 
configuration the machine makes a transition to state 'ant' to  begin the next 
instruction matching cycle. 

3.5. Control memory in Turing's universal machine. 

The most significant portions of the universal machine control for demonstrating the 

control memory concept are the 'kmp' set of structures and the 'ce(a)' structures. 
The 'kmp' structures carry out a symbol by symbol configuration matching process 
given a pair of configurations, somewhere on the tape, one of which has been 
marked with 'x's and one with 'y's. Turing defined 'kmp' as a complex m-function 
with a single entry point, and two exit points. The two exit points implement a 

branching operation which is conditional on the success of the configuration 
matching process. Thus the function of 'kmp' is to compute the conditional "If the 
marked configurations are the same go to 'sim', else go to 'anf". 

The first important point to note is how 'same' is implicitly defined in terms of the 
symbol structures which can appear on the machine's tape and the possible routes 

through the 'kmp' function. Two configurations are the same if and only if the 

machine fails to find a 'y' marker while executing f(y), structure number [2] in the 
state diagram for 'kmp' (Figure 3.6). Consider a hypothetical tape expression 
DxAxDx#####DyAyDy, where ##### stands for an arbitrary number of intervening 
squares with no 'x' or 'y' markers on them. 'kmp' works through this expression 

by finding the first 'x' marker and noting the symbol it marks. Then it finds the 
first 'y' marker and notes that the symbol it marks matches the symbol marked by 
the 'x' marker. The first 'x' marker and the first 'y' marker are deleted and the 

process is repeated on the expression D_AxDx#####D_AyDy. This cycle is 
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repeated twice more successfully but on the fourth invocation the machine finds 

neither an 'x' nor a 'y' marker. This must signal that the configurations matched. 

Consider the alternatives. First, the expressions marked with 'x' and 'y' might have 
been of different lengths. In such a case the instances of either the 'x' or the 'y' 

marker would be exhausted first leaving at least one instance of the other marker 
still on the tape. If the 'x' markers had been exhausted there would still be at least 

one 'y' marker on the tape which would be found by the machine executing 
structure [2] . If the 'y' markers had been exhausted the machine would not have 
entered structure [2] because an 'x' marker would have been found by f (x), and the 

lack of a 'y' marker would then have been detected by the appropriate f(y) unit. 

Alternatively a pair of symbols might have failed to match at some stage in the 

processing. In such cases also, the machine would not have entered structure 

number [2] and the mismatch would have been detected by one of the 'cp2' states. 

Thus the only case in which the machine can be executing structure [2] and can fail 

to find a 'y' marker is when there were equal numbers of 'x' and 'y' markers to 
begin with and each pair marked a token of the same symbol. Bearing in mind that 

the 'kmp' structure is 'internal' to the machine because it is part of the state 
structure of the control automaton, and that the marked expressions are 'external' 

because they are on the tape and the tape, by definition, is an external, auxiliary 

memory resource, the notion of 'same' is derived from the interaction of internal 

and external structures and is implicit in the actions of the control. Given the 

standpoint of the ETH which equates the brain with the control of a Turing 

machine, it follows that cognitive operations resulting in intentional notions like 

'sameness' may also result from, or be modelled as, the interactions of internal and 

external structure. 

A second important point about the 'kmp' m-function is that it provides a very clear 

example of a second form of implicit control memory for symbols. The first form, 

discussed in Chapter 2, was a functional type of implicit memory. It was 

appropriate to identify state qi of machine M as maintaining an implicit memory for 

a right parenthesis because of its subsequent behaviour. The form discussed here 

is a positional type of implicit memory. The relevant elements of the structure are 
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the 'cpl' state, the three f (y) m--functions to which it leads and the three 'cp2' states 

to which they lead. The example is particularly clear because it does not matter 
how symbol recognition is carried out by the 'cpl' and 'cp2' states. The first aspect 

of the structure to note is that the three f (y) structures are functionally identical in 

terms of their internal operations. This amounts to the claim that if they were real 
objects which could be plugged into three positions in a printed circuit board they 
could be swapped around without affecting the functionality of the system. Despite 

their internal, functional identity their functional roles in the wider system of the 

'kmp' m-function are different. One functions as an implicit memory for a 'D', one 

for a 'C' and one for an 'A'. Two points justify this claim. The first is that exactly 

three f (y) structures are needed because the machine has to deal with three different 

symbols at this stage of processing. If only two f (y) units were available the 

machine could not make all the necessary discriminations and would not be able to 

carry out the configuration matching process. The second point is to note what 

would happen if, for example, the 'cp2' state, numbered [3] were to make a 

transition to e(x) if the symbol marked by 'y' were a 'C' rather than a 'D'. This 

would constitute an error and would lead to failure of the configuration matching 
process. The reason is that the path to the 'cp2' state numbered [3] is that used 

when the symbol scanned by the 'cpl' state is a 'D'. Thus the f (y) unit that lies 

on the path between the 'cpl' state and the 'cp2' state numbered [3] functions as an 

implicit memory for a 'D' by virtue of its position in the larger 'kmp' structure. 

Positional implicit memory is a significant feature of the control memory of Turing 

machines in the context of the ETH and there is good reason to believe that position 

is a significant organizational principle in the nervous system. Kuffler, Nicholls & 

Martin (1984, p.6), for example, describe a fundmental principle of organization in 

the brain in the following terms; "The quality or meaning of a signal depends on the 

origins and destinations of the nerve fibers, that is, on their connections." Thus it 

would seem that the nervous system makes substantial use of a form of memory 

which is characteristic of finite automata. If the brain is better thought of as a finite 

automaton rather than as a whole Turing machine as is claimed by the ETH, and if, 
in consequence, human memory should be thought of as modelled by control 
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memory rather than tape memory, then it is of course important that the principles 
of operation of control memory should be plausible for the brain. 

The idea of positional implicit memory is interestingly linked to an apparently rather 
plausible hypothesis about the relationship between memory and modular structure. 

Control memory appears to imply modular structure in a way that symbolic, tape 

memory does not. 'kmp' again provides an interesting example. The point to 
notice is that although the behaviour of the machine in the states represented by each 
of the three f (y) units is essentially identical, there must be no cross-talk between 
them because they are subserving different memory functions. The logical state 

structure thus implies an implementation constraint given the assumption that 
memory is non-symbolic. This leads to an interesting secondary way of interpreting 

state diagrams. Complex state diagrams look very much like printed circuit board 

diagrams and although this can be very misleading the resemblance is not entirely 

coincidental. Although a node in a state diagram is properly thought of as 

identifying a global logical state of a machine, it can also be thought of as a marker 

for a sub-assembly of parts which might be used to construct a machine with the set 

of logical properties exhibited in the state diagram. The possibility of using a 

simple network to implement the XOR function discussed in Chapter 2 suggested 
as much, as does Turing's method of constructing complex m-functions from 

multiple copies of simple units. Nodes linked by arrows imply sub-assemblies 
linked causlly, and nodes unlinked by arrows imply autonomous sub-assemblies. 

The linkage between position and content seen in control memory is not a principle 

which is characteristic of the symbolic memories of computers or the tapes of 
Turing machines. The fundamental point about these memories, although they are 

modular in the sense of being divided into separate locations, is precisely that they 
are undedicated in terms of content. It seems clear, therefore, that to distinguish, 

as Turing did, between external symbolic memory, and internal, brain like, control 

memory, is to make a distinction which accords to a first approximation with what 

is known about the brain. 

The other part of the universal machine construction which is of interest, both from 
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the point of view of the organization of control memory and as an example of 

Turing's ingenuity in using existing definitions, is the set of ce(u) structures which 

implement the copying of marked regions of tape in order to construct successive 
complete configurations. As is apparent from Figure 3.6 these structures are 

divided into three sets of five units, the choice among the three sets being 

determined by the movement symbol in the active instruction of the target machine. 

Although the set of ce(a) structures accounts for 315 of the 420 states of the 

machine, the organization is entirely regular and straightforward. The major 

structuring principle is the division into three separate paths corresponding, as 

already observed, to the three possible movement symbols. It is appropriate to think 

of each path as constituting an implicit memory for its originating movement 
symbol, if only because it is the identity of this symbol which determines the order 

in which the different marked regions are dealt with within the path. Each ce(a) 
unit consists of an f (a) unit which finds the first occurrence of a symbol marked 

with a, a 'cl' state which determines what action to take, three pe(ß) units which 

print the appropriate symbol ' D' ,' C' , or 'A' at the end of the tape, and an e(a) unit 

which erases the marker. This unit makes a transition back to the f (a) unit to 

repeat the process which is terminated when no further instances of the marker are 

found. Control is then passed to the next ce(7) unit. The large scale replication of 

functional units, which is the most striking aspect of the ce(a) set of structures, 

simplifies what would otherwise be a complex control problem at the cost of a 

considerable increase in the size of the machine. 

3.6. Styles of implementation. 

This observation leads naturally to a question about implementation style. It is 

important to remember that although it is tempting to treat diagrams like Figure 3.6 

as a sketch for a printed circuit board, it is in fact a picture of logical structure 

which is compatible with a variety of realizations. Two broad strategies, at opposite 

ends of the spectrum are of particular interest. There is the strategy of using 

multiple replications of functional units with minimal control circuitry and content 

specified by position which is clearly seen in Figure 3.6 or there is the strategy of 

using fewer functional units with parameter passing and more complex control 
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circuitry. These might reasonably be called the MAXH-MINC (maximum 
hardware-minimum control) and MINK-MAXC (minimum hardware-maximum 
control) strategies. Consider the ce(v) unit shown in Figure 3.5. Most of its 
structure is identical to that of all the other ce((x) units. The only variation is in the 
identity of the marker which is relevant at the finding and erasing stages. So the 
question very naturally arises, when considering implementation, whether it might 
be possible to find a way of passing this variable information to a real structure at 
execution time. If this could be done, the physical replication of units could be 
avoided in favour of a single unit plus an appropriate stream of instructions. The 
seeds of the idea are to be found in Turing's notion of a skeleton table and it is this 
which makes his own assessment of skeleton tables as mere abbreviations less than 
generous. One obvious way of passing variable information is in the form of 
explicit symbols. Figure 3.7 shows a schematic view of the sort of mechanism 
which might be constructed pursuing the MINH-MAXC strategy. It is purely 
notional and is intended solely as an illustration. 

Figure 3.7. A hypothetical implementation scheme using only one ce(a) unit. 

From whatever structure implements 'instl', control is passed to a 'Load' unit 
which contains symbolic information about the marker parameters for the second, 
third and fourth cycles through the CE unit. The first and fifth are fixed as 'v' and 
'w' respectively which saves a certain amount of control wiring. The load unit 
installs the appropriate values in the variable marker registers and initiates the 
execution cycle which starts with the first marker register containing 'v' . This is 
passed to the CE unit, whose internal operation would be as shown 
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in Figure 3.5. After all the 'v' markers are exhausted a signal is sent on the 'next' 

line. Precise details are unimportant but the idea is that on the first pass the 'next' 
signal would activate 'cl' in the 'v' marker register which would pass control to the 
second marker register. This would send its marker to the CE unit and set 'c2' 
ready to receive its own 'next' signal. And so on. 

If the ETH is correct, discussion of implementation options is particularly important 

and the issues which are considered here in the context of Turing's universal 

machine are issues which would arise with respect to the implementation of any 

complex machine. The ETH proposes a MAXH-MINC implementation, but if the 

cognitive system is an implementation of a Turing machine, roughly of the same 

type as digital computers as the generic theory suggests, then there is a strong 

presumption in favour of the minimal replication, symbol based, complex control, 

MINH-MAXC strategy. Some of the reasons for this are considered in Chapter 4. 

What this strategy does, in effect, is to exchange hardware for software. One aspect 

of the trade-off is ease of modifiability, and hence greater flexibility of function at 

the cost of increased control complexity, and probably at the cost of slower 

execution given the need to initialize components like marker registers. 

One profound difference between the two strategies is the need, in the MINH-

MAXC case for the passing of symbolic parameters, whereas in the MAXH-MINC 

strategy, which would be exemplified by a direct implementation of Turing's design, 

what is needed is an activation signal rather than a symbolic parameter. In the 

former, but not the latter case, explicit symbolic information is passed and thus it 

is appropriate to think of the system as a symbolic information processor. When 

the brain is considered, it seems almost certain that signals rather than explicit 
information are what is passed at the level of neurons and this tends to suggest, 

along with the evidence for the importance of position as a principle of brain 

organization, that the brain implements a MAXH-MINC strategy and should perhaps 

be thought of primarily as a signal processor rather than a symbolic information 

processor. It is important to be clear just what this claim amounts to and it is 
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easiest to understand first in the context of the Turing machine. That the Turing 
machine as a whole is an information processor is not in question. The information 

which is processed is found on the machine's tape and the transformation of input 
into output which constitutes the function computed is a paradigmatic information 
process. The question at issue is whether the finite state control of a Turing 
machine is also an information processor and the answer to this question appears to 
depend on the implementation strategy adopted. It seems perfectly possible for a 
system as a whole to be an information processor while its separate parts are not. 
Broadly speaking, the MAXH-MINC strategy implies a view of automata which 
takes them to be signal processors, and the MINH-MAXC strategy implies a view 

which takes them to be information processors. Thus the suggestion that the brain, 
construed as a finite control automaton is not an information processor does not 
entail or imply the false claim that the cognitive system as a whole is not an 
information processor. What is at stake is the description of the internal system of 

components and their arrangement which implements the control system for the 

information processes which the system as a whole executes. 

To summarize the arguments of Chapter 3 thus far: from consideration of the 
example of a human engaged in a routine calculation, Turing developed a machine 
model to capture the essential processes involved; the model consisted of a finite 
control automaton which modelled the algorithm embodied in the mind of the 
human, and an indefinitely expandable tape which modelled the paper on which the 

calculation was worked. The identification of the human mind with the finite 

control system, and not with the tape, was supported by an argument for the claim 

that the human brain was capable of being in only finitely many different states. 

Turing's further published work over a period of more than a decade supports this 

understanding of his analysis of computation. To treat the brain as a whole Turing 
machine and human memory as modelled by symbolic tape memory is thus a misuse 
of the model. 

It has further been argued on the basis of an analysis of Turing's universal machine 
construction that a positional form of control memory, in addition to the functional 
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form of control memory discussed in Chapter 2, can be identified and that a 

distinction can be made between implementations of finite control automata which 
take them to be information processors and those which take them to be signal 
processors. Turing's machine model is compatible with both styles of 
implementation. On the basis of the above, the idea that the brain is a finite, signal 
processing automaton is perfectly compatible with the view that it is internally non-
symbolic but that it is a component of an information processing cognitive system 
which makes use of explicit symbols externally. The ETH thus appears to be well 
supported by Turing's analysis of computation. 

3.7. Serial and parallel architectures. 

Two further points are worthy of brief consideration here. First is the issue of 

serial versus parallel architectures and processing. It has sometimes been suggested 
that the brain cannot be a Turing machine because it is a parallel system whereas 

a Turing machine is a serial system. This criticism might be thought to apply to the 

ETH as well, even though it denies that the brain is a Turing machine, because a 

finite automaton is also a serial processing system in that it passes from one global 

state to the next. The first point to make is to distinguish the issues of architectures 
and processing. A serial architecture is essentially one built according to the 
MINH-MAXC strategy. In such an architecture simultaneous processes are 

impossible if each process requires the same operation and only one hardware 
component implementing the operation is available. This is the case with most 
commercial computers which have a single CPU. A parallel architecture is one in 
which multiple processors are available for a given operation thus allowing process 

parallelism. It is apparent, however, that although a serial architecture rules out 
parallel processing, a parallel architecture does not rule out sequential processing. 
The architecture of the ce(a) units, for example, would be parallel if a MAXH-

MINC implementation were built, but processing would still be sequential. Parallel 

architectures are discussed in greater detail in Chapter 4. For the present however, 

the fact that the brain has a parallel architecture does not rule out its functioning as 
a sequential system at the level of global state transitions. 
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3.8. Configurations, thought and behaviour. 

The second point to make concerns the nature of the relationship between the 
control of a Turing machine and its inputs. One of the most valuable features of the 
generic computer theory of mind is that it seems to give a good account of how it 
might be possible for the cognitive system to operate so as to make thought more 
or less independent of the external stimulus environment. The picture of the mind 
as an internal Turing machine communicating with the outside world via sensory 
and motor transducers appears to give just the right sort of account, because internal 
computational processing is independent of the world and yet connected to it. At 
first sight it might appear that this semi-autonomy is sacrificed by the ETH, because 
the ETH takes the concept of a configuration, i.e. the combination of current 
internal state and current symbol scanned which determines the next step of a Turing 
machine, to be a relation between the organism and the world whereas for the 
generic theory it is an internal relation between different parts of the neural Turing 
machine. Thus it might appear that the possibility of autonomous internal 
processing is ruled out by the ETH. 

In one sense this is true and part of the purpose of the ETH is to encourage a view 
of the organism as more closely tied to the external environment than the generic 
theory suggests. However, the grip of the environment as a component of 
computational configurations is much less unyielding than might at first appear. As 
before, it is necessary to examine Turing machines of considerable internal 
complexity to get a true feel for what the relationship between symbol and state 
amounts to and what is ruled out by supposing configurations to involve the external 
world. 

It was observed in Chapter 2 that the point of having a system with more than one 
internal state was to enable more than one response to a given stimulus to be 
possible while still retaining a deterministic approach to processing. What this 
suggests is that it is not independence from external input which promotes autonomy 
but an appropriately extensive set of internal states. The fact is that human 
organisms are not insensate, unsituated entities in the way that computers are. In 
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ordinary circumstances the awake human cannot choose not to see or hear or feel. 

But this does not diminish the human capacity for voluntary action. Thus the 

immediacy of interaction with the environment implied by the ETH is not a recipe 

for ironclad determinism. More significantly, in the Orwellian world of the Turing 

machine, some symbols are more equal than others. Consider the f-unit, the basic 

building block of Turing's machine, whose state diagram is shown in Figure 3.3. 

For the f-unit in state '1' ,  its inputs are divided into two classes, instances of 'e' and 

everything else, the point, of course, being that the occurrence of an 'e' causes a 

state transition to state 'fl' while any other input leaves the machine in state 'f . 

Once in state 'fl', 'e' loses its more equal status and becomes just another animal 

in the farmyard while the target symbol and the blank become the 'privileged' 

members of the alphabet. One might even want to assign the target symbol higher 

status than the blank because it represents the acme of the f-unit's processing. 

Another way of expressing the same point might be to say that different states are 

sensitive to different symbols. The familiar example of driving a car while pre-

occupied and arriving at a destination with a very uncertain grip on how the journey 

was achieved shows that this kind of differential sensitivity is characteristic of 

humans as well. It is not that the cues to which one responds automatically when 

driving are unimportant but that they are means to an end rather than ends in 

themselves. Similarly, one might plausibly regard the sequence of symbols which 

the f-unit has to traverse in pursuit of its target symbol as a means to an end. This 

is not to deny that the behaviour of the Turing machine is determined by its 

configurations. What it does imply is that the internal state provides the element of 

control. Perhaps it would not be too confusing to suggest that behaviour is 

determined by configurations and controlled by internal states. This idea can be 

interpreted in a way which has an air of plausibility to it when thinking of the 

sources of ordinary behaviour. If I were walking in the mountains and were 

overtaken by an unexpected thunderstorm, I would be exercising a remarkably 

intransigent notion of freedom if I continued to walk without putting on my 

waterproofs and took no heed of the possibility of a lightning strike. That I would, 

in such circumstances take the appropriate steps to weatherproof myself and get off 

an exposed summit is to allow that my behaviour is determined by the weather. But 
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it is not a form of determination which robs me of freedom to act since my 
behaviour in acting thus is controlled by my internal state. Furthermore, the 
internal state which recommends the donning of waterproofs is subordinate to the 

overarching state or set of states which constitute my wanting to continue my walk 

without being soaked or blasted by a thunderbolt. It is very interesting to note that 

the nesting of states within structures in complex machines echoes this dependence 

of human behaviour on hierarchical mental state structures. The processing of an 

f-unit in Turing's machine always constitutes a stage in a higher level process and 

the processes which have f-units as their constituents may themselves be components 

of still higher level processes. The erasers in the 'kmp' m-function are a good 

example. These structures have f-units as components and are themselves 

components of the pattern matching process which identifies the appropriate 

configuration in the target machine. Thus, although it is clear that the moment by 

moment behaviour of the machine is determined by its configuration, it is less easy 
to say exactly which process is controlling behaviour. Is it the f-unit, the eraser or 

the pattern matching process carried out by the 'kmp' m-function, or is it a 

combination of all of these or even of some still more remote constellation of state 

structures. Quite clearly then, the control of behaviour by internal states, as distinct 

from the determination of immediate behaviour by the current configuration, can 

extend over lengthy time sequences and embrace multifarious inputs. This is a view 

which seems at least as plausible as the idea that behaviour is controlled by a semi-

autonomous internal computer which is isolated from direct contact with the world 

in which the behaviour it controls has to happen. 

In conclusion, both Turing's analysis of computation and the design methods he 

used to develop the universal machine appear to support the claims of the ETH that 

the brain should be considered as a finite control automaton rather than a complete 

Turing machine. Control memory turns out to be a complex, multifaceted concept 

which is at least as plausible a model of human memory as the more familiar model 

based on symbolic, tape style memory. In addition the range of interactions 

between internal states and external symbols appears to offer a plausible basis for 

an account of the relationship between human cognizers and their environments. 
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Clearly such an account needs elaboration. What the present chapter has shown is 
that it is not a task which is doomed from the start. 
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Chapter 4. Digital Computer Models. 

In Chapter 3, Turing's analysis of computation was used to support the basic claim 
of the ETH that the brain should not be considered to implement a whole Turing 
machine, but the finite state control of a Turing machine. This suggestion runs 
counter to a wide variety of well established and respected theories which have been 
grouped together under the general label of the generic theory. It is characteristic 

of generic theorists to argue that the brain does implement a Turing machine of 
some kind and that the mind is essentially the program or set of programs which are 
executed by this machine. 

Clearly it would be absurd to suggest that generic theorists are committed to the 
idea that the brain contains an infinite, linear tape which is traversed by a finite state 
control, and it is relevant to ask what the generic theory proposes in the absence of 

such an arrangement. Broadly speaking, digital computers have provided the model 
for the architecture which the brain is hypothesized to implement and the purpose 

of this chapter is to examine briefly what the commitments of such a model are. 

4.1. The architectural commitments of the generic theory. 

Clearly, the major commitments are to an internal separation of memory from 

control and to explicit symbolic expressions. Although the generic theory is not 

committed to the notion of a linear tape, it is committed to the notion of an internal 
memory system which is symbolic, and which may provide both data and programs 

for the executive system of the cognitive computer. The memory system is 

separate, at least functionally, from the control system which manipulates the 
symbolic expressions contained in the memory to produce such characteristic 

phenomena of cognition as reasoning and decision making. 

4.1.1. Location addressing. 

One of the reasons why the generic theory is not committed to the idea of a linear 

tape and a mobile control is the difficulty of access which such a medium imposes. 
It is clear, therefore, that the generic theory must be committed to some form of 
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addressing scheme other than traversing a linear tape. The most common form of 

addressing scheme in digital computers is location addressing. One way to think 

about such a scheme which retains a contact with the material of Chapter 3, is in 

terms of a Turing machine with a finite tape, each of whose squares has a hard-
wired connection to the control. The connection may be thought of as enabling the 
control to read and write from the square as though it were scanning it. On the 

assumption that the difference in distance between the nearest and most remote 

squares contributes little if anything to the access time, such hard wired connections 
provide constant time access to each element of the memory. The central processors 
of digital computers enjoy connectivity to their memories of essentially this kind 

even though the memory is normally two-dimensional. It is reasonable to consider 

the byte as the unit of computer memory analogous to the square of a Turing 

machine tape. Human memory may also be essentially two-dimensional if the 

cerebral cortex is its seat. 

The advantages of a memory whose locations are systematically addressable extend 

beyond the simple fact of constant time access, important though this is, to the 

organization of both programs and data. One of the pronounced inefficiencies of 

Turing's universal machine is that it has to hunt through successive instructions of 

the standard description of its target machine in order to find the one to execute. 
By contrast it is standard practice in computers to arrange the instructions in 

sequential locations so that the next to be executed is normally to be found in the 

location following the location of the current instruction. Only when the current 

instruction is a conditional branching instruction will this not normally be so since 

the alternatives cannot both be next in line. The process whereby the central 

processor gains its next instruction, known as the instruction fetch, is therefore both 

fast and simple by comparison with the contortions of matching and marking which 

Turing's universal machine has to carry out to achieve the same effect. 

4.1.2. Virtual architecture. 

The advantages of addressable memory locations are perhaps even more noticeable 
when it comes to organizing data items. Although the basic unit is the byte or tape 
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square, which can hold a single symbol, larger aggregates are normally required for 

computing. Given a system of addressable locations, larger scale structures can 

easily be defined. This is done in terms of address arithmetic given a base address 
which serves as the entry point to the structure. Suppose, for example, that a two 

dimensional array of n x n squares or bytes were required given a linear tape as the 

medium. From a base address k at which the first element of the first row, element 

(1,1) was to be stored, the second element of that row would be at address k+ 1, the 

third at k+2 and so on up to the n'th and final element of the first row (1,n) at 
address k+n-1. The second row with element (2,1) would start at address k+n, 
and its final element would be at k+2n-1. The final row would start at address 

k+n2-n and the final element of the whole array (n,n) would be at address k+n 2-1. 
To access a given element at location (r,c) a simple calculation of k+n(r-1)+c-1 

gives the offset from the base address. This is an example of a virtual structure 

which uses address arithmetic. There are few limits, other than space available and 

the imagination, on the types of virtual structure which can be specified in this way. 

The utility of such a structure, from the point of view of the programmer, depends 

of course on the programmer's being able to think of the structure in terms of its 

virtual characteristics rather than having to make the requisite address calculations, 

and much of the effort in developing programming languages has had the provision 

of virtual structure as a goal. When, as is commonly the case, the programmer has 
no access to the real machine structures but only to virtual structures presented 

through the constructs of a programming language, the language is taken to define 

a virtual machine or virtual architecture. Many cognitive scientists believe that the 
notion of virtual architecture is one of the keys to understanding the relationship 
between mind and brain, and claim that the mind is a virtual architecture. It is 

broadly for this reason that theorists of such persuasion tend also to argue that the 

study of mind can be carried out independently of the study of brain because what 

is of psychological interest is the virtual architecture whereas what is of 

neuroscientific interest is the physical architecture which provides the medium in 

which the virtual architecture is implemented. Given that thoughts appear to obey 

principles of rationality, for example, whereas neurons obey principles of 

biochemistry, the attraction of such a position is considerable. 
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4.1.3. Virtual architecture and control circuitry. 

Although the attractions of thinking of mind as a virtual architecture are 

considerable the view has costs as well as benefits. The costs are best appreciated 

by thinking of the control circuitry needed for the real architecture which supports 

the virtual structures. The need for address arithmetic and addressable locations 

have already been introduced, and the latter have been seen to entail a finite store 

with fixed data paths between control and memory locations. This implies a great 

deal of wiring and switching capacity, in addition to the capacity for transmitting 

symbols rather than just signals. The distinction between symbols and signals was 

introduced in Chapter 3. Taking a crude example, if we imagine a line of people, 

each standing within touching distance of the next, a signal can be passed down the 

line by each poking the next in the ribs, whereas a symbol requires the passing of 

a piece of paper with the symbol written on it as well as the poke in the ribs to draw 

attention. 

The extent of the constraints on implementation arising from the need for control 

circuitry to manage information access and transfer can be understood from brief 

consideration of the way they are managed in digital computers. Digital computers 

operate almost exclusively with two state basic memory units known as bistables or 

flip-flops. These units have been chosen for logical simplicity and because they 

offer the easiest means of achieving the required reliability. 

"Although other numbers of states are possible, and ternary (three-
state) machines have been proposed occasionally, digital technology 
has developed exclusively to handle binary information. There are 
several reasons for this. The first is the requirement for high 
reliability... The second reason is the simplicity of the logic design 
for binary representations... A final reason... is that no one has ever 
found striking advantages from the resulting processing structure in 
having more than two states." 

Siewiorek, Bell & Newell (1982, pp.66-67) 

Two states units can store only one binary digit or bit and have to be aggregated in 

order to represent a wider variety of states or entities. Typically, the eight bit byte 
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is the basic unit of aggregation and can represent 2 8  = 256 different states. 

Encoding schemes such as ASCII assign symbolic values to various of the 256 

states. The fact that symbolic representations are encodings over aggregates of 

binary digits means that the hard wired data paths from memory to the control have 

to have at least as many bits as there are bits in the representation. Contrasting this 

with the case of a signal for which a single wire suffices, the amount of wire needed 

by symbolic encoding can be seen to be considerable. 

Figure 4.1. A three bit address decoder for an eight byte memory. 

The load imposed by a location addressing scheme is even more substantial. 

Consider the simple address decoder for an eight byte memory shown in Figure 4.1. 

The addresses are three bit numbers and are presented on the address input lines 

shown at the left of the figure. The address lines are connected to eight AND gates 

labelled AO to A7. The gates produce an output when all three of their inputs are 
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positive. The connections from the address lines to the gate inputs are shown as 
filled circles. The unfilled circles represent inverters, which turn an input of '0' 

from the address line into an input of '1' at the gate and vice versa. Inspection of 
the pattern of inverters shows that each of the eight possible addresses produces an 
output from just one of the AND gates. The address pattern '000' produces an 
output from gate A0, pattern '001' from gate Al and so on. This output is the 

address selection mechanism which, in conjunction with the appropriate control 
signals on the read-write lines, will either send the pattern stored in the byte to the 

control or write into the byte the pattern supplied by the control. For simplicity, 

the read-write lines are shown connected only to Byte 0. Clearly the number of 

locations which can be addressed by k address lines is 2'. Thus for a memory of 

220  bytes, i.e. 1 Mb. organized using an addressing scheme of the kind shown, 

twenty address lines would be needed plus 220  AND gates each with 20 inputs. In 

practice, decoding strategies which are more economical in terms of the number of 

gates needed are generally used, but they tend either to be slower than the type 

shown or to require more complex circuitry at memory locations. A further 
important point about all such systems is the need for almost flawless reliability in 
the base components. If the address decoder is to work correctly, addresses must 

appear correctly on the input lines, and the multi-input AND gates must also work 
precisely so as to select the item required. Similarly, the read-write lines must 

operate correctly. All of these requirements impose wiring and reliability 

constraints of a kind which it may not be plausible to suppose that neurons support. 

It may be objected that content addressing rather than location addressing is clearly 

the method of choice for the neural system, particularly since human memory 

appears to work in such a way. It is far from clear, however, that content 

addressing eases the burden of control circuitry required. On the assumption that 
the memory consists of a series of independently modifiable locations, which seems 

to be required for a Turing machine, the control problem is in some ways worse for 

content addressing schemes than for location addressing and may explain why the 

great majority of computer architectures use location addressing. A variety of 

content addressing schemes have been proposed but they all have in common the 
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specification of a tag or key which may be part of the data item required or may 

constitute a separate but connected field. The requisite item is found by comparing 

the relevant parts of the contents of each location with the key or tag to find a 

match. Thus it may be necessary, in principle, to compare the contents of every 
location in the memory with the search key in order to find the appropriate data 
item. The control circuitry needed to manage the search process is at least as 

complex as that required for an address decoder, and read-write circuitry is needed 

just as in the location addressing scheme. Furthermore, content addressable 

memories tend to be slow because of the search process, may yield multiple matches 

to the search key which need to be dealt with and also pose problems when data 

have to be written to the store. While on the subject of content addressable 

memories, it is appropriate to note that Turing's universal machine uses content 

addressing to locate the appropriate instruction in the standard description of its 

target machine, using the configuration from the most recent complete configuration 

as the key. 

It seems most likely that when people think about content addressing and its 

advantages they have in mind the sort of associative memory which is characteristic 

of connectionist networks in which the input constitutes the search key, the set of 

connection strengths of the network constitutes the stored data and the output 

constitutes the recalled item. However, this style of memory is not available to 

theorists who claim that the brain implements a Turing machine, first because the 

control is not separated from the memory and second because the memory does not 

consist of a set of independently modifiable locations whose contents are symbolic. 

It seems clear, therefore, that the claim that the brain implements a whole Turing 

machine carries substantial implications for the amount of control circuitry needed 

and imposes rigorous requirements on the reliability of the basic components. It has 

been suggested that these requirements make the claim implausible. 

"The principles of computer memories can hardly be realized in biological 
organisms for the following reasons: i) All signals in computers are binary 



106 

whereas the nerual signals are usually trains of pulses with variable 
frequency. ii) Ideal bistable circuits which could act as reliable binary 
memory elements have not been found in the nervous systems." 

Kohonen (1988,p.12) 

One further point which is of some interest is the implication that if the brain is a 

Turing machine rather than a finite automaton its memory will be both less efficient 
and of lower capacity. The reason is that control and memory states are not 

distinguished in a finite automaton and thus the physical substrate can serve both 

purposes simultaneously as discussed in Chapters 2 and 3. Assuming the brain to 

implement the control circuitry for accessing a tape as well as whatever is required 
to implement locations, it is clear that a large amount of neural capacity will simply 

be unavailable for memory purposes in a way that is not the case for a finite 

automaton implementation. 

A further point which is of great significance is that in addition to the burden of 

control circuitry which the internal Turing machine model entails, the generic theory 

has also to specify how external stimulus energy is translated into symbolic input 
which the internal computer can use and how the outputs of that computer can be 

translated into behaviour. The characteristics of these mechanisms and the 

conceptual problems to which they lead are explored further in the discussion in 

Chapter 5. For the present, it is clear that they also represent an additional call on 

neural resources which may be substantial. 

In summary, in the light of Turing's analysis which specifically separated the finite 

state control unit modelling the brain, from the tape modelling the paper on which 

a human computer might write, and given the costs in terms of control circuitry 

which would be needed if the brain were indeed structured like a digital computer 

of some kind, the thesis that the brain does implement a Turing machine of a kind 

must be questionable. In the remainder of this chapter, a short review of some of 

the history of the development of computers and the means of using them is 

presented. It is apparent that many of the decisions were dictated by engineering 
considerations which while essential for the development of efficient machines 
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contribute to the implausibility of the view that the mind resembles or is 
architecturally similar to a digital computer. Computer design is essentially 
concerned with harnessing the power of the universal machine concept and, at least 
until recently, has been directed towards the MINH-MAXC end of the 
implementation dimension for a variety of sound engineering reasons. Both of these 

choices focus attention on the exploitation of a large auxiliary memory. However, 

in the absence of evidence either that the brain implements a universal machine 
interpreter or that evolution has adopted the MINH-MAXC strategy, and given the 
principled distinction which Turing made between human memory and auxiliary 
memory, there is no good reason to suppose that the computer provides a 

satisfactory model of the architecture of the mind. Indeed, the ETH suggests that 
the strategic choices made in the development of computer architecture are precisely 
the wrong ones from the point of view of developing a model of human cognitive 

architecture. This is not, of course, to claim that the architecture of the mind could 

not be simulated on a computer nor that the mind is not a computational system. 
If the mind is a mechanical system then the Church-Turing thesis strongly suggests 
the possibility of simulating its operations in the form of a program. But this is not 

at all the same as claiming that the architecture of the mind is itself organized in the 

way a digital computer is. Not all computational machines are universal. The 

existence of an infinity of Turing machines which compute but are not universal 

demonstrates this point. 

4.2 The First Electronic Computers. 
Although Turing's work was in print in 1937 and the first electronic computer was 
not commissioned until 1946, the theory of computable numbers appears not to have 

had a direct impact on the development of the very earliest machines which were 

constructed in the U.S.A. Throughout the 1930' s the most sophisticated calculating 

machines available were analogue differential analyzers, most notably those built by 
Vannevar Bush and his colleagues at MIT, which approximated solutions to 

differential equations, cf. Goldstine (1972, Chapter 10) and electro-mechanical 

digital calculators based on Herman Hollerith's tabulating machines which were used 
for the construction of astronomical tables among other things. 
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4.2.1 The ENIAC9 . 
In 1943 funds were made available to the Moore School of Electrical Engineering 

at the University of Pennsylvania to construct an electronic computer for the 

Ballistic Research Laboratory of the Ordnance Department of the United States 

Army. Herman Goldstine, who was the Ballistic Research Laboratory's 

representative at the Moore School during this period said 

"...one of the main functions of the Ballistic Research Laboratory 
was the production of firing and bombing tables and related gun 
control data. ...The automation of this process was to be the raison 
d'être for the first electronic digital computer." 

Goldstine (1972,p.135) 

The machine was formally accepted by the U.S. Government in 1946 and operated 

successfully until it was retired to the Smithsonian in 1955. The ENIAC was, by 
modern standards, a physical giant but a computational midget. It was 100 feet 
long, 10 feet high, 3 feet deep and weighed 30 tons. In operation it consumed 140 

kilowatts of power. The clock had a period of 10' seconds, and the machine 

performed some 330 multiplications per second. For all its impressive size, it had 

storage for only 20 ten digit decimal numbers. Nonetheless, it represented a huge 

step forward both in the sophistication and reliability of its engineering and in its 

speed of operation which was some 500 times faster than its closest electro-

mechanical rival, the IBM Automatic Sequence Controlled Calculator (Goldstine 
1972,p.117) . The ENIAC owed its speed to the use of electronic rather than 

electro-mechanical components. Although this is now standard practice it was both 

controversial and risky at the time. Some engineers claimed that the necessary 
reliability could not be achieved and that the machine would never operate 

successfully. By proving the doubters wrong, the engineering team led by J.P. 

Eckert and LW. Mauchly ushered in the modern era of computing. Interestingly, 

in view of future developments, the ENIAC was a parallel machine in which many 

operations proceeded simultaneously. The machine had thirty basic units. Twenty 

9Electronic Numerical Integrator and Computer 
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accumulators for the twenty numbers mentioned above, one multiplier, one 
combined divider and square-rooter, three function table units which provided 

additional storage for fixed tabular data, an input unit and an output unit, two 
control units and a master programmer which provided overall direction for the 
parallel operations of the machine. 

The major problem with the ENIAC was programming. "This was a highly 

complex undertaking and was one of the reasons why it was to be a unique machine. 

This aspect of the machine was unsatisfactory, as the evolutionary process was to 

reveal." Goldstine(1972,p.160). The difficulty lay in the fact that the ENIAC had 

to be reconfigured physically, by means of numerous switches, every time a new 
calculation was to be done. Not only was the programming procedure liable to 
error; it was also very time consuming and meant that the machine was at a 
standstill for much of the time. While the strategy of programming by 
reconfiguration now seems hopelessly inefficient, Hackney and Jesshope (1988, 
pp.9-10) make the following observations; 

"...the architecture of the ENIAC was rearranged for each problem, 
by using the plugboard to rewire the connections between the units. 
One could say that the algorithm was literally wired into the 
computer. It is interesting that such ideas are beginning to sound 
very 'modern' again in the 1980's in the context of NIIMD 10 

 computing, reconfigurable VLSI' arrays, and special-purpose 
computers executing very rapidly a limited set of built-in algorithms. 
However, the time was not ripe for this type of parallel architecture 
in the 1940's ... The difficulty of programming parallel computers is 
a recurring theme that is still with us today." 

Some of the reasons for the difficulty of programming parallel computers are 

discussed further below. From the point of view of the ET H, what is particularly 
interesting is the fact that parallel architectures, by their nature, appear to be best 
suited to special purpose tasks. Since the brain is a parallel machine, this provides 

1°Multiple Instruction Stream/Multiple Data Stream. 

"Very Large Scale Integration. 
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a further argument that it is likely to have evolved to compute special purpose tasks 
rather than as a general purpose universal processor. The claim that the brain does 

not include an auxiliary, tape-like memory is consistent with this suggestion. 

4.2.2 John von Neumann and the Stored Program Concept. 

Architecturally, the ENIAC was originally conceived as an electronic version of a 

differential analyzer (Hackney & Jesshope 1988, p.9), and, as mentioned above, it 

had to be re-arranged for each problem. In 1947, von Neumann, who had learned 

about the ENIAC after a chance meeting with Goldstine, showed "how to convert 

it into a centrally programmed computer in which all the programming could be 

done by setting switches on the function tables" Burks (1966, pp.7-8). This meant 

that the machine was, in effect, turned into a primitive stored program computer. 
Another way of conceptualizing what was done is to think of the ENIAC in its 

original form as a protean mechanism which could be configured as an arbitrary 

Turing machine to compute a specific function. von Neumann showed how to 
configure the ENIAC as a universal Turing machine. It was a significant 
development. As Goldstine (1972, p.233) says "Although it slowed down the 
machine's operation, it speeded up the programmer's task enormously. Indeed, the 

change was so profound that the old method was never used again." Two points 
should be marked. First the fact that configuring the ENIAC as a universal machine 

slowed down its operation. This would be expected given the costs of interpretive 

execution. Second, the significant point is that the loss sustained in this way was 

more than offset by the gains in efficiency with regard to the task of programming, 

because the basic speed of the machine was so high. Because of this very high 

operating speed, the scope of the ENIAC was potentially much greater than its 

designers had originally supposed, but this speed exposed two major flaws. The 

programming problem has already been noted. The other flaw was its very small 

storage capacity, which made it unsuitable for problems which generated large 

amounts of intermediate data. 
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von Neumann, as a consultant to the EDVAC' project, and members of the 
EN[AC, EDVAC and lAS 13  computer project teams, produced various reports 

from 1945 onwards, dealing with the logical design of high speed computers, in 

which proposals were put forward to overcome the difficulties experienced with the 
ENIAC. The ideas reported in these papers "were widely circulated and served 
many people as textbooks on logical design and programming" Randell (1973, 

p.352). The first, and perhaps the most influential of them was the "First Draft of 
a Report on the EDVAC" von Neumann (1945), which outlined what has since 
become known as the "von Neumann architecture."' 

4.2.3 The Design of the EDVAC. 
The importance of the early documents for present purposes is the light they shed 
on why modern computers, which continue to share many fundamental features with 

their ancestors, are built as they are. When analogies are made between the 
operations of the computer and those of the mind, it would be unfortunate if 
technological fixes, no matter how ingenious, were mistaken for theoretical 

necessities. The EDVAC, for example, was designed to use stored programs not 
out of logical necessity, but for efficiency reasons. 

'...it would make little sense for a computer to produce the results of 
a calculation rapidly, only to wait idly for the next instruction. The 
solution was to store the instructions internally with the data: what 
has come to be called the "stored program concept": 

Davis (1988a,p.166). 

The draft report on the EDVAC argued for a number of features in a high speed 

computer. First, because the machine would be used primarily for calculations it 

t2Electronic Discrete Variable Computer. 

13lnstitute for Advanced Study. 

14TThe "First Draft" engendered a controversy about who was responsible for the stored program 
concept. von Nenmann's name was the only one on the report which was prepared by him, and was 
not initially intended for circulation beyond the group whose ideas it collated. Other members of the 
group, in particular Eckert and Mauchly, felt that their contributions were not recognized when the 
report was made public. 
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should have specialized arithmetic organs. Precisely which operations should be 
built in was, and still is, a matter for discussion' s . The arithmetic processors or 
central arithmetic unit (CA) would constitute one major part of the computer. The 

second part would be a device which exercised central control (CC) over the 
sequencing of operations. The point to notice here is the radical change from the 
design of the ENIAC. In the new design, it was anticipated that the instructions to 

the machine would be stored in the same way as its data, i.e. as numbers in the 
memory, rather than being wired in as they were in the ENIAC. Thus the EDVAC 
and its successors were designed to function as universal Turing machines. It was 
anticipated that this would lead to much faster programming. The third requirement 

was for a large memory (M) . This was needed to enable the machine to hold the 
program instructions and to deal with complex numerical problems (various types 

of partial differential equations being specifically mentioned) which might need large 
amounts of storage for intermediate results. 

In addition to C (CA & CC) and M, a computer would need an input device I and 

an output device 0 which would manage the transfer of information between C and 
M and an external recording medium R, which would be punched cards, magnetic 
tape or wire, or some other suitable technology. It was envisaged that 

communications would, as a rule, be between R and M and not between R and C. 
Further discussion of the input and output devices can be found in Burks, Goldstine 
& von Neumann (1947) where it is clear that the major preoccupation was to find 
a suitable way of using the computer to control its own external storage so as to 

minimize human intervention. As Rosen (1969,p.14) says "The early scientific 
computers were designed in accordance with a philosophy that assumed that 
scientific computing was characterized by little or no input or output. " von 
Neumann argued that once a machine had been given the instructions for a particular 
task, "it must be able to carry them out completely and without any need for further 
intelligent human intervention." While this is exactly the sort of arrangement which 

1SCuirent arguments about two strategies are continuing the debate started by von Neumann. 
Proponents of RISC (reduced instruction set) computers favour unsophisticated but extremely fast 
primitive instructions from which more complex instructions are composed, while proponents of 
CISC (complex instruction set) computers argue for more sophisticated primitive instructions which 
are slower than the RISC primitives but provide complex capabilities in fewer steps. 
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is suitable for high speed calculations, it is much less satisfactory as the basis for 
a model of the cognitive system which is characterized by the constancy of its 
interactions with the external environment and by the sensitivity and range of its 
input and output systems. 

4.2.4. Computer design and ideas about the nervous system. 

The idea that computers were built specifically to facilitate calculation and that their 
design was shaped largely by engineering considerations is in conflict with a line of 
thought which claims that the first computers were explicitly modelled on what was 
known about the nervous system at the time and hence provide a basis for models 
of the cognitive system. Norman (1986, p.534) for example suggests that "the 
architecture of the modern digital computer - the so-called Von Neumann 
architecture - was heavily influenced by people's (naive) view of how the mind 
operated." A similar point is made by Boden (1988, p.2); "In designing the digital 
computer, von Neumann was influenced not only by Turing's earlier work on the 
theory of computation, but also by some novel ideas about the logical functions of 
the brain", which, she goes on to say, were due to the work of McCulloch and 
Pitts. It is easy to overplay the extent to which these were significant influences. 
Norman cites Wiener (1961) and the series of conferences on cybernetics sponsored 
by the Macy Foundation, e.g. von Foerster (1952), as evidence for his suggestion. 
What these documents really show is not so much an influence of brain function on 
computer design, but a belief that there are interesting and important parallels 
between computers and brains. This belief is grounded in the fundamental 
assumption that the primary mode of operation of neurons is digital. Wiener, for 
example, argued that the computer, "must represent almost an ideal model of the 
problems arising in the nervous system" , because the "all-or-none character of the 
discharge of the neurons is precisely analogous to the single choice made in 
determining a digit on the binary scale" . Hence, he claimed that "The synapse is 
nothing but a mechanism for determining whether a certain combination of outputs 
from other selected elements will or will not act as an adequate stimulus for the 
discharge of the next element, and must have its precise analogue in the computing 
machine." Wiener (1961, p.14). This is a claim which is not as well supported by 
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current evidence as it would have appeared to be in the 1940's. Current evidence 
suggests a much more complex picture in which the effects of particular synapses 

depend on their type, their position on the target neuron and the states of the 
numerous ionic currents which modulate the electrical activity of the neuron, cf. 
McCormick (1990) . 

The early documents discussed above which deal with practical computer design 

issues show only a peripheral link with the then current understanding of brain 

function. The paper by Burks, Goldstine & von Neumann (1947) which deals with 

the design of the computer built at the Institute for Advanced Study in. Princeton, 

makes no mention at all of any parallels with the nervous system, nor of any 
influence of concepts from neuroscience. It is almost exclusively concerned with 

detailed discussion of the technical problems associated with the arithmetic and 
logical control organs of the machine. In the earlier EDVAC discussion document 

there are two types of suggestion of linkage between computer and nervous system 

concepts. First there is the suggestion of a correspondence of parts C and M of the 
computer with associative neurons in the brain and second there is the fact that the 
construction was described using models of switching elements based on the 

idealized neurons of McCulloch & Pitts (1943). 

With regard to the first suggestion, two points should be made. First, it is an 

isolated claim which is not otherwise referred to and which has no impact on the 

subsequent discussion. Second, it relies on a distinction between sensory and motor 

areas of cortex on the one hand, and associative areas on the other in which the 

sensory and motor areas are assumed to be dedicated to particular functions, while 

the associative areas are assumed to be undedicated and the hall mark of higher 

mental capacities. Nadel, Winner, & Kurz (1986,p.223) call this view into 
question; "the implicit brain theory of the 1940's and 1950's which legitimated the 

abiological stance of cognitive science appears to be wrong in all important respects. 

The brain is not wired up in a way which could support the general-purpose 

functions of classical Associationism. " Zeki (1993, p.4) has suggested, even more 

trenchantly, that the doctrine of associationism "retarded our present notion of the 
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organization of the visual cortex and of brain function by well over a century." 
Perhaps it is just as well that the influence of brain theory on computer design was 
not too extensive. 

The second apparent type of linkage between computer concepts and the nervous 
system by way of McCulloch-Pitts neurons, in von Neumann's hands at least, was 

primarily a methodological device aimed at clarifying the relationships between the 
elementary units out of which a computer might be built and the arithmetic and 
logical functions it was required to execute. von Neumann suggested that "The 

ideal procedure would be to treat the elements as what they are intended to be: as 

vacuum tubes. However, this would necessitate a detailed analysis of specific radio 

engineering questions at this early stage of the discussion, when too many 

alternatives are still open...All this would produce an involved and opaque 

situation...In order to avoid this we will base our considerations on a hypothetical 

element...This simplification is only temporary, only a transient standpoint, to make 
the present preliminary discussion possible." von Neumann (1945, pp.29-30). The 
use of a hypothetical element allowed von Neumann to discuss circuits, for example 
for particular arithmetical operations, independently of the details of their 

implementation. It appears to have been this, rather than any deep notion of 

correspondence between brains and computers, which was responsible for the 

adoption of the McCulloch-Pitts formalism. Some may find a pleasing irony in the 

fact that a neural model was used to distance the logic of a design from its 

implementation. As mentioned above, by 1947 when some of the general principles 

were much clearer, analogies with the nervous system had entirely disappeared from 

the preliminary design document for the 1AS computer. 

A further point is that von Neumann was also very well aware of the important 

disanalogies between the functioning of the nervous system and the functioning of 

computers. The EDVAC document, for example, contains as many examples of 

disanalogies between brains and digital computers as it does analogies. What the 

foregoing discussion shows, therefore, is that although von Neumann, Wiener, and 

other computer pioneers were undoubtedly interested in parallels between the human 



116 

nervous system and computer circuits, the suggestion that computer design was 

heavily influenced by nervous system ideas overstates the case. 

4.2.5. The case for serial processing. 

The five parts of a computer described in the EDVAC draft design document, CA, 

CC, M, I and 0, plus R which is properly considered as an extension of M, 
constitute the structural heart of the von Neumann architecture. The most important 
remaining feature in the "First Draft" is the argument for serial as opposed to 

parallel processing. As has already been noted, the ENIAC was designed as a 

parallel machine, but was eventually configured to operate as a serial machine in 

order to ease the complex task of programming it, a task which as Hockney and 

Jesshope pointed out remains difficult in parallel machines today. The point about 

parallelism is that it provides an excellent way of increasing the throughput of a 

machine with relatively slow components. What it means, of course, is that the 

machine requires more of those components. 

"This way of gaining time by increasing equipment is fully justified 
in non vacuum tube element devices, where gaining time is of the 
essence, and extensive engineering experience is available regarding 
the handling of involved devices containing many elements...For a 
vacuum tube element device on the other hand, it would seem that 
the opposite procedure holds more promise." 

von Neumann (1945,p.363). 

The argument is founded on the state of the technology and engineering experience 

in 1945. The vacuum tube was a bulky, expensive and error-prone piece of 

equipment. Thus it was wise to use as few as possible. On the other hand it was 

extremely fast by the standards of the day. von Neumann reported that the fastest 

relays available had reaction times of 5 milliseconds at best, and more commonly 

10 milliseconds or more, whereas the reaction times of vacuum tubes could feasibly 

be made as short as 1 microsecond. Thus a single vacuum tube device operating 

serially might in principle give about the same performance as some 5000 relay 

devices operating in parallel. These figures led to the eminently sensible 

conclusion, 
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"The device should be as simple as possible, that is, contain as few 
elements as possible. This can be achieved by never performing two 
operations simultaneously, if this would cause a significant increase 
in the number of elements required." 

von Neumann (1945,p.364). 

4.3. Examples of von Neumann architectures. 

In the relatively few pages of the "First Draft", von Neumann, with his incisive 
insights and customary clarity of expression, set down principles which heavily 

influenced the logical design of computers throughout the 1950's and 1960's. The 

thesis that substantial performance gains could be had by improving the speed of 

components rather than multiplying their numbers went against the conventional 
wisdom of the time but has been fully justified. One of the most telling indications 
of the continuing success of the von Neumann architecture is the striking similarities 

which are found when ancient and modern instruction sets are compared. Three 

examples are given and the differences can be seen to be quantitative rather than 

qualitative. 

4.3.1. The EDSAC order code. 

One of the first practical stored program machines was the EDSAC (Electronic 
Delay Storage Automatic Calculator) which was built at Cambridge and became 
operational in 1949 (cf. Wilkes & Renwick 1950; Renwick 1950). The EDSAC had 

storage for 1024 binary numbers of 17 digits each and could also handle two 

adjacent storage locations so as to yield numbers of 35 digits. Thus its data types 

were long and short numbers. The machine operated at a frequency of 0.5 

megahertz. The instruction set or order code, as it was known, consisted of 

eighteen instructions. Eight of the instructions were for arithmetic operations, one 

carried out logical. AND, three were for data transfers, two were conditional 

branching instructions, two were concerned with input and output, and the other two 

were for checking and halting the machine. 

4.3.2. The 6502 instruction set. 
The 6502 microprocessor (cf Leventhal 1979) is representative of the generation of 
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eight bit microprocessors which launched the current computer revolution and took 
computers into homes, offices and schools in the late 1970's and early 1980's. The 
6502 has fifty six instructions and can address a memory of 216  or 64k bytes. Direct 

comparisons with the EDSAC order code are somewhat artificial because the 6502 
would always be used in conjunction with other devices which would manage input 
and output for example, whereas the EDSAC order code was complete. 

Nevertheless, the similarities are considerable. The 6502 runs at up to 2 megahertz. 
Its basic data types are eight and sixteen bit unsigned numbers. There are nineteen 
arithmetic instructions, five logic instructions, sixteen data transfer instructions and 
fifteen conditional branch and jump instructions. The remaining instruction is a null 

operation which has a variety of uses for timing, debugging and so forth. The most 
notable differences between the two instruction sets are that the 6502 has no 

multiplication instructions, that it has stack and interrupt servicing instructions, and 

that it has more sophisticated memory addressing modes. Use of a stack facilitates 

subroutine management and recursive computation, interrupt servicing instructions 
enable peripheral equipment to be managed in a way that had not been invented 
when the EDSAC was built, and complex memory addressing modes facilitate the 
management of programmed data structures such as arrays. 

4.3.3. The 80386 instruction set. 

The Intel 80386 microprocessor (cf. Crawford & Gelsinger 1987) is a modern 32 
bit processor which represents the state of the art in microprocessor design in the 

mid 1980's. It can access up to four gigabytes, i.e. 2 32  bytes, of physical memory, 
and up to 64 terabytes , i.e. 2 46  bytes, of virtual memory. It is capable of running 
at clock speeds of 16-20 megahertz which makes it as much as forty times faster 
than the EDSAC. When considered in conjunction with the 80387 floating point 

processor with which it was designed to operate, the processor supports unsigned, 

two's complement, binary coded decimal and floating point numbers of up to 80 

bits, plus character and bit strings. There are 226 instructions in the instruction set, 

supporting a range of activities which go well beyond the capabilities of both the 

6502 and the EDSAC to include capabilities such as multi-tasking and virtual 
memory access. There are twenty integer arithmetic instructions, six bit 
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manipulating instructions, sixteen conditional byte setting instructions, twenty three 
conditional branching and jump instructions, eleven data transfer instructions, and 

over seventy floating point instructions. Among this prodigal array of capabilities, 
one particularly striking feature of the 80386 is that only two instructions are 
concerned with input and output other than to and from the main memory. Two of 

the EDSAC's eighteen instructions were also dedicated to these functions. The 

situation is not quite as solipsistic as this bald statement might imply, since the 

80386 has a separate memory space of 64 kilobytes devoted to the control of 

peripheral devices. However, it is interesting to note the views of the chip's 
designers on the question of input and output to external devices. 

"...the addressing and protection of I/O devices is quite different 
from the addressing and protection of program code and data. 
Typically, an I/O device has only a few control ports, requiring only 
a small number of bytes of addressable storage, and there are only 
a small number of devices in the system... On the other hand, 
program code and data require many thousands, even millions of 
bytes of addressable storage, and need a different protection 
mechanism." 

Crawford & Gelsinger (1987, p.76) 

4.3.4. Summary. 

The view expressed by Crawford and Gelsinger is of a piece with the whole design 

philosophy of serial machines from von Neumann to the present day. The emphasis 

is on what happens internally, not on what is going on outside. While it is clear 

that great progress has been made in the design and manufacture of electronic 
devices for computing, even advanced processors like the 80386 are still 

recognisably related to their ancestors like the EDSAC. This is to be expected. 

Advances in computing technology have been cumulative and extrapolations to 

future developments are frequently attempted (cf. Siewiorek, Bell & Newell, 1982, 

p.7; Hockney & Jesshope, 1988, p.3; Hack, 1989, p.262). From the point of view 

of understanding cognitive architecture, however, there is little evidence that the 

considerations which shaped the design of the von Neumann architecture are 

relevant to determining the nature of human cognitive architecture. 
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4.4. The return to parallel architectures. 

In the .  1980's as hardware costs dropped, multiprocessor parallel systems became 
economically feasible. Even so, much hardware development effort was still 
devoted to increasing clock speeds, decreasing logic gate delays and otherwise 
improving on the details of serial computation, rather than moving towards 

multiprocessor systems. This process of successive refinements of serial technology 

has some clear physical limits. 

4.4.1. The limits of serial technology 

The CRAY-2, a pipelined vector computer, which, although parallel in many aspects 

is recognizably a successor of the EDVAC and EDSAC machines, demonstrates the 
way in which the limits of performance improvement are being reached. Perhaps 
the most striking observation about the CRAY-2, is that its performance depends on 
keeping the wires connecting its circuit boards short (Hockney and Jesshope 1988, 
p.121-122). The CRAY-2 has a maximum wire length of 16 inches, whereas the 
CRAY--1 had a maximum wire length of 48 inches. The difference in signal 
propagation time between wires of these two lengths is approximately 3 nano-
seconds, and the components of the CRAY-2 are so fast that savings of nano-

seconds are significant. Signal propagation delays impose a lower bound on 
improvements in the clock rate for a computer and thus negate the benefits of faster 
logic gate switching times. The solution to this problem is to pack the components 

on a circuit board closer together so as to reduce wire length, but this means that 

heat dissipation then becomes a significant problem. As a colourful illustration of 

the problems, Hockney and Jesshope (1988, p.564) compare the task of cooling the 
CRAY-1, which has lower chip densities than the CRAY-2, with "putting a 1 kW 

electric element into a biscuit tin and trying to keep it just above room 
temperature" . It is apparent from considerations of this kind that physical limits are 
now being reached which will prevent further cost effective refinements of the serial 
model (Hack 1989), and that the development of large scale multi-processing will 
be essential for continued increases in computer speed. Experimentation with 

parallel systems has been ongoing since the very early days, and, as remarked 

earlier, the ENIAC which proved the viability of the whole electronic computing 
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enterprise was originally operated as a parallel machine. Until comparatively 
recently, however, serious interest in multi-processor computers has been the 
province of research groups. This is partly a result of the very high costs involved 
prior to the development of VLSI technology, but is also a result of the 
unwillingness both of suppliers and users to retool and learn new programming 
methods. Despite such entrenched attitudes much has been learned about parallel 

architectures which is of relevance to cognitive science. 

4.4.2. Parallel tasks and parallel architectures. 
One important general finding has been that once the von Neumann model is set 

aside, questions about architectures become intimately linked to questions about 

tasks. The nature of a problem determines the kind of architecture needed for the 
most efficient solution, and, conversely, a particular type of architecture will be 
better suited to certain kinds of problems than others. This is not a question of 

absolute capability, but of efficiency, an issue which has been discussed by cognitive 
scientists (cf. Thagard 1986; Krellenstein 1987; Ramsey 1989). Hockney & 
Jesshope (1988, p.432) point out that to obtain optimum performance from any 
computer it is necessary to tailor programs to the architecture of the machine. The 

difference between parallel and serial computers lies in the ratio between the 

performance of good and bad programs, which rises from a factor of two or three 

with serial machines to ten or more with parallel machines. In an analysis of the 
prospects for general purpose parallel computing, Hack (1989) concurred with this 

view and went on to suggest that 

"...the efficient utilization of a parallel architecture requires that the 
user becomes directly involved in the detailed control flow of their 
application program... The most serious challenge to the user is that 
the most appropriate options are not always obvious, and are very 
much a function of the specific hardware configuration." 

Hack (1989, p.273) 

Hack also argued that experimentation with different implementation alternatives of 
an algorithm for a particular parallel hardware configuration was unavoidable if an 
efficient match between the requirements of the algorithm and the capabilities of the 
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hardware were to be achieved. The fundamental reason for the diversity of 

possibilities is the range of structural options open to the designer of a parallel 

system. While the von Neumann design was the architecture of choice, the serial 
processing mode meant that the relation between the central processor and memory 

was not fundamentally problematic. Since there was only one processor, a high 
speed bus carrying register sized chunks of information to and from a unitary 

memory store as fast as the processor could deal with them was the obvious way to 
do things. With multiple processors, the issue of structural organization becomes 

much more intricate. How many processors should there be? Should each 

processor have its own memory and communicate by passing messages, or should 

processors share a large memory and communicate by having data in common? Is 
there a best design for general purpose parallel computers? This is a much more 

difficult question than might at first appear. The difficulty lies in the fact that 

different problems have quite different orders of parallel decomposability. Suppose 

a task has been identified as requiring twenty primitive instruction executions for its 

solution. If each instruction were independent of all the others then a machine with 

twenty processors could be utilized to complete the task in a single twenty fold 
parallel step. At the other extreme, if a chain of dependencies existed such that the 

twentieth instruction depended on the result of the nineteenth, which itself depended 
on the result of the eighteenth, and so forth, down to the second which depended 
on the result of the first, then no parallel machine could compute the solution faster 

than a serial machine. Thus the design of a general purpose parallel machine is a 

difficult problem. One answer is to build machines with configurable processor 

arrays which are dynamically allocated to the elements of a task at run time. One 

such machine is the Connection Machine (Hillis, 1985). The problem with 

machines of this kind is that raw performance has to be sacrificed in order to 

manage the synchronization of and communications among the various processors, 

thus shifting the problem to another design dimension (Greenbaum 1989). The 
evidence seems to be that really high performance from a parallel system is only 

obtained when the machine is built to match, or happens to match, a particular task. 
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4.4.3. Control regimes in parallel systems 

Apart from questions of structure and the relation of processors to memory, the 

issue of control organization is one which comes to the fore in parallel systems as 

a result of removing the constraints of the von Neumann architecture. This is to be 

expected in the light of the distinction between the MAXH-MINC and MINH-
MAXC strategies introduced in Chapter 3. As with questions of structure, it is the 

seriality of the von Neumann design which provides the primary constraint. If 

access to the memory is made for just one item at a time, then it is almost inevitable 

that control should consist of taking an instruction followed by its operands. It is 
for this reason that the von Neumann model is sometimes also known as the control 

flow model (Sharp, 1985, p.18). When instructions, data and multiple processors 
are all available simultaneously, however, other control regimes become possible. 

Perhaps the most interesting of these from the psychological perspective is the data 
flow model (cf. Hockney & Jesshope, 1988, 248-250; Fox & Messina 1987; 

Gelernter 1987; Sharp, 1985). In a dataflow computation, instructions do not 

execute in a predetermined sequence under the control of a program counter. 

Instead, an instruction waits until it has received all its operands, then executes its 

operation and passes the results to those instructions which are waiting for them as 

operands. A program for a dataflow computation is represented as a directed graph. 
The nodes of the graph represent mathematical or logical operations, and the edges 
represent the flow of data from one operation to another. Sequencing arises from 

the decomposition of a problem into digraph form rather than from an algorithm 

which explicitly defines the execution order of parts of the problem statement. 

Evaluation of a data flow computation may be either demand driven or data driven. 

In the demand driven mode, execution is driven by requests for data from operations 

which need operands. In the data driven mode execution is driven by the 

availability of inputs. The demand driven mode can be thought of as pulling data 

through the system towards the output, whereas the data driven mode can be thought 

of as pushing data through the system from the input. Sharp (1985, p.126) 

suggested that a data flow machine might be built by implementing data flow graphs 

directly in hardware. 
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Chapter 5. Computers, Models and Cognitive Theories. 

The material of Chapters 3 and 4 demonstrates that the generic theory is only one 

way in which computational ideas can be deployed in support of a theory of 
cognitive architecture, and gives rise to the claim that it is not the best way. 

Although it was the dominant theory until the revival of interest in connectionism, 

the analysis of Chapter 3 shows that the generic theory does not follow from 

Turing's analysis and, in fact, contradicts Turing's arguments which claim that the 

brain should be considered as a finite state machine. Furthermore, Chapter 4 shows 
that the requirements which the generic theory imposes on the medium of 

implementation cast doubt on the plausibility of the approach when the brain is the 
target medium. It might therefore be expected that accounts of the foundations of 

the generic theory would provide justification for its basic tenets. In fact however, 

as this chapter demonstrates, this is not the way in which such accounts proceed. 

Generally, the claim that the brain is organized as a Turing machine is taken as a 

basic assumption, and the consequences of that assumption are then spelt out. Much 

of the literature is highly developed and the points made are skilfully argued, but, 

from the point of view of the ETH much of the work is ultimately wasted effort 

because the basic assumption is never argued for. 

The reasons for this state of affairs are obviously complex, but in view of the 
importance of the claim that the basic assumption of the generic theory is 

unwarranted, it seems appropriate to trace some of the threads. First, it appears 

that many theorists have drawn their inspiration primarily from digital computers 
and only secondarily from Turing machines. This is not surprising, in view of the 

treatment of Turing machines in influential early texts. Miller, Galanter, and 

Pribram for example, in their very influential book "Plans and the Structure of 

Behavior" made reference to Turing's work, but not directly to the paper on 

computable numbers, and suggested that "One consequence of taking Turing's 

theorem seriously is that it directs attention toward the electronic computer as the 

right kind of machine to simulate human behavior." Miller, Galanter & Pribram 

(1960, pp.46-47). Undoubtedly the computer is the right kind of machine to 
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simulate behaviour, but it is all to easy to move from that view to the very different 
view that computer architecture provides the right kind of model for the architecture 
of the mind. Second, since it is clear that digital computers are, as Turing himself 

argued, essentially practical versions of universal Turing machines, it must seem, 
if one is unfamiliar with the detail of Turing's analysis as distinct from the formal 

definitions of the Turing machine developed in the subsequent literature, that the 
Turing machine concept and the digital computer concept are essentially equivalent 

in the motivation they provide for a theory of cognitive architecture. Since the 
memory of a digital computer appears to provide a natural model for human 
memory, and since the distinction between hardware and software seems to map so 
naturally on to the distinction between mind and brain, it is understandably easy to 

slide from a computer based theory of cognitive architecture to the assumption that 
such a theory enjoys the theoretical support of Turing's analysis of computation. 
Since, further, it is understood that Turing's model is in a sense as general a model 
as it is possible to obtain, it would appear that no independent argument for the 

basic assumption that the brain implements a Turing machine, is needed. 

The conclusion to be drawn from the above is that study of Turing's original paper 

is needed in order to appreciate the nature of his argument. However, the paper is 

not widely available. Apart from the journal in which it was originally published, 

which appears not to have a very wide circulation, the paper has been reprinted only 
once in the collection edited by Davis (1965). Part of the reason for this may lie 

in the involved construction which Turing used which contains a number of 

technical slips. Because the result is of such importance, the Turing machine 
concept has been presented in numerous other, formally equivalent but technically 
much more accessible, forms thus rendering the original form of presentation 

obsolete. [Wang 1957 perhaps] From the point of view of mathematicians and 
computer scientists whose main interest is in developing and extending the theory 

of which Turing's paper is one of the progenitors the result rather than the 
arguments for its presentation is primary, and if such centrally involved researchers 
take this position there is little reason why psychologists should be inspired to read 

the paper. 
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The problem which this situation leaves for the proponent of an alternative account 
like the ETH is one of coming to grips with the foundational literature, since what 
has to be questioned is not specific arguments but the whole structure of thinking 
on which the generic theory is based. The purpose of this chapter, therefore, is to 

look at influential discussions of some of the foundational issues with a view to 
clarifying certain areas of debate. 

5.1. Putnam on the Mind-Body Problem. 
It is appropriate to begin with Putnam's (1960) treatment of the mind-body problem 
in terms of Turing machines which both Wilks (1975) and Jackendoff (1987) 
acknowledge as probably the earliest reference to make the link between Turing 
machines and psychological theory explicit. The first point about this paper which 
is important for present purposes is Putnam's claim that "Any Turing machine is 
completely described by a machine table,..." Putnam (1960, p.365) . What Putnam 

should have said, strictly speaking, is that any Turing machine control is completely 
described by its machine table. That the description of a complete Turing machine 
requires reference to the sequence of symbols on the tape as well as to the structures 
of the control is very clear from Turing's analysis. In section 9 part I of his paper, 

Turing clearly included the tape as an essential part of the description of a machine. 

"We know the state of the system if we know the sequence of symbols on the tape, 
which of these are observed by the computer (possibly with a special order) , and 

the state of mind of the computer." Turing (1936-7, p.136). In section 9, part III 

of his paper, he also discussed a model of computation in which the notion of a state 
of mind was replaced by a note of instructions which enabled the computer to carry 

out one step of the computation and write the next note. Of such a model he said 

that "... the state of progress of the computation at any stage is completely 
determined by the note of instructions and the symbols on the tape." Turing (1936-
7, pp.139-140) . The sequence of symbols on the tape formed part of what Turing 
called the "state formula" which constituted the complete description of a machine 
at a given time. Thus it is misleading to assert, as Putnam did, that the machine 
table alone provides a complete description of a Turing machine. It is misleading 
because it diverts attention from the question of the relation between tape and 
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control and how this should be understood. 

In a later paper, Putnam (1967), Putnam discussed what he called the "natural 

generalization" of a Turing machine to allow for interaction with an environment. 
This generalization, quoted in detail in Chapter 1, suggests that we should think of 
the brain as implementing a whole Turing machine, equipped with sensors to 
monitor the environment and to write appropriate "reports" on the tape from time 

to time. Quite apart from Putnam's own influence, this view has been propounded 
in the influential work of Jerry Fodor, who was one of Putnam's students. Neither 
Putnam nor Fodor argues for this generalization. 

It is interesting to note that Putnam explicitly makes the point that the appropriate 

model for a real computing agent is the finite automaton. "...I am going to consider 

a hypothetical 'community' made up of 'agents', each of whom is in fact a Turing 

Machine, or, more precisely, a finite automaton." However, he immediately goes 
on to say, "(Of the many useful equivalent definitions of 'finite automaton', the 
most useful for present purposes is the one that results if the definition of a Turing 

Machine is modified by specifying that the tape should be finite)" Putnam (1967, 
p.409) . Again, he offers no argument for the claim that the definition of a finite 

automaton as a Turing machine with a finite tape is the most useful one for the 

discussion of theoretical issues in psychology. 

A clue to the thinking underlying Putnam's choice of model comes somewhat later 

in the paper. He says "Usually we think of a Turing Machine as having a memory 

in the form of a paper tape upon which it prints symbols; however, this can be 

regarded as mere metaphor. Instead, in the case of a finite automaton, i.e. a Turing 

Machine whose tape is finite instead of potentially infinite, the tape may be thought 

of as physically realized in the form of any finite system of memory storage. What 
we mean by a 'symbol' is simply any sort of trace which can be placed in this 

memory storage and later 'scanned' by some mechanism or other." Putnam (1967, 

p.412). 
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It is a sad irony that Putnam prefaced the comments above with the suggestion that 

they "may perhaps prevent some misunderstandings". Instead, they are potential 

sources of confusion. First, in Turing's analysis, the paper tape form of memory 

is "no mere metaphor". Paper is very much part of the ordinary process of 

computation as Turing visualized it. He argued that the two-dimensionality of a 

sheet of paper was inessential but never suggested that the paper could be dispensed 

with altogether. "In elementary arithmetic the two-dimensional character of the 
paper is sometimes used. But such a use is always avoidable, and I think that it will 
be agreed that the two-dimensional character of paper is no essential of computation. 

I assume then that the computation is carried out on one-dimensional paper, i.e. on 
a tape divided into squares." Turing (1936-7, p.135) 

To argue as Putnam does encourages four types of confusion. The first is to make 
it easy to confuse tape memory with control memory, the second is to ignore the 

distinction between finite means of production and potentially infinite product which 

is part of the essence of the Turing machine concept, the third is to blur the 

distinction between the "inner" finite part of the machine, and the "outer" storage 

medium, and the fourth is to blur the distinction between a symbol and an internal 

state of the system. Turing did not regard a 'symbol' as "any sort of trace" . In a 
footnote he went to some lengths to define a symbol as a set of points of a unit 

square occupied by printers ink. 

Putnam's position is understandable when one is thinking of the Turing machine as 

an abstract model of a digital computer, but to argue as he does is to ignore the 

motivation for Turing's construction, and, in particular, the distinction between the 

internal, finite set of "states of mind" which constitute the control of the Turing 

machine, and the external, potentially infinite tape on which the results of the 

calculation are written. It is worth recalling Turing's point that the definition of 

computable numbers as those which are calculable by finite means rests on "the fact 

that the human memory is necessarily limited" while the numbers include many 
whose expressions are unbounded. "I show that certain large classes of numbers are 

computable. They include, for instance, the real parts of all algebraic numbers, the 
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real parts of the zeros of the Bessel functions, the numbers ir, e, etc." Turing (1936-
7, p.116). 

5.2. Functionalism. 

Apart from his discussions of the nature of the Turing machine concept, the early 

Putnam is notable for his functionalist stance. "The functional organization 
(problem solving, thinking) of the human being or machine can be described in 
terms of the sequences of mental or logical states respectively (and the 
accompanying verbalizations), without reference to the nature of the 'physical 

realization' of these states." Putnam (1960, p.373). Putnam initially defended this 
functionalist thesis with an argument to the effect that human mental states were 
Turing machines states. In Putnam (1973) he rejected Turing machine functionalism 
specifically and in Putnam (1988) he argued that computational models of the 
mind/brain were in general insufficient for cognitive psychology, because "We 
cannot individuate concepts and beliefs without reference to the environment." 
Putnam (1988, p.'73). This is a view with which the proponent of the ETH can 

agree while maintaining that the Turing machine is an appropriate model for 
cognitive architecture. The point is developed in Chapter 6. For the present 

discussion, what is most relevant is the way in which the central distinction between 
"mental" or "logical" states on the one hand and their "physical realization" on the 
other has been deployed. There is a noticeable tendency in the literature to run 
together arguments that should be kept separate. 

Johnson-Laird (1983) provides an example. 	He starts his discussion of 
functionalism by making reference to Craik's notion of a "relation-structure" . Craik 

developed this idea in the context of working out what it was about a model which 
illuminated its explananda. His answer was that a model had a similar relation-

structure to that which it explained, meaning by this that it worked in the same way 

as the process it paralleled but was in some useful way simpler, quicker or more 
convenient. Craik proposed the hypothesis that thought models reality symbolically, 

i.e. he suggested that we think by constructing internal symbolic models which have 
a similar relation-structure to that part of external reality which they model. One 
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way, as pointed out by numerous theorists, in which such a capacity might be 
advantageous is in allowing its possessor to predict what might happen by thinking 

through a model rather than working blindly by trial and error. Craik' s notion of 
similarity of relation-structure appears to have much in common with Putnam's 
notion of functional isomorphism. For Putnam, two systems are functionally 
isomorphic if "there is a correspondence between the states of one and the states of 
the other that preserves functional relations." Putnam (1973, p.291). 

Johnson-Laird says of the relation-structure notion that "the importance of this idea 
has become clear since the development of programmable computers. Once you 
know the way in which a computer program works, your understanding of it is in 
no way improved by learning about the particular machine on which it runs on this 
occasion or that. The same program may be translated into completely different 
codes for controlling different makes of computer that operate in different ways, and 
yet it is the same program that computes the same function however it is physically 
realized -- whether the machine uses cogs, hydraulic valves, vacuum tubes, or 

silicon chips." Johnson-Laird (1983, p.9). 

While one might take issue with some of the details of the argument, in the main 
it seems unexceptionable. However, Johnson-Laird goes on to claim "There is a 

major lesson for cognitive science here... the mind can be studied independently 

from the brain. Psychology (the study of the programs) can be pursued 
independently from neurophysiology (the study of the machine and the machine 
code). The neurophysiological substrate must provide a physical basis for the 

processes of the mind, but granted that the substrate offers the computational power 
of recursive functions, its physical nature places no constraints on the patterns of 

thought. This doctrine of functionalism...has become commonplace in cognitive 

science." Johnson-Laird (1983, p.9). 

There are two principal flaws in Johnson-Laird's argument. First, the fact that a 

computer program stands in a certain relation to the hardware on which it is 
executed contains a lesson for cognitive science only if it is known that the relation 



131 

between minds and brains is of the same sort. But this is not known, it is 

hypothesized. At best therefore, Johnson-Laird is entitled to the claim that IF the 

mind stands in the same relation to the brain as a computer program stands to its 
underlying hardware then the mind can be studied independently of the brain. The 
"IF" is of primary importance and Johnson-Laird's failure to acknowledge the need 

for it is a clear example of the tendency, mentioned at the start of the chapter, for 

theorists to assume what has to be demonstrated. In addition to this, Johnson-Laird 

also appears to be suggesting that functionalism, as a theory of the relation between 

mind and brain, implies that the brain is structured as a universal interpreter. This 

seems to be the intended force of the claim that the physical nature of the substrate 

in which mind is realized places no constraints on the patterns of thought provided 
that it "offers the computational power of recursive functions". 

Philosophically, functionalism is a thesis about the individuation conditions on 

mental states which claims that what individuates a mental state is not the substrate 

in which it is physically realized but the functional role it plays in a sequence of 

mental activity. Thus a state is individuated by considering its connections to other 
states and to its inputs and outputs. Functionalism, if true, is likely to apply to all 

sorts of systems other than universal machines and certainly does not imply that any 

system which can be described functionally is a universal machine. Any Turing 

machine can be described functionally, but not all Turing machines are 

computationally universal. Undoubtedly, a program for a computer is an example 

of a functional characterization, par excellence, but this does not support the 

conclusion that all functionally characterizable systems are programmable computers 
which appears to be the conclusion Johnson-Laird is trying to draw. The effect of 

his argument is to run together the idea of functionalism with the idea that the mind 

is the program of the brain. 

A rather similar, but perhaps less contentious, presentation of the foundations of the 

generic theory has been given by Jackendoff (1987), who states the case as follows; 
.. ...the  information content of data and programs... can be stated independently of 

physical instantiation in any particular computer...Thus there is a sense in which, 
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like the mind, the information in the computer is autonomous -- inhabits a separate 
domain -- from the (mere) hardware that supports computation...the computer 
analogy suggests the following hypothesis: just as we need not deal with the actual 
wiring of the computer when writing our programs, so we can investigate the 
information processed by the brain...independent of questions of neurological 
implementation. This approach is often called functionalism; the idea behind this 
term is that the function rather than the physical substance of the brain is significant 

in studying the mind...It is now routine to speak of the information in the brain as 

mental representations and of the processes operating on such representations as 

mental processes. In short, the mind is taken to stand to the brain as the software 

and data of the computer stand to the hardware." Jackendoff (1987, pp.15-16). 

Jackendoff explicitly makes the point that the computer analogy suggests a 
hypothesis about the relation between mind and brain rather than demonstrating the 
independence of the one from the other, but the autonomy of mind is taken as a 
given and the final sentence somewhat contradicts the idea that the computer analogy 
is a hypothesis and not demonstrable fact. 

What functionalism does highlight as an issue for careful consideration is the nature 
of the relationship between functional and physical descriptions. In Chapter 1.4 the 

issue was briefly discussed. What seems clear is that there is a range of degrees of 
constraint which merit discussion. Consider the functional description "An 

instrument for eating". This is a description which enjoys freedom from constraint 
in at least two dimensions. First it applies to a range of utensils which meet the 

description in different ways such as cups, spoons, knives and forks, and second it 
applies to utensils which are of the same functional type, e.g. spoon, but are made 

of different materials such as metal, wood or plastic. By making the functional 
description more specific, e.g. "An instrument for eating liquid foods" the 
constraints on its realization can be increased, and it seems possible to tighten the 
constraints to an arbitrary degree. Compare "A vehicle for travelling from London 

to Edinburgh" with "A vehicle for travelling from London to Edinburgh in less than 
one hour." Despite the possibility of tightening constraints arbitrarily, however, 
there will always be a gap, at least in principle, between functional and physical 
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descriptions. There are at least two reasons why this is so. First, functional and 
physical descriptions serve different purposes and use different vocabularies, and 
second, there seems to be no clear limit to the power of the imagination to conjure 
up different ways in which specific functions can be implemented. It seems unlikely 
then that a simple theory delineating the entire range of relationships between 
functional and physical descriptions can be constructed. 

As far as the relation between mind and brain is concerned, if it turns out that the 
brain does implement a general purpose computer or universal Turing machine then 
the links between function and substance will be as loose as it is possible for them 

to be, but it is worth emphasizing again that this is a hypothesis not a demonstrable 
truth and it may be that function and substance are more closely linked in the case 

of mind and brain than the generic theory suggests. von Neumann, for example, 

in his address to the Hixon symposium in 1948 suggested that the only practical way 

of describing what constitutes a complex function like the capacity to make visual 
analogies might be to give a description of the connectivity of the visual part of the 
brain. Far from its being "mere hardware", it may be that the study of the brain 
is the best way to understand its functions. 

5.3. Functional and physical description of Turing machine control states. 

For present concerns, although it is a major contention of the thesis that the brain 
is not organized as a general purpose computer, it is argued that the brain is part of 
a computational system which, together with aspects of the environment realizes a 

Turing machine, and hence it is claimed that the functional states of the brain may 

be thought of as analogous to the states of the control of a Turing machine. Thus, 

rather than trying to encompass the full range of connection between functional and 
physical descriptions, it is appropriate to consider the relationship between the 
functional and physical descriptions of Turing machine control states. 

A helpful concept in this discussion is Pylyshyn's concept of an "instantiation 
function" . Pylyshyn deploys the concept to explain the relationship between the 

physical and computational (i.e. functional) states of a computer. The point that he 
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wants to make is that we need a way of picking out certain physical properties of 
a computer if we want to describe its computational states, because most of the 

indefinitely large number of physically discriminable properties such as its colour 
and its mass which might be mentioned in a physical description are irrelevant to 
its computational description. The properties which are relevant are those properties 
of components which are meant to react in particular specified ways to changes in 

their input conditions. The instantiation function is, therefore, a prescriptive 
specification of two sets; first, the set of properties of the machine which are 
relevant to the specification of its computational states and second the set of values 
of those properties which define a computational state or states. A given 
computational state is thus "an equivalence class of physical states indistinguishable 
from the point of view of their function in the machine's abstract computational 

description." Pylyshyn (1984, p.56). As a pertinent example consider the binary 
states which consititute the primitive computational states of a digital computer 

system. These are nominally known as the '0' state and the '1' state. In digital 
computer systems, various different schemes have been used for assigning voltages 

to these states. Generally logical states are defined in terms of bands of voltage 

sometimes with a forbidden region between them. Thus the '0' state might be 

defined as the band between zero and one volt, and the '1' state as the band between 

two and five volts, Cripps (1977, p.3). In this case, the instantiation function 
represents a simple mapping of voltages onto computational states. A simple 
instantiation function of this kind might then form part of a more complex 

instantiation function to map the relevant physical states of the transistors 

constituting an AND gate, say, onto the requisite computational states of logical 
AND. An example of a physical property of such a transistor device which is 

irrelevant to the specification of its computational properties, although essential for 

its proper functioning, is the state of its power supply. 

It is clear that the specification of the instantiation function specifying the 

computational states of a whole computer would be a massively complex task which 

nobody would attempt because there would be no point to it. Because computers 
are structured hierarchically, appropriately chosen instantiation functions at the 
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lowest logic levels coupled with rigorous construction methods ensure that 

aggregations of physical units will correctly map onto the compositions of logical 

functions which they represent. Whether such a logically perspicuous, hierarchical 

type of instantiation function can be described for the relation between the physical 
and computational states of the brain is a matter for empirical investigation. 

The essential difference between physical properties and computational states as far 
as computers are concerned is that their physical properties are intrinsic qualities of 
the media out of which they are constructed whereas their computational states are 
prescribed via an instantiation function in terms of equivalence classes of relevant 
physical properties and values of those properties. It is the prescriptive nature of 
computational states which makes it possible for them to be implemented in multiple 

media, given that a medium has physical properties with the requisite characteristics. 

It is clear from the example of the AND gate, that the instantiation functions of 

digital computers are such that there will be some physical properties, such as 

colour, which are strictly irrelevant to their computational states, and others, like 
power supplies to logic switches which are essential to the maintenance of correct 

logical functioning, but do not contribute directly to that functioning themselves. 
The latter properties are part of what Pylyshyn (1984) calls the functional 
architecture. The fact that many essential properties of a machine may not 

contribute directly to its computational states raises the question of the proportion 
of the physical mass of a machine which does contribute to its computational states. 

It is easy to imagine how it might be possible to develop some kind of index of 

efficiency based on something like the ratio of the mass of the machine and its 
power consumption to the number of logical decisions made, for example. Clearly 

the early machines like ENIAC were very inefficient while the brain is extremely 

efficient. 

It is important to note that considerations related to efficiency impose a variety of 

physical limits in the real world. A flying bird with the mass of an elephant, for 

example, is impossible because muscle is not a sufficiently effective power source 
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to raise such a mass off the ground. It is therefore pertinent to ask whether there 

might not also be physical limits related to efficiency constraining the media suitable 

for implementing cognitive processes. One way .  to envisage how this might happen 
is to imagine an instantiation function which makes such efficient use of the physical 

properties of its medium that redundancy is minimal. The mapping from physical 
to computational states is such that almost every physical property has a 
computational role. It would still be the case that one could give separate logical 
and physical. descriptions of the functioning of such a creature, but it might be the 
case that the constraints were such as to ensure that the implementation medium was 
uniquely suited to its tasks. Might it not be the case that such minimal redundancy 
turned out to be an essential feature of the engineering of an intelligent creature, 
given the other physical demands such as mobility which the organism would need 
to support? Perhaps the brain is a medium of this sort. Against this of course 
would have to be set the fact that the brain is capable of effective operation under 

a variety of conditions of loss and damage and exhibits a form of redundancy via 

replication or multiplexing. However, a creature whose computer made inefficient 

utilization of its medium might turn out to be so heavy that its muscle power was 
insufficient to enable it to escape from a potential predator which its intelligence had 

enabled it to identify. The idea that intelligence is based on a computational 
architecture whose medium is not an essential part of its specification is so much an 
article of faith that it is important to try to envisage situations in which this might 
not be the case. It may not be biological chauvinism as Block (1980) argues to 

maintain that intelligence is exclusively a property of brains. 

The idea that the efficiency with which physical resources are utilized might be a 

useful parameter to consider when trying to understand the nature of cognitive 

computation suggests that it is appropriate to try to understand the human 
instantiation function or functions rather than seeking to isolate the study of 
cognitive processes from the study of brain processes. If, as is likely to be the case, 

human computational states make much more efficient use of the brain than our 

computational artefacts do of their media, it may turn out that detailed understanding 
of neural circuits is essential to a detailed understanding of cognitive processing. 
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von Neumann's suggestion about visual analogy being best understood in terms of 

the organization of the visual areas of the brain may turn out to be yet another of 
his prescient insights. 

The functioning of transistors in computer circuits provides a final example related 
to instantiation functions and efficiency. The junction transistors commonly used 

in these circuits can be operated in three modes known as active region, saturated 

and cutoff, Bartee (1981, p.186). For digital switching purposes transistors tend to 
be operated at or near the extremes of their range, that is in either saturated or 
cutoff mode. The active region mode of operation is not used for switching 

purposes and hence would not be relevant to an instantiation function which used 
the saturated and cutoff modes to provide instantiations for logic '1' and '0'. 
However, Mead (1989) has shown that using the active region of transistors to 
implement a variety of non-linear, analogue computational primitives makes much 

more efficient use of their intrinsic properties, and he and his colleagues have begun 

to explore the simulation of human neural circuits using the intrinsic analogue 
properties of silicon circuits as computational primitives rather than driving them to 
the extremes of their operational ranges to implement binary switches. Some of the 

work of this group is described further in Chapter 6. The direction in which it 
clearly points is that the intrinsic nature of the computational medium may be much 
more important for understanding natural computation than digital models allow. 

It seems quite clear, therefore, that the relationship between the logical or functional 
states of Turing machines and physical realizations of them is a complex issue which 
cannot be settled by fiat. While instantiation functions are prescriptive in the case 
of computers, the human instantiation function, if such can be found, is a result of 
evolution and needs to be discovered not stipulated. It does not seem to be the case 
as Johnson-Laird suggests, that functionalism implies that the mind must be 

organized as a general purpose computer. 
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5.4 Functionalism and Multiple Instantiation. 
The relationship between functionalism and the argument from multiple instantiation, 

i.e. the claim that the medium of implementation is irrelevant to the functional 
specification of a system because the same functional system can be implemented 
in different media, has been the subject of a relatively recent exchange in the journal 
"Cognitive Science" (cf Thagard 1986, 1987; Krellenstein 1987; Ramsey 1989). 

Thagard (1986) claims that the argument from multiple instantiation constitutes the 
core of the functionalist position and should, in principle, rule out parallel hardware 
as irrelevant. This, he says, makes functionalism "computationally naive", because 

parallelism allows "qualitatively different kinds of algorithms for intelligent 
operations. " Thagard further claims that the Turing machine model, while 
mathematically satisfactory, is "seriously defective" as a model for understanding 
intelligence because it ignores the constraint on human intelligences that they must 

operate in real time. Intelligence, says Thagard, "should be viewed as relative to 
the environment in which behavior must occur." Clearly, Thagard has in mind here 
the Turing machine model as deployed by generic theorists. 

Both Krellenstein (1987) and Ramsey (1989) take issue with Thagard's construal of 
functionalism. Krellenstein argues that the primary concern of functionalism is not 

with different means of physical instantiation as Thagard suggests, but with the 

distinction between a (virtual) machine and a program. Krellenstein also argues that 

"A program running on a parallel machine that produced some sort 
of intelligence will also run on a serial machine, and this is enough 
to show the hardware irrelevant for explaining the nature, if not the 
evolution, of that particular intelligence." 

Krellenstein (1987, p.155). 

Thagard (1987) accepts the "in principle" argument, but suggests that the practical 
aspects of the speed up provided by parallel hardware are more significant than 

Krellenstein allows. A similar position has been taken towards Krellenstein's 

argument by Clark (1989, pp.121-122). 
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Ramsey's (1989) critique of Thagard's position, asserts that multiple instantiability 
is not the basis of functionalism1', and also that functionalism does not license the 

neglect of neuroscience. Ramsey argues that Thagard's attack depends on two 
claims about functionalism Ti' 7  and T2, and two claims about parallel systems T1' 
and T2'. 

Ti 	Functionalism depends on an explicit distinction between hardware 
and software. 

T1' Parallel systems blur the distinction between hardware and software. 

T2 	Functionalism asserts that considerations of physical implementation 
are largely irrelevant to the characterisation of psychological states. 

T2' Parallel systems support qualitatively different kinds of algorithms 
from those available on von Neumann style stored program serial 
machines. 

Thagard, says Ramsey, uses T1' to argue that the distinction made in T1 is not well 

founded and T2' to argue that T2 is false. Hence functionalism is false and so is 

the argument from multiple instantiability. Ramsey mounts a defence which 
maintains that T1 is not a thesis of functionalism and that T2 properly understood 

is not undermined by T2' . Ramsey makes the case against T1 as follows. First he 

distinguishes two possible construals of functionalism, Fl and F2. 

Fl 	Psychological states are determined by their functional or causal roles 
and not by first order physical properties. 

F2 	Psychological states are determined by their roles in programs and 
not by the way those programs are realised in hardware. 

Fl, says Ramsey, is a proper statement of functionalism in psychology. F2, which 

has a superficial similarity to F1, makes it appear as though functionalism requires 

16Multiple instantiability in principle, is a theoretical consequence of Ramsey's construal of 
functionalism. Multiple instantiation in practice, would be contingent on the existence of suitable 
physical media. 

"These labels are not taken from Ramsey's original paper. I have used them in order to try to 
clarify the complex points he makes. 
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a hardware - software distinction, but Ramsey points out that there are two ways of 
understanding the term "program" . It may be used to refer to a causally inert 

description such as a flowchart which simply describes the workings of an 
algorithm, or it may be used to refer to a set of commands in a programming 
language which causes a machine to behave in such and such a way. The two uses 
of the term "program", which may be called the "descriptive" and "operational" 
uses are easily confused because a clearly written program, intended to be 
operational, may also serve as a description of the algorithm which it 
implements1ß . However, functionalism requires only the descriptive use of the 
term "program" which is independent of the existence of hardware. Thus, even 
though F2 may be true when properly construed, it does not license T1, hence T1', 
which may also be true, does not show functionalism to be false. 

Ramsey goes on to suggest that an equivocation with respect to the term "hardware" 

undermines Thagard's argument from T2' to the falsity of T2 and thus to the 

downfall of functionalism. Ramsey claims that "hardware" may be used to refer 
both to the "stuff' from which a system is made and to the "architecture" of that 
system. Thagard's concern in T2' is architectural. Since he argues from T2' to the 

falsity of T2, he must be claiming that "considerations of physical implementation" 
in T2 is also a reference to architecture. Ramsey denies that this is the correct 
reading of the functionalist claim in T2. Functionalism, says Ramsey, claims that 

the nature of the "stuff' out of which a system is constructed is irrelevant, i.e. you 

could realise functionally equivalent systems in brain or in silicon. However, 
functionalism does not claim that architectural considerations are irrelevant. Thus 
Thagard's argument from T2' to the falsity of functionalism also fails. 

The clarification of the issues provided by Ramsey's analysis suggests that 

Thagard's arguments against functionalism are not just untenable but also 

18While this is particularly true of logic programming languages like Prolog, c.f Clocksin and 
Mellish (1984, p.vii, & p253), it is noteworthy that much of the effort which has gone into 
developing other new computer languages has also been intended to enable programmers to produce 
operational specifications of algorithms descriptively. 
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unnecessary, because his main point is compatible with functionalism. The 

argument from multiple instantiation is an argument about stuff rather than 
architecture, says Ramsey, and thus quite compatible with the notion that 
considerations of parallelism may be relevant to psychology. 

5.5. A theoretical case for parallelism. 

The attack on Thagard by Krellenstein, asserting the reducibility, in principle, of 
any parallel machine to a serial one is the kind of argument frequently advanced by 
those who wish to claim the theoretical high ground, and such arguments leave a 
residual feeling of unease even among the most hardened of those to whom practical 
considerations such as real time responding are of fundamental importance. Wells 
(1993) discusses recent work in mathematical logic which provides an argument for 
the importance of parallelism in principle. The case is based on work by 

Shepherdson (1975, 1988) and by Gandy (1980) which develops a more general 

understanding of the nature of computation than is provided by Turing's original 

analysis. This work is motivated by a desire to provide firm foundations for the 
claim that anything which can be computed by a machine is calculable. The point 

at issue is succinctly put by Gandy. He distinguishes two claims which he calls 

Theorem T and Thesis M. 

Theorem T. What can be calculated by an abstract human being working 
in a routine way is computable. 

Thesis M. What can be calculated by a machine is computable. 

Gandy claims that Turing (1936-7) provides a proof of Theorem T but not of Thesis 

M. One of the reasons why Thesis M. is not proven by Turing's original work, is 

that it is possible for a machine to print, or otherwise operate on, an arbitrary 

number of symbols simultaneously whereas Turing's analysis, modelled on the way 

in which a human computes with paper and pencil, is restricted to serial operations 

on just one symbol at a time. The justification of Thesis M. must, therefore, take 

parallel working into account. One way of doing this is to define aspects of 
parallelism in terms of extensions to the standard single tape, single read-write head 



142 

Turing machine, and to show that such extensions do not add to the set of 
computable functions. It can be shown, for example, that parallelism in the form 

of multiple tapes and/or multiple read--write heads does not increase computational 
power. This is accomplished by showing that the squares of multiple tapes can be 
mapped systematically onto the squares of a single tape, and that the operations of 
multiple scanning heads can be tracked and performed by a single head. Lewis and 

Papdimitriou (1981, pps.198 ff) provide a proof. Shepherdson discusses cases for 

which the reductive tactics above do not succeed; 

"In the case usually considered, of computation over total structures, 
i.e., ones whose functions and relations are defined for all 
arguments, parallel procedures are no more powerful than serial 
ones, for one can obviously serialize a parallel procedure by 
subdividing the time scale. This is no longer true if there are partial 
functions, e.g. the function f defined by 

f(x) = x if fi (x) is defined or f2(x) is defined 
= undefined otherwise, 

obviously cannot be computed by any serial procedure because it 
might choose the wrong one of fl , f2  to evaluate first." 

Shepherdson (1988,pp.584-585). 

The point is that if a function is undefined for a given argument it will not return 

a value in a finite amount of time but will behave like a computer program in an 

infinite loop. Hence, with a serial procedure in a case, say, where f2(x) is defined 

but fi (x) is not, if fi(x) is tried first the computation will never terminate. With two 

processors, however, the computations of 11(x) and f2(x) can be started 

simultaneously and independently of each other; f2(x) will, in due course, yield a 

value to feed to f(x) and the attempted non-terminating computation of f l  (x) can be 

discarded as irrelevant. Hence a parallel system is more powerful than a serial one 

for this type of function. The argument depends, of course, on the assumptions 

made about the capabilities of the processing units which evaluate the functions fi (x) 

and f2(x). In particular, if it is assumed that the units proceed in a series of steps 

and can be stopped and restarted where they left off, then the capabilities of a pair 

of processing units operating in parallel can be simulated by a serial procedure 
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which alternately computes single steps of f1 (x) and f2(x) . However, as Shepherdson 
says, "even if this is possible it seems to be an unnatural and inefficient trick for 

serialising what is essentially a parallel procedure" (Shepherdson 1975, p.469). 

It would appear, therefore, that theoretical justification for a parallel system rests, 
in part, on the nature of the domain over which the system computes. If the domain 

is such as to include some arguments for which the functions computed by the 
system may be undefined, then a parallel system is, given appropriate assumptions, 

more powerful than a serial one. It seems perfectly possible, indeed highly likely, 
that the domains over which psychological computations are defined will include 
partial functions. Gandy's work is considered further in the development of the 
ETH in Chapter 6. 

5.6. The Physical Symbol Systems Hypothesis. 

An influential line of thought which has been systematically developed for some 
twenty years by Allen Newell, often in conjunction with Herbert Simon (Newell & 
Simon, 1972, 1976; Newell 1980, 1982, 1990) is the Physical Symbol Systems 
Hypothesis (PSSH). The symbol systems hypothesis is one of the major 

contributors to the standpoint described in the thesis as the generic theory. Newell 

is a determined advocate of a view which claims that the brain realizes a symbol 
system which is a universal machine by definition, and that the characteristic 
flexibility of intelligence is a consequence of the computational universality of the 

brain. In some circles the PSSH has acquired the status of a "central dogma" 
(Pinker & Mehler, 1988). Pinker (1994, p.78) suggests that the symbol systems 
hypothesis is "as fundamental to cognitive science as the cell doctrine is to biology 

and plate tectonics is to geology." 

5.6.1. Definition of a Physical Symbol System. 

In a systematic statement of the symbol systems hypothesis in their 1975 Turing 
Award Lecture, Newell and Simon defined a physical symbol system as follows; 

"A physical symbol system consists of a set of entities, called 
symbols,which are physical patterns that can occur as components of 
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another type of entity called an expression (or symbol structure)... A 
. physical symbol system is a machine that produces through time an 
evolving collection of symbol structures. Such a system exists in a 
world of objects wider than just these symbolic expressions 
themselves." 

Newell & Simon (1976, p.40) 

Two other central ideas were also defined. These are the ideas of designation and 

interpretation. Designation is the means by which a symbol or expression is 

related to an object, and interpretation is the process by means of which designating 
structures of symbolic expressions are evaluated. The thing to have in mind when 
trying to visualize a physical symbol system, is a general purpose computer running 

LISP. 

"The type of system we have just defined is not unfamiliar to 
computer scientists. It bears a strong family resemblance to all 
general purpose computers. If a symbol-manipulation language, such 
as LISP, is taken as defining a machine, then the kinship becomes 
truly brotherly." 

Newell & Simon (1976, p.41). 

The physical symbol systems hypothesis, based on the notion of a system defined 

above is simple but of very broad scope. 

"A physical symbol system has the necessary and sufficient means for 
general intelligent action." 

Newell & Simon (1976, p.41). 

Newell and Simon maintained that the PSSH was nothing new in principle, but 
simply a systematization of a collection of more or less inchoate ideas which had 

been arrived at by a variety of people as a result of a number of influences. The 
influences identified were the development of formal logic, Turing's work on the 

theory of computation, the stored program concept and the idea of list processing 
(Newell & Simon 1976, 42-46). The PSSH was intended to make a quite specific 

architectural assertion about the nature of intelligent systems, based on a proprietary 
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notion of a symbol, which went beyond the theoretically motivated roots of the 
discipline of computation provided by Turing. Newell and Simon also explicitly 

acknowledged the influence of the evolution of digital computers on the form of the 

PSSH, thus making clear its empirical nature. The evidence adduced for the 
hypothesis in the 1976 paper was scanty. Newell and Simon in fact suggested that 
the primary evidence for the PSSH was negative, i.e. the absence of competing 

hypotheses as to how intelligent activity might be achieved. 

5.6.2. The Nature of Symbols. 

In his 1980 paper, Newell provided a more detailed account of the PSSH in which 

he argued for the necessity and sufficiency of symbol systems as the basis for 
intelligence rather than simply making the assertion as he and Simon had done in 
the earlier paper. From the point of view of the ETH and the analysis of Chapter 
4 it is striking that Newell saw no need to argue for the assumption that the brain 

contains a symbol system. Given that a symbol system is a universal machine by 
definition, Newell's hypothesis is equivalent to the claim that the brain contains or 
implements a universal Turing machine. Indeed, part of his argument includes 

showing that his schematic symbol system is universal by showing how to 

implement a Turing machine in the formalism. Thus the symbol systems movement 
is a clear example of a program which assumes part of what it needs to prove. 

Quite apart from this fundamental problem there are problems of detail with 

Newell's analysis. The symbol concept is pivotal to Newell's argument which 
hinges on the contention that the properties of symbols and symbol processes in 
physical symbol systems as Newell describes them, are essential properties of every 
universal machine. It is argued here that Newell's arguments do not establish his 

case. 

It is important from the outset to distinguish various uses of the root term "symbol" 
and its cognate forms and this is done using a subscript notation. In particular there 

is a distinction to be made between "symbolN" and "symbolT" . SymbolN  is a notion 

which is internal to the concept of a physical symbol system. A symbolN 
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implements the capacity of "designation" introduced in the 1976 paper by providing 
"distal access" to an object, process or symbol other than itself. "Designation" 
amounts in effect to a scheme for binding symbolic identifiers to processes. 

SymbolT  is a term which denotes a member of the alphabet of simple symbols which 
are used by a Turing machine when reading from or writing to its tape. The 

essential property of these symbols is the nominal property of type identity. A 

token of a given symbol must be indistinguishable from any other token of the same 
symbol and distinct from every token of any other symbol. The simple unadorned 
term "symbol" is used in the discussion when neither of the specific terms applies 
and in direct quotation. 

5.6.3. An outline of Newell's argument. 

In outline, Newell's argument runs as follows. Symbols r  are sufficient for the 

specification of machines which compute single fixed functions. These are 
machines like ordinary Turing machines or finite automata. In order to construct 
a universal machine, however, decomposition of the input to the machine into two 

parts must be introduced, such that one part of its input is the program of the target 
machine and the other part is the data which the target machine would receive as 

input. This decomposition may be done directly with symbols N  or by using strings 

of symbols-i  and an addressing scheme on the unbounded tape of a Turing machine 

which together amount to a symbols  system. SymbolisationN  is thus a necessary 

condition for a universal machine. Finally, the physical symbol system hypothesis 

asserts that symbolisations  is a concept of sufficient generality to encompass all 

other instances of symbolization in cultural symbols and symbolic artefacts 

generally. SymbolizationN  is thus the crucial concept which unites the primitive 

mechanisms at the lowest level of a system with the mental entities at the highest 

level and with entities in the external environment within which a system exists. 

5.6.4. The argument in detail. 

The detailed explanation of symbol systems starts with a specific example which 

Newell describes in detail, and which turns out to look very much like a slightly 

abstract version of a Lisp interpreter. The resemblance is intended, and Newell 
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reiterates the view of the 1976 paper that this is a good thing. The description of 
the example system is followed by the assertion that symbol systems constitute a 
class of universal machines. 

"Symbol systems form a class -- it is a class that is characterized by 
the property of universality." 

Newell (1980, p.147) 

This claim is followed by a discussion of universality and an introduction to various 

formulations of the class of effective procedures and the difficulties which attend the 

construction of universal machines. One of these difficulties concerns the fixity of 

machines and leads to the requirement for the partitioning of the input into a 

description of the machine to be simulated and a description of the contents of the 
target machine's tape. Newell asserts, with respect to the input that 

"the basic decomposition into two parts has far-reaching 
consequences -- it guarantees the existence of symbols." 

Newell (1980, p.149) 

Newell clearly means symbolsN  here, in accordance with the outline argument 

above. By this stage of the argument then, Newell has described an example 

symbol system, discussed the nature of universality and made two important claims 

as follows; 

Cl: Symbol systems are universal machines. 
C2: Computational universality guarantees the existence of 

symbolsN. 

Newell demonstrates the truth of Cl for the example system by showing that it can 

be used to simulate a universal Turing machine, but has, at this point, no general 

characterisation of symbol systems to justify the claim for the class as a whole. One 

might therefore expect the development of the argument to continue with a 

characterization of the class and a proof that Cl is indeed true for the whole class. 

Instead Newell takes what he admits to be the curious step of making Cl true by 
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definition. "Symbol systems are the same as universal machines." (p. 154). Newell 
takes this step because he recognises 

"that we do not have an independent notion of a symbol system that 
is precise enough to counterpoise to a universal machine, and thus 
subsequently to prove their equivalence." 

Newell (1980, p.155) 

Newell argues, however, that the apparently arbitrary equation of symbol systems 

and universal machines is legitimate because 

"we have discovered that universal machines always contain within 
them a particular notion of symbol and symbolic behavior, and that 
this notion provides us for the first time with an adequate abstract 
characterization of what a symbol system should be. Thus, 
tautologically, this notion of symbol system, which we have here 
called physical symbol system, is universal." 

Newell (1980, p.155) 

This claim suggests that on examination a universal machine is always found to use 
a particular notion of a symbol (symbol N) and a notion of symbol processing, and 
it is these notions which define symbol systems and all other universal machines. 

Thus the argument turns out to be a more complex account of the simple assertion 

of the 1976 paper. But it is certainly far from obvious that every universal machine 
contains the concept of symbolN. A striking point about universality is that very 

little machinery is needed to achieve it. 

Newell tries to buttress his claim by asserting that every universal machine exhibits 
in some form all the essential properties of any other universal machine. This may 
be so, but unless it is clear what those essential properties are, the observation does 

not advance the argument. Newell makes the suggestion that although there are 
differences among universal machines, which may in some instances be critical, 

"these differences are not critical for the nature of symbols." (Newell, 1980, p.155) 
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It is worth expending considerable effort to be absolutely clear about just what 

Newell's claim entails, and whether there is a case for it, because the notion of 

symbol involved, symbolN, is pivotal not just for Newell's account in the 1980 
paper, but for much of his work over the decade to 1990 on the SOAR architecture. 
At the heart of the notion is the concept of designation, for which Newell provides 
the following definition. 

"Designation. An entity X designates an entity Y relative to a 
process P, if, when P takes X as input, its behavior depends on Y." 

Newell (1980, p.156) 

Designation, according to Newell, has two primary features. It grounds the notion 

of symbolisation in the behaviour of a process and it provides, as Newell puts it, 

"action at a distance" (1980, p.156). The means for providing this distal access are 

to be found in the early list processing languages identified as an influence on the 

development of the symbol systems hypothesis in the 1976 paper. Newell was part 

of the development team of the IPL (Information Processing Language) languages 

IPL-1 to IPL-5. List processing has been described as "One of the most significant 

events that has ever occurred in programming" (Sammet, 1969,p.388) and IPL-5 

was widely implemented. Distal access was achieved by having addresses as the 

elements of lists. These addresses provided access to other lists. Thus the concept 

of designation is essentially the concept of addressing. 

An example of designation is the use of symbolic identifiers in LISP to denote 
functions. This can be a highly complex business, (cf. Steele 1984; Wilensky 

1986). A simple introduction is provided by Tatar (1987, chapter 3). When a user 

defines a function in LISP using DEFUN, which is a function definition function, 

a binding is set up between the identifier which names the function and the code 

which constitutes it. Thus, the line 

(defun square (x) (* x x)) 
defines a function named "square" which takes a single argument "x" and multiplies 

it by itself. Once the definition above has been evaluated, calls to the function will 
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yield the appropriate numerical results. 

(square 3) 
9 
(square (square 3)) 
81 

In terms of Newell's definition, the identifier "square" designates the function which 
calculates the product of a number with itself, relative to the process of evaluation 
carried out by the LISP interpreter, because, when the interpreter takes the identifier 
as input, its behaviour depends on the function code. The identifier is bound to the 
function code by storing the address of the code as part of the information associated 
with the identifier. Thus designation is a name for the method of location 

addressing which is characteristic of digital computers. 

Once the concept of designation and its roots in the construction of list processing 

language entities is understood, the operation of interpretation is easy to put into 

perspective. Newell defines interpretation as follows; 

"Interpretation. The act of accepting as input an expression that designates 
a process and then performing that process." 

Newell (1980, p.158) 

What should be clear from the above examples is that the notions of designation and 
interpretation are technical notions describing the internal processing of a 
computational system, and are particularly related to how a digital computer obtains 
the operands for its instruction processing. This is not just a feature of Newell's 

presentation in 1980. It remains central in his "Unified Theories of Cognition" 

(1990), where he refers explicitly to the role of symbolsN  as providers of distal 

access to non-local structure. The argument there is simple. It is a natural law, 

says Newell, that processing in the physical world is always local, i.e. takes place 

in a limited spatial region. If this were not so, there could be action at infinite 
distances in contravention of physical law. Localization implies that as tasks grow 

in size, there will come a time at which additional structure from outside the local 
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region will have to be accessed in order to complete the task. Symbols N  which 

designate non-local structure are the means by which such distal access is managed 

in computational systems. 

"The symbol token is the device in the medium that determines 
where to go outside the local region to obtain more structure." 

(Newell, 1990, p.74) 

5.6.5. Designation and Representation. 

The argument that symbolsN  are necessary for computational universality includes 
an important equivocation on the term "designation" . In some instances Newell uses 

it to talk about the representational aspects of symbolization, in others about the 
specifics of distal access mechanisms. The equivocation is disguised to some extent 

by the fact that Newell takes a very broad view of the concepts which the term 
encompasses. Immediately prior to the definition of designation given above, Newell 

says, 

"We call this concept designation, though we might have used any 
of several other terms, e.g. , reference, denotation, naming, standing 
for, aboutness, or even symbolization or meaning. The variations in 
these terms, in either their common or philosophic usage, is not 
critical for us. Our concept is wholly defined within the structure of 
a symbol system." 

Newell (1980, p.156) 

The terminological looseness of the above allows Newell to make plausible sounding 

claims like the following; 

"Designation is at the heart of universality. For one machine to 
behave as an arbitrary other machine, it must have symbols that 
designate that other." 

Newell (1980, p.157) 

The flaw in the argument is a failure to distinguish the designatory capacity of the 

symbol tokens which provide distal access in a given system, from the symbolic 
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expressions which provide the descriptive reference to a target machine. The need 
for a distinction can be seen immediately by noting that distal access to unbounded 

regions of structure is required, not just by universal machines, but by any machine, 
e.g. a parenthesis checker, whose input may be of unbounded size. Hence the 

capacity for distal access and universality must be distinct. The issue can be 
clarified by distinguishing direct from virtual input. A direct input is defined as one 

which is causally related to the hardwired behaviour of a machine. Thus, to a first 
approximation, the symbol alphabet of a Turing machine provides its direct inputs, 

and a binary machine instruction is a direct input to a digital computer. A direct 
input may consist of more than one element i.e. it may consist of a string of Turing 

machine symbols, but the length of the string must be fixed. A virtual input, by 
contrast, consists of expressions constructed from elements of direct input which 
may be taken, by an external observer, to refer to or to represent entities external 
to the system. Virtual inputs are things such as strings of Turing machine symbols 

of arbitrary length or elements of high level languages. Virtual inputs express 
logical rather than causal relations, and the trick with universal machines is to 

arrange their direct inputs in such a way as to produce the same output as a machine 

whose direct inputs had the causal structure mirrored by the logic of the virtual 

inputs to the universal machine. 

One point of the definition of designation as Newell gives it is to tie the concept of 
designation to the concrete behaviour of a process. Designation is thus a local 

capability, properly ascribed to a specific process with particular input and output 
capabilities. The essence of this capacity is its finitude not its universality. 
Designation is a property of direct inputs. Representation, by contrast, is a function 
of virtual inputs, and it is representation, not designation, which is at the heart of 

universality. 

Turing's universal machine provides a clear example of the distinction between 

direct and virtual inputs (cf. Chapter 3.4). Direct inputs produce the sequence of 

figures which would be computed by the target machine, whereas virtual inputs are 

indirectly responsible, via matching and copying, for the sequence of complete 
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configurations which describes the target machine's computations. The first point 
to notice is that the "figures" produced by a machine in Turing's original scheme, 
i.e. the elements of "the sequence computed by the machine" are just the binary 
digits 0 and 1. These digits are mapped via the standard description scheme to the 
expressions "DC" and "DCC" respectively. Similarly, the starting state of every 
machine is mapped to the expression "DA" and the direction of travel operations, 

left, right, and no movement are mapped to the primitive symbols "L", "R" and 

"N" . The importance of this scheme is that it provides all the designatory capacity 

needed for the universal machine to interpret the description of the target machine. 
All that is required of the other symbols used by the target machine, is that they be 

coded consistently throughout, and in such a way as to reflect systematically and 
accurately the instructions defining the target machine. They do not have, indeed 
cannot have, a fixed designatory mapping to the primitive symbols of the universal 
machine. Consider, for example, the standard description of machine M in Chapter 

3.4. The symbol "X" of M is mapped to the expression "DCCCCC" and the 
symbol "(" is mapped to "DCCC" . This is not a designatory mapping, because it 
makes no direct contact with the inner mechanics of the universal machine, which 
would still work properly, provided all the necessary changes were made to the 

standard description of M if the mapping were the other way round. By contrast, 
if the mappings for 0 = "DC" and 1 = "DCC" were changed, the internal structure 

of the universal machine would have to be reprogrammed for it to produce the 

correct output of those target machines which print '0's and '1's. Likewise with the 

mappings for the start state and the direction of movement indicators. The 

simulation mechanism is sensitive to these mappings. Thus the direct inputs to 
Turing's universal machine are the elements of its symbol alphabet, plus the 
expressions, "DA", "DC", and "DCC". The direct involvement of the expression 
"DA" can be seen in the universal machine state "b 1" and the involvement of 

expressions "DC" and "DCC", in states "sh2", "sh3", "sh4" and "shy". Unlimited 

representational capacity via virtual inputs is achieved with the finite designatory 
capacity of the direct inputs. To argue as Newell does, that designatory capacity 

is fundamental is correct in one sense, but misses the crucial relation between 

designation and representation. 
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5.6.6. External Reference. 

The technical flaw described above is symptomatic of a related but much deeper 
problem with Newell's hypothesis which is a direct consequence of the assumption 
that an internal Turing machine model is the correct basis on which to understand 
cognitive architecture. Given such a model, external inputs are virtual inputs to the 
cognitive machine and must be translated into direct inputs by transducers. The 

solipsistic bias inherent in such a position, which is characteristic of all versions of 
the generic theory, is particularly evident in Newell's recent work, and is manifest 

in his treatment of the issue of the relation between symbols in a symbol system and 
the external world. The point to notice in the 1980 treatment which foreshadows 

the later remarks is that although designation is a relation which is ultimately 
intended to cover all instances of reference both internal and external, it is defined 
as a concept which is wholly internal to the structure of a symbol system. 

"The prototype symbolic relation is that of access from a symbol to 
an expression, not that of naming an external object. Thus, it is an 
implication of the formulation, not part of its definition, that the 
appropriate designatory relations can be obtained to external objects 
(via chains of designation)." 

Newell (1980, p.169) 

It is significant that Newell takes it to be an "implication" rather than a hypothesis, 
that the appropriate relations can be found. This follows from the assumption that 
the cognitive architecture is a Turing machine implemented in the brain. Given that 

the mind does make adequate contact with the external world, then, because it is a 

Turing machine, it must be the case that there are appropriately structured 

transducers etc. which manage the transfer of information from outside to inside and 

vice versa. Hence there can be no difficulty in principle in the production of 

adequate direct input. This seems to be the reason for Newell's very sketchy 

treatment of the problems of reference and intentionality which concern virtual 
input. He raises the question, 

"How does it ever happen that a symbol actually refers to or denotes 
or designates or stands for or is about something outside the system 
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itself?" 
Newell (1990, p.78) 

The answer is apparently rather simple assuming there to be knowledge systems, 
(Newell 1982) which are symbol systems with a well defined level above the symbol 

level in which knowledge is the medium and rational principles govern behaviour. 

Knowledge, says Newell, is about its domain which is external to the system. It is 
a way of describing a system from an observer's perspective (Newell, 1990, p. 78). 
Symbol systems realize knowledge systems, hence they are about the same external 

things as the knowledge systems they realize. The realization is achieved by 
"implementing representation laws so that the symbol structures encode the 

knowledge about the external world" (Newell, 1990, p.79). And that, apparently, 

is that. 

"That's all there is to be said about intentionality, except for the 
details of how to build symbol systems that approximate knowledge 
systems closely enough." 

Newell (1990, p.79) 

The easy optimism is a consequence of the fact that Newell is concerned with direct 

rather than virtual input, with processing rather than with representation. He says, 

for example 

"...that complex systems require symbol structures, in the sense of 
embedded symbol tokens that provide distal access, is separate from 
the notion of representation. It is a requirement that arises from the 
constraints of processing, not from the contraints of establishing 
relations to the external world." 

Newell (1990, p.75) 

This approach is of a piece with the view, consistent throughout his work since the 

early papers on the Logic Theorist in the 1950's (cf. Newell, Shaw, & Simon 

1958), that it is purely a tactical question to concentrate on internal symbolic 

processing and not to deal with perceptual and motor systems. 
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The difficulty is that the total system is too complex to handle all at 
once, and the sorts of considerations that go into perception and 
motor action seem too disparate to integrate. So the strategy is 
divide and conquer." 

Newell (1990, p.160) 

Divide and conquer is perfectly respectable as a scientific strategy, of course, but 
it is worrying that the strategy should so neatly consign to the sidelines precisely 
those aspects of the total system which were peripheral to the von Neumann model 
of computation, when it seems entirely obvious that people and computers are at 
opposite ends of the spectrum of environmental connectedness. It also demonstrates 
again, if further demonstration be needed, how deeply ingrained is the assumption 
that the brain is a whole Turing machine, served by perception and motor processes 
rather than a finite state machine connected to its memory by perception and motor 

processes such that the whole system implements a Turing machine. 

5.6.7. System levels and the brain. 

A discussion of one further aspect of Newell's approach is relevant to the aims of 

this chapter. This is the question of how the levels of computational systems as he 
describes them are hypothesized to map onto the brain in the human cognitive 
system. This is not an issue on which much time is spent in the 1980 paper, but in 

"Unified Theories of Cognition", a substantial effort is spent in Chapter 3 on 
describing how neural analogues of the various system levels described in earlier 
chapters might be identified. 

Newell identifies, four different phenomenal worlds, which are characterized by the 

time scale on which actions in those worlds occur. Each world comprises a number 

of levels which are grouped into bands. Thus the worlds are known as the 

biological band, the cognitive band, the rational band, and the social band (Newell, 

1990, pps. 121-122). The area of particular relevance for present concerns is the 

set of four levels comprising the cognitive band. Newell suggests that these occupy 
time scales from approximately the 10 millisecond level at which neural circuits 

(rather than individual neurons) operate, to the 10 second level at which the units 
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of cognitive tasks are manifest (Newell, 1990, p.140). He argues, persuasively, that 
the time available for cognitive operations is bounded from above by experimental 

psychological data, and from below by the operational speed of neurons. Hence, 
the operations predicted by the symbol systems hypothesis are constrained to occur 
within the time band identified. The methodology is admirable but the conclusions 
are open to serious question. The methodology locates the basic operation of distal 

access at the level of neural circuits which operate at approximately the 10 
millisecond time scale. The process of distal access involves locating the 
appropriate distal structure, (which would be done via its address in a digital 
computer implementation) and retrieving the information stored in the structure at 

the given address. According to Newell, this process of access and retrieval is 
carried out in the brain by neural circuits. Addressing of the kind required, as 
discussed in Chapter 4, is achieved in computers by constructing the memory and 
logic devices from highly reliable bistable devices and doubts about the plausibility 
of such schemes as the basis for the implementation of neural computation have 
been raised. 
There is a fundamental question about the suitability of neural tissue as a substrate 

for the process described. It is also not clear that information retrieval is the kind 

of thing that the brain does at the neural circuit level. The point about distal access 

is to bring remotely stored information back to the local site. While 
neurophysiological evidence is consistent with the idea that mental representations 

can be defined as states of activity of brain cells (Changeux and Dehaene, 1989), 

it is not clear that information retrieval and the integration of multiple sources is 
carried out by successive distal accesses in the way proposed by the PSSH. It 
seems more likely that simultaneous activity at multiple sites is integrated by global 

temporal synchronization (Damasio 1989). 

Even if it were plausible to explain single acts of distal access in the way proposed 
by the PSSH, there is the equally serious difficulty posed by the need to combine 

these basic acts into sequences comprising higher level actions. The problem exists 

because the PSSH methodology assumes that the way to get higher level 

functionality is by chaining sequences of lower level acts. The top level of activity 
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proposed in the cognitive band in Newell's account occurs at a time scale which is 
three orders of magnitude greater than the time scale for elementary acts of distal 
access. The implication of this difference is that the composed operations at the top 
cognitive level will involve possibly thousands of elementary acts at the lowest 

cognitive level. Thus the structure is logically deep. High level programming 
languages, which also rely on chaining extensive sequences of low level operations, 

have substantial hidden control structures, often in the form of system stacks to 
manage the associated sequencing and access problems. Newell's candidate general 

architecture SOAR, also makes essential use of a structure called the "context stack" 
to manage its decision cycles (Newell 1990, pps.171 ff.). However, nowhere in the 

part of his book devoted to the mapping from the PSSH to neural structures is there 
any mention of a stack. The basic implausibility of proposing logically deep styles 
of storage management as characteristic of the brain has been known, and written 
about since the early days of computers. 

"...whatever  language the central nervous system is using, it is 
characterized by less logical and arithmetical depth than what we are 
normally used to." 

von Neumann (1958, p.81) 

But if a stack is not postulated, the operational composition of elementary acts is 
compromised. In the absence of any convincing alternative hypothesis about the 

management of such logical depth, it is likely that there is something wrong with 

the idea that the structures which support rational, intelligent action in the brain are 
like those which support processing in a digital computer. 

5.7. Pylyshyn's analysis of cognitive computation. 
Many of the difficulties attendant on Newell's position arise from the basic, 
unsupported assertion that the brain implements a universal Turing machine. 
Similar problems arise in the work of another influential theorist, Zenon Pylyshyn, 

who has written extensively about the computational foundations of cognitive 

science. Pylyshyn's primary concern, in his book "Computation and Cognition" 

(1984), is to establish a science of cognition on firm foundations. Pylyshyn comes 
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to grips with the philosophical issues involved in the study of cognition in a way 
which Newell seems to believe is unnecessary. Pylyshyn offers arguments which 
purport to show that if the idea of cognition as computation is taken as a literal 
empirical hypothesis rather than just as a metaphor, then it can be demonstrated that 
the cognitive system must be structured as a physical symbol system. In particular, 
Pylyshyn claims to show that cognitive computation must involve the transformation 
of structured symbolic expressions rather the state transitions of a finite automaton. 
Thus, he claims, that the brain must be considered to instantiate a Tiring machine. 
Pylyshyn's arguments are important for the ETH because, if they are correct, they 
show that the ETH must be false given its commitment to the view that the brain 
should be thought of as a finite automaton. 

5.7.1. Psychological Explanation. 
Pylyshyn's approach to cognitive computation is rooted in his approach to 
psychological explanation. When we wish to explain, rather than simply to 
describe, behaviour, he says, we have to appeal to the beliefs, knowledge and goals, 
i.e. to the mental representations, of those individuals whose behaviour is under 
investigation. Informally, a paradigmatic explanation sentence is of the form "X did 
Y because he/she believed (hoped, wished, feared, expected, etc.) that P. In such 
a sentence, X is an actor, Y a behaviour, and P a description of an intentional 
content. Thus "Mrs. Jones ran for the bus because she believed that there wasn't 
another one for several hours" explains the running behaviour of Mrs Jones by 
appealing, inter alia, to the content of one of her current beliefs. The issue which 
Pylyshyn identifies as a fundamental problem is how to link the intentional contents 
of thoughts to actions: the problem with claiming that intentional contents really are 
the causes of behaviour is that it is hard to see how such contents could form the 
basis of a respectable science. They seem to be the wrong sorts of entities to be 
involved in causal transactions. 

"How is it possible for properties of the world to detemine behavior 
when the properties are not causally related in the required sense to 
the functional states of the system, which is what we seem to be 
claiming when we say, for example, that what determines the 
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person's behavior in rushing to the phone is something like his 
anticipation of, or desire to obtain help?" 

Pylyshyn (1984. p.26) 

One manifestation of the difficulties is that intentional state types appear to cross 

classify the natural kind categories which might provide the necessary causal agency 
(Fodor, 1975) . There is no simple mapping from, say, the characterization of a 
situation as an emergency, to a type of physical event which explains how an 

emergency causes the behaviours associated with responding to it, e.g. the behaviour 

of summoning assistance. This is because there are no principled constraints on the 

physical ways in which an emergency can occur and be responded to. 

5.7.2. Semantics, Symbols and Implementation. 

Pylyshyn's solution is that desires to obtain help, and other intentional phenomena, 

are not literally causes of behaviour. The causes of behaviour are physically 

instantiated internal representations of the phenomena which they represent, 
consisting of symbolic expressions in an internal code which is realized in some 

physical substrate. Thus, on Pylyshyn's account, scientifically respectable 

psychological explanation requires a tri-level explanatory hierarchy. There is the 

semantic characterization of an event, there is the symbolic representation of that 
event which mirrors all the relevant aspects of the semantic characterization, and 

there is the realization of the symbolic representation in a particular physical system 

which is causally efficacious. 

Pylyshyn claims that "the classical view" of computing assumes that computer 

systems also have three distinct levels of organization (Pylyshyn 1989, p.57). These 

are the semantic level, the symbol level and the physical (or biological) level. The 

semantic level explains why appropriately programmed computers do what they do, 

by appealing to the contents of their data structures, the symbol level describes the 

structures in which the system's knowledge is encoded, and the physical level 
explains the system as a physical rather than a functional object. Pylyshyn explicitly 
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associates the semantic level with the knowledge level of Newell (1982)19. The 

levels of computer systems thus described can be seen to map neatly onto the 

explanatory requirements of materialist theories of cognition, and Pylyshyn argues 
that cognitive science should be based on the strong hypothesis that minds literally 

are computational systems of the kind outlined above. Clark (1989) has described 
such systems, in which there is a close mapping between the entities found at the 

top level of analysis and their syntactic computational analogues, as "semantically 

transparent". 

Given such a tri--level system, it is appropriate to ask how the symbol level is 

organized because this level is underdetermined from the point of view of cognitive 

theory. The semantic level characterizes behaviour in terms of reasons, goals etc., 

and the physical, or implementation, level, characterizes behaviour in terms of 

neural impulses, and so forth, which will be mapped onto computational states at 

the symbol level via an instantiation function. In one sense then both of these 

system levels are satisfactorily constrained, at least in principle, the semantic level 
via our everyday mentalistic talk, the implementation level by what is known about 

the physical medium of the brain. Pylyshyn claims that the symbol level must be 

organized as a Turing machine if it is to provide the appropriate linkage between the 

semantic and implementation levels. 

'Foster (1990) has argued that this is confused because there is a substantial difference between 
the knowledge level and the semantic level. 

"Whereas Newell is very careful to separate the knowledge level view of a system 
in terms of beliefs, goals and the principle of rationality, all implemented somehow 
(but we do not want to say how), Pylyshyn's view relies crucially on those 
distinctions being reflected at the syntactic level." 

Foster (1990, p.28) 

I think Foster is wrong to distinguish the semantic and knowledge levels in this way for two reasons; 
first, although Pylyshyn certainly does claim that semantic distinctions are mirrored at the finest grain 
in the symbolic structures encoding them at the syntactic level, he is also quite clear that the semantic 
level is an autonomous system level, constrained by a principle of rationality (Pylyshyn 1984, p.38). 
Second, although Newell certainly characterizes the knowledge level as a distinct system level, he 
is quite clear that a body of knowledge constituting the knowledge level of a system is realized by 
representations existing at the symbol level (Newell 1982, p.100; 1990, pps 78-80). 
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Like Newell, Pylyshyn takes the behavioural plasticity of the universal Turing 
machine to be one of the important indicators that cognitive processing may be a 
form of computation. "This extreme plasticity in behavior is one reason why 
computers have been viewed all along as artifacts possibly capable of exhibiting 
intelligence." Pylyshyn (1984, p.53). For this reason he is committed to the view 
that the cognitive computer is computationally universal and hence must be a Turing 
machine. 

Pylyshyn stresses the importance being able to attach semantic interpretations to 
symbols. "This quality of symbols and of computational states, whereby they can 
consistently be given a semantic interpretation, is not the only thing that makes 
useful computation possible; but it is one of the most important characteristics 
shared by computation and cognition." Pylyshyn (1984, p.63). The point that he 
wants to make is that we can see from the example of computers how the semantic 
characteristics of a program can be translated into effective symbolic processes 
which, as it were, shadow the semantic characteristics so as to produce 
transformations of their inputs which produce interpretable outputs respecting the 
semantics of the function which the symbolic processes execute. The reason why 
this is important is that "Although computation may not be the only way to realize 
a semantically described process, it is the only one we know how to achieve in a 
physical system. Put another way, nobody has any idea how it might be possible, 
even in principle, to build a system whose behavior is characterized in terms of 
semantic rules without first describing the system in terms of operations on symbol 
structures." Pylyshyn (1984, p.63) This is a further reason for thinking of the 
mental computer as a Turing machine. 

Pylyshyn develops two more detailed arguments about the need to treat cognitive 
states as symbolic expressions on the tape of the brain's Turing machine. The first 
is intended to establish that cognitive states must be implemented as symbolic 
expressions rather than as sequences of state transitions. The argument is based on 
an analysis of the following putative cognitive rules; 
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R1: If you perceive an event E as an instance of the category 
"emergency" (call this cognitive state S 1), then create the goal to get 
help (call this S2), and 

R2: If you have the goal of getting help, and you know that help can be 
obtained by telephone (call this combined state S 4), then create the goal of 
locating a telephone (resulting in state S 5) . 

Pylyshyn (1984, p.63) 

The question which arises is how to represent the cognitive states S 1 , S2, S4, S5. 

Pylyshyn makes two points about the rules connecting these cognitive states which 
bear on the question; first he notes that we describe R1 as holding between S 1  and 
S2 by referring to what these two states represent. Second he notes that single 
cognitive states can have complex contents in the sense of having distinct 
components. S4, for example, is a combined goal and knowledge state. Pylyshyn 
uses these two points to argue that we cannot represent the two rules 
computationally in terms of transitions between two internal states as follows; 

R1: S 1  --> S2  
R2: S4 -- > S5 

The reason why state transitions are unsatisfactory according to Pylyshyn is that 
internal states are atomic entities which cannot have constituent components. Thus 
they are unable to reflect the fact that the rules depend on the constituent 
components of the cognitive states. 

"For instance, R2 must refer to the S2 component of the S4 state in 
a way that identifies it as the same representational content that 
appears in RI. Thus, R2 cannot be expressed simply as a rule 
between S4 and S5; the inclusion of two distinct parts of S4 must be 
explicitly represented in R2, and one part must be identified as being 
identical to the consequent state of rule RI." 

Pylyshyn (1984, p.64) 

All these distinctions and sub-distinctions as well as others must be represented, says 
Pylyshyn "by some functional feature of the state." and this, he claims, 
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demonstrates the need for symbolic expressions. One shortcoming of this argument 
is that it rests on the assumption that a given cognitive state, say S i , has to be 
represented by a single state of an automaton. This is an assumption for which 
there does not seem to be any justification. The particular difficulty in Pylyshyn's 
example is that the antecedent of R2 is a conjunction of terms one of which relates 
to the consequent of RI. This means that R2 cannot be specified in terms of a 
single state transition but it does not preclude a more complex state transition 
treatment. What is needed is something like the following; 

R2: If you have the goal of getting help (call this S2), then create the 
goal of searching your knowledge base for a means of obtaining help 
(call this S3), and if you are searching in S3 and you find "telephone 
call" as a means of obtaining help then terminate the search (call this 
S4), and create the goal of locating a telephone (resulting in state S5). 

This elaboration of R2 yields the following set of state transitions expressing rules 
R1 and R2. 

R1: S i  --> S2  
R2: S2 -- > S3 ;  S3  -- > S4; S4 -- > S5 

In effect, R2 is rather like one of Turing's m-functions. One might, for example, 
think of the f-unit of Chapter 3 as implementing the cognitive state "Find the first 
instance of a" where "a" is the symbolic parameter to the m-function. A cognitive 
state might be taken to consist of a related set of internal states of this kind. There 
is a starting state and one or more final states connected by a chain of other states 
of arbitrary length and complexity. In a similar way, it would be possible to add 
functionality to maintain the other internal distinctions which Pylyshyn says are 
important, such as the fact that S i  is a state resulting from perception rather than 
from inference. It seems therefore that even if Pylyshyn is right to claim that a 
single internal state cannot adequately represent a cognitive state with complex 
content, he is not justified in concluding that structured sets of internal states will 
not suffice. 
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Pylyshyn's second argument for the need for symbolic expressions is based on the 
potentially unbounded generativity of certain cognitive capacities, language being 
an obvious example, and thinking also, if one accepts something like Fodor's (1975) 
view of the relation between thinking and language. Pylyshyn argues that if a finite 
characterization of the processing underlying such capacities is to be achieved then 

they must be described in terms of operations on formal expressions rather than as 

sequences of state transitions. This is a much sounder argument. As the analysis 
of Chapter 2 showed, the processing of strings of symbols generated by recursive, 

specification, such as the parenthesis strings processed by the machine M, can only 
be achieved in general by a Turing machine. 

However, it is not clear that Pylyshyn has established his claim that the brain must 
be organized as a Turing machine. Like Newell, and like many other generic 

theorists, he simply assumes that the brain is the exclusive locus of cognitive 
computation and that universality is the basis of cognitive flexibility. Neither of 

these points is argued for. What Pylyshyn clearly recognizes as a problem, 
however, in a way that Newell seems not to have done, is the way in which his 
theory isolates the computational processing of the cognitive computer. The point 
is that because the cognitive computer is hypothesized to be part of the brain and 

a universal machine, there is a need for input systems to translate external stimuli 

into the neural symbolic codes used by the cognitive computer and a need for output 

systems to translate the codes output by the computer into suitable behaviour. 

The task of characterizing input systems is demanding because, as Pylyshyn 
acknowledges, there are semantic constraints on the functioning of these non-

cognitive mechanisms which he calls transducers. "Because the output is to serve 

as the basis for the only contact the cognitive system ever has with the environment, 

it should provide all (and only) cognitively effective information. It should not 
provide information that could never serve as the basis for a cognitive 

distinction...On the other hand, the output must provide the basis for all potential 

distinctions that could show up in cognitive phenomena... Consequently, the output 

of the set of transducers available to an organism must preserve all distinctions 
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present in the environmental stimulation that are also relevant to the explanation of 
some behavioral regularity." Pylyshyn (1984, p.158). 

As a result of these constraints, Pylyshyn's version of the generic theory, and by 
implication all other versions as well, face what appears to be an unanswerable 

question about how the transducers which are deemed to be non-cognitive, are 
supposed to determine the cognitive relevance or otherwise of their input. The 

problem appears to be of the same order of difficulty as the frame problem in 

Artificial Intelligence and it is far from clear that there is a solution to the frame 
problem. On the assumption that a computational architecture for cognition must 

be structured as Pylyshyn suggests, however, there is little option other than to 

accept the challenge and try to live with it. Pylyshyn is disarmingly frank about the 

nature of the problem, and acknowledges a number of constraints arising from 

transducers being considered parts of the functional architecture. These include the 

constraints that the input to a transducer must be stated in the language of physics 

and that the output of a transducer must be an atomic symbol or at best an n-tuple 

of symbols. 

It is evidence of the grip which the generic theory exerts that Pylyshyn does not 

consider his own arguments to constitute a reductio of his position, given that a 

clear way to avoid the requirement for transducers is to abandon the idea that 

cognitive representations are internal symbolic encodings like the symbolic 

expressions on the tape of a Turing machine or in the memory of a computer. 

There are at least two reasons for favouring this move. The first, as Chapter 3 

showed, is that it is consonant with Turing's analysis of computation and the second 

is that transducers seem to have an impossible job to do. The major cost of making 

the move is that it is no longer possible to construe the relation between mind and 

brain as like that between the program of a computer and its hardware. In 

particular, it requires the abandonment of the idea that the brain instantiates a 

universal computer. 
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5.8. Combinatorial syntax and structure sensitive processes. 

The final arguments examined in this chapter are some of those used by Fodor & 

Pylyshyn (1988). Although their paper was designed as a critique of connectionism, 

it is useful for the light it sheds on the commitments and assumptions of certain 
aspects of the generic theory which Fodor and Pylyshyn refer to as the "Classical" 
approach to cognitive computation. Classical models of the mind, say Fodor and 

Pylyshyn, are minimally committed to the structures of Turing machines and von 
Neumann style computers, in the sense that "the kind of computing that is relevant 
to understanding cognition involves operations on symbols" (Fodor & Pylyshyn 

1988, p.4). Fodor & Pylyshyn claim that classical computational models are 

"Representationalist", because they propose that "there are states of the mind which 

function to encode states of the world" (Fodor & Pylyshyn 1988, p.'7). To present 

matters in this way, is already to finesse at least one of the issues of substance, 

which is the question whether the mind is in the head or involves external objects 

in some relation other than encoding. There is characteristically no argument for 

this central point which is simply assumed. It is taken to be the hallmark of a 

cognitive analysis that it should appeal to (internal) representations. "...any level 

at which states of the system are taken to encode properties of the world counts as 

a cognitive level; and no other levels do." (Fodor & Pylyshyn 1988, p.9). 

Classical computationalism is also fearlessly materialist. "...neurons implement all 
cognitive processes... by supporting the basic operations that are required for 

symbol-processing." (Fodor & Pylyshyn 1988, p.11). Classical theories are 

distinguished by their commitment to "complex" mental representations or "symbol 

structures" and to "structure sensitivity of processes" . The point of the latter claim 

is to establish that classical mental operations apply to mental representations by 

virtue of their form. A paradigmatic mental process maps classes of representations 

to other classes, with classes being determined by their abstract structural 

descriptions. Hence an operation which infers a single term from its appearance as 

the antecedent of a conjunction could infer either or both of, P from P & Q and (A 

v B v C) from (A v B v C) & (D v E v F), by virtue of the structure sensitivity of 

the process. Fodor and Pylyshyn are at pains to point out the seriousness of their 
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commitment to the physical realization of these characteristics of the classical 
architecture; 

"the symbol structures in a Classical model are assumed to 
correspond to real physical structures in the brain and the 
combinatorial structure of a representation is supposed to have a 
counterpart in structural relations among physical properties of the 
brain... the Classical theory is committed not only to there being a 
system of physically instantiated symbols, but also to the claim that 
the physical properties onto which the structure of the symbols is 
mapped are the very properties that cause the system to behave as it 
does.... a Classical model is very different from one in which 
behavior is caused by mechanisms, such as energy minimization, that 
are not reponsive to the physical encoding of the structure of 
representations. " 

Fodor & Pylyshyn (1988, p.13-14) 

In a long footnote (note 9, pp.13-14), Fodor and Pylyshyn examine the conditions 
which have to hold on a mapping from expressions to brain states, if the causal 
relations among the latter are to reflect the structural relations among the former. 
For the scheme to work properly, there have to be two components; "(a) the 
definition of a primitive mapping from atomic symbols to relatively elementary 
physical states", and "(b) a specification of how the structure of complex 
expressions maps onto the structure of relatively complex or composite physical 
states." The latter specification will most likely be formulated in terms of a 
recursive mapping, since arbitrarily complex expressions must be dealt with. 

A puzzling feature of this analysis, and one which indicates a degree of carelessness 
in its formulation, is the claim that the mapping discussed is an "instantiation 
function" as defined by Pylyshyn (1984) and discussed above. This claim cannot 
be correct given the nature of the instantiation function in Pylyshyn (1984). The 
mapping discussed by Fodor and Pylyshyn (1988) is a mapping from symbolic 
expressions to physical states. This sort of mapping must, in general, be one to 
many (and thus, mathematically, not a function), if it is to do a philosophically 
respectable job, because there is, in principle, no limit to the kinds of physical stuff 
which might instantiate a symbolic expression (silicon, beer cans, regiments of 
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Chinese etc.), and also no requirement that different tokens of the same symbolic 
expression be realized in the same way on different occasions (cf. Fodor 1975). By 

contrast, the "instantiation function" of Pylyshyn (1984) is a mapping from "an 

equivalence class of physical states" to "a computational state of the machine" 
(Pylyshyn 1984, p.56). This is a many to one mapping and is properly described 
as a function. 

The task Fodor and Pylyshyn set for themselves in imposing constraints on the 
physical medium with the mapping they discuss, is very different from the task of 
specifying computational states by aggregating physical states of a given medium via 

an instantiation function. In the latter case one can at least choose mappings which 
make the best possible use of natural groupings of physical states for example. 
Trying to specify a mapping from computational states to physical states is very 
much more difficult. Numerous awkward decisions have to be made. The most 

important of these is the specification of atomic symbols. Unless these are known, 

the mapping cannot be got off the ground. The atoms have to be identified in order 
to get a feel for the problem of developing a mapping which will preserve a 

sufficiently high signal to noise ratio to provide stable computational performance. 

But even if that were possible the whole project seems ill considered. Unless you 
know something about the physical properties of the proposed medium in advance, 
there is no way to tell whether or not it will support the desired atoms in the right 

sort of way, and if you do know something about the medium then you will start 

from there. 

Fodor and Pylyshyn do not acknowledge just how strong are the constraints on the 
medium which their theoretical position imposes. They readily dismiss "the 

(absurd) hypothesis that cognitive architectures are implemented in the brain in the 

same way as they are implemented on electronic computers" (Fodor & Pylyshyn 

1988, p.55), while apparently retaining the requirement for arbitrarily deep logical 

structure which drove the development of just those computers. There is a striking 

irony in their claim that "The physical requirements of a Classical symbol-

processing system are easily misunderstood." (Fodor & Pylyshyn 1988, p.57). 
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Nevertheless, Fodor and Pylyshyn offer a variety of arguments for the classical 
model. The first of these is that thought is productive in the sense that the 
representational powers of the cognitive system are unbounded under appropriate 
idealization (Fodor & Pylyshyn 1988, pps.33-37). Since this unbounded expressive 
capability is produced by finite means, we must treat the system of representations 
as expressions belonging to a generated set. Hence they have combinatorial 
structure, and thus imply a symbol system. Fodor and Pylyshyn conclude from this 
that "the mind cannot be a PDP" (p.33), because "Connectionist architectures 
cannot, by their very nature, support an expandable memory, so they cannot support 
productive cognitive capacities." (p.35). This is very much like the second of 
Pylyshyn's arguments discussed above. If mind is known to be implemented solely 
in the brain, then Fodor and Pylyshyn have a case. But Fodor and Pylyshyn need, 
and do not provide, an argument to the effect that the brain is the sole locus of the 
mind. The productivity argument alone does not suffice. 

Fodor and Pylyshyn's second argument is based on the notion that cognitive 
representation is systematic. The examples they use are linguistic, and the point that 
they want to make is that the ability to deal with some sentences is intrinsically 
connected with the ability to deal with other sentences, by virtue of structural 
commonalities in their form. Thus, they say, the ability to understand the sentence 
"John loves the girl" entails and is entailed by the ability to understand the sentence 
"The girl loves John" . Systematicity is thus a property of mastery of the syntax of 
a language. The point of the argument is that 

"thought is systematic too, so there is a precisely parallel argument 
from the systematicity of thought to syntactic and semantic structure 
in mental representations." 

Fodor & Pylyshyn (1988, p.39) 

Just as you don't, apparently, find people who can understand "John loves the girl" 
but not "The girl loves John", so too you don't, apparently, find people who can 
think the thought that "John loves the girl", but not the thought that "The girl loves 
John" . "...systematicity arguments infer the internal structure of mental 
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representations from the patent fact that nobody has a punctate intellectual 

competence. " (Fodor & Pylyshyn 1988, p.40). 

This argument, and two further arguments have a similar form. Fodor and 
Pylyshyn claim that cognitive competences are all fundamentally systematic and that 
the only way to explain this systematicity is to appeal to processes which are 

structure sensitive. 

"Cognitive capacities come in structurally related clusters; their 
systematicity is pervasive. All the evidence suggests that punctate 
minds can't happen... The only mechanism that is known to be able 
to produce pervasive systematicity is Classical architecture." 

Fodor & Pylyshyn (1988, pps.49-50) 

There are various reasons for caution about this conclusion. First, it is notoriously 
difficult to argue from task performance to a mechanism. Fodor has made the point 
himself; "there are, in general, lots of mechanisms that can perform a given task, 
so that inferences from a task to a mechanism are up to their ears in affirmation of 

the consequent" (Fodor 1990, p.207). Thus, even if Fodor and Pylyshyn are right 
with their systematicity claims, they may still be wrong in their mechanistic 

assertions. The neuropsychological literature is a ready source of findings which 

suggest that the systematicity of normally functioning cognitive capacities, such as 

it is, is the result of the simultaneous activation of mechanisms which have very 

little in common with the, admittedly very sparse, outline provided by Fodor and 

Pylyshyn (cf. Walsh 1978; Shallice 1988). In the face of an increasing amount of 
evidence, it is also surprising to find Fodor and Pylyshyn claiming that "our 

knowledge of how cognitive processes might be mapped onto brain tissue remains 
very nearly nonexistent" (Fodor & Pylyshyn 1988, p.57). 

Like the arguments proposed by Newell and by Pylyshyn, those of Fodor and 

Pylyshyn take as their starting point the view that the brain is organized as a Turing 
machine. Many other examples of the same assumption can be found in the 

literature. Because the starting point is an assumption, it is not explicitly argued for 
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and is thus difficult to attack, other than indirectly by pointing to the problems it 
poses and to its departure from Turing's analysis. An alternative is to develop a 
different account. The foundations of such an account are presented in the next 
chapter. 
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Chapter 6. The External Tape Hypothesis. 

The starting point for the External Tape Hypothesis is the fundamental claim that 
the Turing machine was not, and was not intended to be, simply a model of the 
inner workings of the mind. It was a model of a system of states of mind 
interacting with external symbols. In consequence, the Turing machine model does 
not imply, much less entail, that cognitive processes must involve manipulation of 
internal symbolic expressions. Turing gave no indication that internal states would 

or should be constituted in such a way as to include symbolic expressions as parts. 

The different functions of tape and control may require entirely different types of 

explanation and principles of organization. The definitions of both states of mind 

and symbols were pared down by Turing to the barest essentials but there is no 

doubt about their relative locations, the one within and the other without the 

organism. The Turing machine is thus a micro-world in which a minimal mind 

interacts with a minimal environment. What is profoundly interesting is that such 

a spartan system can nevertheless be configured as a universal process simulator. 

What is also clear is that such exiguous notions of state and symbol need to be 

fleshed out if they are to ground a theory of cognitive architecture which locates the 
mind in the brain and in the world. The preceding chapters of the thesis have 

argued for a number of points which demonstrate the plausibility of the ETH as an 

alternative model of cognitive computation. These points are summarized below; 

1) Turing's analysis of computation, described in Chapter 3, is based on a 

principled distinction between the finite state control of a Turing machine 

which models the mind of a human computer, and the tape which models the 

paper on which the human writes. 

2) The generic computer theory of mind takes the brain to implement a whole 

Turing machine rather than just the finite state control. In this respect it 

contradicts Turing's analysis. 

3) The causal nexus of the Turing machine is the configuration, which is a 

combination of the current internal state and the currently scanned symbol. 

In terms of definition 2.1 of Chapter 2, the internal state and the symbol 
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scanned are the two parameters q, and a, of the transition function 8(q, a) . 
These two parameters enable a deterministic system to be capable of more 
than one response to a single input. Multiple internal states enable multiple 
responses to single inputs. The ETH proposes a model of cognitive 
computation which is faithful to Turing's analysis and locates the internal 
state, parameter q, inside the organism and the symbol, parameter a, outside 
the organism. The ETH is thus committed to a view of cognitive states as 
involving aspects of the external environment because cognitive states are 
identified with the computational configurations of the system. The 
existence of multiple internal states rather than autonomous internal symbol 
structures is hypothesized to provide the behavioural flexibility of the 
system. 

	

4) 	Identifying the brain with the finite state control of a Turing machine implies 
that human memory must be treated predominantly as control memory rather 
than as tape memory. Two forms of control memory, functional and 
positional were identified in chapters 2 and 3 and some indication of their 
potential was given. 
If the brain is a finite state control machine, then the flexibility and 
responsiveness of the cognitive system does not result from its being 
structured as a universal machine. It is more likely that the cognitive system 
consists of a large variety of interacting, special purpose mechanisms. 

6) Using Pylyshyn's notion of an "instantiation function" which is a mapping 
from the physical states of a system to its computational states, it is clear 
that instantiation functions might differ with respect to the extent that 
intrinsic properties of a medium function to implement computational 
properties. An extremely efficient implementation might use almost all the 
intrinsic properties of a medium. Knowledge of these properties would 
therefore be essential to a proper understanding of the computational 
properties of the system as a whole. It is quite possible that the 
computational properties of the brain are very closely related to its physical 
properties. There seem, at least, to be good reasons for doubting that the 
brain instantiates binary primitives in the way that computers do. 
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The central claim of the ETH is, in one sense, entirely traditional, but in another 
sense quite radical. It is traditional in that it claims like the generic theory that 
cognitive states should be understood as the configurations of Turing machines. It 
is radical because it denies that the brain alone implements the cognitive Turing 
machine. This gives the claim that cognitive states are configurations a completely 
different character. In particular, it means that aspects of the external environment 
enter into cognitive states. 

To develop the ETH there is a need for theories of various kinds to put flesh on the 
formal bones of Turing's analysis. First, there is a need for a theory of internal 
states to understand how such states can be implemented and to explore the relations 
between structure and function in systems of states such as the control automata of 
Turing machines where there is no separation between structure and function of the 
kind found in universal machines and digital computers. Part of such a theory will 
be the development of accounts of the different types of control memory which were 
introduced in Chapters 2 and 3. 

Second there is a need for a theory of symbols to determine what kinds of entities 
other than conventional alphanumeric tokens can serve as the symbolic components 
of causal configurations. This theory must include an account of locations and of 
the conditions of stability and permanence which characterize conventional 
computational symbols and will need to have counterparts in theories of external 
computational objects. 

Third, there is a need for a theory of computational configurations to tackle the 
enormous complexity of the systems of interaction which exist between external 
entities and internal states and among sets of internal states. Approaches to 
automata theory like that of Rosenschein (1985), can contribute to this enterprise, 
and the ecological approach pioneered by Gibson (1966,1979) is also likely to 
provide a source of insights. Because the human organism is essentially mobile, 
another requirement is an understanding of the significance of movement. 
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6.1. Developing an account of internal states. 
Turing distinguished what he called automatic machines, whose behaviour was 

completely determined, from those he called choice machines, whose next moves 
were only partly determined by their current configuration and would need to be 

determined by a choice made by an external operator. The machines he discussed 

in the 1936-7 paper were all automatic machines as are modern computers. 

Haugeland (1981) also describes computers as automatic formal systems, but uses 

the notion of automaticity somewhat differently from Turing. For Turing a machine 

was automatic if and only if it was completely deterministic. For Haugeland, a 

machine is automatic provided it can proceed without external intervention. A non--

deterministic machine, plus a set of heuristics to do the choosing when necessary, 

is automatic in his terms. 

For present purposes the crucial point is to see that a deterministic procedure need 

not be carried out automatically, using the latter term in Haugeland's sense. There 

is an important distinction to be drawn between determinism and automaticity. This 
distinction highlights a difference between Turing machines and digital computers 

on the one hand and people on the other which is entirely obvious but worth stating 

because it affects the conception of an internal state which is needed for the ETH. 

The difference is that the behaviour of computers and Turing machines is both 

deterministic and automatic whereas the behaviour of humans even when computing 

deterministic procedures is rarely, if ever, automatic, because it involves operations 

of the will. For instance, if I were to ask you to carry out, with paper and pencil, 

the multiplication of 284613 by 18737265, you would no doubt be able to do so 
using a deterministic algorithm which you learned as a child. But the deterministic 

nature of the algorithm would not make your behaviour automatic if only because 

you could decide to stop and leave the computation unfinished at any time. Further, 

the involvement of the will in human action is not dispensable from a psychological 

point of view. Cognitive and conative processes are intrinsically connected. 

The issue of automaticity links with the question of whether the brain is a finite 

automaton or a Turing machine in an interesting and important way. If the brain 
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is in fact a whole Turing machine, then automaticity at the level of global state 
transitions is a desirable feature because the brain is an automatic system over 
whose operation we have relatively little conscious control, and global state 
transitions, on this model, are internal operations of the brain. Further, it is the 
automaticity of the brain viewed as a computer which protects the generic theory 
from the need for homunculi. If, however, the brain is not a whole Turing machine 
but the finite control system only, then automaticity at the level of global transitions 
is an embarrassment, for the sorts of simple reasons outlined in the previous 
paragraph, viz. that humans are able to stop and start deterministic computations at 
will. Volitional, motivational and affective phenomena must be incorporated in 
accounts of the aetiology of behaviour at such a global level of analysis, if the 
account is to be psychologically plausible. 

What seems to follow is that when states of mind are thought of as global, as Turing 
intended, rather than as internal relations between control processes and symbol 
structures in the brain, a psychologically adequate characterization of state 
transitions will have to acknowledge a range of degrees of automaticity and will 
have to include accounts of attentional and motivational processes where 
automaticity is not assumed. These requirements, allied to the experientially 
obvious but theoretically obscure phenomena of consciousness suggest that a full 
account of the notion of internal state will need a great deal of development. 

The ETH is therefore committed to an understanding of the notion of "internal 
state" which spans a wide range of descriptive phenomena at a variety of levels of 
abstraction. At the level of abstract analysis, the notion is Turing's notion of a 
"state of mind" which is global and unitary. At the level of everyday psychological 
description the "internal state" is a complex assemblage of, for example, attentional, 
motivational, affective and rational phenomena which are likely to depend on the 
interacting operations of multiple mechanisms. The question is whether these 
different levels of analysis can be brought together in a way which preserves 
Turing's state notion. What is required is an analysis which retains the abstract 
unity of the notion of internal state while allowing that the realized, physical state 
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may be complex. As a simple example of the required contrasts consider the 
following different ways of describing the states of a car. Abstractly we might 
describe the car as moving forward in first gear or second gear, as moving in 
reverse, as stationary etc. These global descriptions correspond to a description of 
a Turing machine as being in such and such a functional state. When we come to 
describe what implements the state of "moving forward in first gear", however, it 
is clear that a complex description is needed of the interactions of the various parts 
of the vehicle which contribute to this state. The states of the fuel system, of the 
electrical system, of the cylinders, of the gearbox, of the wheels, etc. all constitute 
elements of the global description. 

6.1.1. Gandy's principles for mechanisms. 

Typically, when thinking of Turing machines, one tends to think of their global 
states as being irreducibly unitary and thus as unsuitable vehicles for the structural 
complexities which are clearly constitutive of real cognitive systems. However, it 
was apparent from the discussion in Chapters 2 & 3, that it is possible to think of 
the state diagram of a Turing machine as something like a logical blueprint for a 
system of parts which could implement the set of transitions constituting the 
machine. Gandy (1980) has made an important theoretical advance by describing, 
in very general terms, the constraints which such complex structures composed of 
multiple, parallel subassemblies must meet if sequences of their states are to 
implement Turing computable functions. 

Using the formalism of hereditarily finite sets, Barwise (1975), Gandy proposed four 
principles which he proved had to be satisfied by any discrete deterministic device 
if its successive states were to form a computable sequence. In order to describe 
a machine, one starts by assigning labels to represent the basic components and their 
states. "We suppose that labels are chosen for the various parts of the machine --
e.g., for the teeth of cog wheels, for a transistor and its electrodes, for the beads 
and wires of an abacus. Labels may also be used for positions in space (e.g., for 
squares of the tape of a Turing machine) and for physical attributes (e.g., the color 
of a bead, the state of a transistor, the symbol on a square)." Gandy (1980, p.127). 



179 

Functional aggregates of components, which constitute complex parts, are described 
by forming a hierarchy of sets of labels. The global state of a machine is 
constituted by the set of sets thus formed and state transitions are defined in terms 
of a "structural function" which describes "the transition between physical states 
with some persistent elements." Gandy (1980, p.129). 

The four principles for mechanisms describe and constrain the hierarchical systems 
which can be constructed in this way. The first principle states that any machine 
can be described by giving a structural set SM  c  HF of state-descriptions, together 
with a structural transition function, F: SM  SM, which describes the state 
transitions of the machine. The importance of the structural function is that it 
applies to potentially complex structures with parts, and allows the definition of 
transitions in which some parts persist, while others are changed. In this way the 
joint seriality and parallelism of a process can be described. The process is serial 
because the structural function maps the global states of a structure at successive 
moments, and it is parallel in that it describes potentially multiple simultaneous local 
changes in the structure which occur in the space of a single state transition. 

The other principles place restrictions on the set of state-descriptions and on the 
transition function. The second principle, called "The Principle of Limitation of 
Hierarchy", requires that there be an upper bound on the set-theoretic rank of the 
state-descriptions, i.e. that the number of levels of descriptive structure must be 
finite. This means that there must be a finite limit to the nesting of parts within 
parts, therefore that the parts of a machine may not be infinitely complex. 

The third principle called "The Principle of Unique Reassembly" states that any 
machine must be constructible from parts of bounded size which can be labelled so 
that there is a unique way of putting them together. This prevents the specification 
of an infinitely large machine in a way which is not forbidden by the second 
principle, i.e. by having infmitely large rather than infmitely complicated parts. 
Thus, for example, a gear wheel with an arbitrarily large number of teeth would be 
disallowed, as would a lever of unbounded length. The principle also enshrines the 
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physical fact that the indentity of an object is a function of the arrangement, rather 
than the individual identities, of its parts. 

"According to quantum mechanics... any two electrons must 
necessarily be completely identical, and the same holds... for any two 
particles whatever, of any one particular kind... What distinguishes 
the person... is the pattern of how his constituents are arranged, not 
the individuality of the constituents themselves. " 

Penrose (1990, p.32) 

The final principle, "The Principle of Local Causality" is the most important. In 
Turing's analysis of computation, the next state of a machine was determined solely 
by its current state, and the current scanned symbol. Turing justified this restriction 
by appealing to the finite perceptual capabilities of a human calculator. "We may 
suppose that there is a bound B to the number of symbols or squares which the 
computer can observe at one moment. If he wishes to observe more, he must use 
successive observations." (Turing 1936-7, p.136). This is an instance of the 
dependence on human capacities which Gandy's analysis seeks to replace. The 
justification for the principle of local causality which replaces the perceptual bound, 
"lies in the finite velocity of propagation of effects and signals: contemporary 
physics rejects the possibility of instantaneous action at a distance" Gandy 1980, 
p.135). Newell (1990) bases an argument for distal access on the same physical 
considerations. The principle of local causality requires that the next state Fx of a 
machine can be assembled from a set of overlapping regions, each of which is 
produced by a "causal neighbourhood" of x which is of bounded size. This amounts 
to the claim that the causal whole is the sum of its causal parts. A helpful example 
of the principle in action is the way in which the global states of a connectionist 
network are computed. Each node in a network, except in the case of a fully 
connected net, takes its inputs from one subset of the other nodes and delivers its 
output to another subset of those nodes. The activation level of a node, and the 
weights on its connections to its neighbours are all determined locally. Hence, the 
next state of any node in a network can be computed by considering a restricted 
"causal neighbourhood" of other nodes and connections, and the next state of the 
whole network can be arrived at by sequential consideration of the set of such causal 
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neighbourhoods. If this were not so, the simulation of connectionist networks on 
serial digital computers would not be possible. The principle of local causality 
could also be taken to imply the validity of orthodox scientific tactics which work 
towards an understanding of the whole of a complex structure or process via 
piecemeal study of its parts. 

An important general point about the principles is the following; 'It is perhaps worth 
emphasizing how unrestrictive the principles are. Unlike most automata and 
algorithms which have been proposed, our treatment does not depend on singling 
out any set of "elementary" operations.' Gandy (1980,p.145). 

The unrestrictiveness of Gandy's principles has a number of consequences for 
cognitive theorizing. First they show that it cannot be demonstrated that cognitive 
processing has to involve explicit, internal symbolic expressions in order to be 
"computational". A system is computational if and only if it meets the requirements 
of Gandy's four principles and these do not specify that explicit, internal symbolic 
expressions are required. Symbolic expressions will often be convenient, relatively 
easy to implement, etc. but they are not necessary. A connectionist network is an 
example of a type of computational system which meets the requirements without 
involving structured expressions. This calls into question certain arguments to the 
contrary. Pylyshyn (1984), for example, has argued that explicit symbols are 
constitutive of computation and hence must be involved in cognition if it is indeed 
a kind of computation. "...so long as we view cognition as computing in any sense, 
we must view it as computing over symbols. No connectionist device, however 
complex, will do, nor will any analog computer;" Pylyshyn (1984, p.74). Gandy's 
position may be thought somewhat more secure because he provides proofs for the 
four principles whereas Pylyshyn's argument about computation is informal and 
intermingled with ideas about the requirements for cognitive explanation. 

Second the unrestrictiveness of the principles seems to show that connectionism will 
not rewrite the bounds of the computable as suggested, for example, by Smolensky 
(1988). Although Gandy explicitly intended the principles to cover discrete devices 
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only, his interpretation of what constitutes a discrete device is liberal. 'In principle 
the state of any concrete device can be adequately described by specifying, to a 
certain degree of approximation, the relevant physical parameters (chemical 
composition, pressure, current flow and so on) of sufficiently small regions of 
space. (By using the words "concrete", "mechanical" and the like, we intend that 
these regions will always be very much larger than the size of an atom). ' Gandy 
(1980,p.130) The approximations to continuous systems provided by the computer 
realizations of connectionist nets seem to fall within the scope of Gandy's principles 
and thus not to transcend the boundaries of Turing computable functions. 

The unrestrictiveness of the principles, taken in conjunction with the fact that the 
brain, in Turing's scheme realizes a finite state machine and not a Turing machine, 
suggests that the traditional abiological stance of cognitive science may need revision 
in order to encompass a satisfactory notion of internal state. There are two reasons 
for this. The first is that the principles suggest that there need not be a privileged 
symbol level at which distinctively "computational" operations take place. The 
second is that the identification of brain with a finite state machine suggests that 
there is no simple distinction to be made between program and hardware. Taken 
together, these two points suggest that a full understanding of cognitive processes 
will require consideration of a much wider range of levels and linkages between 
them than has traditionally been supposed. The principled distinctions which exist 
between the various levels of a computer system, for example, may simply not exist 
in the brain. It may be, for example, that a rather detailed account of the properties 
of neurons will be required to explain the computational capacities of the brain as 
a result of the efficiency of its instantiation function. To argue thus is not to claim 
that psychologists should stop doing psychology and start doing neuroscience. It is 
simply to claim that the principled separation of program from hardware which 
exists in computers and in universal Turing machines, and which ensures that, at a 
certain level of analysis, the program level is clearly separable from the hardware 
which executes it, need not be characteristic of the brain as a finite control machine. 
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6.1.2. Mead's analogue silicon modelling technique. 

In chapter 5, brief mention was made of the work of Carver Mead, cf. Mead (1989) 
on the synthesis of analogue circuits in silicon. This work is relevant to developing 
an understanding of the way in which internal computational states might be realized 
in the brain. Consider first, by contrast with the generic theory, what kind of 
account is being sought. The discussion can usefully be based on Turing's 
distinction between states of mind, i.e. m-configurations, and states of the system, 
i.e. complete configurations. In the generic theory, the expressions "computational 
state" and "internal state" are generally both taken to refer to what Turing would 
have called complete configurations, i.e. combinations of the state of the internal 
Turing machine control and the state of the internal symbolic memory, and a change 
of state is generally thought of as involving a transformation of some symbolic 
entity in the latter part of the system. For the ETH, this is the wrong way to think 
about internal states, which should be thought of solely in terms of the m-
configuration part which combines control and memory storage in the same set of 
states, as does a connectionist network. Thus, if one wants to understand the states 
of such a system it is not appropriate to ask what symbolic encodings it might 
contain. An investigation of the properties of its implementation medium is 
required, so as to see what sort of an instantiation function it might support and 
hence how it might support the complex physical interactions which constitute 
implementation of a set of logical states. 

Mead's work can be seen as part of an attempt, based on physical principles, to 
understand the low level capacities of neural circuits which might be capable of 
supporting higher level, e.g. cognitive, phenomena. The basis of Mead's work is 
a conviction that a fundamental understanding of the performance of any efficient, 
complex system must be based on understanding how the intrinsic properties of the 
medium are exploited. One way to understand why this work is being done now 
and what its significance might be is to think in terms of research having come full 
circle since the beginning of the computer age with respect to the relation between 
mind and brain. The circle starts with Turing who took an important step towards 
separating the study of the logical functioning of the mind from the details of its 
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instantiation in the brain by abstracting the notion of a " state of mind" from the 

details of its implementation in the brain. Turing had almost nothing to say about 

the constitution of these states, apart from arguing that there could be only finitely 

many of them and that they could be organized systematically in the service of 
routine computation. The separation of function from substance allowed for the 
development of computers which performed logical, apparently mind-like tasks on 

the basis of clear organizational principles. These principles were synthesized and 

understood at a time when the kind of detailed knowledge of cortical micro-circuitry 

which is now current was still some way in the future. Much of the modern study 

of cortical circuitry depends on techniques developed since the late 1970's, Douglas 

& Martin (1990, p.433). The impressive speed and range of the new computers 

suggested that perhaps the mind was organized as a computer. Aspects of neural 

functioning, such as the action potential suggested a possible basis for binary coding 
in the brain which might function as the binary encoding at the basis of computer 

operation. The development of high level programming languages whose syntax 

more closely approximated that of natural languages than did the syntax of machine 
languages confirmed the possibility of a variety of levels of understanding of 

computer systems which were redolent with insights for those seeking to understand 

the relationship between brain and mind. The computer thus came to serve as a 

model of how the mind might be organized. Hence the generic theory. However, 

some forty years of experience has served to demonstrate that for most cognitive 

tasks, the computational power of the brain is orders of magnitude greater than that 

of the fastest supercomputers, even though the computational primitives of the latter 

are millions of times faster than neurons. Now the point has been reached where 

the brain is once again the focus of attention. If its computational processes can be 

understood the potential will be there for another explosion of growth in computer 

technology. As Mead demonstrates, the fabrication techniques for very large and 

wafer scale integration have reached a level of sophistication where it becomes 

possible to think of building systems which are neurally realistic with respect to both 

numbers of processing elements and their processing style. 

From the point of view of the ETH, work of this kind must be of fundamental 
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importance in the long term for the development of cognitive theory. The brain, 
according to Turing's analysis, is a control automaton with an astronomically large 
but finite number of states. Most computer technology is not of assistance in 
understanding the structures and processing of such automata because, with rare 
exceptions, it has been dedicated to minimizing the control circuitry and 
concentrating on maximizing the internal memory space available. The point, of 
course, is that if the control is structured as a universal interpreter it is provably 
sufficient to compute any computable function and everything else can be done in 
software. The fundamental difference that thinking of the brain as a finite 
automaton makes is that structure and function are inseparable and cannot be 
separated in the way that software and hardware can be separated in a computer. 
Limited insights into the ways in which sets of states of an automaton might be 
aggregated to produce complex functionality can be obtained from the construction 
and study of large automata like Turing's original machine, but it is quite clear that 
study of the brain can be expected to yield increasingly important insights as both 
neuron staining techniques and techniques for live monitoring of brain function 
continue to improve. It is both sobering and exciting to realize just how limited 
have been the techniques with which current knowledge of the brain has been won 
and thus how much new progress can be expected with the techniques currently 
being developed. It is only since the 1980's, for example, with the advent of tracers 
like horseradish peroxidase that morphological and functional properties of single 
neurons in neocortex have been able to be identified simultaneously, Douglas & 
Martin (1990, p.391). 

Mead's work is based on the following considerations. First that "neural systems 
evolved without the slightest notion of mathematics or engineering analysis...But 
evolution had access to a vast array of physical phenomena that implemented 
important functions. It is evident that the resulting computational metaphor has a 
range of capabilities that exceeds by many orders of magnitude the capabilities of 
the most powerful digital computers." Mead (1989, p.5). The second point is the 
maturity of transistor fabrication technology as mentioned above. Mead's proposal 
is to use this technology, evolved for digital computation, as a modelling substrate 
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in the service of the study of the brain. The method is to develop a silicon nervous 
system. 

"The constraints on our analog silicon systems are similar to those on neural 
systems: wire is limited, power is precious, robustness and reliability are 
essential... The effectiveness of our approach will be in direct proportion to 
the attention we pay to the guiding biological metaphor...First we will 
describe the relevant aspects of neural wetware at the level of abstraction 
where we will be working. We will then develop the operations that are 
natural to silicon, and examine how they can be used to implement certain 
known neural functions." Mead (1989, pp.7-8). 

Early results from the research programme have been encouraging and suggest that 
it is indeed a valuable method. The silicon retina (Mahowald & Mead, 1991) is an 
interesting example. Its performance is intriguing, particularly the fact that it is 
subject to some of the same illusions as the human visual system. Implicit support 
for a proposal like the ETH is quite evident; 

"The interplay of context and adaptation is a fundamental principle 
of the neural paradigm. It also imposes some interesting constraints 
on neurally inspired circuits... change is a necessity for neural 
systems... This requirement for change firmly situates a neural circuit 
in the world that it observes, in contrast to digital circuits, whose 
design implicitly assumes separation between the system and the 
outside world." 

Mahowald & Mead (1991, p.44.) 

6.1.3. Conrad's trade-off principle. 

An analysis of some slightly different issues which are relevant to questions about 
the nature of the states of automata can be found in the work of Michael Conrad 
(1974, 1985, 1988). Conrad argues that there is a trade-off principle relating a 
variety of fundamental factors in computational systems; 

"A system cannot at the same time be effectively programmable, 
amenable to evolution by variation and selection, and 
computationally efficient. The von Neumann computer opts for 
programmability. The trade-off theorem suggests that an alternative 
domain of computing is in principle possible, where programmability 
is exchanged for efficiency and adaptability. Biological systems, as 
the products of evolution, must operate in this alternative domain." 
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Conrad (1985, pps. 464-465) 

To understand the arguments for the trade-off principle it is crucial to understand 
the physical basis of the analysis. Information processing systems are "systems 
which dissipate energy in certain interesting (or highly selective) ways. " (Conrad 
1974, p.83), and Conrad maintains that programmable systems are essentially much 
less efficient than non-programmable systems, because of the way they use their 
physical resources. 

The basic idea is quite simple but depends on a potentially controversial notion 
about what sorts of processes can be called computational. The standard answer is 
that the definitive notion of a computable process is the Turing machine. Conrad 
argues that this view is unjustifiably restrictive. 

"Turing machines... are particular models of computation. They are 
particularly useful as reference points for evaluating the amount of 
computational work performed by arbitrary dynamical systems, not 
as delimiting the class of behaviors admitted to be forms of 
computing." 

Conrad (1988, p.287) 

Conrad argues, on the basis of a strong interpretation of the Church-Turing thesis, 
that any physical process can properly be treated as a computational process. 

"...all physically realizable dynamics are equivalent to computation 
in that they can be simulated by a von Neumann computer under the 
idealization that space and time bounds can be ignored." 

Conrad (1985, p.468) 

The difference between a Turing machine and an arbitrary physical system, says 
Conrad, is not that the one computes and the other doesn't but that the former has 
a potentially universal simulation capability, i.e. is programmable, whereas the latter 
will usually have a very restricted simulation capability, i.e. is not programmable. 
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Conrad developed what he calls the "trade-off principle" to explore the differences 
between programmable and non-programmable computational systems. The principle 
can be used to show that programmability is purchased at the cost of efficiency. 
The reason for this cost is that programmability implies controllability, and 
exercising control is an energy intensive business. This is a fundamental aspect of 
physical processes generally. The internal combustion engine in a car, for example, 
converts only a fraction of the energy it consumes into motion. This is due, in part, 
to the large amount of energy required to control the sequence of explosions which 
delivers power to the wheels. Computation is also a physical process in real, as 
opposed to abstract, machines and Conrad's argument shows that controlling 
computational processes necessarily decreases the energy available for task specific 
performance just as control of any other physical process decreases the available 
task energy. This is clearly true of digital computers, and is evident in the large 
amount of heat which has to be dissipated when they are run. This aspect of the 
trade-off principle also explains the very notable differences in efficiency between 
universal machines and the machines they simulate. The description of a target 
machine on a universal machine's tape is a control process which constrains the 
subsequent behaviour of the universal interpreter. 

Perhaps more surprising is an aspect of the trade-off principle which shows that 
programmability and evolutionary adaptability are incompatible. One might be 
inclined, intuitively, to suppose that the general purpose capacity which is conferred 
by programmability would be consistent with adaptability. Newell (1990) for 
example, argues strongly for this point. Conrad develops an argument which shows 
this is an unreliable intuition. He starts by arguing that for a system to be evolvable 
it must be capable of "accepting" at least one structural change. "A system accepts 
a structural change if its performance improves or if it is capable of lasting long 
enough to accept another change, eventually leading to an improvement. " (Conrad 
1988, p.294). The argument for this threshold condition rests on probabilistic 
analyses relating the time scale of evolutionary processes to the likelihood of 

multiple, simultaneous, structural changes. Conrad then argues, using a proof 
similar to Turing's proof of the unsolvability of the halting problem, that the 
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problem of ascertaining whether a programmable system meets this condition, is, 
in general, unsolvable, even when the criterion for an "acceptable" structural change 

is very weak. By contrast, there are structural changes which non-programmable 
systems can be shown to "accept" in the required sense. Thus at a minimum, 

"programmable systems are not as effectively structured for evolution as 

nonprogrammable systems." (Conrad 1988, p.293). 

Conrad's arguments lead towards a conclusion which supports the ETH. The brain 

is clearly an evolved system, and hence likely to be non-programmable, i.e. it is 

unlikely to be organized like a digital computer or a universal Turing machine. 

This supposition is reinforced by that aspect of the trade-off principle which shows 

that it will also be more efficient if it is non-programmable. There is no reason, 

however, why the brain should not have evolved so as to include among its huge 
number of internal states, a set which functions as the finite state control of a 

universal machine, whose programs are to be found in the environment. This yields 

a system which is both efficient and responsive to its environment. Conrad draws 

much the same conclusion; 

"...it would be possible to build a structurally nonprogrammable 
computer that is nevertheless effectively programmable at an 
interpretive level. There is a model for such a machine: People can 
read and follow rules despite the fact that the human brain, as a 
product of evolution, must be structurally nonprogrammable." 

Conrad (1985, p.475) 

6.1.4. Summary. 
To summarize the discussion of internal states viewed from the perspective of the 

ETH, the following points are particularly noteworthy. Turing's analysis leaves open 

the question of how such states are implemented. The discussion of chapters 2 and 

3 suggested that memory was implicit and positional in the control automata of 

Turing machines, so the hypothesis of the ETH is that these forms of memory will 

also be characteristic of the brain and some evidence was cited in chapter 3 which 

suggests that this is indeed so. Sets of states computing deterministic functions need 
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not be executed automatically. This gives rise to the requirement for an analysis of 
attentional, affective and motivational mechanisms as proper parts of internal states. 
Gandy's principles for mechanisms show how complex, structured systems of parts 
can function as "states" of Turing machines. Mead's work with analogue silicon 
systems suggests that the intrinsic properties of the brain may be fundamental to its 
computational functioning, and Conrad's trade-off principle suggests further reason 
for doubting that the brain implements a programmable computer of the kind we are 
familiar with. The conclusion to be drawn from this discussion is that the ETH 
argues for the relevance of neurobiology and other relatively low-level investigative 
disciplines to the construction of a proper understanding of internal states. It is 
important, however, to be aware that cognitive states are not identified with internal 
states in the ETH. Cognitive states are identified with the configurations, (and 
possibly complete configurations) of the organism-environment Turing machine. 
Thus it is entirely appropriate to argue both for the indispensability of neurobiology 
to the understanding of cognitive processes and also for the irreducibility of 
cognitive states to neural states. Cognitive states involve external symbolic entities 
because they are Turing machine configurations not m-configurations. 

6.2. Developing an account of external symbols. 

For an abstract Turing machine, the set E of symbols which constitutes its basic 
inputs and outputs is arrived at by definition and is generally thought of as a set of 

alphanumeric symbols. The alphabet may be small since it is known that all 
computable functions can be defined over the alphabet E = {0,1 } . Binary alphabets 
have proven most suitable for digital computers because binary number systems and 
binary logic are both easily amenable to implementation in digital electronics. The 
essential formal property of symbols for computation is type identity, such that each 
token of a given symbol is unmistakably identifiable as such and unmistakably 
distinguishable from tokens of any other symbol. Conventional alphanumeric 
symbols are particularly clear exemplars since they have few other intrinsic 
properties, but there seems to be no reason to suppose that entities with properties 
in addition to type identity might not serve as computational primitives. Because 
Turing was investigating the computation of real numbers expressed in binary 
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notation, he was concerned exclusively with numerical symbols, but in consequence 
of his work it is clear that computation is a very general type of process which 
might be carried out over basic elements of many kinds provided, at a minimum, 
that they meet the type identity condition. Appropriate entities are those which can 
be reliably identified and paired with internal states to act as configurations which 
determine behaviour. 

Because the ETH locates the "tape" of the cognitive Turing machine in the 
environment, its machine table must be taken to describe a system of organism - 
world interactions, rather than a system of interactions between states of the brain 
which function as symbolic representations of external events and objects, and states 
of the brain which process those representations. This poses an immediate problem. 
Organisms interact with a wide variety of external inputs and not just with 
conventional alphanumeric symbols. Indeed, it is likely that there is an indefinitely 
large possible set of inputs which might impinge on the human organism. However, 
a machine table is, by definition, a finite structure. Thus it is clear that if a 
machine table is to make reference to external entities, either these must be 
restricted to conventional symbols, or a way must be found to characterize the 
notion of symbol in a way which allows for the richness of organism-environment 
interactions, but at the same time imposes sufficient constraints for finite realization. 
Given that there is no principled reason why conventional symbols should be 
privileged, the latter option is preferable. One promising way to proceed is to think 
in terms of the relationship between the primitive symbols of a universal Turing 
machine and the encodings of target machine symbols constructed out of them. This 
suggests that perhaps there may be symbolic primitives among the inputs which 
humans receive which serve as the basis for more complex, probably learned, 
symbols. A clear place to look for these would be in the behavioural repertoires of 
neonates and young infants. If one were to observe systematic differences of 
response to specific classes of stimuli, at ages sufficiently early to making learning 
an improbable explanation, there would be grounds for suggesting that these classes 
of stimuli functioned as basic symbols. 
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Recent research in child development strongly suggests that babies are equipped at, 
or very shortly after, birth with a range of reactions to specific classes of stimuli. 
These results are in marked contrast to the prior Piagetian orthodoxy which argued 
that children at birth were equipped only with very general sensory and 
discriminative capacities. Neonates are particularly responsive to auditory stimuli 
within the frequency range of the human voice, and they show special sensitivity to 
human speech sounds, Aslin, Pisoni & Jusczyk (1983); Eimas, Miller & Jusczyk 
(1987). Infants also appear to be specifically equipped to recognize human faces. 
By two to three months when infants are sensitive to pattern structure they prefer 
a schematic face to scrambled arrangements of features, Maurer (1985) . More 
recently, Johnson & Morton (1991), Morton & Johnson (1991) have shown that 
neonates preferentially attend to stimuli with a face like arrangement of elements. 
Johnson & Morton hypothesize that two neural mechanisms underlie this 
performance. The first, which they call "CONSPEC" is a sub-cortical mechanism 
which is functional at birth. The second, "CONLERN" is a cortical mechanism 
which takes input from "CONSPEC" and controls face recognition from about the 
age of two months. Being able to distinguish faces from non-faces reliably is 
logically the same sort of process as being able to distinguish 'O's from ' 1's 
reliably, and there seems no reason to deny that faces can act as computational 
primitives given that binary digits can. From the point of view of the ETH, the 
combinations (FACE,CONSPEC) and (FACE,CONLERN) can be thought of as 
configurations of the cognitive Turing machine. 

Pre-linguistic infants also seem to be sensitive to a distinction between animate and 
inanimate objects based on the different ways in which they move, Mandler & Bauer 
(1988), and Premack (1991) has argued that movement is the basis for a built in 
capacity to distinguish intentionality from causality. He argues that infants are hard-
wired so as to divide objects into two classes, those which are self-propelled and 
those which are not. He suggests that the induced movements of non-self propelled 
objects are the basis for perceptions of causality and that the free movements of self-
propelled objects are the basis of perceptions of intentionality. More generally, the 
infant's perception of objects appears to make use of a variety of built in 
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mechanisms which instantiate four principles, boundedness, rigidity, cohesion and 
no action at a distance, Spelke (1990); Karmiloff-Smith (1992, Chapter 3) . 

The famous visual cliff apparatus developed by Gibson & Walk (1960) also suggests 

that infants are sensitive to marked environmental discontinuities. The visual cliff 

was used to show that by the time babies can crawl they are sensitive to potentially 

dangerous drops and behave accordingly, and other types of studies, for example 
by Arterberry & Yonas (1988) indicate that kinetic depth perception is present at an 
even earlier stage, by three or four months of age. The perception of dangerous 
versus safe in terms of potential drops appears to have the logical qualities required 
for a primitive symbol. 

6.3. Developing an account of configurations. 
The accounts of states and symbols described above lead very naturally to a 
consideration of the interactions between them. Once the machine table of a Turing 
machine is seen as describing a system of organism-environment interactions, a new 
perspective on cognitive computation becomes possible. There is a profoundly 
suggestive analogy to be drawn between the complex interlocking of internal control 
states and symbol structures on the tape of a Turing machine on the one hand and 
the interlocking of organisms and their environments on the other. This analogy 
suggests that Turing's analysis of computation is an ideal basis for a formal 
understanding of human ecology. Turing's machine model shows that to understand 
the cognitive system requires understanding not just the organization of the brain but 
also the organization of the environment and the system of relations which 
constitutes the basis of interaction between brain states and environmental entities. 
The crucial generalization, for psychological as distinct from logical approaches to 
computation, is to broaden the scope from the treatment of conventional symbolic 
entities such as digits, which constitute the symbolic resources with which Turing 
was exclusively concerned, to any sets of entities which, when paired with sets of 
brain states to implement configurations, constitute the definitions of effective 
procedures. The point to press as the focal issue for the development of 
psychological theory is not the central logical feature of universality which Turing 
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demonstrated such that any clearly describable entity or process can be represented 
in conventional symbolic terms and simulated by a single machine, but the central 
ecological feature of polymorphism such that any clearly describable systems of 
relations between sets of type identifiable entities and states of the brain which result 
in systematic action can be considered as computations. 

6.3.1. Gibson's concept of affordance. 
J.J. Gibson developed an ecological theory of perception which has marked 
commonalities with the ETH. Gibson makes the central point that 

"animal and environment make an inseparable pair. Each term 
implies the other. No animal could exist without an environment 
surrounding it. Equally, although not so obvious, an environment 
implies an animal (or at least an organism) to be surrounded." 

Gibson (1979/1986, p.8) 

Gibson's concept of "affordance" implies an involvement between external objects 
and organisms which is somewhat similar to the relation between an external symbol 
and an internal state which, from the perspective of the ETH, constitutes a 
computational configuration. Gibson described affordances as follows; "The 

affordances of the environment are what it offers jers the animal, what it provides or 
furnishes, either for good or ill... [It is] something that refers to both the 
environment and the animal in a way that no existing term does. It implies the 
complementarity of the animal and the environment." Gibson (1979/1986, p.127). 
The nature of the complementarity was further described as follows: "An affordance 
cuts across the dichotomy of subjective-objective and helps us to understand its 
inadequacy. It is equally a fact of the environment and a fact of behavior. It is 
both physical and psychical, yet neither. An affordance points both ways, to the 
environment and to the observer." Gibson (1979/1986, p.129). 

It is a common misrepresentation of Gibson's claim to suggest that an affordance 

represents only one pole of the environment-subject complementarity. Part of the 
difficulty stems from Gibson's claim that affordances are directly perceived. This 
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is often taken as the claim that the perception of affordances involves no internal 
processing at all, a claim which many critics have found incoherent. But Gibson 
does not claim that direct perception involves no internal processing. "The inputs 
of the receptors have to be processed, of course, because they in themselves do not 
specify anything more than the anatomical units that are triggered." Gibson 
(1979/1986, p.251). The theory of direct perception is not a denial of internal 
processing but part of an attempt to try to understand why percepts are meaningful, 
and what Gibson wants to deny is that external stimuli are given meaning as a result 
of information processing. His claim is that meaningfulness is a consequence of a 
prior, fundamental, organizational principle such as adaptation, which shapes 
cognitive structures so as to relate environment and behaviour. 

The problem of meaning is a difficult one for all computational accounts of 
cognition. For the generic theory, a central part of this difficulty is to understand 
how it is that internal, computational states can stand in the relations to external 
objects which they must have in order to maintain the activity of the organism, 
given that they are also supposed to be semi-autonomous. This problem does not 
arise for the ETH which maintains that external objects contribute directly to the 
computational configurations of the organism. The criticism that such direct 
involvement of the environment renders the organism totally stimulus bound was 
discussed in Chapter 3. It appears that the richness of the organism's set of internal 
states refutes this criticism. Understanding the meaningfulness of inputs is not, of 
course, explained by the direct involvement of external objects in cognitive states, 
but suggests that the beginnings of an account may be found in the evolutionary 
history of the species, and a determination of those aspects of environments which 
would have been particularly salient for our ancestors. For the present it is worth 
re-iterating one of the central points of Turing machine theory which is that the set 
K of internal states and the alphabet E of elementary symbols have, in a sense, to 
be made for each other. States and symbols "mean" what they do by virtue of the 
behaviour which they cause. A configuration is an interlocking pair. This is true 
not just of mono-functional Turing machines but also of universal machines although 
in the latter case, a higher order meaning is also given through the encoding 
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convention for states and symbols of the target machine. 

6.3.2. Rosenschein's situated automata approach. 
Gibson's approach to the relation between organism and environment was largely 
informal but a theorist who has given a prominent place to the interaction between 
machine and environment in a more formal account is Rosenschein (1985). 
Rosenschein was concerned with the concept of knowledge and with understanding 
what is being claimed when a machine is said to know a proposition. He shows that 
it is possible to give a formal account of knowledge for a system which does not 
contain interpreted symbolic expressions, by deriving a notion of the information 
content of the system's internal states. Rosenschein describes two ways of 
understanding claims to knowledge as two different mappings between the real 
world and a formal model of "knowledge" as an operator in an epistemic logic 
based on the modal logic S5, Hughes & Cresswell (1968). In the formal model, the 
truth value of a knowledge claim is evaluated in terms of an "epistemic accessibility 
relation" over possible worlds, which is such that a claim to knowledge in world w, 
is supported if and only if the claim is supported in all possible worlds w' , 
accessible from w. Rosenschein distinguishes two ways of understanding the 
epistemic accessibility relation in terms of computational systems. 

According to the standard, interpreted symbol structures approach, the epistemic 
accessibility relation is understood in terms of a machine's knowledge base. A 
machine can be said to know a proposition either if that proposition is explicitly 
coded as an interpreted sentence in its knowledge base (the syntactic conception), 
or, if it can be derived from other explicitly coded sentences using an appropriate 
set of logical rules (the semantic conception) . The different states of the knowledge 
base constitute representations of the possible worlds relevant to assessing a 
knowledge claim. Under the semantic conception of knowledge, a machine could 
be said to know the infinite corpus of consequences of its knowledge base. Newell 
(1982), for example, takes this view of the knowledge of a machine. Rosenschein 
suggested that a serious problem with either conception was that knowledge, thus 
understood, was not an objective property of the way a machine was embedded in 
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the world but depended on the interpretation given to whichever of its symbolic 

structures were taken to encode facts about the world. Under a different 

interpretation, the machine would possess different knowledge. This is clearly a 
problem which applies, not just to theories in A.I. which were Rosenschein's 
principal concern, but also to any version of the generic theory which takes 
knowledge to consist of interpreted symbolic expressions stored on the tape of the 

cognitive Turing machine. One answer to the problem of multiple interpretations, 
discussed by Pylyshyn, suggests that in practice the interpretation may be fixed. 

"If, however, we equip the programmed computer with transducers so it can interact 

freely with a natural environment... it is far from obvious what if any latitude the 

theorist...would still have in assigning a coherent interpretation to the functional 

states" Pylyshyn (1984, p.44). Pylyshyn recognized, however, that this somewhat 

ad hoc solution might still lead to debate over the propriety of ascribing a particular 

semantic content to states thus constrained. 

Rosenschein's second approach avoids this problem and is also much more in 

keeping with the aims and motivation of the ETH. He proposed "to ground the 

notion of knowledge in objective correlations between machine states and world 

states. " Rosenschein (1985, p.352). Since different world states constitute the 

possible worlds over which the epistemic accessibility relation is defined, the key 

to this alternative conception is to establish a link between machine states and states 

of the world. Rosenschein's model is based on a deterministic finite automaton with 

output, connected to an environment which can be in one of a (presumably very 

large) number of states. The states of the environment are defined as a lattice of 

instantaneous world conditions ordered in terms of their generality. If world 

conditions are taken to be sets of states of affairs, the ordering can be thought of set 

theoretically such that more general conditions contain more specific conditions as 

subsets. The environment generates the inputs for the DFA and responds to its 

outputs. A link between world states and inputs to the automaton is established in 

terms of the "strongest postcondition" function which is the most specific world 

condition, notated as 4/a, that can be guaranteed to hold at time t', given that 

condition irk holds at time t and that the input to the automaton at t is a. The 
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function is extended recursively to deal with sequences of inputs and in this way 
Rosenschein arrives at the notion of the most specific world condition which can be 
guaranteed to hold after the machine has experienced a given sequence of inputs. 
At this stage, a link has been established between world conditions and inputs to the 
automaton but not between world conditions and states of the automaton. 
Rosenschein observes that for each state s of an automaton it is possible to define 
an associated language LS  which is the set of input sequences which leave the 
machine in state s when it is started in its distinguished starting state s o. Languages 
serve as the means for establishing a link between world conditions and states of the 
automaton. Specifically, Rosenschein defines L(0), the language of condition 0, 
which is the set of input sequences picking out world condition 4), and 4(L), the 
condition of language L, which is the strongest, i.e. most specific, world condition 
guaranteed to hold after the occurrence of any sequence of L. Rosenschein uses 
0(L) to establish the desired link between a machine state and a world condition by 

defining the information content of a state s as info(s) = 0(Ls). Finally he shows 

that the epistemic accessibility relation can be defined in terms of the information 
contents of states of the automaton, such that a state of the automaton has a given 
information content in world w, if and only if it has that content in all possible 
worlds w' accessible from w. 

The latter approach to knowledge, which Rosenschein calls the "situated-automata" 
approach has one particular feature which deserves comment from the point of view 
of the ETH. As Rosenschein observes, the situated-automata approach "indicates 
how propositional content can be assigned systematically to arbitrary computational 
states that are not prestructured as interpretable linguistic entities, and thus it serves 

as at least prima facie evidence against the need for a language of thought in order 
to achieve full semanticity." Rosenschein (1985, p.356) Given that the ETH also 
proposes a model in which a deterministic finite automaton interacts with an external 
environment, Rosenschein's analysis suggests that a workable account of knowledge 

will be possible within the framework of the ETH. 
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6.3.3. The significance of movement. 

Rosenschein's approach was explicitly intended to facilitate the design of mobile 
robots, and, more generally, "embedded agents" , which are computer systems that 
sense and act upon their environments, Kaelbling & Rosenschein (1990). In 
Chapter 1 it was suggested that one of the features which makes the Turing machine 
attractive as a model of cognitive architecture is the fact that it includes motion 
relative to the tape as an essential aspect of its functioning. When the Turing 
machine is thought of as a model of an organism interacting with its environment, 
this feature suggests that human mobility is a fundamental characteristic of the 
cognitive system. 

A digital computer, as discussed in Chapter 4, characteristically accesses data by 
using address arithmetic to select a hardwired path to the required location. A 
Turing machine traverses its tape and finds its data by pattern matching. This data 
access method is, of course, one of the principal reasons why the Turing machine 
is an unsatisfactory model for high speed, program driven computation, but it might 
be much more satisfactory as the basis for understanding the data processing of an 
organism, such as the human being, which is essentially mobile. The intuitive 
attraction of the idea is based on the relative permanence and immobility of the 
physical environment. Barring acts of war, earthquakes, volcanic eruptions and the 
activities of the construction industry, the physical environment can be counted upon 
to remain much the same over the sorts of time scales which people are sensitive to. 
This is true at a variety of spatial scales. Buildings remain where they are from day 
to day, and a note written on a sheet of paper and placed in a filing cabinet, can 
normally be retrieved at will. 

Objects take up space, and moving around to gain access to them is an essential 
feature of everyday experience. The generic theory, of course, relies on the 
permanence of objects and the natural environment just as much as the ETH does. 
There is no point in having a memory system which consists of representations of 
an external environment unless the represented environment has at least some 
relatively stable features. But if environmental stability is granted, and if a way can 
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be found of relating directly to the environment without thereby being stimulus 
bound, then the utility of internal symbolic representations as means of freeing the 

organism from the deterministic tyranny of the local stimulus environment becomes 
questionable. 

There is evidence to suggest that our basic sense of orientation to the physical 

environment is maintained by information derived from movement, rather than from 

the perception of gravitoinertial force as is widely believed (Stoffregen & Riccio, 

1988). It is also clear that the neural system is configured to respond primarily to 

change, and change is most clearly produced by movement. 

"Most of the input to our sensory systems is actively generated by 
our body movements. In fact, it is fair to view all sensory 
information as being generated either by the movement of objects in 
the world around us, or by our movements relative to those objects." 

Mead (1989, p.127) 

The generic theorist might respond by distinguishing sensory information from 

perceptual information and arguing that perceptual information results from an 

encoding process which transforms the information about change registered by the 

senses, into the kind of static, representational codes which constitute the elements 

of structured symbolic expressions. It may be impossible to prove that this 

approach is wrong, but there is evidence (Freyd 1983, 1987) for "dynamic 

representations" which appear to have a rather different character. 

The ETH suggests that we must regard the cognitive system as a system which is 

necessarily associated with movement. The primary information processing 

capabilities of the organism are dedicated to extracting information from a 

dynamically changing sensory flux whose characteristics are, at least in the case of 

vision, derived to a considerable extent from the organism's own movements. A 

point that is easily missed if mobility is thought of simply as one among the many 

behaviours in the repertoire of an organism, is that mobility has to be associated 

with a variety of other capacities if it is to be useful. Generally, it helps to be able 
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to see if you can move, but seeing will only help you if you can process the 

information which vision provides at a rate which is appropriate to your speed of 

motion. It is, for example, of little use to be able to sense the chasm yawning at 
your feet, if the cognitive system is unable to process the information fast enough 
to trigger an appropriate behavioural response before you step over the edge. 

"...the mobile organism most likely to succeed is one that is willing 
and able to act quickly on messy and even inconsistent data, is able 
to perform sensory processing tasks in real time, is preferably able 
to integrate the data received through various modalities and deploy 
it flexibly in new situations, and is generally an all-round biological 
achiever." 

Clark (1989, p.63) 

Movement also appears to be involved in triggering processes that result in the 

formation of memory traces via the long term potentiation of synapses in the 

hippocampus (Cotman & Lynch 1989) . An optimal pattern for trace induction 

corresponds to a naturally occurring "theta" rhythm which appears when an animal 

is exploring its environment (Larson, Wong, & Lynch 1986). These neurobiological 

considerations may provide some indication as to why the classic mnemonic 

technique known as the "method of loci" (Anderson 1990, pps. 200-202) promotes 

accurate recall. To use this method a person imagines a path through a familiar 

area. To remember a series of objects, the person "mentally walks" along the path, 

associating the objects with places encountered along the path. Recall is achieved 

by taking another mental walk down the path, retrieving the associated objects as 

successive "locations" are "reached". 

If motion in the external world has something to do with memory, as the ETH 

suggests, then real world analogues for tape locations have to be found if the model 

is to be anything other than figurative. A reasonable natural analogue for a tape 

square is the idea of a place or location, somewhere like Trafalgar Square perhaps, 

or a particular lecture theatre, and there is a certain amount of psychological 

evidence which suggests that place can be associated with memory performance. 

Smith, Glenberg & Bjork (1978), for example, reported that memory for paired 
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associate lists of words was significantly better in the room in which they were 
learned than in another room. 

There is also evidence from studies with rats, that specific neural ensembles in the 
hippocampus function as place recognizers (O'Keefe & Nadel, 1979; O'Keefe, 
1989), and at least one connectionist model has been constructed (Zipser, 1986). 
Hippocampal place cells store information about the current environment and the 
animal's location within it. O'Keefe (1989, p.239) makes the interesting point that 
map construction in rats appears to be motivated by curiosity, rather than by a non-
cognitive factor such as the reduction of hunger or thirst. O'Keefe and Nadel also 
intended their original theory to make contact with the neuropsychological evidence 
relating to amnesia, although this aspect of the work has been controversial (Horel 
1979; Squire, 1979). 

6.3.4. Brooks' studies of mobile robots. 

One other approach to the study of intelligence which is particularly relevant to the 
ETH is the work of Brooks (1990,1991). Brooks claims that A.I. has foundered on 
the issue of representation, and that thinking about representation is the wrong way 
to approach the problems which have to be solved. He motivates his discussion 
with some reflections on the timecourse of biological evolution. On the basis of 
these reflections, he argues that the essential basis for intelligence is not the 
development of sophisticated symbolic representations but "the ability to move 
around in a dynamic environment, sensing the surroundings to a degree sufficient 
to achieve the necessary maintenance of life and reproduction." Brooks (1991, 
p.141). Brooks suggests that the traditional "decomposition by function" analysis 
of intelligent systems into peripheral perceptual and motor modules interacting with 
a central symbolic information processor, is not the best way to proceed. He argues 
for an alternative "decomposition by activity" approach. "An alternative 
decomposition makes no distinction between peripheral systems, such as vision, and 
central systems. Rather, the fundamental slicing up of an intelligent system is in the 

orthogonal direction dividing it into activity producing subsystems. Each activity, 
or behavior producing system individually connects. sensing to action. We refer to 
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an activity producing system as a layer. An activity is a pattern of interactions with 
the world." Brooks (1991, p.146). The methodology inspired by this approach is 
to begin by building a very simple autonomous system and testing it in the real 
world. One example is a mobile robot which avoids hitting things. Once this is 
working properly, an incremental layer, operating in parallel with the first layer can 
be added and tested. The example which Brooks gives is the activity of trying to 
visit distant visible places. These two activities working together constitute a 
machine which tries to visit distant places but avoids hitting obstacles on the way. 
The control interactions between the layers have to be carefully engineered, but the 
advantage of the approach is that it gives an incremental path from very simple 
systems to complex systems. At each stage it is only necessary to build a small 
piece and to interface it to a complete working system. The methodology has been 
used to construct mobile robots which exist in a real office environment and behave 
in a variety of ways. 

Brooks argues that with multiple layers each contributing sensing and acting, there 
is no central representation of the world in the system. The machine is simply a 
collection of competing behaviours. Brooks hypothesizes that "much of even human 
level activity is similarly a reflection of the world through very simple mechanisms 
without detailed representations. " Brooks (1991, p.149). 

From the point of view of the ETH, it is very interesting to note just how many 
parallels there are between Brooks's "decomposition by activity" approach to 
hardware design and Turing's methodology for constructing the control of the 
universal machine. Turing's hierarchical method of construction, based on multiple 
copies of simple m-functions such as the f-unit, hard-wired to produce particular 
types of behaviour, is strongly analogous to Brooks's use of layers of simple finite 
automata. Furthermore, Turing's m-functions individually connect sensing to action 
just like the layers of Brooks's machines. When one has in mind the model of the 

Turing machine as a complex system of states of mind interacting with an external 
environment the likeness between the two proposals is striking. Perhaps this should 
not be too much of a surprise. If the picture of Turing's analysis of computation 
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given in Chapter 3 is correct, it is appropriate to view the brain as a complex multi-
functional finite automaton just as Brooks suggests. From an evolutionary point of 
view, it seems highly plausible also to suppose as Brooks does, that human cognitive 
capacity arose as a result of successive modifications to machines which were 
already functional. 

6.3.5. Representations. 

Finally, it is appropriate to discuss the nature of representations in the ETH. It is 
essential for this purpose, to bear in mind Turing's distinction between m-
configurations which model the "states of mind" of the human computer, and 
configurations which consist of pairs (q,a) of m-configurations and symbols, where 
the m-configuration, q, is internal to the machine and the symbol, a, is external. 
The point of this distinction, as far as the ETH is concerned is that it supports a 
distinction which needs to be made between cognitive states which are world 
involving and mental states which are states of the brain. Whereas the generic 
theory argues that cognitive states are states of the brain and hence, by analogy with 
digital computers, must involve symbolic representations, the ETH claims that it is 
only mental states that are states of the brain and that these, therefore, need not 
involve explicit symbolic representations of the type found on the tapes of Turing 
machines and in the symbolic memories of computers. From the discussion of 
internal states in chapters 2 and 3, it is apparent that the ETH supports the idea that 
internal states, i.e. mental states or states of the brain are representational, but the 
primary mode of representation is by virtue of their implicit memorial capacities 
rather than because they are structured as semantically transparent, syntactic 
analogues of external world entities and events. Given that the functions and 
organization of the various parts of the brain are not, as yet, completely understood, 
it must be the case that the representational capacities of neural tissue and its 
organization are also not yet completely understood. It may be, as discussed in the 
next chapter, that some parts of the brain do operate in a more explicitly symbolic 
mode than the above analysis suggests. However, the ETH is strongly committed 
to the view that, until proved otherwise, the parsimonious hypothesis about mental 

states as opposed to cognitive states is to think of them as representing implicitly by 
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virtue of their various levels of functionality in the economy of the brain as a whole. 
By contrast, cognitive states consist of configurations of mental states and external 

symbolic objects and represent accordingly. The importance of the mental state 

component of cognitive states is that they provide the control of the system's 

operations. A distinction was made in Chapter 3 between the determination of 
behaviour and the control of behaviour. It was suggested there that external objects 

and events could usefully be thought of as contributing to the determination of 

behaviour while internal, mental states, controlled it. One point of the distinction 

was to describe how the nesting of m-functions, which appears to be characteristic 

of complex automata, can lead to complex behavioural outcomes which are best 

thought of in terms of multiple sources of control, even though, at any given 

moment, only a single configuration is operative. The representational content of 

cognitive states will depend at least in part on whether or not the external 

components of those states have consensually agreed referents. The discussion of 

representation is continued in the next chapter in the context of links between the 

ETH, connectionism, and the representational redescription hypothesis of Karmiloff-

Smith (1992). 
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Chapter 7. The External Tape Hypothesis, Connectionism and 

Cognitive Development. 

In the first part of this chapter the relationship between connectionist networks and 
the finite control automata of Turing machines is discussed. The discussion is 
initially limited to feedforward networks trained using the backpropagation algorithm 
because these are the networks which have figured most prominently in 
psychologically oriented applications. The purpose of the discussion is to establish 
a link between connectionist research and the ETH. There has been considerable 
debate over the theoretical status of connectionist models. Smolensky (1988), for 
example, argued that they may constitute a new class of computing machines, 
whereas Fodor & Pylyshyn (1988) argued that connectionism is best thought of as 
an implementation strategy for what they call "classical" architecture, i.e. the view 
of cognitive architecture as a Turing machine implemented in the brain. Much of 
the debate has been focussed on the claim that structured, symbolic representations 
are needed for an architecture to be capable of modelling the cognitive system. In 
a response to Fodor & Pylyshyn, Smolensky (1991) accepted that any satisfactory 
model of the cognitive system would need to satisfy two informal principles which 
he took to be fundamental to Fodor and Pylyshyn's position. These are the 
requirements a) that models of thought must have composite structure because 
thoughts have composite structure and b) that models of mental processes must be 
sensitive to this composite structure because mental processes are sensitive to the 

composite structure of thoughts. Smolensky suggested, however, that connectionist 
methods for implementing these requirements, such as tensor product variable 
binding, were sufficiently different in their commitments from traditional symbol 
processing models as to count as quite different theoretical approaches. 
Nevertheless, Smolensky accepted the long term need to show how composite 
structure and structure sensitive processing could be incorporated in connectionist 
models. 

From the point of view of the ETH, of course, the case for structured, symbolic 
representations of the kind required by Fodor & Pylyshyn rests, at least in part, on 



207 

the disputed assumption that the brain implements a Turing machine. Thus it 
appears that Smolensky has tied himself more closely than need be to the ideas of 

the symbol processing school about what the fundamental requirements are. What 
the ETH has to offer the debate is the suggestion that a radical rethinking of the 

relation between symbolic structures and internal mechanisms is appropriate. The 
suggestion is not that significant structure is not needed, but that a fundamental 

distinction must be made between the kind of symbolic structures available external 

to the organism and the kind of internal control structures that are needed to process 

elements of the external structure. 

7.1. The ETH and connectionism 
The ETH suggests, following the basic claim that the brain should be thought of as 
a finite automaton, that connectionist networks should also be thought of as finite 
state control automata. To make this suggestion is not to belittle the achievements 
of connectionism. The demonstration that arbitrary functions from input to output 
can be learned from training examples and error feedback is an obviously important 
contribution. The suggestion that connectionist networks should be thought of as 
finite automata opens up a discussion about the amount and kind of internal 
structuring which is needed in a network and suggests reasons why feedforward nets 
are insufficient for modelling cognitive phenomena and that more attention should 
be paid to relevant structure in the external environment. The external environment 
is an essential part of the computational capabilities of the cognitive system in the 
same way that the external tape is an essential part of the computational capabilities 
of the Turing machine. 

For this argument to work it must be shown that connectionist networks are 
correctly construed as finite automata. It is clearly the case that fixed neural 
networks are correctly construed thus, cf. McCulloch & Pitts (1943), Arbib (1987, 

Chapter 2). The question then is whether the learning of which multi-layer 
connectionist networks are capable changes the characterization. In chapter 2 a 
relatively brief argument to the effect that it does not was advanced. In this section 
the capacities of multi-layer feedforward connectionist networks which learn by 
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backpropagation are examined in more detail, and the argument of chapter 2 is 
reinforced. The discussion is based on a generic example feedforward network and 
the equations determining its behaviour adapted from Simpson (1990). Some 
connectionists have stressed the "brain-like" properties of feedforward nets, but 
Smolensky (1986) considers them to constitute a distinct analytical level, 
intermediate between the neural and symbol levels, and Douglas & Martin (1990, 
pp.436-7) have drawn attention to a variety of important differences between 
feedforward nets and cortical circuits. 

Figure 7.1. A generic feedforward network. 

Figure 7.1 shows the topology of the basic feedforward network. There are three 
layers of nodes. a1 ...an  is the input layer, b 1 ...bp  is the "hidden" layer, and c 1 ...cq 

 is the output layer. Subscripts n,p,q represent the fact that there may be different 

numbers of nodes in each layer. In many connectionist models there are fewer 
nodes in the hidden layer than in either the input or output layer, a property which 
encourages the formation of encodings which will generalize to novel inputs. The 
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connections between the input and hidden layers are labelled v 11 ...v1n, and those 
between the hidden and output layers w 11 ...w1, . The connectivity shown is full with 
each node at a given level having connections with every node at the next level. 
Other patterns of connectivity are possible, but full connectivity is the norm and 
other patterns do not alter the operation of the backpropagation algorithm. It is also 
possible to have multiple hidden layers of nodes, but again this does not alter the 
operation of the backpropagation algorithm. Pairs of input-output patterns (A k, Ck) 
are defined with elements alk...ank  and cik...cgk. The pattern elements may take 
arbitrary real values, but are most frequently taken to be binary elements 
representing the presence or absence of features in the domain over which the 
semantics of the associative pairs are defined. The input and output patterns are 
commonly interpreted as feature vectors. 

Two types of tasks are commonly studied with feedforward nets. The first is the 
task of reproducing an arbitrary mapping from input to output. Typically the 
psychologically oriented researcher chooses a set of input output mappings which 
has an appropriate interpretation in a specific domain, for example the mapping 
between present and past tense forms of verbs. The task for the network is to learn 

the mapping such that when it is presented with an input vector Ak it produces as 
output the matching vector Ck. In some cases final success is the only issue of 
interest but in others such as the learning of past tense verb forms, where there are 
developmental phenomena such as over-regularization to account for, the learning 
trajectory as well as the final performance is of interest. The second type of task 
is classification or categorization, in which the input vectors Ak are treated as 
members of categories Ck. In a typical case a subset of the patterns constitutes the 
training set and the remainder the test set. The task of the network is to induce the 
"rules" for category membership from the training set alone so as to exhibit 
generalization by classifying the members of the test set correctly without explicit 
training on them. The generic method for training feedforward nets is as follows; 

1) The network is initialized with a suitable set of starting values. Random values, 
usually sampled from the interval [-1, + 1], are assigned to each of the v hi  and the 
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wij . These are the starting values for the connection strengths between nodes in the 
different layers. Random values are also assigned to the activation thresholds of the 
nodes in the hidden and output layers. The set e = {o f  ; 1 < i <_ p} is the set of 
activation thresholds for the hidden layer nodes and the set I' = {'y, I 1 5.  j < q} 
is the set of activation thresholds for the output layer nodes. Thresholds are not 
needed for the input layer nodes because these pass the elements of the input pattern 
to the first layer of connections unchanged. 

2) The training phase. In the training phase, the patterns in the training set are 
presented to the network one at a time. One presentation of the complete set of 
training patterns constitutes an epoch. A large number of training epochs may be 
needed for the network to reach criterion performance. Within an epoch the 
presentation order of training patterns would normally be randomized. Failure to 
do this can result in anomalous representations being formed. A single pattern 
presentation includes the following stages; 

a) The elements a l ... an  of the particular input pattern are transferred to the input 
layer nodes. Each of the hidden layer node activation values b ;  is then calculated 
using the equation 

n 

bi  = f E ahvhi  + @l 	EQ1 
h=1 

EQ1 assigns to each of the nodes in the hidden layer the sum of its weighted inputs 
from the input layer plus its current threshold value, which is an independent term 
with an important function in the error backpropagation process, the whole being 
constrained by the sigmoid threshold function f(x) = (1 + X)-1 . f(x) is sometimes 
known as a "squashing" function because it maps an arbitrary domain of input 
values into the range [0,1]. Some such function is needed to stabilize the network's 
performance by preventing inputs which produce high activation levels from 
dominating the representations formed. 

b) Once the hidden layer node activation values have been calculated, the process 
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is repeated to calculate the output layer node activations, c using the equation  

P  
ci = f 	b=wy  yj 	 EQ2  

The values thus arrived at constitute the calculated output pattern which, to begin 
with at least, will bear no relation to the desired output because it is produced using 
random connection strengths and thresholds. 

c) The third step is to calculate the discrepancy between the desired and the 
computed output for each of the output nodes cj . This is done using the equation 

dj  = ci(1 - c)(cik  - cj) 	EQ3  

The cj  are the computed values and the cjk  are the desired values. The term cj(1 -
cj) ensures that the computed discrepancy is larger relative to the absolute 
discrepancy when the cj  lie near the middle of the interval [0,1] than when they lie 
near either extreme. This means that the rate of change decreases as the cj  approach 
the asymptotic values of 0 and 1. The d i  values constitute the feedback which is 
used as the basis for the adjustment of node thresholds and connection strengths. 

d) Given the di  the next step is to calculate the error of each of the hidden layer 
nodes b i  relative to each of the di . This is done with the equation 

ej  = bi(1 - b^) E wdi 	EQ4  
j=l  

EQ4 shows that the error at each of the hidden layer nodes contains a contribution 
from each of the d;  proportional to the strength of the connection wij . Like the 
the rate of change of the ei  decreases as they approach their asymptotic values. 

e) At this stage modifications to the w ij , i.e. the connection strengths between the 
hidden layer nodes and the output nodes, can be made. The change is defined by 

dw=j  = ab=rij 	EQ5  

where a is a positive constant controlling the learning rate. a would normally be 
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small relative to the activation values b ; . Large values for a produce more change, 
but tend to make the learning less stable. EQ5 shows that the change to a given 
weight w;;  is proportional to the product of the errors of the appropriate hidden layer 
and output nodes b ;  and 

f) The output layer node thresholds are then altered using the same learning rate 
parameter a. The change is given by 

A; = ad; 	EQ6 

g) The input to hidden layer node connections v v;  are then modified using 

Avki  = Bake= 	EQ7 

where ß is a positive constant controlling the learning rate. a, is the value of the 
h'th element of the input vector. 

h) Finally the hidden layer node thresholds are altered according to 

a 6z  = ße 	EQ8 

At this stage, one training pattern has been presented and the appropriate action 
taken to modify the responses of the network in the direction of the required 
association. Steps a) to h) are repeated until the d ;  are zero  or have reached some 

acceptably low value. 

The performance of the network as a whole is achieved by statistical juggling of the 
node threshold values and the connection strengths between nodes. Connectionists 
sometimes talk of a network learning to satisfy multiple simultaneous constraints. 
The most obvious place where this can be seen is in EQ4. The term Ew ;;di  shows 

that the error calculation for a particular hidden layer node involves all of the output 
layer discrepancies and all of the connections from that hidden layer node to the 
output layer. Clearly some of these contributions will be in conflict with each 
other. What happens is that the network minimizes the overall error by finding 

similarities in the (Ak , CJ) pairs, such that the conflicting requirements on hidden 
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layer nodes can be reduced. 

The important questions for present purposes are how to characterize the 
functionality of feedforward networks and what their performance limitations are. 
The first point is the question of capacity. Assuming the cardinality of the input and 
output layers of the network to be the same, and assuming that both input and output 
vectors are binary, both of which are common assumptions, then there are 2 N  input 
patterns and 2N  output patterns definable over layers with N nodes. Thus the input 
and output vectors constitute a finite alphabet of patterns. The question of the 
maximum number of input-output mappings which a network can store with respect 
to a given performance criterion is more difficult to determine because multi-layer 
feedforward networks are resistant to analysis in this respect, Amit (1989, p.271). 
However, although the connection strengths between nodes which serve as the 
system's memory for patterns are continuous, and although the storage of patterns 
is distributed over the nodes and connections among them, there is every reason to 
suppose that network capacity is finite. For simpler but similar, fully connected 
network topologies using distributed storage, provable capacity limitations are 
known, Amit (1989, Chapter 6) which show that the number of patterns which can 
be stored and successfully retrieved is proportional to the number of nodes in the 
network. There is no doubt that some similar limitation applies to feedforward nets. 

The second question is what sort of functions a given feedforward network can learn 
to compute with this finite capacity. Despite the impressive and thought provoking 
performances of a variety of feedforward network applications, the class of 
functions which simple feedforward networks can learn to compute is a subset of the 
class of functions computable by finite state machines. Once one ceases to be 

bewitched by the fascinating learning process, it is clear that a feedforward network 
learns to approximate a function which is defined by a look-up table consisting of 

the set of patterns (Ak,Ck). "Simple function approximation is one level above a 

look-up table in computational complexity; functions can at least attempt to 
interpolate between examples, and generalize to examples that are not in the learning 
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data set. Learning is still fairly simple, although already the subtleties of probability 
and statistics begin to complicate the matter. However, simple function 
approximation has less computational capability than a finite state machine. At 
present, there are no good learning algorithms for finite state machines. Without 
counting, conditional looping, etc. , many problems will simply remain insoluble." 
Farmer (1990, p.183) 

Informally, the exlanation for the limitations on the performance of a feedforward 
net can be couched in terms of its possible responses to its inputs. Consider first 
a feedforward net without error correction by backpropagation. The net has some 
fixed set of connection strengths and some fixed set of node thresholds chosen at 
random. When the net is given an input, its response is produced by applying EQ1 
to produce activation of the hidden layer nodes and EQ2 to produce activation of the 
output layer nodes which produce the elements c;  of the output vector. Because the 
equations EQ1 and EQ2 are fixed, the response of the network for any particular 
input is also fixed. The crucial point to note is that although the activation, and 
hence the response, of the network varies from input A ;  to input A; , for a given 
input A. the response of the network at different times tn, to+k will be the same. The 
network's state is not altered by the processing of inputs. For this reason, it is 

appropriate to describe the network as computing a function from input to output 
which can be computed by a one-state finite automaton defined for the purpose, and 
that the network constitutes an implementation of the machine table for that 
function. 

Now consider a network which, having learned to compute a given function from 
a set of training examples using backpropagation, is being tested on a set of test 
inputs. By definition the network is no longer learning, i.e. backpropagation has 
been turned off. For the reasons outlined in the preceding paragraph, it is clear that 
the network will produce a single fixed output for each of its inputs. The only 
difference between this case and the case above is that the function computed is one 
chosen by the experimenter and taught to the machine rather than one arrived at by 
chance as a result of the random assignment of connection strengths and node 
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thresholds. Thus, a fully trained, correctly functioning feedforward net, is also 
appropriately described as an implementation of a single state finite automaton. 
What the training has done is to make systematic, structural modifications to the 
network to change the function it computes, i.e. it has changed it from a network 
which computes an arbitrary function 4 (A k) to a network which computes a desired 
function tP(Ak) . It is worth repeating that this is not a trivial achievement but no 
purpose is served by overestimating what such networks are capable of. The 
reason, therefore, why simple function approximation by feedforward nets using 
backpropagation has "less computational capability than a finite state machine" is 
that such nets can approximate only those functions which can be computed by 
single state finite automata. 

If that were the end of the story, it would eventually spell the demise of interest in 
connectionist networks for much the same reasons as interest in single layer 
perceptrons declined after the critique of Minsky & Papert (1969). However, the 
situation is much more promising than that. One of the major problems with simple 
feedforward nets has been finding ways of making them sensitive to temporal 
sequences. It is easy to see, in the light of the discussion above, why there should 

be difficulties of this sort. In order for the temporality of a sequence to be 
discriminated it is essential that a given input occurring at one point in the sequence 
be discriminable from the same input appearing at another point. In other words, 
it is essential for more than one response to be associable with a given input. This, 
as described in Chapter 2 requires multiple states and that is precisely what is 
lacking in a simple feedforward network. One solution has been to simulate 
temporal sequence with spatial position. In this way, a vector of n bits can be 
treated as a "window" on the state of a single bit at n successive moments of time. 
The most obvious limitation on this technique is that the size of "window" is limited 

by the size of the vector onto which it is mapped. 

A much more promising technique is the adoption of a network topology which 

includes recurrence. McCulloch & Pitts (1943) showed that nets with "circles" 
were capable of more complex behaviour than nets without circles, because the 
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former, but not the latter could "make reference to past events of an indefinite 
degree of remoteness." McCulloch & Pitts (1943,p.33). This point has an 
interpretation in terms of architectural differences between connectionist networks. 
A circle is an internal loop, so the distinction between nets with and without circles 
is essentially a distinction between nets which have internal processing loops and 
those which do not. A distinction of this kind exists between simple feedforward 
networks, and networks with recurrent connections such as those of Jordan (1986) 
and Elman (1990). 

Work reported by Servan-Schreiber, Cleeremans & McClelland (1989) and 
Cleeremans (1993) using Elman's network architecture has made a significant 
advance in understanding the processing of temporal sequences. In addition to 
input, output and hidden unit layers, Elman's recurrent network has a layer of 
context units which take their input from the hidden unit layer and feed their output 
back to it. The input. to the context units is a copy of the activation vector of the 
hidden units at each time step t. The context units store but do not alter this vector 
which is fed back unchanged to the hidden units as part of their input at time t+1. 

This means that at all times other than to, the hidden unit layer input consists of an 
input feature vector plus a copy of its own activation pattern from the previous time 
step. Cleeremans (1993) has demonstrated how this recurrent context layer input 
to the hidden units can be made functionally equivalent to a modification of the base 
state of the network, thus allowing it to learn to behave as a multi-state finite 
automaton, and become sensitive to long distance dependencies in its input 
sequences. 

This is an important result for a number of reasons. First it suggests that 
connectionist networks with recurrence are sufficient to implement the finite state 
control structures which Turing's analysis suggests are what is required of the neural 
part of the cognitive system. Second it shows that this functionality can be learned 
given appropriate starting structures and adequately distinct input sequences, 

although Cleeremans reports some difficulties with the backpropagation algorithm. 
Third, Cleeremans reports that the representations developed over the hidden units, 
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given sufficient numbers of those units, can manifest sensitivity to sequences of 
inputs, provided these are of fixed length, as well as achieving the functionality of 
a finite state machine. This increased functionality has led Cleeremans and his 
colleagues to describe suitably trained recurrent networks as "graded state" 
machines. In so far as people often remember something of how they arrived at 
their current cognitive state as well as what their current options are this is a 
promising characteristic for a network to possess. It is interesting that such a 
marked increase in functionality should come about as a consequence of a simple 
loop which copies activation in a set of units at a given time out to a simple store 
and then back to those units at a later time. The ubiquity of reciprocal and re-
entrant pathways in the nervous system which might perhaps indicate functionality 
of this kind is a major feature of its organization which is widely held to be of great 
significance, Damasio (1989); Edelman (1989); Zeki (1993). 

The previous paragraph should not be read as claiming that the cognitive system can 
be explained as a single recurrent network. It seems highly probable that the 
cognitive system will turn out to involve a large number of modules of varying 
degrees of autonomy. If that is so, then the recurrent network model may turn out 
to be a useful basis for understanding the inner workings of modules. What then 
remains to be done to complete the picture from the point of view of the ETH, 
given the idea of a connectionist net as the implementation of á finite automaton, is 
to understand what is involved in implementing the same kind of relationship 

between the network and its environment as exists between the finite state control 
of a Turing machine and its tape. At this stage, work in robotics, particularly of 
the kind carried out by Brooks, discussed in the previous chapter may provide a 
useful link. 

If the description of cognitive architecture argued for throughout the thesis is 
correct, then we can think of the cognitive system as realizing a Turing machine, 

with the embodied brain as the control and aspects of the environment as the 

symbolic resources. It seems plausible to view the brain and the structures required 
for cognition as capable of being modelled by a modular system of communicating, 



218 

recurrent connectionist networks, each implementing a specific cognitive function. 
This suggestion appears to support the view argued for earlier, that there is no a 
priori requirement for internal structured, symbolic expressions. The control states 
of the finite automata implemented in the brain interact directly with external 
symbols of a variety of kinds. One consequence of this view is that the knowledge 
of the system is implicit in its structure. 

7.2. The ETH and representational redescription. 

The question which is considered in the final part of this chapter is whether, in 
addition to the primary architecture, there are grounds for postulating the existence 
of a secondary system in which part of the knowledge of the system is made more 
explicit. There seem to be two lines of thought leading in this direction. The first 
is the capacity which humans develop for making explicit both to themselves and to 
others at least part of what they know. Just how this capacity should be related to 
the structure of the cognitive architecture is far from clear, but it is, perhaps, a 
point in favour of the generic theory, that the postulation of explicit internal 
symbolic representations can account for this capacity. Humans can make explicit 
to themselves what they know to the extent to which they have access to their own 
knowledge structures. Access of this kind is harder to explain if the ETH is correct 
because knowledge on the ETH account is implicit in the large scale structures of 
the system. It should be noted, of course, that consciousness is an important 
element of the kind of direct access which the generic theory appears to give a 
reasonably natural account of, but the generic theory has no more need of 
consciousness to explain its processing than does the ETH. 

A second, perhaps more compelling reason for thinking that at least part of the 
knowledge of the human may become more explicit than the primary architecture 
of the ETH suggests, is the growing body of experimental evidence which shows 
that children have differing types of access to what they know at different points 
during their development. Annette Karmiloff-Smith has argued, in a series of 
papers and a recent book, Karmiloff Smith (1992) for a model of development 

which incorporates what she calls a process of representational redescription. "The 
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RR model attempts to account for the way in which children's representations 
become progressively more manipulable and flexible, for the emergence of 
conscious access to knowledge, and for children's theory building. It involves a 
cyclical process by which information already present in the organism's 
independently functioning, special-purpose representations is made progressively 
available, via redescriptive processes, to other parts of the cognitive system. In 
other words, representational redescription is a process by which implicit 
information in the mind subsequently becomes explicit knowledge to the mind, first 
within a domain and then sometimes across domains." Karmiloff-Smith (1992, 
pp.17-18). 

According to the RR model, development involves three recurrent phases. During 
the first phase, the child focuses predominantly on input from the external 
environment to create "representational adjunctions" which are more or less 
independent additions to the behavioural repertoire. Phase 1 culminates in what 
Karmiloff-Smith calls "behavioural mastery" which is the ability to perform with 
consistent success in a given cognitive micro-domain, e.g. balancing blocks on a 
narrow support. During the second phase "system-internal dynamics take over such 
that internal representations become the focus of change." Karmiloff-Smith (1992, 
p.19) . These internal representations are hypothesized to pre-dominate over direct 
input from the environment, and may lead to a decrease in successful behaviour, 
thus giving rise to a U-shaped developmental curve such as has famously been 
observed with respect to forming the past tenses of verbs. Finally in phase three 

"internal representations and external data are reconciled, and a balance is achieved 
between the quests for internal and external control." Karmiloff-Smith (1992, p.20). 
The three phases work at different times and at different rates within different 

cognitive domains. Four different levels of knowledge representation are 

hypothesized to underlie the three phases of development. These are termed 
Implicit (I), Explicit-1 (El), Explicit-2 (E2) and Explicit-3 (E3). Level I 
representations are in the form of procedures for analysing and responding to stimuli 
in the external environment. They provide "the ability to compute specific inputs 
in preferential ways and to respond rapidly and effectively to the environment. But 
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the behaviour generated from level-I representations is relatively inflexible." 
Karmiloff-Smith (1992, pp.20-21). Level El representations are compressed, 
abstract redescriptions of the level I representations. They are simpler, in the sense 
of losing inessential detail, but they are more cognitively flexible because they are 
detachable from the specifics of the context in which they were generated. They 
exist alongside, but do not replace, the level-I representations which remain 
available for operations requiring speed and automaticity. Although El 
representations are available as data to the system they are not necessarily available 
to conscious access or to verbal report. Level E2 representations are available to 
consciousness but not to verbal report, while level E3 representations are "recoded 
into a cross-system code. This common format is hypothesized to be close enough 
to natural language for easy translation into statable, communicable form." 
Karmiloff-Smith (1992, p.23). Karmiloff-Smith draws a distinction between the 
process of representational redescription which she takes to be domain general, and 
the RR model which gives a specific account of the process in operation in a variety 
of cognitive micro-domains. This distinction is made so as to allow the process to 
survive the refutation of any particular model incorporating it. 

An impressively wide variety of developmental evidence with a general bearing on 
the model and experiments designed to test specific aspects of it are presented in the 
book, but little detail is provided of the mechanisms which might implement the 
process of representational redescription. This is largely deliberate. "In my view, 
soft-core modeling often leads to a broader intuitive understanding of general 
principles of change, whereas both the information-processing use of the flow chart 
and the symbolic approach to computer simulation run the serious risk of reifying 
into one or more boxes or single-named operators what is in fact the product of a 
highly interactive system." Karmiloff-Smith (1992, pp.175-6). What does seem 
clear is that level-I representations and the notion of behavioural mastery, which 
together form the foundation on which the representational redescription process 
operates, have a very natural interpretation in terms of connectionist models. "...the 
intuition underlying the notion of behavioral mastery maps rather well onto the 
connectionist notion of a network's having settled into a stable state." Karmiloff- 
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Smith (1992, p.182). "It seems plausible that connectionist models can indeed lend 
precision to an account of what I have called phase-1 learning - the phase that 
results in behavioral mastery (i.e. the period of rich interaction with environment 
during which level-I representations are built and consolidated)." Karmiloff-Smith 
(1992, p.189). 

What is much less clear is what sort of mechanism might be involved in producing 
the El level representations and what sort of form they might take. Clark & 
Karmiloff-Smith (1990) and Clark (1993) refer to the technique of skeletonization, 
Mozer & Smolensky (1989) as a possible candidate mechanism. Skeletonization 
computes a measure of functionality or relevance over the input and hidden layers 
of a network and uses this measure to prune the least relevant nodes, but it is not 
clear that this technique effects the kind of transformation of representational format 
which seems to be central to the representational redescription hypothesis. 

The proposal put forward here is that the Turing computable process of self-
description, originally described by Lee (1963), might serve to effect the 
transformation from level-I to level-El representations. Further, given the way in 
which this process might work in the context of the kind of architecture proposed 
by the ETH, an additional advantage is that it provides at least a partial solution to 
the symbol-grounding problem, Hamad (1990). The symbol-grounding problem is 
the problem of understanding how the semantics of a formal representational system 
can be made intrinsic to the system rather than parasitic on the interpretation 

assigned by an outside observer, as is the case, for example, with the symbol 
systems manipulated by computers, cf. Rosenschein (1985) and the discussion of his 
work in Chapter 6.3.2. 

There are three additional reasons why computable self-description might be a 
satisfactory candidate process for the level-I to level-El transformation. The first 
is that it executes precisely the type of function which Karmiloff-Smith requires, i.e. 

the transformation of an implicit structure into an explicit representation of that 

structure. In the case of a self-describing Turing machine, the process can be 
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understood informally as follows. We think of the machine's control as a black box 
whose machine table is unavailable to an observer. The tape of the machine is 
blank at the start of the computation. Thus the observer has no clue as to the 
structures and functioning of the machine. The machine is put into operation and 
begins to write symbols on its tape. When it halts, the sequence of symbols left on 
the tape, is a copy, in some standard format, of its own machine table, which is 
now available to the observer. The second reason why computable self-description 
might be a candidate for the first step in the process of representational redescription 
is that self-description is highly constrained and requires very specific structures and 
sequencing to operate correctly. It should, therefore, be amenable to experimental 
testing. Third, it is a purely automatic process. This is an important characteristic 
for a process which is assumed to provide the basis for explicit knowledge of a 
domain. A process which required consciousness or explicit access to its knowledge 
in order to construct a representation would clearly be unsatisfactory. 
Skeletonization, which uses a measure of relevance as the basis for altering network 
structure is a dubious candidate for this reason. 

To understand the proposal, the process of self-description needs to be set out in 
some detail. It has its origins in von Neumann's investigation of the logic of self-
reproduction. von Neumann asked whether it was possible to construct a machine 
which, given a reservoir of suitable elementary components, would be able to 
construct an identical copy of itself. He answered the question in the affirmative 
and outlined the sequence of steps which such a machine would need to carry out. 
He noted that the self-reproduction capacity was strongly analogous to Turing's 
notion of computational universality. von Neumann's work stimulated logicians to 
tackle the associated problem of self-describing machines. The question was, could 
a Turing machine be constructed which, when started on a blank tape, would 
eventually halt and print out a description of the structure of its finite state control 
in some standard format? Lee (1963) provided the first description of such a 
machine and Thatcher (1963), motivated by Lee's work, produced a considerably 

simpler machine. The point to notice about such a machine process in the context 

of representational redescription is that it does two of the things which Karmiloff- 
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Smith requires. First it produces an explicit symbolic description of the structure 
of its control, and second it does this without altering that structure. The latter 
point is important because Karmiloff-Smith is quite explicit about the co-existence 
of level-I and level-El representations. 

The way in which the self-describing process works is best understood, initially, in 
the context of a high level programming language. The examples are written in 
Pascal. The blank tape constraint is replaced by the constraint that a program may 
not read its own source code from an external file. If this were allowed, the task 
would be trivial. With the blank tape constraint, or its equivalent, the task is rather 
more demanding. At first sight it appears impossible because it seems to demand 
an infinitely long program. Consider the simple program below; 

program simple(output); 

begin 
write('Hello') 

end. 

This program outputs the single word "Hello" , but does not describe itself. Now 
consider a program to describe program simple, i.e. a program whose function is 
to output the source code of program simple. This is easily done as follows; 

program describe_simple(output); 
begin 

writeln('program simple(output);'); 
writeln('begin'); 
writeln(' 	write("Hello" )' ); 
writein('end.') 

end. 

The description is achieved by encoding program simple as a sequence of strings 
which are then printed. There is a syntactic complication in the line "writeln(' 
write("Hello")'); ", which requires a repeated quote mark to indicate that it is itself 
part of the string to be printed and not one of the string's delimiters. Even so, the 
program is straightforward, and, in general, there is no problem in writing one 
program which describes another. However, the same technique applied to the task 
of constructing a self describing program, quickly runs into insoluble difficulties. 
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program self describe(output); 
begin 

writeln('program self_describe(output);'); 
writeln('begin'); 
writeln('writetn(" program seif_describe(output); " );'); 
writeln('writeln(" begin " );'); 
writeln('writeln(" writeln(" " program self_describe(output);  

wri teln('wr i teln( "wri teln(""begi n""); ");' ); 

Clearly, a finite self-describing program cannot be written in this way. The 
problem with the method is that the whole structure grows inexorably, because each 
line of the program requires another line to describe it. A solution to the problem 
is shown below. 

program self_describe(output); 
var 

store : array[1..12] of string[80]; 
i : integer; 

begin 
storell] :_ 'program self_describe(output);'; 
store [2] :_ 'var'; 
store[3] := ' 	store : array[1..12] of stringE80];'; 
store[4] := ' 	i : integer;'; 
storeE5] :_ 'begin'; 
store [6] := ' 	store('; 
store[7] ._ '] ._ '; 
store[8] :_ ' 	for i := 1 to 5 do writeln(store[i]);'; 
store [9] 	' 	for i := 1 to 12 do'; 
store[10] :_ ' 	writeln(store[6],i,store[7], chr(39),store[i],chr(39),chr(59));'; 
store[11] :_ ' 	for i := 8 to 12 do writeln(store[i])'; 
store(12] :_ 'end.'; 
for i := 1 to 5 do writeln(store[i]); 
for i := 1 to 12 do 

writeln(store[6],i,store(7], chr(39),store[i],chr(39),chr(59)); 
for i := 8 to 12 do writeln(store[i]) 

end. 

The key to understanding the solution is to see that the program is divided into two 
sections. The first is the construction of a reservoir of strings of program code. 
This is the array called "store" defined in line 3. It is analogous to von Neumann's 
reservoir of elementary parts for a self-reproducing machine. Lines 6 to 17 stock 
the array with the required components. The second part of the program, lines 18 
to 21 uses the contents of the array to construct a program description. The first 
five and last five lines of the program are constructed simply by copying out the 
contents of the appropriate locations of the store. The construction of the twelve 
lines describing the stocking of the store is slightly more complicated. In order to 
get round the problem of inexorable growth, these lines are put together using 
subcomponents as well as components and require a syntactic fiddle. The 
subcomponents are found in locations 6 and 7 of the store and the syntactic fiddle 
is seen in line 20 of the program. The fiddle involves two different ways of 



225 

referring to characters. One is via direct quotation. The other is via the Pascal 
construction "chr(n)" which represents the ASCII character whose underlying value 
is the byte sized binary pattern representing decimal number n. Thus "chr(59)" 
represents the semi-colon because the semi-colon is mapped onto the binary pattern 
00111011. The importance of the fiddle is that it makes it possible to refer to the 
single quote character without having to double it up. The line "write(chr(39))" is 
equivalent to "write("")" and outputs a single quote mark. 

Some important points about the general form of the process of self description can 
be made by observing two ways in which the program might fail to operate 
correctly. First there is the possibility that one or more of the assignments to the 
storage reservoir is incorrect. If, for example, store[5] contained the string "start" 
rather than the string "begin" , the program would run but would not accurately 
describe itself. Second there is the possibility that the construction part of the 
program incorrectly manipulates the description contained in the array of strings. 
If, for example the final "for" statement read "for i : = 8 to 11 do ... " the 
terminating "end. " statement would be omitted from the self description. These two 
sources of error are quite independent of each other. The assignment of contents 
to the store is independent of the way in which the store is later used, and there is 
nothing in the construction part of the program which is sensitive to the contents of 
the store. The match between the parts is a contingent one. 

As it stands, the self-describing program is a curiosity, the sort of tricky exercise 
that gets assigned to students learning a programming language. From the point of 
view of a possible model of the process underlying representational redescription, 
the program needs to be taken one step further to show that a program which does 

something apart from describing itself can also be made self-describing. One of the 
features of the first self-describing Turing machine constructed by Lee (1963) was 
that it was universal, which demonstrated that any program could, in principle, be 
made self-describing. For present purposes, a simple demonstration suffices. 
Consider the following program which prompts the user for a pair of numbers and 
returns their sum. 
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program add(output); 
var 

i,j : integer; 
begin 

write('Enter a number » '); 
readln(i); 
write('Enter another number » '); 
readln(j); 
writeln('The sum is ',i +j) 

end. 

This function can be incorporated in a self-describing program by using exactly the 
technique adopted for program self describe as shown below. 

program add_and_self_describe(output); 
var 

store : array[1..26] of string[80]; 
: integer; 

begin 
write('Enter a number » 1 ); 
readln(i); 
write('Enter another number » '); 
readln(j); 
writeln('The sun is ',i +j); 
store[1] :_ 'program add_and self_describe(output);'; 
store[2] :_ 'var'; 
store[3] := ' 	store : array[1..26] of string[80];'; 
store[4] :_ ' 	i,j : integer;'; 
store[5] :_ 'begin'; 
store[6] :_ ' 	write('; 
store[7] :_ 'Enter a number » '; 
store[8] :_ 'Enter another number » '; 
store[9] :_ ' );'; 
store[10] :_ ' 	readln(i);'; 
store[11] :_ ' 	readln(j);'; 
store [12] :_ ' 	wri teln('; . 
store[13] :_ 'The sun is '; 
store[14] := 'i +j);'; 
store[15] :_ ' 	store['; 
store[16] := '] := '; 
store[17] :_ ' 	for i := 1 to 5 do writeln(store[i] )'; 
store[18] :_ ' 	writeln(store[6], chr(39),store[7],chr(39),store[9])'; 
store[19] :_ ' 	writeln(store[10])'; 
store[20] := ' 	writeln(store[6], chr(39),store[8],chr(39),store[9])'; 
store[21] :_ ' 	writeln(store[11])'; 
store[22] :_ ' 	writeln(store[12], chr(39),store[13],chr(39),store[141)'; 
store[23] :_ ' 	for i := 1 to 26 do'; 
store[24] :_ ' 	writeln(store[15],i,store[16], chr (39),store[i],chr(39),chr(59));'; 
store[25] :_ ' 	for i := 17 to 26 do writeln(store[i])'; 
store[26] :_ 'end.'; 
for i := 1 to 5 do wri teln(store [i] ); 
writeln(store[6], chr(39),store[7],chr(39),store[9]); 
writeln(store[10]); 
writeln(store[6], chr(39),store[8],chr(39),store[9]); 
wri teln(store[11] ); 
writeln(store[12], chr(39),store[13],chr(39),store[14]); 
for i := 1 to 26 do 

writeln(store[15],i,store[16], chr (39),store[i],chr(39),chr(59)); 
for i := 17 to 26 do writeln(store[i]) 

end. 

The program has a number of features which make it interesting as a candidate 
process for representational redescription, when one thinks of it in terms of the 
hypothesized shift from level-I to level-El. Suppose a child to be capable of asking 
for two numbers and adding them together. This level-I competence might be 
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modelled in terms of a compiled version of program add . The fact that the source 
code of a program is generally not recoverable from the machine code into which 
it is compiled serves to reinforce the point that the child's representations at that 
stage are implicit. The stand alone version of program add represents behavioral 
mastery but no more. Once behavioral mastery has been achieved, or perhaps while 
it is being achieved, one can hypothesize a process of breaking down and storing the 
components of the task performing mechanism in individual, non-efficacious chunks. 
This process is modelled by the part of program add_and_describe in which contents 
are assigned to the store. One might speculate that these somewhat fragmented 
contents could model what Karmiloff-Smith (1992, p.18) calls "representational 
adjunctions" . The final stage in the shift from I to El is completed by the internal 
generation of processes, modelled by the construction part of the program, which 
operate on the store to produce an explicit version of what was initially an implicit 
process. Finally, if one further hypothesizes that the output of the redescriptional 
process is to an area of the brain independent of the part subserving task 
performance, it is possible to see how the implicit and explicit versions of the 
program could co-exist. It is also clear that the explicit representation thus arrived 
at might be neither conscious nor available for verbal report thus remaining 
consistent with the postulation of further development at levels E2 and E3 of 
Karmiloff Smith's model. 

Two other points are worthy of note. The first is the specificity of the task and the 
generality of the process. Karmiloff Smith hypothesizes that the RR process is 
domain-general but can be applied to a variety of specific cognitive capacities. This 
distinction is maintained in add and_describe. The second point is the clear 
separation of task performance from the re-descriptional process. Empirical data 
suggest that representational redescription takes place only when behavioral mastery 
has been achieved. Such a position is consistent with the program although not 
entailed by it. 

An important question is why a self-describing process is more appropriate for a 
treatment of representational redescription than a modified program of the same type 
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as program describe simple. Consider how program add might be treated so as to 
provide both functionality and a description. 

program add and__deseribe_add(output); 
var 

j i j  : integer; 
begin 

write('Enter a number » '); 
readln(i); 
write('Enter another number » '); 
readln(j); 
writeln('The sum is ',i+j); 
write('program add(output);'); 
write('var'); 
write('i,j : integer;'); 
write('begin'); 
write(' 	write(" Enter a number » " );'); 
write(' 	readln(i);'); 
write(' 	write(" Enter another number » " );'); 
write(' 	readln(j);'); 
write(' 	writeln("The sun is " ,i+j)'); 
write('end.') 

end. 

It might be suggested that program add and_describe add is a better basis for a 
model of representational redescription because it provides the functionality of 
program add and also outputs an explicit description of it without all the 
complication of add and_self describe which might, in any case, be thought 
psychologically unrealistic because it describes its own inner structure completely 
which does not seem to be characteristic of the human cognitive system. 

Perhaps the simplest answer to this suggestion is that we do not know what limits 
exist within the cognitive system on the extent to which redescriptive processes can 
make previously implicit structure available as explicit data. Complete self-

description is therefore an idealization of a capacity which we appear to have to a 
considerable extent, but it is no more arbitrary than the idealization which suggests 
that the brain implements a Turing machine even though it is clearly finite in its 
capacities. It may turn out, of course, that the idealization to complete self-
description is flawed in a way comparable to the way in which this thesis suggests 
that the model of the brain as a Turing machine is flawed, but that does not make 
it an arbitrary or un-useful idealization. A second point is that if the cognitive 
system consists of a set of autonomous mechanisms implementing specific 
capacities, i.e. if the cognitive system is modular, it is possible that the functioning 
of individual modules may be made completely explicit via self-description. This 
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can be hypothesized without supposing that every module and hence the cognitive 
system as a whole must at some stage be made explicit. 

Given the program models above as illustrative examples, it is now appropriate to 
turn to the notion of a self-describing Turing machine. The distinction between a 
store which holds the elements of a description and the constructor which puts 
together the description from the elements in the store, is a feature of the Turing 
machine model as well as of the Pascal program versions. It appears that these 
characteristics are invariant features of any completely self-describing system. 

The original self-describing universal machine of Lee(1963) and a simpler non-
universal machine described by Thatcher (1963) were both based on Wang's (1957) 
program model of computation rather than directly on Turing's machine model. 
Minsky (1967, p.287) outlines the way to construct a self-describing Turing 
machine. The first step is to construct a machine T, which converts an arbitrary 
sequence of symbols s ;i  si2  ... , s;  from a fixed alphabet Is ' , s2 , ... ,sr} to the sequence 
go,B,qi ,s;i ,1,X,gi ,B,q2,s 2,1,X,...q ; , B,q,„sia,1,X,s;i ,s;2 ,.•,,s;a  where q;  is the 
integer representation of state i and B is the representation for a blank square. 
When the sequence s;i , si2 , ... , s;  is a representation of the machine T itself, the long 
sequence is a description in quintuple form of a self describing machine. 

Somewhat less formally, a self-describing Turing machine requires a subset of its 
states to implement a machine M i , which prints a string of symbols, S i , on its tape. 
S i  is interpretable as the description of a machine M2 which manipulates strings of 
symbols. The dynamics of Mi  are extremely simple. It consists of a long chain of 
states each of which prints a single symbol. There are no loops or branches and the 
machine moves in one direction only. Bearing in mind that the tape of the machine 
is blank by definition at the start of the self-describing computation, the 
configurations of the machine Mi  are all of the form (q;,B). Once the string S i  has 
been printed, a new subset of states implementing machine M2 takes over. M2 has 
much more complex dynamics. It takes each element S u  of Si  in turn and includes 
it as part of a string which is interpretable as an instruction of Mi , specifically the 
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instruction to print S1 ,;. M2 is constructed so that the first such string it prints is 
interpretable as the first instruction of M 1  and so forth. Thus, when M2 has 
processed each element of S 1  in turn, it will have printed another string S2 which is 
interpretable as the description of M 1 . If M2 includes instructions to print the 
original string S 1  at the end of S2, then the concatenated string S2S 1  can be 
interpreted as a description of the combined machine M 1M2 . Since the machine 
which prints the concatenated string is precisely the combined machine M 1M2 , MiM2 

 is self-describing. 

The mapping between the parts of such a Turing machine and the parts of program 
self describe, while not exact, is indicative of marked functional similarity. The 
string S 1  is roughly analogous to the contents of the store in the program, and hence 
the sub-machine M 1  can be thought of as analogous to the parts of the program 
which define the store and assign contents to it. The sub-machine M2 which 
operates on string S 1  is roughly analogous to lines 18-21 of the program which 
construct the full description from the elements of the store. A further point of 
similarity is that functionality can be added to a self-describing Turing machine by 
incorporating a set of states which carry out the desired function, in much the same 
way that functionality was added to pure self-description with the move from 
program self describe to program add and_self describe. 

The links between the ETH, self-description and representational redescription are 
hypothesized to occur as follows. First, it is hypothesized that the cognitive system 
as a whole is modular or functionally specialized, i.e. that the control automaton of 
the system, while amenable to description in terms of a set of global states, consists 
of a set M = {mi I  1 <_ i n} of n interacting mechanisms much like the system 
of mechanisms (kmp, ce(a), etc.) realizing the control of Turing's universal 
machine. Each of the m  implements the internal control system for a particular 
behavioural capacity such as the capacity to draw a human figure, for example. 
Thus each of the m i  is hypothesized to consist of a set of k states mil  ...ma . An 
individual control system m i  interacts with a set of external media such as paper and 
pencil to produce its characteristic symbolic output. Thus the configurations of the 
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sub-system m i  are of the kind hypothesized by the ETH, i.e. they combine an 
internal control state with external media and the sub-system as a whole can be 

thought of as a Turing machine. Behavioural mastery is reached when externally 
specified performance criteria can be met successfully. The machine table of the 

sub-system m i  is not available to the cognitive system as data at this stage because 

the external media are external and the internal states m ;;  are accessible only in the 

course of execution of the behaviour. It is structures of this kind which are assumed 
to constitute Level-I representations. 

The way in which self-description is hypothesized to work to produce level El 

representations given the basis described above is as follows; it is assumed that 

some part of the brain's storage capacity is available to the growing organism, and 

we might think of this, to a first approximation, as an additional, internal, tape of 

fixed, but possibly quite large capacity. It is hypothesized that this internal tape 

receives the output of the self-descriptive process as it is applied to specific 

behaviour producing sub-machines m i . The suggestion is that this auxiliary tape acts 
like the store array of the self-describing programs and becomes stocked with 

behavioural fragments in the course of the organism's commerce with the external 

world. Some of these fragments will be sensory impressions, others the reactions 

of the organism to those sensory impressions and so forth. As the control system 

of the brain develops it acquires the self-descriptive functionality which in due 

course enables it to process the behavioural and sensory fragments in the store into 

explicit accounts of the activities which produced them. What is particularly 

significant is the way in which the process of self-description interacts with the 

components of the architecture as hypothesized by the ETH. At the stage of 

behavioural mastery, the symbols with which the system works are explicit but 

external. The child is assumed to be able to interact with them but not to reason 

about them because internal representations of them have not been formed. At the 

same time, the states of the sub-machine m ;  are internal but purely implicit. Thus 

again, the child is able to use them but not to reason about them. By hypothesizing 

an internal memory resource as the locus of the output of the self-descriptive 

procedure, the external symbols involved in a capacity become internalized and 
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remain explicit while the internal states remain internal but are made explicit and 
are specifically linked to the internal descriptions of the symbols. Thus a 
description of the whole process becomes available to the system. The reason why 
such a process represents a partial solution to the symbol-grounding problem is that 
the symbols which form the explicit representational accounts produced from the 
store are based on the experiential interaction of the organism with aspects of the 
external environment. 

To take the treatment in the direction of biological plausibility and build a bridge 
between the linear tape of a Turing machine and the neural substrate of the brain it 
is possible to describe some of the basic processes of laying down fragments in 
terms of a canonical network scheme described in Conrad (1985). This scheme 
represents state transitions in a standard form in a simple network and may be 
thought to enhance the plausibility of the suggestions made above. Consider the 
state transition of the simple machine shown in Figure 7.2 when it is in state q0 and 
receives input 0. It makes a transition to state q0. 

Machinery to realize this state 
transition is shown in the network 
of Figure 7.3. The network has 
two columns of nodes representing 
the states q0 and q1 of the 

Figure 7.2. A simple example automaton. 
automaton, and two input lines, 
carrying the inputs 0 and 1 respectively. The nodes are threshold elements which 
will fire if the sum of their inputs equals or exceeds the value shown inside. All the 
nodes in Figure 7.3 have a threshold of 2. 

A state is instantiated when either of the nodes in its column fires. A state 
transition, g l ,si ,q;;  is instantiated in the network by making a connection from each 
of the nodes in the i'th column to the i'th node in the j'th column. In this way, 

when one of the nodes in a column representing a state and an input line both fire 
at time t, the appropriate node for the i,j'th state will fire at time t+ 1. Figure 7.4 
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Figure 7.3. Network representation of g0,0,g0. 

Figure 7.4. Network representation of g0,1,g1. 

shows the connectivity needed to 
realize the state transition g0,1,g1. 

The networks of Figures 7.3 and 
7.4 can be combined as in Figure 
7.5 to give the network 
representation of q0, 0, q0 and 
g0,1,g1. Inspection of Figure 7.5 shows that combining state transition instructions 
in a single network of the kind shown 
distinguish the two instructions. It 
makes the appropriate state 
transition for all combinations of 
state node and input line when the 
current state is q0. This 
performance generalizes to the 
situation where the instructions 
involving state ql are also 
introduced into the network. The 
full system is shown in Figure 7.6. 

does not affect the network's ability to 

What this canonical network capability suggests, thinking in terms of the Turing 
machine model of self-description is that the human equivalent of machine M1  might 
be thought of as laying down instructions as state transitions in an area of neural 
space, by modifying its basic connectivity. Thus, rather than printing instructions 
sequentially on a linear tape, the human M1  superimposes successive instructions, 
which remain functionally separable, on a suitably large area of neural space. A 
feature of S 1  which makes the above treatment plausible is that it is divisible in a 
variety of ways. At the finest grain, each element of S 1  is a symbol. Thirty of 
these symbols form the description of a machine instruction. One to four 

instructions constitute the description of a state (depending on the possible inputs to 
the system in a given state), combinations of states form submachines at various 
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levels of complexity, and the 
whole • of S 1  constitutes the 
description of a machine. Thus S 1 

 manifests organization at the levels 
of symbol, instruction component, 
instruction, state, sub-machine and 
machine. The finest grain analysis Figure 7.5. Network representation of q0 

is not likely to be psychologically transitions. 

significant, because it is unlikely 
that the nervous system uses binary addresses. The levels of instruction components 
and instructions, however, are much more appropriate. Setting aside for the present 
the questions of output signal and movement relative to the tape, an instruction 
determines the transition to a new state associated with a particular current state and 
current input. An instruction is an autonomous unit because the set of instructions 
defining a target machine can appear in any order on the tape of a machine 
simulating it without altering the functional performance of the simulator. The 
order of the instructions in S 1 , defining the machine M2, is, in this sense, arbitrary. 
An instruction component is not autonomous in the same way as an instruction. 
Thus an instruction represents an indivisible unit of Turing machine performance, 
less than a complete state but more than a component. 

The hypothesis thus stated requires that experience comes in instruction sized chunks 
if it is to be realized as patterns of connectivity in a neural space analogous to the 
tape of a Turing machine. Is this a reasonable supposition? In view of the limited 
attention span of the human infant, the suggestion has at least some plausibility. It 
is also clear that patterns of connectivity can be established in networks as a result 
of repeated experience. Perhaps then, the operations of M 1  of the self-describing 
Turing machine are not completely implausible as a rather abstract account of the 
acquisition of an internal record of experience of the world. The external tape of 
the human provides a source for the structured material in S 1 . As the organism 
grows and its sensory systems become better tuned, these internalized action 
sequences become more differentiated and precise. 

4(2.) 	 

go 	 q1 

state 



Figure 7.6. Network representation for all q0 and q1 state 

transitions. 
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q0 
	

q1 

0 

1 
might be developed. The 
important function of the 
submachine M2 is that it 
organizes the S 1  input into a 
temporal sequence. This it 
does by embedding S 1  instruction components, as output symbols, in an ordered 
succession of new instructions. The proposal is to think of the human equivalent 
of M2 , not so much as a machine which lays down instructions, but as a machine 
which generates instruction execution sequences. M2 as constituted in the self 
describing scheme, constructs an execution sequence of states which implements the 
machine M1 , and then appends its own description to complete the M 1M2 

 concatenation, but it need not do only this. 

The operations of the M2 part 
of the self-describing Turing 
machine provide a hypothesis 
about the way in which 
thinking and self awareness 

M1  and M2 are, in principle, autonomous machines. This provides an interesting 
possibility. It may make sense, developmentally, to suppose that the machine M 1 , 
which has the simpler dynamics, represents the organism at a relatively early stage 
of representational processing during which it does little except to register input. 
This fits with Karmiloff-Smith's suggestion that the early representational focus is 
predominantly on information from the external environment. But the sensory 
registration process might very well also alter the structure of the total system of 
which it forms a part. Thus, it might be hypothesized that machine M2 develops as 
its description is being laid down. The sort of process that might be involved here 
could be the gradual differentiation of say, exogenous and endogenous sources of 
stimulation. Redescription will begin as soon as M2 is sufficiently developed to be 
able to access the record of sensory experience which shaped its own construction. 
This suggests a) that redescription is consequent upon sufficient appropriate 
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experience, and b) that this early form of redescription is a precursor of self 

awareness because M2, which controls the generation of the state execution 

sequences which constitute redescription, uses action sequences laid down as part 
of its own development. Perfect self-description will never be possible for this kind 
of machine, because the dynamics of its operations constantly modify its structure. 
Thus its self descriptive capacities remain one step behind its experience, which is, 

perhaps, how it should work out. 

This chapter has been speculative, particularly in the latter part but it has served to 

bring the ETH into contact both with connectionism and with the cognitive scientific 

study of development, and to provide a picture of how it might illuminate work in 

both of these areas. 



237 

Chapter 8. Summary, Conclusions and Prospects. 

In the previous seven chapters an argument has been constructed to support a new 
view of the nature of the human cognitive architecture considered as a computational 
system. The argument is based on Turing's analysis of computation rather than on 
comparisons with the structures and processes of digital computers. It has been 
suggested that both symbol processing approaches to cognitive computation, referred 
to collectively as the generic theory, and connectionist approaches are in need of 
revision. 

8.1 The Generic Theory. 

The generic theory is founded on the idea that there is a structural isomorphism 
between the architecture of general purpose digital computers and the architecture 
of the cognitive system which licenses the use of computational concepts in the 
theoretical description of cognitive structures and processes. Justification for this 
idea comes from two main sources. First there is the belief that the designs for 
early stored program computers were modelled on what was known about the human 
nervous system. Second there is the theoretically more interesting suggestion that 
the link between cognitive and computer architectures is a consequence of the fact 
that both are isomorphic to the abstract Turing machine architecture. Digital 
computers are essentially practical versions of Turing machines, and Turing derived 
the concept of the Turing machine from consideration of a person engaged in a 
routine numerical calculation. Hence, it is claimed, by transitivity of isomorphism, 
that digital computers and human cognitive architecture share fundamental structural 
features. 

The assumption of transitivity of isomorphism is controversial because Turing 
machines are formal, idealized and abstract isomorphs of minds. In particular, 
Turing machines are idealized to have an unbounded memory in the form of an 
indefinitely extendible tape, but unboundedness cannot be true of human memory 
which is supervenient on the brain. The arguments used to resolve this difficulty 
lead to the heart of the issues with which the thesis is concerned. At the most 
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general level of analysis there are two strategies to be found in the literature. The 

first, which leads to various versions of the generic theory is to argue that the 

idealization is fruitful and provides support for distinctions between competence and 

performance. 

8.1.1. The generic theory and the language of thought. 

The arguments offered in support of the generic theory fall into two main classes. 
The first is characterized by the view that the idealization to unbounded memory is 
justified by the productivity of thought which is hypothesized to be unbounded in 
principle. The best known and most influential exponent of this view is Jerry 
Fodor, and the locus classicus of the approach is Fodor (1975). In that work Fodor 
argued that to treat the mind as a computational system entailed the attribution of 

a representational medium. Further he claimed that the medium must be 

implemented in such a way as to allow, in principle, for "an infinity of distinct 

representations." Fodor (1975, p.31). The most plausible way to think of such a 
system, he argued, was in terms of a set of conceptual primitives, like the symbol 

alphabet of a Turing machine, plus a working space, like the tape of a Turing 

machine, in which complex representations could be composed out of the conceptual 

primitives. Because such a system resembled a natural language in its combinatorial 

characteristics, it was appropriate to call it the language of thought. Thus Fodor 

argued that it is appropriate to think of the mind as organized like a Turing 
machine, even though the mind is finite, partly because of the generality of the 
Turing machine concept, but mainly because the symbol manipulating capacities of 

the Turing machine offer an explanation of the productivity (in principle) of thought, 

while practical limitations on the sizes and structures of the computational devices 

subserving thought constrain the idealized theoretical capacity to produce observed 

performance. 

8.1.2. The generic theory and the physical symbol systems hypothesis. 

The second influential line of thought which argues for the propriety of the Turing 

machine as a model of cognitive architecture is the physical symbol systems 

hypothesis. The best known and most influential exponents of the foundations of 
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this view have been Allen Newell and Herbert Simon, in a series of books and 

papers published over a period of more than twenty years. Symbol systems theorists 

differ from Fodor and other LOT theorists in the basic argument which is used to 

justify the idealization to unbounded memory. The symbol systems hypothesis is 

based on the claim that computational universality rather than the unbounded 

productivity of thought is the essential criterion for cognitive architecture. This 

claim entails that programs as well as data must be expressible as explicit, symbolic 

expressions in "a neutral, stable medium that is capable of registering variety" 

Newell (1990,p.61). This is a stronger claim than the Fodorean claim. However 
since both the productivity of thought and computational universality arguments 

require potentially unbounded symbolic resources the net result is much the same 

as far as the basic architecture is concerned. 

In summary, proponents of the generic theory argue that the Turing machine and 

the digital computer are appropriate bases for models of cognitive architecture 

because they view the idealization to unbounded memory as principled and the 

practical constraints on finite realization as a fertile source of empirical hypotheses. 

8.2. Connectionism 

The second major strategy mentioned above, which is found in much connectionist 

theorizing, but has a wider constituency, suggests that the requirement for 

unbounded memory whose contents consist of symbolic expressions, shows the 

Turing machine concept to be at best irrelevant and at worst actively misleading 

about the organization of memory and the nature of cognitive processes. Clark 

(1993), for example, has argued that the generic theory, particularly in its Fodorean 

form, is overly text based and anti-developmental. Other arguments on various 

grounds such as neural implausibility and operational fragility have been extensively 

discussed. Connectionist research, by and large, looks to neuroscience or to physics 

rather than to formal methods for its inspiration. It has even been suggested that 

connectionism may "challenge the strong construal of Church's thesis as the claim 

that the class of well-defined computations is exhausted by those of Turing 
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machines." Smolensky (1988,p.3). 

As yet there is no clear resolution to the debate. Connectionist systems are 
generally better at the "softer" kinds of tasks like pattern completion and 
generalization to novel stimuli, while symbol systems are generally better at tasks 
requiring temporally extended sequences of processing and/or highly structured 
representations. Various projects have looked to hybrid symbolic/connectionist 
architectures as a means of resolving some of the difficulties. Unfortunately, many 
such proposals have a distinctly ad hoc flavour or run into difficulties in specifying 
the nature of the interface between the components, although Cooper & Franks 
(1993) have described some of the principles governing the specification of hybrid 
systems. 

8.3. Turing's analysis of computation. 
The suggestion developed in the thesis is that the nature of the linkages between the 
Turing machine concept and architectural hypotheses arising from both the generic 
theory and connectionism can be clarified by re-examining Turing's seminal work, 
Turing (1936-37), in which the concept of a universal machine was first introduced. 
The major conclusion reached is that Turing's analysis of computation does not 
support the generic theory's model of cognitive architecture. The crux of the 
argument is the claim that the principles of cognitive architecture on which the 
generic theory is based, model human memory in a way which contradicts a 
principled argument used by Turing to develop his formal machine model. The 
primary point is that in Turing's scheme the tape of the machine corresponded to 
the paper on which an individual worked a calculation and not to the human 
calculator's memory. It was a distinct, external resource which supplemented the 
human memory and Turing had good arguments for separating the two. In digital 
computers, however, symbolic, random access memory serves the same function as 
the tape of the Turing machine and it is this form of memory which is used to 
model human memory in the generic theory. The mapping from computer memory 
to human memory thus directly contradicts Turing's analysis and is neither 
compatible with it nor entailed by it. This point has substantial consequences for 
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theories of cognitive architecture based on Turing's analysis. Perhaps the most 
surprising is the way in which connectionist theorizing can be seen to be entirely 
consonant with Turing's analysis when connectionist networks are thought of as 
implementations of the finite state control automata of Turing machines. A 
secondary point is that the generic theory makes use of an unnecessarily 
impoverished concept of what a symbol is which is an accidental consequence of the 
focus of Turing's interest, rather than an essential feature of the definition of an 
effective procedure. In view of the many problems faced by the generic theory with 
respect to issues as diverse as its dubious neural plausibility and the difficulties 
encountered in finding a defensible philosophical approach to its account of the 
nature of mental content, removing the theoretical support of Turing's analysis of 
computation must lead to a reappraisal of its tenability. 

8.4. The External Tape Hypothesis. 
The ETH was developed to address the issues raised above. The starting point is 
the fact that the Turing machine was not, and was not intended to be, a model of 
the internal workings of the mind. It was a model of a system of states of mind 
interacting with a set of external symbols. At the time when he developed the 
model Turing was interested specifically in the nature of routine computation and 
his analysis is restricted to dealing with numerical symbols and processes but it is 
proposed that the idea of a symbol for computation can be extended beyond 
conventional alpha-numeric symbols to embrace a variety of objects in the world, 
provided, at a minimum that they satisfy the type identity criterion. 

The critical notion for the ETH is that of a computational "configuration" which is 
a pair consisting of a "state of mind" and an external symbol. The ETH proposes 
that cognitive states should be thought of as configurations of Turing machines. 
Thus they are distinct from mental states. Mental states are considered to be 
supervenient on the brain but cognitive states are not because they have external 
components. Thus the same mental state can, in principle, form part of different 
cognitive states by being paired with different external symbols. 
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8.5. Current areas of weakness. 

No doubt there are many more weaknesses and shortcomings in the approach than 

are recognized and acknowledged here. The author is perhaps more than usually 

indebted to others for pointing out problems with the approach and the process of 

critical exchange is very illuminating. From the point of view of the author, 

however, perhaps the principal omission at present is a detailed account of how the 

ETH might make contact with the approach of evolutionary psychology, cf. Barkow, 

Cosmides & Tooby (1992). Adaptationists, as these authors sometimes call 

themselves and others of a similar persuasion, argue against the picture of cognitive 

architecture as a content independent, general purpose, programmable, 
computational system of the kind proposed by generic theorists (see especially 

Newell 1990, pp.54-65), and in favour of a picture of cognitive architecture as a 

collection of special purpose, content dependent mechanisms. This approach to 

cognitive architecture is entirely consonant with Turing's analysis of computation 

and with the ETH. What is particularly important is that experimental predictions 

are being derived from the adaptationist stance and applied to a variety of cognitive 

topics. The work of Cosmides (1989) on forms of content in the Wason selection 

task is particularly interesting. 

Additional areas of weakness are the underdeveloped state of the theories of internal 

states, external symbols and configurations identified as important needs in Chapter 
6. A better understanding of the forms and possibilities of control memory will be 

a particularly important improvement to the theory of internal states. 

8.6. Areas for future research. 

Apart from making good the omissions noted in the previous section, there are many 

areas which offer prospects for further development. The application of the ETH 

to the modelling of representational redescription as outlined in Chapter 7 is a 

compelling topic as is the question of how to build recurrence into models of 

internal states. Of particular interest is the need to incorporate accounts of 

attention, motivation and emotion into the theory of internal states. The extent to 

which these issues can be tackled in a way which yields tractable models and 
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testable hypotheses will be a measure of the extent to which the ETH will be a 
valuable approach for psychologists. 
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