
The External Tape Hypothesis:

A Turing machine based approach to cognitive computation.

Andrew Joseph Wells

Thesis submitted for the degree of Ph.D.
The London School of Economics and Political Science.

Abstract.

The symbol processing or "classical cognitivist" approach to mental computation
suggests that the cognitive architecture operates rather like a digital computer. The
components of the architecture are input, output and central systems. The input and
output systems communicate with both the internal and external environments of the
cognizer and transmit codes to and from the rule governed, central processing
system which operates on structured representational expressions in the internal
environment. The connectionist approach, by contrast, suggests that the cognitive
architecture should be thought of as a network of interconnected neuron-like
processing elements (nodes) which operates rather like a brain. Connectionism
distinguishes input, output and central or "hidden" layers of nodes. Connectionists
claim that internal processing consists not of the rule governed manipulation of
structured symbolic expressions, but of the excitation and inhibition of activity and
the alteration of connection strengths via message passing within and between layers
of nodes in the network. A central claim of the thesis is that neither symbol
processing nor connectionism provides an adequate characterization of the role of
the external environment in cognitive computation. An alternative approach, called
the External Tape Hypothesis (ETH), is developed which claims, on the basis of
Turing's analysis of routine computation, that the Turing machine model can be
used as the basis for a theory which includes the environment as an essential. part
of the cognitive architecture. The environment is thought of as the tape, and the
brain as the control of a Turing machine. Finite state automata, Turing machines,
and universal Turing machines are described, including details of Turing's original
universal machine construction. A short account of relevant aspects of the history
of digital computation is followed by a critique of the symbol processing approach
as it is construed by influential proponents such as Allen Newell and Zenon
Pylyshyn among others. The External Tape Hypothesis is then developed as an

alternative theoretical basis. In the final chapter, the ETH is combined with the
notion of a self-describing Turing machine to provide the basis for an account of
thinking and the development of internal representations.

Table of Contents.

Abstract. 	 2

Table of Contents. 	 3

List of Figures. 	 6

Acknowledgments. 	 7

Chapter 1. Introduction. 	 8
1.1 Giant electronic brains. 	9
1.2 Alan Turing and the universal computing machine. 	 9
1.3 Logical and Physical Descriptions. 	 10
1.4 Artificial Intelligence and Physical Symbol Systems. 	 11
1.5 Turing machine architecture and the generic computer theory of

mind 	 13
1.6 Connectionism and cognitive architecture. 	 16
1.7 Implications of the finite state account of connectionist

models. 	 20
1.8 Arguments for a new model. 	 22
1.9 The External Tape Hypothesis (ETH) 	 24

1.9.1 Linear Tapes and Human motion. 	 26
1.9.2 Parallel and Serial Operation 	 27
1.9.3 Representational Structures and Thinking. 	 28
1.9.4 Program and Observer Perspectives. 	 29

1.10 Objections to the External Tape Hypothesis 	 30
1.11. Outline of the thesis. 	 36

Chapter 2. Turing Machines and Finite Automata 	 37
2.1. The description and definition of Turing machines 	 37
2.2. The memories of Turing machines. 	 42
2.3. The description and definition of finite automata. 	 46
2.4. The computational capacities of finite automata 	 48
2.5. Universal Turing machines. 	 50
2.6. Logical and physical machine descriptions 	 52

Chapter 3. Turing's Analysis. of Computation 	 61
3.1. Turing's introduction to computing machines. 	 62
3.2. Turing's definition of a computable number and his

characterization of mind 65
3.3. Turing's later work on computers 	 68
3.4. Turing's universal machine design. 	 71
3.5. Control memory in Turing's universal machine 	 86
3.6. Styles of implementation. 	 90
3.7. Serial and parallel architectures. 	 94
3.8. Configurations, thought and behaviour. 	 95

Chapter 4. Digital Computer Models. 	 99
4.1. The architectural commitments of the generic theory. 	 99

4.1.1. Location addressing 	 99
4.1.2. Virtual architecture 	 100
4.1.3. Virtual architecture and control circuitry. 	 102

4.2 The First Electronic Computers 	 107
4.2.1 The ENIAC. 	 108
4.2.2 John von Neumann and the Stored Program

Concept. 	 110
4.2.3 The Design of the EDVAC 	 111
4.2.4. Computer design and ideas about the nervous

system. 	 113
4.2.5. The case for serial processing. 	 116

4.3. Examples of von Neumann architectures. 	 117
4.3.1. The EDSAC order code. 	 117
4.3.2. The 6502 instruction set. 	 117
4.3.3. The 80386 instruction set. 	 118
4.3.4. Summary. 	 119

4.4. The return to parallel architectures. 	 120
4.4.1. The limits of serial technology 	 120
4.4.2. Parallel tasks and parallel architectures. 	 121
4.4.3. Control regimes in parallel systems 	 123

Chapter 5. Computers, Models and Cognitive Theories. 	 124
5.1. Putnam on the Mind-Body Problem 	 126
5.2. Functionalism. 	 129
5.3. Functional and physical description of Turing machine control

states. 	 133
5.4 Functionalism and Multiple Instantiation. 	 138
5.5. A theoretical case for parallelism. 	 141
5.6. The Physical Symbol Systems Hypothesis. 	 143

5.6.1. Definition of a Physical Symbol System. 	 143
5.6.2. The Nature of Symbols. 	 145
5.6.3. An outline of Newell's argument 	 146
5.6.4. The argument in detail. 	 146
5.6.5. Designation and Representation 	 151
5.6.6. External Reference. 	 154
5.6.7. System levels and the brain. 	 156

5.7. Pylyshyn's analysis of cognitive computation'. 	 158
5.7.1. Psychological Explanation. 	 159
5.7.2. Semantics, Symbols and Implementation. 	 160

5.8. Combinatorial syntax and structure sensitive processes. 	 167

Chapter 6. The External Tape Hypothesis. 	 173
6.1. Developing an account of internal states 	 176

6.1.1. Gandy's principles for mechanisms. 	 178
6.1.2. Mead's analogue silicon modelling technique. 	 183
6.1.3. Conrad's trade-off principle. 	 186
6.1.4. Summary. 	 189

6.2. Developing an account of external symbols. 	 190
6.3. Developing an account of configurations 	 193

6.3.1. Gibson's concept of affordance. 	 194
6.3.2. Rosenschein's situated automata approach. 	 196

6.3.3. The significance of movement. 	 199
6.3.4. Brooks' studies of mobile robots. 	 202
6.3.5. Representations. 	 204

Chapter 7. The External Tape Hypothesis, Connectionism
and Cognitive Development. 	 206
7.1. The ETH and connectionism. 	 207
7.2. The ETH and representational redescription. 	 218

Chapter 8. Summary, Conclusions and Prospects 	 237
8.1 The Generic Theory 	 237

8.1.1. The generic theory and the language of thought . . 	 238
8.1.2. The generic theory and the physical symbol systems

hypothesis 	 238
8.2. Connectionism 	 239
8.3. Turing's analysis of computation 	 240
8.4. The External Tape Hypothesis 	 241
8.5. Current areas of weakness 	 242
8.6. Areas for future research 	 242

References. 	 244

List of Figures.

Figure 2.1 The state diagram for machine M 	 40
Figure 2.2 F: A finite automaton for parenthesis recognition 	 49
Figure 2.3 The state diagram for XOR1 	 55
Figure 2.4 The state diagram for XOR2 	 55
Figure 2.5 A non-tabular implementation of XOR2 	 56

Figure 3.1 The f-unit, the basic building block of Turing's machine 	 78
Figure 3.2 Examples of function specification using nested f-units 	 79
Figure 3.3 m-functions for searching and marking 	 80
Figure 3.4 m-functions for erasing markers 	 81
Figure 3.5 m-functions for copying and printing 	 82
Figure 3.6 The state diagram for Turing's universal machine 	 83
Figure 3.7 A hypothetical implementation scheme using only one ce(a) unit 	 91

Figure 4.1 A three bit address decoder for an eight byte memory 	 103

Figure 7.1 A generic feedforward network 	 208
Figure 7.2 A simple example automaton 	 232
Figure 7.3 Network representation of q0, 0, q0 	 233
Figure 7.4 Network representation of g0,1,g1 	 233
Figure 7.5 Network representation of q0 state transitions 	 234
Figure 7.6 Network representation for al q0 and ql state transitions 	 235

Acknowledgments.

I would like to thank a number of people for their help. My parents Joan and Arthur
Wells both provided invaluable support when I began to study psychology and
continue to do so. John McShane initially agreed to supervise the thesis and Ric
Seaborne valiantly took on the burden when John left the department for a research
post in industry. John's untimely death in a boating accident was a profound shock

to all his friends and colleagues. He is very much missed. Julie Dockrell, who has

since left for fresh pastures, wore the mantle of departmental admissions tutor for

longer than might otherwise have been the case. Laura Markowe was a companion

on many a Saturday morning. Bradley Franks read draft chapters and pressed the

case for diagrams. As the only other cognitive scientist in the department he has

been an important source of moral and intellectual support throughout. Liz and
John Valentine provided staunch support and friendship at a critical time. Mike

Oakesford also gave generous and valuable assistance. Simon Roberts has twice

provided timely, insightful advice of the greatest clarity with humour and sympathy.

Many other friends and colleagues have helped me directly and indirectly; in

particular, Ian Dickson, Farquharson Cousins, Nick Braisby, Richard Cooper and

Steven Haynes. Most importantly, I want to thank my wife Mia for everything.
Without her the thesis might never have been completed.

8

Chapter 1. Introduction.

Cognitive science has recently enjoyed a resurgence of main stream interest in a
style of theorizing and computational modelling known variously as
"connectionism" , "neural networks" and "parallel distributed processing" , which has
existed in one form or another since the pioneering work of McCulloch and Pitts in
the 1940's. Within the connectionist i framework, there are numerous, sometimes
substantial, differences of approach, but there is a unifying, shared belief that the
rule based, symbol processing approach to cognitive computation, which has been
dominant since the early days of computer modelling of mental structures and
processes, has fundamental limitations. Proponents of the symbol processing
approach have responded to the challenge of connectionism and a substantial debate
about the foundations of cognitive science has been engendered. Since
connectionism and symbol processing are both computational approaches to the
study of cognition, one way to characterize the major differences between them is
in terms of their relationship to Turing's machine model of computation which
constitutes one member of the class of formally equivalent, basic models of routine
computation. Roughly speaking, proponents of the symbol processing approach
argue that the brain implements a Turing machine and that the mind can be
described as a system in which symbolic expressions are processed according to
rules. By contrast, connectionists argue that Turing's machine model is, by and
large, irrelevant to the study of cognitive computation and urge the adoption of what
is sometimes called "brain style" modelling, in which closer attention is paid to the
neural basis of cognitive computation. At least one connectionist theorist,
Smolensky (1988), has argued that connectionism may challenge the view that the
class of well defined computations is co-extensive with the class of Turing machine
computations. The position defended in this thesis claims that neither of these views
is entirely correct and that a third approach based closely on Turing's original

'Throughout this thesis I have used the term "connectionism" as a generic label for the whole
framework.

9

analysis can illuminate both the others.

1.1 Giant electronic brains.

The possible links between computers and brains have been evident from the start,
and in the early days of their development, digital computers were sometimes called
"electronic brains" (cf. Bowden, 1953). Not many people knew much about them,
but they were said to be capable of prodigious feats of calculation far outstripping
the capacities of the apparently rather feeble human intellect.

"These machines are similar to what a brain would be if it were
made of hardware and wire instead of flesh and nerves. It is
therefore natural to call these machines mechanical brains. Also,
since their powers are like those of a giant, we may call them giant
brains."

Berkeley (1949, p.1)

The early optimism, although accompanied by some limited successes in the
production of apparently "intelligent" behaviour, quickly gave way to the realization
that simulating the full scope of human cognition was a task of daunting scale and
complexity. Curiously, perhaps; the capacity for more "intellectual" tasks such as
chess and theorem proving turned out to be much easier to capture than the
mundane business of "peripheral" tasks such as perception. The soubriquet
"electronic brain" fell into disuse and unflattering comparisons were made, and
continue to be made, between the computer metaphor and other, earlier
technological metaphors. It is a commonplace that successive generations try to
explain the mind in terms of their own technological innovations, and perhaps the
sceptics are right to insist that the "computational metaphor" is just that; a metaphor
which will, in due course, be seen to be no more substantial than its predecessors.
The greater the effort made, the harder it seems to be to get a computer to produce
anything like the flexibility of behaviour which is a characteristic product of the
brain's activity.

1.2 Alan Turing and the universal computing machine.

10

Despite the practical failure to realize early hopes, many cognitive scientists are

convinced that computational ideas form a much more principled basis for the study

of cognition than the term "metaphor" implies. The basis of this conviction lies in

the work of Alan Turing and other mathematical logicians of the 1930's who
developed formal models of the processes involved in routine computation. In his
seminal paper "On Computable Numbers, With An Application To The

Entscheidungsproblem", Turing showed that machines were, in principle,
behaviourally much more flexible than had previously been suspected. He did this
by providing a detailed logical blueprint for the construction of a machine which he

called the universal computing machine. In the context of his paper, the machine

was applied to the computation of functions of real numbers, but its true significance

lay not in its initial realm of application but in its modus operandi. The machine

merited the adjective "universal" because it was a general purpose instruction

obeying mechanism which could carry out any task for which a complete and

unambiguous set of instructions could be written. Turing showed that the

specification of a set of task instructions was formally equivalent to the specification

of a machine to carry out that task, and hence that a general purpose instruction

follower was ipso facto a general purpose machine because it could do, by

simulation, any task which could be done by a machine built specially for the

purpose.

1.3 Logical and Physical Descriptions.

One of Turing's central ideas was "that mental processes are correctly described in

the logical model independently of the particular physical embodiment, and so can

be embodied in a physical form other than the brain." Hodges (1988,p.9). It may

be useful to think of this idea as proposing a two tiered explanatory hierarchy and

hence as an intellectual forebear of Marr's (1982) influential three level model.

Turing's logical model corresponds to Marr's algorithmic level, i.e. the formal

specification of what needs to be done to complete the task in hand, and Turing's

11

physical embodiment description corresponds closely to Mare s implementation level 2 .

A fundamental implication of Turing's work for cognitive science is that the
operations of the mind, at least in so far as it engages in Ong and reasoning, can
be described functionally in terms of 'sets of instructions or programs, independently

of their medium of realization. This leads, at a minimum, to the possibility of

studying mental processes with computer simulations, because a computer program
could mimic the "relation structure" (Craik 1943) obtaining among the elements of
a mental process. More importantly, if mental processes are correctly characterized
functionally, a powerful argument can be developed for the independence of
psychology from neuroscience.

1.4 Artificial Intelligence and Physical Symbol Systems.

A further radical consequence of Turing's work which obtains if the criterial

features of mentation are purely functional, is that an appropriately programmed

computer would be as capable of cognitive processing as a human cognitive agent.

This possibility provides a theoretical basis for the discipline of Artificial
Intelligence and for the Physical Symbol Systems hypothesis (PSSH), first

articulated by Newell and Simon (1976). According to this hypothesis, computers

can quite properly be thought of as "electronic brains", because brains and
computers have common organizational principles. This claim leads quite naturally

to a symmetrical claim about brains, viz. that they are "biological digital

computers". On this approach, human behavioural flexibility depends primarily on
the fact that the brain is computationally universal, rather than, for example, on its
being made of a biologically responsive stuff.

The extent to which mental processes can be studied independently of their medium

This invites a question about what, if anything, in Turing's work corresponds to Marr's
computational level. For Marr, (1982,p.24), this level is "an abstract computational theory", which
specifies the goal of a computation. The goal of Turing's 1936-37 paper was to provide a means "to
somehow survey the class of all possible algorithms" Davis (1988a,p.154) so as to tackle "the
Hilbertian Entscheidungsproblem", Turing(1936-37,p117). Turing's algorithmic specification of a
universal machine showed, among other things, that the problem had no solution.

12

of implementation is an interesting and important question. Turing's abstraction of
the logical steps of a computation from the details of its implementation certainly
allowed him to describe the universal machine purely functionally in terms of finite
sets of discrete states and discrete symbols. However, his analysis did not show,
nor did he claim, that there were no physical constraints on the kinds of substrate
which could be used to generate mind like behaviour using computational structures.

Consider, as an uncontroversial example, the can opener, whose function is to
enable its operator to gain access to the contents of a sealed metallic container. The
fact that there is more than one way of implementing the can opening function
suggests, by analogy with Turing's treatment of mental processes, that "can opening
processes are correctly described in the logical model independently of the
particular physical embodiment, and so can be embodied in a physical form other
than the usual metallic me." While this is clearly true, and allows for diamond can
openers, laser light can openers among others, it does not follow that can openers
can be made from anything at all. The design of a can opener is constrained by
facts such as the relative hardness of different materials which are relevant to the
performance of the task. It would, for example, be difficult to make a can opener
from rice pudding or from string and brown paper simply because these materials
are too soft. Constraints on the suitability of various media for can opening arise
from a clear understanding of what the functional description of can opening implies
for its practical implementation, given the nature of the physical world as we
currently understand it to be. Conversely, a given medium will be capable of
supporting some functions but not others and an understanding of the nature and
limitations of a medium will illuminate the study of the functionality it can support.
A six storey building can be built of brick, but a sixty storey building cannot,
because the structure will collapse under its own weight.

Given that a function as simple as can opening has constraints limiting the media in
which it can be realized, it is inevitable that there will also be constraints on the
media in which the complex functionality of minds can be realized. It is also highly

13

likely that the functions of the mind will be illuminated by a study of its medium of
implementation, and it is possible that various hypotheses about the nature of mind,
including the hypothesis that the mind is a computer, will be ruled out when the
functionality of its medium of implementation is understood. Unfortunately, there
is a regrettable tendency on the part of some cognitive theorists to move prematurely
from the conditional "If the mind is a computer then mental processes can be studied
independently of their medium of realization" to the bald assertion that "because the
mind is a computer psychology is independent of neuroscience" . One of the
possibilities which needs to be considered is that neural tissue is not the sort of stuff
in which binary switches can be implemented and hence that the mind is not a
computer as they are commonly understood.

1.5 Turing machine architecture and the generic computer theory of mind.

Despite the cautionary tale about functionalism above, a computational account of
mental phenomena is widely expected to succeed, and various theories of cognitive
architecture have been developed on the basis of the idea that the brain realizes a
Turing machine or digital computer of some kind. Turing machines and their
computations are defined formally and discussed in Chapter 2. Informally, a Turing
machine is a system consisting of two parts, a finite control machine and a
potentially infinite, one dimensional tape. The tape is divided into squares, each of
which can be blank or can contain a token of one of a finite alphabet of symbols.
The control machine has access to the contents of just one square of the tape at any
moment and can move along the tape in either direction. The control is equipped
with a scanner with which it recognizes symbol tokens, and a printer with which it
writes them. The single tape square to which the control has access is called the
"scanned square" and the symbol on it is called the "scanned symbol" . The control
machine has a finite number of internal states and its operations are usually
described in a machine table. Because the machine works with a finite symbol
alphabet and has a finite number of internal states, its operations can be exhaustively
described by specifying how it behaves for each combination of internal state and
scanned symbol. The essential characteristics of a Turing machine are the
distinction between the tape and the control, the potential infinitude of the tape and

14

the fixed finite nature of the control. The tape serves as a symbolic memory.
Digital computers are essentially practical versions of Turing machines, i.e. they

exhibit the separation of control from memory but their memories are more tractable
than uni-dimensional tapes. They are also equipped with transducers which translate

external inputs into symbolic codings and vice versa. The keyboard and VDU of

a computer are transducers. In normal operation, information about the outside

world consists exclusively of symbolic representations of stimulus energies written

into memory by the transducers.

The first digital electronic computer, the ENIAC, spent much of its time idle

because it suffered from a severe information input bottleneck as a result of its tiny
internal memory. With the expansion of high speed memory in later machines, and

with the development of the stored program concept it became possible to

incorporate more and more of what was needed to complete a computation in high

speed memory. The whole thrust of computer design thinking from von Neumann

onwards was to cut down on the need for frequent communication with the low

speed outside world. The goal was the communication of a completely specified

task, i.e. both program and data, in a single transaction from the outside world,

such that the machine could then complete its computation without the need for

further external intervention. A properly functioning computer is a system in which

everything of computational interest happens inside the machine. The environment

serves as a source of data and as a repository for results, but computationally, the

machine is autonomous.

Proponents of the physical symbol systems hypothesis and related theories are

committed to the view that the brain implements a practical version of the Turing

machine architecture just as digital computers do. Theoretical differences of course
abound, but the commitment to a fundamental architectural isomorphism between
minds, digital computers and Turing machines is a hall mark of what may usefully

be called the "generic computer theory of mind", or "generic theory" . According

to the generic theory the senses provide input to, or function as, transducers which

produce representations in the symbolic code with which the brain-ware Turing

15

machine does its computations. The cognitive computer does not have direct access

to its environment but only to symbolic representations of it. Putnam (1975)

provides a very clear example;

"The Turing Machines I want to consider will differ from the abstract
Turing Machines considered in logical theory in that we will consider
them to be equipped with sense organs by means of which they can
scan their environment, and with suitable motor organs which they
are capable of controlling. We may think of the sense organs as
causing certain 'reports' to be printed on the tape of the machine at
certain times, and we may think of the machine as being constructed
so that when certain 'operant' symnbols are printed by the machine
on its tape, its motor organs execute appropriate actions. This is the
natural generalization of a Turing Machine to allow for interaction
with an environment."

Putnam (1975, p.409)

Putnam was one of the first theorists to develop the comparison between Turing

machines and minds and his work has been very influential. One of the major

claims of this thesis is that Putnam's and other similar models are not in fact the
most "natural generalization" of a Turing machine for purposes of cognitive

modelling.

Jerry Fodor's (1980) arguments for methodological solipsism as a research strategy

provide another example of the way in which ideas rather similar to Putnam' s can

inform the development of a cognitive theory. Fodor argues that computational

processing depends purely on the syntactic relations among the elements of a

computational system. This is very clear in the case of a Turing machine. Fodor

also assumes that the mental Turing machine communicates with its environment

solely by having access to "oracles" 3 which enter symbolic representations of
ambient environmental energies on to parts of the tape from time to time.

Following Putnam, Fodor describes this model as "a natural extension of the

computational picture of the mind", from which it follows that if computational

'The term "oracle" was first used, in roughly Fodor's sense, by Turing in his 1939 paper on
ordinal logics.

16

processes are purely formal then "the bearing of environmental information on such

processes is exhausted by the formal character of whatever the oracles write on the

tape", and the proper study for psychology is just the character of the internal

symbolic representations. The argument is similar to one which he deploys for
slightly different purposes in "The Modularity of Mind", as follows;

"...if, as many of us now suppose, minds are essentially symbol-
manipulating devices, it ought to be useful to think of minds on the
Turing-machine model ...However ...Turing machines are closed
computational systems...the rest of the world being quite irrelevant
to the character of their performance...If, therefore, we are to start
with anything like Turing machines as models in cognitive
psychology, we must think of them as embedded in a matrix of
subsidiary systems which affect their computations in ways that are
responsive to the flow of environmental events."

Fodor (1983,pp.38-39).

Newell (1980) provides a further example of the architectural assumptions of the

generic theory. A physical symbol system, according to Newell, communicates with

its environment by means of two operators "input" and "behave" . Newell

acknowledges that "without some reliable transduction from external structure to
symbols, the symbol system will not be able to produce reliable functional
dependence on the external environment", Newell (1980,p.167), but he does not

find this at all problematic. He assumes that reliable transduction will be achieved

and that "From a formal viewpoint, the operation of these two operators [input &

behave] can just be taken as given, providing in effect a boundary condition for the

internal behavior of the system." Newell (1980,p.147).

In general, accounts of cognitive architecture belonging to the generic theory

tradition propose two sets of scanners. The first set consists of sensory transducers

which convert ambient stimulus energy into tokens of symbols in the internal

cognitive code, and the second set consists of mechanisms which read, write and

manipulate expressions in the cognitive code produced by the sensory transducers.

Cognitive computation is thus isolated from direct contact with sensory processes.

17

1.6 Connectionism and cognitive architecture.

Connectionists are unconvinced by a number of characteristics of the generic
account of the basic structuring of human cognitive architecture. Some theorists
(e.g. Kohonen, 1988), explicitly question the suggestion that the brain has
mechanisms reliable enough to support the complex articulated data structures,
random access location addressing and extended chaining of logical steps which are
characteristic of digital computation. It is of interest to note that von Neumann
expressed similar reservations as early as 1948 when he argued that the "logical
depth" of digital computation was of a different order from that of human
computation and that a new system of logic would be needed to understand complex
automata of both natural and artificial origins. It is not widely recognized by
psychologists' how farsighted von Neumann was in this respect. Those who believe
that the Boltzmann machine (Hinton & Sejnowski, 1986) represents an entirely new
departure will find food for thought in the following;

"...there are numerous indications to make us believe that this new
system of formal logic will move closer to another discipline which
has been little linked in the past with logic. This is thermodynamics,
primarily in the form it was received from Boltzmann, and is that
part of theoretical physics which comes nearest in some of its aspects
to manipulating and measuring information."

von Neumann (1987,p.407).

Apart from questions about the nature of the basic mechanisms, most connectionists
take issue with the notion that cognitive computation consists of the manipulation
of explicit symbolic representations, and numerous connectionist counter proposals
to the generic view are now being developed. However, much connectionist work
consists of the development of models of specific cognitive capacities using
feedforward networks and the backpropagation learning algorithm and it is not clear
exactly how to relate such models to each other or to models derived from generic
theory. There is, as yet, no fundamental theory which unites connectionist research
in the way in which Turing machine theory unites proponents of the generic theory,

4For an exception, see Boden (1988, p.2).

18

although useful theoretical work is being done, cf. Smolensky (1988), Churchland

(1989), Bechtel & Abrahamson (1991), Clark (1993). One of the claims of the

thesis is that a proper understanding of the nature of Turing's analysis of
computation provides an account of the conceptual linkage between connectionism

and the generic theory.

A fuller discussion of connectionism and its relations to the External Tape

Hypothesis is given in chapter 7. As an introduction to the approach taken here, it

is useful to think of connectionist models as having two distinct phases, which might
be called the training phase and the operational phase. One common way in which

a connectionist project is conducted is to identify a cognitive capacity, such as the

capacity to form the past tenses of verbs or to exhibit the functional asymmetry of

the Stroop colour word naming phenomenon, as a target. A network with a given
basic architecture is then trained using a suitable corpus of exemplars until a

predetermined criterion of performance is reached with respect to that target

capacity. During the training phase, the strengths of the connections between nodes

in the network are modifiable. When criterial performance has been achieved,

connection strength modification is discontinued and the structure can be considered

fixed. During the operational phase, the network's capacity to produce the desired

associations is assessed. In some cases, such as the modelling of past-tense

acquisition, the training phase is of primary psychological interest as a model of part

of the process of language acquisition. In such a case the performance of the

network in the operational phase is significant only in so far as it provides a
measure of the extent to which performance criteria have been met. In other cases,

for example models of concept acquisition, the operational phase is of more

psychological interest and the training phase is used solely to induce the connectivity

needed to establish the set of input-output paired associations which constitute the

basic performance of the system. What is generally then of most interest is the

study of the extent to which performance generalizes to unfamiliar inputs and the

exploration of the internal structures of connectivity which support such

performance. These have been investigated using techniques such as cluster analysis

and principal components analysis and are explored for the insights they might

19

provide into the way conceptual information is stored in the human cognitive
system. Another technique which has been used is to alter the connectivity so as
to simulate the effect of a brain lesion, for example, and to note whether observed
changes in performance bear some measurable similarity to the pathology of actual
cases of brain damage.

The question which is raised briefly here, and discussed in more detail later, is how
a network might best be characterized when it is considered as a fixed, entity, i.e.
after its training has been completed, or, when a snapshot is taken of its structures
at some moment during the training regime. The proposal made is that a fixed
connectionist network, i.e. one which is not learning, is accurately construed as a
finite state machine. The argument for this view is based on considering the set of
inputs and outputs which such a network can handle, and the character of its internal
activation states when it is in operation. In the light of the characterization of fixed
nets as finite automata, the learning process can be thought of as transforming an
initial finite automaton which may not compute a recognizable function, but none
the less computes some function, into one which computes, to a more or less
accurate degree, the associative function specified by the set of input-output pairs
which form the corpus of training examples. The corpus of training examples, as
well as providing data for the machine, also provide the means of specifying the
error feedback which the machine receives at each training step.

If this view is correct it suggests that in so far as connectionist models are intended
to have realist interpretations they can be construed broadly as proposing that the
brain is a finite state automaton. The importance of this point is that it agrees very
closely with the view of Turing' s analysis of computation which the thesis argues
is the proper view to take. The basic operation of a finite automaton is the state
transition; this is a rule following operation, but it need not be explicitly rule
governed. It is relatively easy to think of neurally plausible implementation schemes
for state transitions. It seems quite reasonable, for example, to think of a state
transition as a function from one stable pattern of neural firing to another, or as a
network energy function of a Boltzmann machine. If we do think in this way, and

20

identify patterns of activation as the internal states of a connectionist network, then
a system with n processing units or nodes each capable of k activation states, may
be thought of as a finite state automaton with up to kn internal states. These states
are determined by the activation function thresholds and connection strengths of the
nodes in the network. A learning rule applied to a network alters the set of
activation patterns which the network produces, primarily by modifying the
weighted connections between pairs of nodes. Thus a learning rule changes the set
of internal states of an automaton. Since an automaton is identified by its internal
states and its state transition table, changing the internal states amounts to
constructing a new automaton. Both supervised and unsupervised connectionist
learning techniques can be seen in this light as methods for constructing finite
automata.

1.7 Implications of the finite state account of connectionist models.

Connectionists have not yet gone far enough in following through the implications
of the above account because they have not considered sufficiently carefully how
radically the functional relationship between the machine in the head and the
external stimulus environment changes when the internal machine is hypothesized
to be a finite state automaton rather than a Turing machine. In the latter case, the
external environment is of limited direct interest because the computational
environment of a Turing machine is its tape and the tape of the cognitive Turing
machine is hypothesized to be in the head. If the internal machine is considered to
be a finite state automaton the situation is very different. The fundamental
separation of memory from control seen in a Turing machine is absent and an
independent internal memory capable of storing symbol tokens representing states
of affairs in the external environment is not essential. The only mandatory internal
machinery is that required to manage state transitions. Finite automata use the same
set of internal states for control and for memory and state transitions are directly
driven by the input. The neural networks of McCulloch and Pitts (1943) provide
an example. Such networks, which do not learn, are equivalent to finite state
automata; a finite state automaton can be constructed to compute the same function
as any neural network and vice versa (Minsky, 1967) . This point may be taken to

21

support the claim made above about the characterization of connectionist networks
when their connections are considered fixed. Neural networks are not equivalent
to Turing machines although the claim that they are has sometimes been made.
McCulloch and Pitts were clear about this and their original paper bears careful
reading. What they actually say is this;

"every net, if furnished with a tape, scanners connected to afferents,
and suitable efferents to perform the necessary motor-operations, can
compute only such numbers as can a Turing machine".

McCulloch & Pitts (1943, p.37)

Thus, a neural net connected to an appropriate environment computes like a
Turing machine. This suggests that if the brain is a neural network and hence also
a finite state automaton, then, to argue that the cognitive system has the
computational power of a Turing machine, should require an argument to the effect
that aspects of the external environment constitute a tape, and that the sensory and
motor pathways of the peripheral nervous system provide the scanners and
transducers. To a first approximation, the argument should be that human cognitive
architecture is a synergetic system of organism and environment realizing a Turing
machine. That seems to be the direction in which connectionist philosophy naturally
leads.

It is not clear that connectionists do, in fact, give the real environment such a
prominent place in their models. Consider the following passage from Rumelhart,
Hinton & McClelland (1986). Having argued in line with the suggestion above that
a clear model of the environment is crucial and that both the history of inputs to the
system and its responses may be relevant to that model, they then say;

"In practice, most PDP models involve a much simpler
characterization of the environment. Typically, the environment is
characterized by a stable probability distribution over the set of
possible input patterns independent of past inputs and past responses
of the system. In this case, we can imagine listing the set of possible
inputs to the system and numbering them from 1 to M. The
environment is then characterized by a set of probabilities, pi for i =

22

1 ,.. .,M.

It is clear from this quotation that the primary focus of interest in PDP models is
not the environment, but the processing characteristics of internal configurations of
nodes and the learning rules which modify the connections among them. This
emphasis is in one way entirely natural, since it is the presence of hidden units
which enables connectionist systems to transcend the limitations on the powers of
single layer perceptrons so notably identified by Minsky and Papert (1969). It is
also possible that the capacity to deal with real world complexity will emerge from
these initial restrictions to impoverished environments. Nevertheless, the
methodology is curious given that one of the stated goals of connectionism is to
overcome the domain specificity and "brittleness" of symbol processing systems.

The input and output node layers of connectionist networks show a strong and
perhaps more than coincidental resemblance to Newell's "input" and "behave"
operators. In fact, in some respects they are weaker. Hanson & Burr (1990)
remarked that the environment for a connectionist system will typically consist of
"a set of stimuli defined in an arbitrary feature space." It may be, of course, that
impoverished environments are chosen for sound methodological reasons. But it is
dangerous to suppose that a model which works well in a restricted environment will
also work under more realistic and complex stimulus conditions.

1.8 Arguments for a new model.

The moral to be drawn from both generic and connectionist architectures is that
generic theory and connectionism, while differing (sometimes fundamentally) with
respect to the details of structures and processing, nevertheless share the view that
the important computational parts of the cognitive system are located entirely inside
the skin of the organism which maintains contact with the external world by
processing representations of it. Such a view is encouraged by the digital computer
systems on which models are usually built and tested. Connectionism focuses on
developing internal representational structure via associative learning, whereas
generic theory focuses on exploiting existing internal structure by developing search

23

and proof techniques for managing symbolic knowledge bases. Neither position

represents an entirely adequate approach to the problems of embodied cognition and

a new approach is needed. The generic theory has produced models which are
markedly brittle, despite the maximal behavioural flexibility which they enjoy, in
principle, by virtue of their computational universality. Connectionist models by
contrast, while less brittle and more able to handle degraded input, are known to

have difficulty with tasks such as drawing inferences which require temporally
extended sequences of processing. Even their celebrated capacity for generalization
from training inputs to novel stimuli has been called into question (Norris, 1991).

A particular point of focus for the thesis is that neither the generic approach nor
connectionism offers a satisfactory treatment of the environment. The central point

is that both approaches suppose that what the cognitive system has to do is to build

or manipulate internal structure which reflects, represents, or imposes structure on

the external world. The question is why this should be thought to be the best way

to proceed. Given that there is elaborate and relatively permanent structure in the

external world, why not use it directly? Brooks (1990, 1991) has reported work,
admittedly with rather simple and strictly bounded systems, in which one of the

guiding principles is that the world can, and must, serve as its own model in this

way. Brooks's work is discussed in Chapter 6.

It may be objected that such a suggestion represents a regressive move towards a

behaviourist analysis in which the causes of action are sought in the organism's

environment. The objection loses what force it might otherwise have when it is
understood that the behaviour of a Turing machine is a function of two parameters,
its current internal state and its current input. The choice of which of these to focus

on is very much dependent on the nature of the activity the machine is engaged in.

Likewise with human activity; sometimes we need to concentrate on what is

happening internally, sometimes on what is going on in the outside world. Take a

simple example. Suppose someone asks for directions and is told "Go straight
along the road until you come to the first set of traffic lights and turn left." How
should we think about their subsequent behaviour? While they are walking along

24

the road, it might be appropriate to think of control as being exercised by the state
of mind "looking for a set of traffic lights." Behaviour will continue to be
responsive to aspects of the environment, such as side turnings, roundabouts, etc.
but is not controlled by them, except perhaps negatively, in the sense that these
other things are recognized as "non traffic lights. " The point is that they do not
lead to changes of internal state. When the traffic lights are reached, however, it
might be appropriate to think of them as exercising control, because they, or at least
the perceptions they generate, do lead to a change of internal state. Thus, the
question of where control is said to be exercised is a matter of emphasis. Strictly
speaking it is actually a matter for internal states and external structure equally. So
it is with a Turing machine. A rather natural analogue of the pedestrian looking for
traffic lights and then changing direction, is the Turing machine searching for a
particular symbol on its tape and changing direction when it finds it. This sort of
activity is fundamental to Turing's original analysis. While the machine is moving
in a particular direction, and before it has found the required symbol, it is
appropriate to think of its behaviour as being controlled by its internal state, and
when the symbol is found as being determined by that symbol, which triggers a
change of direction, but in fact a Turing machine's action is always locally caused
by the pair (current state, symbol scanned). Further analysis of the relations among
internal states, inputs and outputs is given in Chapter 2.6 and Chapter 3.8.

1.9 The External Tape Hypothesis (E '1`H.) .

The central claim of the thesis is that a computational account of cognition must be
based on a proper understanding of the interactions between the human organism
and the external environment. It is argued that these interactions are best modelled
by regarding the embodied central nervous system as the finite state control of a
Turing machine and selected aspects of the external environment as its tape. This
approach is called the external tape hypothesis (ETH) and is derived directly from
Turing's seminal analysis of routine computation. The ETH implies that the
cognitive architecture is a synergetic system of organism and environment which
realizes a Turing machine and the claim is that this is much the most natural
generalization of Turing's original analysis. The argument is developed in detail in

25

Chapter 3. The term "synergetic" is not intended to convey the idea that the whole
is greater than the sum of its parts, but to denote precisely, the notion of combined

or co-ordinated action. Thus, the implication of the ETH is that cognitive activity

is based on the combined and co-ordinated activities of an organism and its
environment, interacting as the control and tape of a Turing machine. The approach

is unbiased by the engineering considerations inherent in the design of digital

computers and offers a new perspective on a variety of interesting problems in

psychology. Cognition, according to the ETH, involves external objects directly.

A crucial point is that cognitive processing need not involve internal, symbolic

representations of the kind fundamental to the generic theory. There is a need for

stable internal states, but these need not be representational in the sense of

"designating" something other than themselves. The issues here are related to a

fundamental distinction between tape memory and control memory which is

introduced in Chapter 2 and subsequently explored and argued for extensively. It

is a central claim of the ETH that this type of memory has been ignored and
seriously underplayed by cognitive scientists, primarily because it does not figure

prominently in the operation of digital computers owing to their design aims and

construction methods. The claim is that internal states need not be semantically

interpretable in the way argued by Pylyshyn (1984) and Newell (1980) for example.

It is an empirical rather than a conceptual matter to determine whether there are

representational states of the traditional kind. The ETH suggests that the primary

relation between external stimuli and internal mechanisms is one of registration

rather than representation. The view is consonant with, but not committed to, a

connectionist account of internal states. The ETH goes beyond the predominant

connectionist concern with the way in which stable spatial structures (often thought

of in terms of sets of micro-features) form and interact with internal states, to the

ways in which stable temporal structures of events and objects might also form and

interact with internal states. This is an area with which connectionists are beginning

to become concerned as difficulties become more manifest (Elman, 1990; Chater,

1991). Recent important work in this area has been reported by Cleeremans (1993).

The ETH differs from the generic theory in a variety of ways, perhaps most

importantly in allowing that the nature of the computational substrate may be of

26

fundamental importance to the development of a satisfactory account of human
cognition. Evidence from theoretical computer science and from the emerging
technology of analogue VLSI, which models neural circuits in silicon, is presented
to support this suggestion.

1.9.1 Linear Tapes and Human motion.

The linear nature of a Turing machine's tape imposes on the control the need for
repeated traverses to retrieve information. This constraint, which has been cited as
a major barrier to the practical utility of the Turing machine, becomes a source of
interesting hypotheses when Turing's machine is adopted as a serious model of the
human cognitive architecture considered as a system in which the organism interacts
with the external environment, because it highlights human mobility as a factor in
cognitive processing. It may be a simple minded observation, but it is striking that,
like Turing machines, humans do not have random access to different parts of the
environment. Moving from A to B involves traversing all intervening points, and
moving back to A from B involves traversing them again. It may be
computationally inefficient, but it has to be done. Thinking of the organism,
walking around, sensing its environment, as akin to the Turing machine control
shuttling up and down its tape, suggests that human mobility may be connected to
our memory capabilities in a fundamental way. In Chapter 6, neurobiological
evidence is cited which supports this view.

Treating the mobile organism as a component of the cognitive system also aligns
cognitive psychology more closely with robotics than has previously been
conventional, and treating the brain and other parts of the CNS as a finite state
automaton sharpens the links with neuroscience. The latter point is particularly
important. If, as the physical symbol systems hypothesis suggests, the brain is
organized like a digital computer, then arguments that neural structures are not, in
and of themselves, representationally significant have considerable force. If,
however, the brain is a finite state automaton, then structures realizing states of the
automaton will have representational significance, because the states of a finite
automaton both represent and control, and understanding the implementation of

27

cognitive states in the brain will need to be treated as a central part of the cognitive

science enterprise. Churchland (1986) and Pellionisz (1988) offer arguments to this

effect.

1.9.2 Parallel and Serial Operation.

The ETH assumes that the cognitive system is both parallel and serial in operation,

thus suggesting that an either/or debate about the issue is sterile. Viewed from

outside, i.e. from the perspective of an observer, the system can be seen to be
producing behaviour in a serial fashion. This is literally so; it is not just as

Smolensky (1989) puts it "an approximate description of the global behavior of a

lot of parallel computation." The operations of the control, i.e. the brain, however,

are obviously parallel. Curiously enough, although the early computer designers

opted for serial operation for very good reasons, from the beginning parallel control

was seen to be simpler in some respects. At a conference held in 1951 to

inaugurate the Manchester University computer, Maurice Wilkes, read a paper in

which he introduced the important concept of microprogramming. In the course of

this paper he argued that control in a parallel machine was simpler because the

electronic waveforms needed were easier to produce and of less critical shape.

"In the case of a serial synchronous machine the waveform must rise
at some critical moment relative to the clock and must fall at another
critical moment, and its edges must be sharp. In a parallel
asynchronous machine all that is needed is a single pulse whose time
of occurrence, length, and shape are all non-critical."

Wilkes (1951, p.182)

There is an important general point implicit in these remarks. Computers are now

so reliable that it is easy to forget the precision of the engineering required to make

them work as they do, and all too easy to attribute to neural tissue, the same

functional qualities (cf. Dennett 1984, p.149 note 21; 1987, pp.231-2 on wonder

tissue.). Johnson-Laird does something of the sort at the start of "Mental Models".

Having argued that mind can be studied independently of brain because programs

can be studied independently of hardware, an argument which is reviewed in

28

Chapter 5, he goes on to suggest that

"The neurophysiological substrate must provide a physical basis for
the processes of the mind, but granted that the substrate offers the
computational power of recursive functions, its physical nature places
no constraint on the patterns of thought."

Johnson-Laird (1983, p.9).

This argument only goes through if it has already been shown that the brain is
actually organized like a Turing machine and that mental processes stand in the

same relation to brain processes as the software of a computer stands to its

hardware. Johnson-Laird offers no argument to show that this is so. Without such

an argument the observation above is of limited value.

1.9.3 Representational Structures and Thinking.

The ETH reduces the representational burden on internal structures and paves the

way for a naturalistic approach to the semantics of mental states. If the primary

relation between the brain and the external world is one of registration rather than

representation, then there is no obligation to postulate internal structures which are

articulated in ways which reflect the full combinatorial variety of object-event

relations. It is argued that this approach not only reduces the representational

burden on internal states, but also provides a way of considering how thinking and

perception might be linked. It is clear that the cognitive system of the neonate is

far from being a tabula rasa and that the perceptual system is innately structured to

respond (i.e. to make state transitions) in highly specific ways to given forms of

external input. Evidence that this is so comes from sources such as Spelke (1985,

1990) It is hypothesized in Chapter 7 that thinking is enabled by the development

of internal state transition trajectories, i.e. virtual machine processes, produced by

a Turing computable process of self-description originally described by Lee (1963).

The process redescribes internally, sequences of states and the external events and

objects which cause transitions between them, in a form which is decoupled from

the specific triggering objects/events, and provides free floating schemata which are

proposed as the "vehicles" of thought. The innate structures with which the neonate

is endowed get the process off the ground. A case may be made for thinking that

29

such a process may underlie the process of representational redescription which
Karmiloff-Smith (1992) argues is an important part of the process of normal
intellectual development.

1.9.4 Program and Observer Perspectives.
A further interesting consequence of the ETH is that it brings into play more social
considerations than have customarily been favoured in cognitive theories. One way
to see what is involved here is to consider two possible perspectives on a
computation, that of the machine and that of an observer. Newell (1980, p.166),
describing the behaviour of a universal machine program, summarized the
perspectives succinctly as follows;

"From the perspective of the program there is no choice and no
decision; it simply puts one foot in front of the other so to speak.
From the perspective of the outside observer a choice is being made
dependent on the data."

This is a very interesting observation. It is suggested that there may be grounds

for identifying our own perspective on our actions with something like the program

perspective and another's perspective on our actions with the observer's point of

view. Thus it would appear that the observer is better placed to understand some

aspects of our actions than we are ourselves. This suggests that a complete

understanding of cognitive behaviour may require a social context in which

feedback is available. G.H. Mead made just such a proposal in "Mind, Self, and
Society" (1934). Mead's work, although rarely quoted by cognitive scientists5 , is
remarkably contemporary in its preoccupations, which is particularly striking since

it pre-dated not only the digital computer, but also the computer's prefiguration in

the theoretical work of Turing and Church. von Neumann also, was concerned with
the distinction between an observed system and its observer as early as 1932

(Schnelle 1988, p.543). Schnelle suggests that von Neumann's concerns then were

important precursors of the ideas set out in his General and Logical Theory of

The only reference I have encountered is again in the work of Allen Newell (1982,p.109
footnote 10).

30

Automata. The distinction between program and observer perspectives comes into
play strongly in the context of the external tape hypothesis, by virtue of the fact that
more of the cognitive machine is assumed to be on public view than is the case in
most cognitive theories. Observers can see the objects which provide the
computational symbols driving the cognitive Turing machine, and can see the
responses of the machine. The only parts of the machine which are hidden are the
internal mechanisms which constitute the control.

The ETH also makes contact with the "intentional stance" of Dennett (1978,1987).
Dennett sees himself as balanced "firmly on the knife-edge between the intolerable
extremes of simple realism and simple relativism" (1987,p.37). He wants to argue
that the observer's ascription of intentional states to a system, resulting from the
perception of data dependent choices, is objective because observable patterns of
action do exist, and at the same time observer dependent and potentially
indeterminate.

"it is always possible in principle for rival intentional stance
interpretations of those patterns to tie for first place, so that no
further fact could settle what the intentional system in question really
believed."

Dennett (1987, p.40)

Treating the environmentally situated organism as a Turing machine seems to
provide some support for Dennett's position. Some aspects of cognitive
computation are visible since an observer can see what a person is doing. Other
aspects, the internal states and transitions among them, are not visible. Hence
ascriptions of intentional states, although based on objective patterns of behaviour,
are defeasible because they are based on partial information. Further, even if state
transitions were available for inspection, it would still be the case that a unique
ascription of intentional content might be unavailable because multiple consistent
interpretations of a Turing machine computation are always possible in principle.

1.10 Objections to the External Tape Hypothesis.

31

Numerous objections to the ETH have been raised, both by its opponents and by
those who are sympathetic towards the point of view. One important problem is
precisely that which from another angle makes it so attractive, namely the
immediacy of its interaction with the environment. What models based on the
generic theory seem to provide is an autonomous internal computational environment
in which such paradigmatically cognitive activities as planning and anticipation can
be carried out (cf. Dennett 1978, ch.5; Newell 1990). A Turing machine control,
by contrast, stands in a completely deterministic relation to its input, and appears
to offer no scope for judgment, planning and deliberation. There seem to be two
main ways of approaching this problem and it is not clear which is the better.

The first approach accepts that although the relation is deterministic it allows more
flexible responding than appears possible initially, particularly when the number of
states of the system in question is large. This is obviously true of the brain. Even
if it is supposed that all the information processing work of the brain is done by
neurons, which is a conservative supposition, and that the operation of neurons is
essentially digital, then the brain which has something like 10 10 neurons would have
approximately 2 10° or 1.27 x 1030 total states. Even allowing for the fact that many
of these neural states might be computationally identical, such a huge number means
that behaviour can be dependent on input in highly complex ways and over extended
time spans. This approach is discussed in more detail in the context of Turing's
analysis of computation in Chapter 3.

The second approach argues for a distinction between primary and secondary
computational relations which is associated with the way in which thinking might
be derived from experience via self-description as mentioned in Section 1.9.3. This
is treated at greater length in Chapter 7 in the context of representational
redescription. The essence of this approach perhaps represents a weakening of the
most radical version of the ETH in that it allows a limited place for explicit,
semantically transparent symbolic representations.

Another problem area concerns the representational inadequacy of the state and

32

symbol form in which descriptions of Turing machines are normally couched. For
the ETH to have any practical value, it will be necessary to have much richer

descriptive forms for internal states and symbols.

"In order that we can apply any insights which we may have about
mechanisms we want this description to reflect the actual, concrete,
structure of the device in a given state. On the other hand, we want
the form of description to be sufficiently abstract to apply uniformly
to mechanical, electrical or merely notional devices."

Gandy (1980, p.127).

In the paper from which the quotation was taken, Gandy used hereditarily finite sets

to extend the scope of Turing's original analysis. One of the attractions of Gandy's

approach is that it shows how to incorporate parallelism into the control of a

machine whose global behaviour is serial. Gandy's work is more fully discussed

in Chapter 6. Alternative forms of description which might be used are those of

Hoare (1985) and Milner (1989).

Another area of problems clusters around the character of a Turing machine tape

and the symbols which are printed upon it. There are four principal characteristics

as follows;

1) that the number of symbols be finite,
2) that the portion of the tape which can be observed by the control at any one

time is finitely bounded.
3) that the tape itself is, in principle, of unbounded length.
4) that symbols remain unchanged once written, unless or until the control

encounters them again.

With respect to 4), the ETH is not in greater difficulty than the generic theory even

though objects in the world do not behave like Turing machine symbols. Both

accounts have difficulties. Another aspect of the same general problem focuses on

the kinds of things that could count as computational symbols. The physical symbol

systems hypothesis, for example, suggests that the right kinds of things are neural

circuits (Newell 1990, p.132). The ETH suggests that they are primarily objects

and events in the external environment. However, the kinds of results reported by

Hochberg (1968) show how difficult it will be to give a satisfactory account of the

33

physical characteristics of objects which give rise to form perception independently
of a perceiver.

With respect to 3) the ETH faces no greater difficulty than any other computational
account which requires computational universality and hence unbounded memory.
In fact the proposal is more principled since large chunks of the external
environment are potentially available as memory and the idealization is thus less
severe.

With respect to 2), it is clear that the limited acuity of our sensory systems,
attention span and short term memory mean that there are indeed bounds on how
much of the environment can be scanned at any one time. The ETH implies that
cognitive theories of attention should constitute a central part of cognitive science.
Attention is discussed in greater detail in the context of Turing's analysis of routine
computation in Chapter 3.

The problem with the finite bound on the number of symbols in 1) is more serious,
in that there appears to be an unbounded number of environmental contingencies
which could be sensed by an organism and which might therefore count as
computational symbols for that organism. At least two separate sorts of problem
can be discerned.

Kirk (1986, p.443), discussing what he takes to be a fundamental disanalogy
between a machine tape and the world, poses one sort of problem. He says "there
is no definite limit to the number of kinds of human performance that could produce
a token of, say '3', nor any definite limit to the number of things that would be
acceptable as a token of '3'." The point is that something can count as a token of
'3' if it is intended by its producer to be such a token, and, if it can be perceived
as such. Thus, as Kirk points out, we can perceive a pattern of stones in the desert
or a vapour trail in the sky as a token of '3'. I think a possible line of defence to
this objection is to distinguish the primitive symbols forming the "alphabet" of a
system from the interpretation placed on them. A universal Turing machine may

34

have a much smaller repertoire of symbols than a machine whose operations it

simulates and yet be capable of simulation by encoding the target machine's symbols

as sequences of the smaller set which it can handle. Thus the vapour trail and the

pattern of stones need not, perhaps, be considered as separate symbols but may be
thought of as composites.

A second sort of problem with respect to environmental symbols is that many
environmental quantities are continuous whereas Turing machine symbols are

discrete. Headway may be made with this problem by considering the phenomena
of categorical perception (cf. Hamad 1987), in which physically continuous stimuli

are perceived to belong to discrete categories. Three more specific problems with

the ETH are as follows6 .

5) The world, unlike a tape, cannot be run backwards.
6) The world, unlike a tape, cannot be blank.
7) Since there are identical symbols on the tape (world) and TM control (brain)

the ETH trivializes the whole problem of perception (and perhaps learning) .

Problem 7 is the most important and is addressed in Chapter 2.6. In outline, the

argument presented is that the control and tape need have identical symbols on them

only if the control is implemented literally as a machine table. However, since the

machine table is a form of description of an abstract machine rather than a blueprint

for the implementation of a real machine, there is no need for explicit symbols as

part of an implemented control although they are so convenient as to be almost
inescapable as a means of describing an abstract control.

Problem 6, that the world, unlike a tape, cannot be blank, is perhaps less difficult

to resolve than it might initially seem. First, although a Turing machine's tape can

be blank, it is not part of its definition that it ever must be and there are Turing

machines, among them all universal machines, which must have non-blank tapes in

order to function correctly. What is mandatory for a Turing machine is that no

more than a finite number of squares can be non-blank at the start of a computation.

6I am grateful to Professor Yorick Wilks for raising these problems.

35

This appears to amount to the stipulation that the world can be only finitely

complex. Whether this is a serious problem is hard to determine. Second, and

perhaps more convincingly, if the objection is well founded, it ought also to apply
to the generic theory. The generic theory proposes that human memory is modelled

as the tape of a Turing machine. But memory, unlike a tape, also cannot be blank.

The various forms of amnesia which might seem to refute this suggestion are best

thought of not as blanking the memory but as affecting retrieval, or, in extreme

cases, as destroying the tape. Thus problem 6 appears to apply to many

computational theories of cognitive architecture if it applies at all and is not

therefore, specifically a problem for the ETH.

Problem 5 can be resolved by considering the differences between the tape of a

Turing machine and a reel of cinema film. These may be thought to be similar

media in the sense that the one is divided into squares and the other into frames.

If a cinema film is run backwards, effects appear to precede their causes which is,

of course, physically impossible in the real world. This idea, applied to a Turing

machine tape, appears to capture the intended force of the objection. The tape of

a Turing machine, it is claimed, has the capacity of running backwards in time

which is not characteristic of the real world in which time is uni-directional.

However, for this objection to hold, it would have to be the case that the time of

inscription of a symbol is uniquely associated with its position in the sequence of

squares on the tape. It is an association of this kind which confers on a reel of film

its own internal "film time" and hence the possibility of running it backwards.

Consider a sequence of frames, f1 ... fm , of a cinema film. Each of the f has a

unique time at which it was shot, t(f), such that t(f) < t(f) <=>i < j. It is this

biconditional association of position in the sequence of frames with time of shooting

which gives sense to the notions of running a film "forwards" and "backwards".

These notions, of course, apply only to "film time" and not to real time, because

running a film backwards in "film time" requires forward movement in real time.

There is no analogous internal notion of "tape time" in the case of a Turing

machine, because there is no relationship of entailment between position on a Turing

machine tape and the time of inscription of a symbol. In consequence, there is no

36

sense in which the tape can be said to run backwards. The proper terms for

describing movement relative to a Turing machine tape are "left" and "right" not
"forwards" and "backwards" . It is, of course, quite possible for a sequence of state
transitions and tape movements to occur which exactly reverses a prior sequence of

actions, leaving the tape as it was before the pattern of symbols resulting from the

original sequence was inscribed. However, suppose the original sequence to have

been started at some arbitrary time t I and to have been completed k-1 time steps

later at time tt . To reverse the sequence requires a further k time steps t t+l to tom .

Thus time continues to move forward as a sequence is reversed. The sense in which

reversing a sequence would have undesirable theoretical consequences would be that

in which reversing the sequence also reversed the flow of time such that the time

at the end of the reversal of the sequence was the original t1 rather than tom . But this

is not the case with a Turing machine. It appears therefore, that the only
satisfactory formulation of the notion of running a tape backwards, i.e. reversal of

a sequence of transitions, is one which does not damage the ETH.

1.11. Outline of the thesis.

In Chapter 2 formal definitions of finite automata and Turing machines are given

and the properties of such machines are discussed. The application of the Turing

machine concept to the study of cognitive architecture is expanded beyond the

introduction given in chapter 1. In chapter 3, Turing's analysis of computation is

discussed in detail and its divergence from the assumptions of the generic theory is

documented. In Chapter 4, a short account of some of the principal features of

digital computers and the history of their development is given with a view to

reinforcing the notion that the digital computer is unsuitable as a literal model of

human cognitive architecture. In Chapter 5. some prominent examples of the

generic computer theory of mind are discussed in the light of Turing's analysis. In

Chapter 6 the External Tape Hypothesis is developed in detail. Chapter 7 gives an

account of the development of thought in terms of the ETH and self-reproducing

machines. Chapter 8 summarizes the claims made, outlines areas of importance for

further research and relates the ETH to other theoretical enterprises in cognitive

science.

37

Chapter 2. Turing Machines and Finite Automata

In this chapter the formal foundations on which the ETH is based are described.
A Turing machine is essentially a mathematical abstraction which describes a
potentially infinite output such as the decimal expansion of ir, in terms of a finite
set of rules for its production, but Turing developed his ideas in the context of

machines which might realize such sets of rules. Thus, in addition to the formal
definition of a Turing machine, it is important to understand what kind of machine
Turing had in mind and what one might be like if it were actually constructed. This
is particularly important for the study of cognition where the concern is with the

embodiment of intelligence rather than with the purely formal or functional means

of its specification. Turing's genius lay in showing how the formal and the physical
might be combined. What Turing aimed to produce was a mechanical model of the

system consisting of a human "computer" working out a routine calculation with

paper and pencil. The details of Turing's machine model and his analysis of
computation are the basis for the ETH and are discussed in detail in Chapter 3.
Turing's biographer suggests that he may have used the typewriter as his basic
model for a machine, Hodges (1983, pp.96-98), whereas Hendriks-Jansen (1994)

has claimed, much less plausibly, that Turing had in mind a manufacturing
assembly-line as his basic model. Whatever the case, Turing was definitely a man
with a practical bent, although apparently somewhat maladroit in his dealings with

machinery, and it is clear that he had in mind the idea of a real machine, albeit one

that was as simple as possible. In order for such a machine to do useful work it

would need to be equipped with the means for reading symbols and for writing and
erasing them. It would also need an indefinitely large supply of paper on which to

record the potentially infinite results of its computations.

2.1. The description and definition of Turing machines.

Informally, a Turing machine consists of two parts. The first is a control machine
which embodies or contains the rules defining the procedure it is to execute. The

second part, which replaces the paper on which a human computer writes is a one-

dimensional tape, divided into squares, each of which can contain one of the finite

38

number of symbols which the machine can recognize. Its format is like a single line
taken from a page of squared arithmetic paper. The tape is assumed to be

indefinitely extendable so as to be able to contain an indefinitely long symbolic

expression. The control machine is equipped with a scanner which enables it to
read the symbol on a square, and with a printer which enables it to write a symbol
on a square or erase the symbol currently there. The control machine is also able

to move to the left or the right relative to the tape, so as to scan a different square.
The way in which the control machine embodies or contains the rules defining the
procedure which it executes is a matter which requires substantial discussion.
Turing's analysis, arising as it did from the consideration of a human computer,

treated the rules as a set of "states of mind" which were defined functionally in

terms of their relations to each other and to the inputs and outputs of the machine.

The Turing machine concept can be defined formally in a number of ways. These

ways differ in detail, but turn out ultimately to be equivalent in the sense of
encompassing the same set of functions. The following, slightly adapted, definition

is taken from Lewis & Papadimitriou (1981,p.170);

Definition 2.1

A Turing machine is a quadruple (K, E, S,$), where
K is a finite set of states, not containing the halt state h;
E is a finite alphabet of symbols, containing the blank symbol #, but
not containing the symbols L and R;
s E K is the initial state;
S is a function from K x E to (K U {h}) x (E U {L,R}).

If q E K, a E E, and 8(q, a) = (p, b), then the machine M, when in state q and

scanning symbol a, will enter state p, and (1) if b is a symbol in E, rewrite the a

in the currently scanned tape square as b, or (2) if b is L or R, move its head in

direction b relative to the currently scanned square. Since S is a function, the

operation of the machine M is deterministic and it will stop only when S(q,a) =

(h,b), or because the machine reaches a configuration for which the transition

function 8 is undefined. In the latter case the machine is said to "hang".

39

Definition 2.1 differs from Turing's original specification in a number of details.

The most noticeable of these is that at each invocation of the transition function

the machines of Def. 2.1 either move or print a symbol but do not do both, whereas

Turing's original machine design included both printing and moving as part of each

instruction. However, definition 2.1 coincides with Turing's definition in the

fundamental matter which is the nature of the transition function. This is a function

of two arguments, q and a, the first of which is the current internal state of the

machine, and the second of which is the currently scanned symbol. The internal

state and scanned symbol together determine the behaviour of the machine. Turing

called the pair (q,a) a "configuration", and distinguished this from the internal state

alone, which he called an "m-configuration", and from the complete description of
the current state of a machine, including the sequence of symbols on its tape which

he called a "complete configuration" . These are important distinctions and the

terms are used throughout the thesis in Turing's sense. Because both the set K of

internal states and the set E of symbols are finite by definition, the number of

possible configurations is also finite. In principle, the domain of the transition

function S can be the whole of K x E but need not be. It is not the case, for

example, in the example machine M described below.

As an example of a rather simple Turing machine, consider the following machine

M = (K,E,S,$) where K = {g0,g1 ,q2}, E ={#,(,),X,Y,N} and s = qo. This
machine is a slightly modified version of a machine described by Minsky (1967).

The transition function S can be described in terms of a machine table as follows;

q a 	8(q,(1) 	g 	Q 	S(q,a) 	q 	Q 	(5(q,o)

go 	# 	(qa,L) 	q1 	# 	(h,N) 	q2 	# 	(h,Y)
qo 	X 	(q0 ,R) 	q1 	X 	(gt ,L) 	g2 	X 	(q2,L)
go 	((go,R) 	q1 	((go,X) 	q2 	((h,N)
go) 	(011,X)

M is a machine which takes strings of left and right parentheses as input, and, when

started in state qo on the leftmost element of such a string, eventually halts and

prints 'Y' if the string is a member of a set P, 'N' if it is not. The tape is assumed

to be blank throughout except for the expression which M is to evaluate. P is

40

defined recursively as follows as the set of strings of parentheses which are
'grammatical' ;

1. QisinP.
2. IfEisinP, (E)isalsoinP.
3. If E and F are in P, EF (the concatenation of E and F) is also in P.
4. Nothing else is in P.

The machine table is a common way of describing the logical structure of a Turing

machine control which dates back to Turing's original analysis. An alternative

means of description which has been developed since his pioneering work is the

state transition diagram, usually abbreviated to "state diagram" . This is a very

useful notation, which is often both more compact and easier to follow than a
machine table. A state diagram for the machine M is shown in Figure 2.1.

Figure 2.1 The State Diagram for machine M.

States are shown as circles labelled with their identifiers. State transitions are

shown as labelled arrows. It is clear that a transition can be made from a state back

to itself. The symbol near the tail of an arrow is the symbol on the currently

scanned square of the tape, and the symbol near the middle of an arrow indicates

41

the action taken which is either a movement or a printing action. Since the sets of

print symbols and movement symbols are disjoint there is no confusion.

Comparison of the machine table and state diagram for machine M shows that they
contain exactly the same information.

The operational characteristics of machine M and the strings it can evaluate are

worth describing in greater detail, because they serve to introduce a number of

important general features of the Turing machine. One distinction which is worth

making at the start is between configurations with which the machine can deal and

those with which it cannot. This is the distinction between recognizable and

unrecognizable configurations. It is not the same as the distinction between well-

formed and ill-formed strings as defined by membership of the set P. The set of

recognizable configurations contains all those for which M can reach the correct

decision, i.e. it contains all those configurations which consist of an unbroken

sequence of parentheses contained between blanks, such that M is started in state q0

scanning the leftmost parenthesis of the expression. The point of making this

distinction is to emphasize that a Turing machine computation requires not just that

the string of input symbols meets some pre-defined criteria, but also that the

relationship between the control and the input string is similarly constrained. This

observation shows how closely intermeshed external structures on the tape and the

internal organization of states of the control need to be in order for a computation

to be executed correctly. The ETH hypothesizes that this intermeshing can be used

to model the interlocking of organisms and environment which constitutes part of

the ecology of a species.

An example of a recognizable, well-formed string which the machine M might be

required to evaluate is '#O(0)#' . Given this string M works as follows; from the

starting configuration in which the machine is in state q0 scanning the leftmost

parenthesis of the expression, it moves right still in state q0, until it encounters a

right parenthesis, which it erases, writing an 'X' in its place. If the string is well

formed, there will be a matching left parenthesis somewhere to the left of the

current position. To determine whether or not this is so, the machine goes into state

42

ql and searches to the left. If it encounters a '#' while searching, there is no
matching left parenthesis, the string is not well formed and the machine halts and

reports the result. If a left partner for the 'X-ed' right parenthesis is found, this is
also erased and replaced with an 'X' . The machine then re-starts its rightward
search in q0 for another right parenthesis. When a '#' is encountered in this state,
the right end of the string has been reached which means that all right parentheses
have been accounted for. The machine then goes into state q2 and moves left. In

this state if it encounters a left parenthesis the string is ill formed but if it
encounters the '#' at the left end of the string, the string is well formed. In either
case the machine halts and reports accordingly. For the string #Q(Q)# above,

successive operations will produce the sequence of expressions #(X(Q)#, #XX(Q)#,
#XX((X)#, #XX(XX)#, #XX(XXX#, #XXXXXX#, and the machine will report the
string to be well formed. What happens, in general, is that a target string is treated

as a concatenation of substrings, which are dealt with one at a time moving from

left to right. Within each substring pairs are matched working outwards from the

deepest to the shallowest nestings. The technique can be applied recursively to
strings of arbitrary length and embeddedness. Broadly speaking, the individual
states of the machine can be described as follows; state q0 is a state characterized

by left to right movement with respect to the expression on the tape. Its sole
purpose is to find an occurrence of a right parenthesis. State ql is a state
characterized by right to left movement. Its basic purpose is to find a matching left

parenthesis for the right parenthesis located by state q0. States q0 and ql act as a

pair, locating and 'X-ing' pairs of matching left and right parentheses. State ql has

an additional function, which is to report the target expression ill-formed if a left

parenthesis is not found. State q2 is a right to left moving state. Its task is to

determine whether there are any unmatched left parentheses in the expression. If

there are it reports the expression to be ill-formed, if not, it reports the expression

to be well-formed.

2.2. The memories of Turing machines.

A point of fundamental importance for the thesis is the fact that machine M can be
said to have two sorts of memory. The first is the obvious symbolic memory

43

provided by the tape. The tape is the repository of the target symbolic expression

and of all changes made to it while the machine is in operation. This memory is

essentially static but fundamental. Without a tape, the class of computations which
can be carried out is reduced. The second kind of memory is a dynamic memory,

which might be thought of as a kind of working memory.

Before describing this memory, it is important to distinguish the claim being made

from another which, emphatically, is not being made. It is not being claimed that

the machine has any memory, either implicit or explicit, of the sequence of states
it has passed through or of the number of moments of time during which it has

occupied the current state. The machine M does not know that it is "in" a particular
state at a particular time. Thus when it is in q0, for example, the machine does not

know whether it has just been started, whether it has always been in q0 or whether

it was in ql at the previous time step and has just arrived back in state q0 as the

result of a state transition caused by a '(' when the machine was in ql. Similarly,

when it is in ql, even though at some prior moment of time the machine must have

been in state q0, it has no knowledge or memory of this or of any other fact. The

machine's horizons at a given moment, so to speak, are entirely local. Perhaps,

more picturesquely, it might be described as living solely in the present or as being

profoundly amnesic. Although, to an outside observer, a Turing machine like M

has a history, the machine itself is entirely unconscious and knows nothing of its

own history. To say this is not to claim that no Turing machine could be conscious.

It might be that consciousness is a property, just like computational universality, of

certain Turing machines which are organized in a particular way. Like universality,

however, consciousness is not a defining feature of a Turing machine and machine

M is certainly not conscious. Further, the control has no explicit knowledge of

what is on the tape, even at the moment at which it scans a symbol. It does not

know which tape square it is scanning because its horizons are limited to just the

currently scanned square which is indistinguishable from any other square on the

tape. Indeed, a simple Turing machine could not even be said to know that it had

a tape.

44

The positive sense in which the machine can be said to have a memory other than

the static memory of the tape, is that it can have an implicit memory for a symbol

scanned at some indeterminate time in the past. Note that it is an implicit memory

for a symbol not for a state. In the case of machine M, state ql constitutes an

implicit memory for the occurrence of a right parenthesis. Despite the very limited

capacities which a machine such as M enjoys, this way of speaking is justified by

the following considerations. First, the machine never scans a right parenthesis

when in state ql, i.e. in a manner of speaking it never has any direct experience of

right parentheses in ql. Thus any effect of a right parenthesis on the machine in
ql must be indirect or implicit. Second, however, a transition to ql from q0 is

made if and only if a right parenthesis is encountered when the machine is in q0.

In the case of a null expression or an expression consisting entirely of left

parentheses the machine never enters state ql. Thus it is apparent that state q1 is

fundamentally connected to the occurrence of right parentheses in some way. The

nature of this connection becomes apparent from considering the behaviour of the

machine if it scans a blank i.e. '#' in q1. In such a circumstance the machine halts

and reports that the target expression was ill-formed. What this means, looking at

the behaviour of M from the outside, is that M has failed to find a left parenthesis

to match a previously scanned right parenthesis. It is for this reason that it is

appropriate to talk of the machine in • ql as having an implicit memory for the

previous occurrence of a right parenthesis even though it has no awareness, of any

kind, of this fact. Finally, since the implicit memory lasts precisely for as long as

the machine remains in state ql it seems appropriate to think of it as a kind of

"short term" or "dynamic" or "working" memory. This terminology is perhaps not

entirely felicitous because it is not a short term or working memory in the sense in

which these terms are understood in cognitive psychology, cf. Baddeley (1986) for

example, if only because there is no set limit on how long the implicit memory can

last. Nevertheless some such usage captures the required distinction between the

static memory of the tape and the more active memory of the control. The state

diagram for M shows that the machine remains in ql for as long as it takes to

traverse the current sequence of 'X'es on the tape. Since expressions in parentheses

may be arbitrarily long, there may be also be arbitrarily many 'X's on the tape and

45

hence there can be no upper bound on the time that the machine spends in state ql
implicitly remembering that a right parenthesis had been encountered. To avoid
confusion with the normal psychological terminology, the implicit memory which
machines may have for symbols as a result of the organization of their internal states
is referred to from here onwards as "control" memory to distinguish it from tape
memory. An additional point which may be worth emphasizing is that although the
memory for a previously scanned symbol is implicit, the behavioural consequences
of that implicit memory are, of course, quite explicit.

The fundamental place of control memory in the approach to cognitive architecture
which follows from the ETH cannot be overstressed and the issues are discussed
further in Chapters 3 & 6. The basic point is that if the brain is not a complete
Turing machine but is a finite automaton like the control of a Turing machine as the
ETH suggests, then control memory must form an important part of human memory
resources. Another point which emerges from the above discussion of states is that
they may have multiple, overlapping functions. State ql implements the search for
a left parenthesis at the same time as serving as an implicit memory for a right
parenthesis. In more complex machines, which may have multiply embedded
sequences of states, the complete functional description of a state may need to advert
to descriptions at numerous levels of. functioning. More is said about this in
Chapter 3.

Another point which should also be mentioned here briefly is the caveat that internal
states or m-configurations as they appear in machine tables and state diagrams are
logical not physical entities. Part of Turing's achievement was to show clearly that
the logical specification of a mental activity such as calculation could be specified
independently of questions of its physical implementation. This does not mean, as
the discussion in Chapter 1 shows, that there are no constraints on media for
implementation. In practice, as the history of the development of digital computers
shows, satisfactory implementations of logical states are hard to come by and the
implementation of the set of instructions constituting a single logical state will

typically be highly complex.

46

Furthermore, the internal states of a Turing machine are logically global, i.e. they
are states of the whole machine. Thus the temptation to see a state diagram as a
diagram of the parts of a physical machine must be treated carefully. There will
always be numerous ways in which the logic of a system of states may be realized
in practice. The interesting and psychologically important question of the
relationship between logical and physical descriptions is discussed further below and
in Chapter 3 in the context of Turing's universal machine description.

2.3. The description and definition of finite automata.

Two other classes of machine need to be discussed in this chapter. These are finite
automata and universal Turing machines. The essential difference between finite
automata and Turing machines is that the former cannot use a tape as memory in
the way that Turing machines can. A deterministic finite automaton (DFA) consists
of a finite state control machine and a tape. In these respects such a machine
resembles a Turing machine. However, the control of a DFA can only read
symbols from its tape, it cannot write on the tape, and it can move only to the right,
assuming it to be started scanning the leftmost element of an input string. The tape
is, therefore, nothing more than an input device which presents successive elements
of a string of symbols to the machine. A subset of the finite set of internal states
of the automaton is designated as the set of "final" or "accepting" states, and if the
automaton ends up in one of these states at the end of a particular input string, that
string is said to be "accepted" by the automaton, otherwise it is "rejected" . The
language accepted by an automaton is the set of strings it accepts. Formally, again
borrowing from Lewis & Papadimitriou (1981, p.51), a deterministic finite
automaton can be defined as follows;

Definition 2.2.

A deterministic finite automaton is a quintuple D = (K,E,S,s,F) where
K is a finite set of states,
E is a finite alphabet of symbols,
s E K is the initial state,
F c K is the set of final states,

and S, the transition function, is a function from K x E to K.

47

The rules by which the next state is selected are built into the transition function,

as is the case with Turing machines. Thus if D is in state q E K and the symbol

read from the input tape is a E E, then S(q, a) E K is the uniquely determined state

to which D passes.

There are two principal differences between definition 2.2 and definition 2.1. First,
definition 2.2 specifies a set of "final" states rather than the halt state h, and second
the transition function of definition 2.2 does not specify an output symbol or a

movement relative to the tape. Both of these points have been raised informally in

the introduction to finite automata above. Apart from these differences it is readily

apparent that the definition of a deterministic finite automaton is very much like that

of a Turing machine. Hence it is appropriate to think of the control of a Turing

machine as a deterministic finite automaton with added output and movement

capacities. Some authors, e.g. Lipschutz (1976) use the term "finite state machine"

to describe a finite automaton which is capable of output.

There is one further class of finite machines, the non-deterministic finite automata,

which need to be mentioned here. Such machines have a transition relation rather

than a transition function describing their actions. A non-deterministic finite
automaton is one in which a number of alternative actions may be available for a
given configuration. Although non-determinism might seem to be a powerful

property of a machine, the classes of deterministic and non-deterministic finite

automata are provably equivalent because a non-deterministic machine can always

be converted into an equivalent deterministic one. It has been argued, for example

by Nelson (1989), that the class of non-deterministic finite automata is the

appropriate class of machine models for modelling cognitive behaviour. For the

purposes of the thesis however, the distinction between deterministic and non-

deterministic automata is not of primary importance and all further references to

finite automata are to deterministic machines unless otherwise specified. The

primary distinction which is explored in the thesis is that between Turing machines

and finite automata.

48

2.4. The computational capacities of invite automata.

Because they cannot write on their tapes and because they cannot change direction
and revisit previously scanned squares, finite automata are more restricted in the
computations they can perform than are Turing machines. The limits of their
computations are well understood. They are restricted to recognizing members of
the class of regular languages which are those languages which can be defined by
regular expressions. Informally, the regular languages are those in which the
amount of memory needed to determine whether or not a string is a member of the
language can be fixed in advance and is dependent solely on the structure of the
language and not on the length of the input string. This relates very naturally to the
idea of a finite automaton as a machine which cannot use a tape as an auxiliary
memory. The memories of finite automata are limited to what can be built into
their internal state structures. One of the interesting features of the machine M, is
that the language which it accepts, i.e. the set of strings which are elements of the
set P defined above, is not regular. Thus, although the machine has a simple
structure and the function it computes is also simple, it is a function which cannot
be computed in its full generality by a finite automaton. The reason is easily
understood. Consider expressions of the form (()k for some natural number k,
which consist of k instances of '(' followed by k instances of ')'. Thus 0)3 = ((0)).
All such expressions are elements of P. Machine M evaluates such an expression
by traversing the k left parentheses and then ticking off successive matching pairs
from the inside out, i.e. ((XX)), (XXXX), XXXXXX. Suppose, however, that the
expression was to be evaluated by a finite automaton. Because elements of the
string cannot be revisited the machine would have to be structured so as to
increment a count of the number of left parentheses as each was presented and to
decrement the count as matching right parentheses were presented. A machine such
as F in Figure 2.2 would suffice for the task with k = 3.

State q0 is the starting state for the machine and also its only final or accepting
state. It accepts all and only those strings for which it is in q0 when the end of the
string is reached. Apart from accepting strings such as ((Q)), it also accepts (000)
and ((0)(0)) and any other of the countably infinite set of strings of parentheses

49

Figure 2.2. F: A finite automaton for parenthesis string recognition.

which do not contain any nesting deeper than 3. However given any expression
containing a substring of (k)k, for k > 3, the machine will hang in q3, because its
input will be a left parenthesis and the configuration "(' , q3 is one for which no
transition is defined. Machine F is, therefore, limited to accepting only a subset of
the elements of P, and it is clear that for any fixed machine with n states q0, ... gII_l,
which has to count its inputs in this way, it will always be possible to specify an

element of P which contains a substring of the form (n)° which the machine cannot
accept. Thus no finite automaton can be structured which can accept all and only
the strings in P. This is, of course, a limitation but it is worth flagging some
considerations which are mathematically perhaps of no interest but which might be
of considerable interest in the context of real creatures solving real problems in real
time. Suppose a limit on the depth of nesting had been established such that it was
known that the machine would not need to evaluate strings with nesting deeper than
some arbitrary value n. In such a case an adequate automaton could be constructed
for the task. Might there be any reason to prefer a machine of type F rather than
type M? At first sight it seems improbable. Suppose, for example, the depth of
nesting to be limited to 50. An automaton following the design of machine F would
have to have 51 states in order to deal with inputs of maximum depth of nesting,
whereas machine M with its three states would be adequate. However, if efficiency,
defined as the number of state transitions needed to evaluate a string, is taken as the
criterion of assessment the picture looks rather different. Considering strings of the
form (k)k , a finite automaton designed like F has to make just 2k state transitions in
order to complete such tasks, whereas machine M has to make 2(k+ 1) 2 +2k
transitions. This means that machine M becomes relatively less and less efficient
as the size of the input increases. For a depth of 50, 2(k+ 1) 2 +2k = 2701. Clearly
the example is artificial and its connection with psychological subject matter is

50

remote, but it may be that the obvious limitations of finite automata have shifted
attention unduly away from their possible advantages. By way of conclusion it is

worth noting that automaton F provides another example of implicit memory. State

ql implicitly remembers that one more left than right parentheses have thus far

appeared in the input, q2 that two more left than right have appeared and so on.

2.5. Universal Turing machines.

Whereas a finite automaton is essentially a Turing machine without a tape, a

universal machine, architecturally, is just like any other Turing machine, i.e. it

consists of a finite state control and an indefinitely extendable tape. The differences

come in the organization of its internal states and the nature of its data. The first
machine table for a universal machine was constructed by Turing in his seminal

paper Turing (1936-7). A universal machine is a single Turing machine, which can

carry out any of the countably infinite number of different tasks or computable

functions for which a special purpose Turing machine can be specified. At first
sight the task of constructing a universal machine seems impossible. The difficulty

lies in the finitude of K and E, the sets of states and symbols respectively, which

define a Turing machine. Since the universal machine, U, is a Turing machine it

has, by definition, a fixed, finite set of states K and a fixed, finite alphabet of

symbols E. It would seem, therefore, that for any given specification for U, we

could always think of a task which required a machine with a set K' of states where

I K' I > I K Í and/or an alphabet E' where { E' J > I E I . Such a task would be

beyond the capacity of U which would therefore not be universal. The problem is

similar to the difficulties faced in trying to design a finite automaton to tackle

arbitrary depths of nesting in the parenthesis checking task.

Turing's solution, which has not been improved upon in the essentials, required two

techniques, the symbolic encoding of machine tables and the interpretive execution

of symbolic encodings. First he showed that a code could be defined using a fixed,

finite alphabet E, to represent any Turing machine. Turing called the encoding of

a machine a "standard description", and it is analogous to a computer program.

Second he showed that a machine table could be specified which would take the

51

"standard description" of a Turing machine as input, and produce the same output,
for given input data, as the encoded machine would have produced. So, the

universal machine consisted of a finite state control which could interpret and
execute the standard description of any other Turing machine, plus a tape on which
a standard description could be written as well as any other input. It is important

to be quite clear that a universal Turing machine requires both a "program" or

"standard description" and data on its tape, whereas a special purpose Turing

machine requires only data. Turing's machine table for U was of the same kind as

that for M above, in that it specified exactly how U was to behave while leaving

open the question of its possible physical realizations.

In one sense the universal machine was special purpose because it was "hard-wired"

to carry out a single function, the execution of a standard description. This can be
called the interpretive function. In another sense, however, it was multi-functional

because its behaviour depended on the encoding of the particular Turing machine

written on its tape. The machine's behavior was changed by substituting one
encoding on its tape for another, which changed the function computed while

leaving the "hardware" interpreter unchanged. Thus the essential difference

between a special purpose and a universal Turing machine is that the latter is

"programmed" to compute a function, whereas the former is "hard-wired" . Minsky

(1967) gives an interesting and straightforward construction for a universal machine

which has just over twenty internal states and uses a binary encoding for its target

machines.

Two points about universal machines which are relevant to their use as models of

cognitive architecture are the following. First, because universal machines are

Turing machines they conform to definition 2.1 and have a fixed alphabet of

symbols and a fixed set of internal states. Their characteristic flexibility is derived

entirely from their being structured so as to execute encodings of the machine tables

of other Turing machines. This means that any cognitive theory which hypothesizes

that the mind is, or contains, a universal Turing machine has to be committed to the

notion that the mind deals with inputs which are rendered into a standard internal

code. If this is so, it ought to be possible to obtain some evidence for the nature

52

of the internal code, for the basic symbolic resources from which it is structured and
for the mechanisms which implement such encodings. If such evidence is not
forthcoming after extensive empirical enquiry, the probability of the hypothesis
being correct must be reduced. Fodor (1975) was one of the first theorists to take
this challenge seriously. The second point is a point about efficiency. Universal
machines are necessarily less efficient than the machines they simulate because for

each configuration of the target machine, the universal machine must execute a set

of transitions of its own to determine what the appropriate instruction for the target
configuration is and to carry it out. Using a programmed version of Minsky's
(1967) universal machine and an appropriate encoding of machine M, the universal

machine required more than 80000 transitions to evaluate the binary equivalent of
the input string '#Q#' for which M requires 10 transitions. Part of this prodigality
derives from the linearity of the tape, but a modified version of the machine using
two tapes still required more than 5000 transitions to carry out the same task. In

modern digital computers which are essentially practical versions of universal
machines, these costs are minimized or masked in two ways. First computers use

addressing schemes which provide much more efficient memory access than the
linear tapes of universal Turing machines and second, computers achieve state
transitions at speeds of the order of micro-seconds or better, whereas neurons
operate in the milli-second speed range. Despite these savings, however, the
inefficiency of the universal machine method of function execution must lead to

questions about its suitability as the architectural basis for the human cognitive

system in which temporal efficiency is a matter of obvious importance.

2.6. Logical and physical machine descriptions.

The issue of the relationship between logical and physical machine descriptions

which was raised briefly earlier in the chapter needs some further discussion,
particularly in the context of one of the objections to the ETH raised in Chapter 1

which can now be considered in the light of the formal definitions of Turing
machines and finite automata discussed above. Problem 7 objects that since there
are identical symbols on the tape and control of a Turing machine, the ETH

trivializes the whole problem of perception and perhaps also the problem of

53

learning. It will be useful to have a name for the problem and a suitable one

appears to be "the identical symbol problem".

The image of an implemented Turing machine which supports the thinking leading
to the identical symbol problem must suppose the control to be an explicit
implementation of the machine table plus a reader. The reader observes the tape to

pick up the input symbol, checks the internal state record to see what the current
state is and uses this pair, i.e. the configuration, to determine which entry in the
machine table is to executed. Having found the appropriate entry, the output
symbol is inscribed on the tape, the state record is updated, and the next instruction

can be executed. A Turing machine implementation of this kind is described by
Wilks (1975). The fundamental question is whether a Turing machine control

implementation must always have an explicit machine table and a reader. If the

identical symbol problem is to be a problem for all implementations of Turing

machines the answer must be yes, but it is far from clear that this is so, even though
our experience with computers pushes us in this direction because computers are
explicitly syntactic machines.

Consider the parenthesis checking machine M and how it might be implemented.

First M needs perceptual capacities to read symbols from its tape. These can be
minimal. What is required is not recognition but discrimination. M does not need
anything like the capacity to say "Now I am perceiving a '#'". Because M's symbol

alphabet has just four symbols, its perceptual system needs only to be able to pass

one of four distinct messages to the control. These messages might be four different
voltage levels, four different positions of a lever, four different neural firing rates

over a given interval or whatever else might reliably signal four different inputs.

Similarly at the output side, we might imagine M to be equipped with something

like a daisywheel, or more flexibly, the print head of an ink jet printer, which

responds differentially to appropriate output signal differences. As a slight

complication, output capacity must include movement left or right but it is not hard

to see how this might be done.

54

In addition to input and output capacities, an implementation of the transition
function is also required. The way in which this is to be done lies at the heart of
the identical symbol problem. Multiple internal states provide the capacity for a
machine be able to make more than one response to a given input. If a given input
is always paired with the same output, then no more than one internal state need be
postulated. Indeed, in such a case the notion of internal state is rendered
superfluous because the state notion explains nothing which is not captured by the
simple and more parsimonious specification of the associative pair. It was just this
superfluity which early behaviourists originally hoped to demonstrate with respect
to the idea of mental states. The demonstration that a one state universal Turing
machine is not possible, ought then, in theory, to be taken to constitute a refutation
of radical behaviourism, because it shows that there are mechanical processes which
cannot be reduced to a set of I-O pairs. If a behavioural capacity is to be given a
deterministic form, i.e. specified by an input output function, and yet to encompass
the many cases in which a single input can be paired with more than one output, a
second argument is needed to cope with the additional variability because a function
can be a one-to-one, or a many-to-one but not a one-to-many relation. The role of
the "state" parameter in the specification of a deterministic machine is to provide
that second argument. As is apparent from the machine table method of specifying
a transition function, the state need be nothing more than a column index.
However, there is nothing in the functional specification of the state notion which
precludes its being realized in other, less syntactic forms.

Consider machine M in receipt of input 'X' . One of three different responses is
required, (qO,R), (q1,L) or (q2,L), with the choice depending on the current state
of the machine. On the assumption that the input can be organized in terms of,

say, a set of distinct voltage levels, it is perfectly plausible to think of the internal
states of a real M being implemented as, say, a system of servomechanisms and a
switching network. Such a system would be an embodiment of the transition
function of M, but need not contain anywhere, an explicit rendering of the machine
table. It might assist clarity to call such a system a non-tabular implementation of
a Turing machine control. Given the notion of a non-tabular implementation the

55

identical symbol problem can be
restated as the claim that all Turing

machine control implementations must
be tabular, and the ETH can be stated
as including the claim that non-tabular
control implementations are perfectly

plausible.

For a familiar example of a function
Figure 2.3. The state diagram for XOR1

which can be given both tabular and

non-tabular implementations consider
the logical function XOR of two binary

inputs. This is commonly specified as

a truth table. A Turing machine to

implement this function can easily be
specified. XOR1 with K =
{g0,gl,g2}, E = {#,0,1} and s = q0 is
such a machine. The state diagram for

XOR1 is shown in Figure 2.3. XOR1

reads its first input in q0, replaces it Figure 2.4. The state diagram for XOR2.

with a blank and goes to state q 1 if the input was a "0" and to q2 if it was a " 1 " .

In either of these states the machine then moves right to scan the second input,

which is replaced by the value of the function, following which the machine halts.
XOR1 is a simple machine, but if the pairs 00, 01,10,11 are defined as single

symbols an even simpler machine XOR2 can be specified with K = {q0}, E =

{00,01,10,11,0,1,#} and s = q0. The state diagram for XOR2 is shown in Figure

2.4. XOR2 is particularly simple because it embodies the function, as it were,

directly. It is of interest in the current context because it has a non-tabular

implementation which is shown in Figure 2.5.

Figure 2.5 shows a network of threshold elements. Two of these take input, one
produces output and three, using connectionist terminology, are hidden units. If the

Figure

XOR2.

2.5. A non-tabular implementation of

56

two inputs together are specified to
constitute a complex symbol of the kind

defined in the alphabet of XOR2, and if

the output is printed on a square of the
tape, then it is apparent that the network

constitutes a realization of the control

automaton of a Turing machine. One

might imagine the network to be

contained within a black box which is

schematized by the dotted line in Figure

2.5. Clearly the network is functionally
equivalent to XOR2, it does not contain

any explicit symbol tokens, it is non-

tabular and is therefore not a system to
which the identical symbol problem applies. These points alone are insufficient to
establish that the network is uniquely an implementation of XOR2 because it is also

functionally equivalent, in the input-output sense, to XOR1. However, the point at

issue is not whether a given implementation can be identified uniquely as the

implementation of a particular Turing machine but whether a non-tabular

implementation of a Turing machine control can be specified. The fixed XOR

network of Figure 2.5 shows that such an implementation can be specified. This

is of course to be expected from the work of McCulloch & Pitts (1943) who

demonstrated the formal equivalence of finite automata and neural networks

composed of fixed threshold elements.

It is sometimes suggested, as discussed in Chapter 1, that McCulloch & Pitts

demonstrated the logical equivalence between neural networks and Turing machines

rather than finite automata. The basis for the suggestion may be a remark made by

McCulloch in the discussion following von Neumann's talk at the Hixon symposium

in 1948. McCulloch is reported as saying of his work with Pitts, "What we thought

we were doing (and I think we succeeded fairly well) was treating the brain as a

Turing machine". Aspray & Burks (1987,p.422)

57

Examination of the 1943 paper shows that McCulloch's later remark was perhaps
not recorded entirely precisely. What the 1943 paper proves is that a McCulloch-
Pitts net can be used to model the finite automaton which constitutes the control of
a Turing machine. In order for a net to compute exactly what is computed by a
Turing machine it has to be supplemented by perceptual organs and a tape. "It is
easily shown: first, that every net, if furnished with a tape, scanners connected to
afferents, and suitable efferents to perform the necessary motor-operations, can
compute only such numbers as can a Turing machine; second, that each of the latter
numbers can be computed by such a net; and that nets with circles can be computed
by such a net; and that nets with circles can compute, without scanners and a tape,
some of the numbers the machine can, but no others, and not all of them."
McCulloch & Pitts (1943, p.37).

Another important point is that although the network connection strengths and
thresholds are fixed in the network of Figure 2.5 it is clear that a network of this
type could be trained to achieve the functionality displayed using error
backpropagation. Notice, in this instance, that the tape plays no essential role as an
external memory, and that the system can therefore, properly be thought of as a
finite state machine with output. It is this sort of example which, in part, justifies
the claim made in Chapter 1 that a connectionist network, whose connection
strengths have been fixed after training, constitutes a finite automaton.

To summarize, two main classes of computing machines have been defined and
discussed. These are the classes of Turing machines and finite automata. The class
of Turing machines includes both mono-functional and universal machines. The
latter are those which are organized so as to treat part of their input as the
specification of another Turing machine whose coded machine table they can decode
and simulate. The class of finite automata can be divided into deterministic and
non-deterministic automata, but the two classes are equivalent in computational
power.

In addition to these basic definitions, a number of points which are of importance

58

to the main argument of the thesis have been introduced. The first of these is that
Turing machines have two sorts of memory, tape memory and control memory.

Control memory is an implicit memory for one or more specific symbols which
have appeared on a Turing machine's tape at some point in the past. The second
point which relates to the issue of implementation is the demonstration that the
"identical symbol problem" need not affect all Turing machine implementations.

Non-tabular machine implementations are not open to this objection.

The third point is the claim that a fixed neural network has the power of a finite

automaton. This is a point which was first proved by McCulloch & Pitts (1943)

with respect to networks constructed from fixed threshold elements. The novelty,

if any, of the present approach is to claim that this result extends to networks whose

architecture is such as to make them amenable to training of the kind studied by

contemporary connectionism. It has been suggested that the capacity to learn

falsifies the claim that a connectionist network has the power of a finite automaton

because a network with hidden layers and the capacity to adjust its connection

strengths can compute any arbitrary function and is thus a Turing machine'.

It is hard to see how this can be the case for connectionist networks as they are

currently studied. The critical point is that with regard to its input, output and

potential for using auxiliary memory, a connectionist network is like a finite

automaton. The sequence of inputs is not subsequently available to the network on

a tape and the outputs of the network do not modify its inputs. Thus, like a finite

automaton, a connectionist network has no auxiliary memory available to it and is

therefore restricted, in its memory capacity, to whatever internal capacity it has in

the fixed system of nodes and connections among them which constitutes its

architecture. The implication of this fact is that unless such a network has infinite

internal capacity, there will be functions, of which the parenthesis checking function

of machine M is one, which can be computed by a Turing machine but not by the
network, which cannot therefore be a Turing machine. The question then is whether

71 am grateful to Professors Wilks and Marslen-Wilson for raising this objection.

59

a network can have infinite internal capacity, and the answer seems to be no.

Infinite storage capacity would have to be bought by making connection strengths

infinitely variable or by making thresholds infinitely sensitive, and neither of these
options is plausible for realistic modelling and certainly not for implementation.

The claim that connectionist networks are Turing machines by virtue of their

capacity to be trained to implement arbitrary functions appears to take the flexibility
of universal Turing machines to be a defining characteristic of Turing machines

generally. That is not the case. Machine M is an example. It is a Turing machine,

but it computes only a single function. If it computed a different function it would

be a different Turing machine. What distinguishes a Turing machine from a finite

automaton and also from a connectionist network is the capacity to use an

indefinitely expandable auxiliary memory. A connectionist network which was

capable of multiple internal states and which was able to take input from a tape and

to write output on that tape is a different matter. A system of this kind would have

the requisite capacity. But such a system would be more than just a network, and

connectionists, with some exceptions, typically do not think of their nets as

embedded in a larger system in this way. They are, of course, right to concentrate

on the formidable learning capacities of networks with hidden unit layers, but they

need also to think about how these nets should be brought into co-ooperative

interaction with structured environments.

In summary, Chapter 2 has prepared the ground for the detailed presentation of

Turing's analysis of computation in Chapter 3 and for the subsequent elaboration of

the External Tape Hypothesis. This chapter has defined and discussed Turing

machines and finite automata. The major issue to which the thesis is devoted is

which of these classes of machine is appropriate for modelling the human mind.

The generic theory, introduced in Chapter 1 argues that the mind supervenes on the

brain and that the brain should be considered as implementing a Turing machine.

The ETH argues, on the basis of Turing's analysis of computation, that it is

incorrect to think of the brain as a Turing machine. The brain should be construed

as a finite automaton. This suggests, since minds obviously have at least the power

60

of Turing machines, that mind does not supervene on brain, but extends to those

portions of the external environment with which the finite control system of the

brain interacts. Thus mind is a property of the situated organism and the

environment serves as an auxiliary memory for the human just as the tape serves as

an auxiliary memory for a Turing machine.

61

Chapter 3. Turing's Analysis of Computation.

The analysis of computation in terms of abstract machines which established Alan

Turing as one of the most important mathematical logicians of the twentieth century

is contained in his paper Turing (1936-7). The significance of this paper for the

External Tape Hypothesis is twofold. First, it provides a machine model, of greater

complexity than the Turing machines commonly discussed in the literature, which
makes an excellent vehicle for a discussion of the nature of control memory. The
concept of control memory was introduced in Chapter 2. It is the memory which a

Turing machine's states provide and is distinct from its tape memory. Normally

such memory is not thought of as particularly important because it is fixed and is,
as it were, swamped by the unbounded memory provided by the tape. However,

if the hypothesis that the brain realizes the finite state control automaton of a Turing

machine rather than a whole Turing machine including a tape is correct, then control

memory must be of primary importance for modelling human cognition. This

represents a major departure from the tradition of modelling in cognitive science

which has been referred to as the generic theory in Chapter 1.

The second, more fundamental, contribution of Turing's analysis to the ETH is that

it provides evidence for the hypothesis that the brain should be modelled as the

finite state control of a Turing machine, rather than as a whole Turing machine
including a tape. The evidence consists of Turing's own arguments to the effect that

the brain is a finite automaton and that the tape is an external, auxiliary memory.

The idea that the brain might be modelled as a whole Turing machine, and, in

particular, the idea that the tape of a Turing machine might provide a model for

human memory are not ideas which are found in Turing's paper. They are the ideas

of a later generation of theorists whose primary inspiration was the digital computer

rather than the abstract model on which the computer was based. The idea that

human memory can be modelled as the tape of an internal Turing machine in fact

contradicts Turing's arguments for the separation of the tape which is an external,

unbounded memory resource from the mind of the human computer which is a

finite, bounded resource.

62

3.1. Turing's introduction to computing machines.

In his famous paper on computable numbers, Turing (1936-7) introduced the notion
of a computing machine by considering what a person did in the process of
computing a number. In 1936 when the work was written, a "computer" was a
person who calculated rather than a machine.

'We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions g1,g2,...,gR
which will be called "m-configurations". The machine is supplied with a
"tape" (the analogue of paper) running through it, and divided into sections
(called "squares") each capable of bearing a "symbol". At any moment
there is just one square, say the r-th, bearing the symbol S(r) which is "in
the machine" . We may call this square the "scanned square" . The symbol
on the scanned square may be called the "scanned symbol" . The "scanned
symbol" is the only one of which the machine is, so to speak, "directly
aware" . However, by altering its m-configuration the machine can
effectively remember some of the symbols which it has "seen" (scanned)
previously. The possible behaviour of the machine at any moment is
determined by the m-configuration q, and the scanned symbol S(r). This
pair qn , S(r) will be called the "configuration": thus the configuration
determines the possible behaviour of the machine. In some of the
configurations in which the scanned square is blank (i. e. bears no symbol)
the machine writes down a new symbol on the scanned square: in other
configurations it erases the scanned symbol. The machine may also change
the square which is being scanned, but only by shifting it one place to right
or left. In addition to any of these operations the m-configuration may be
changed. Some of the symbols written down will form the sequence of
figures which is the decimal of the real number which is being computed.
The others are just rough notes to "assist the memory". It will only be these
rough notes which will be liable to erasure. It is my contention that these
operations include all those which are used in the computation of a number.'

Turing (1936-7, pp.117-118)

The first point to notice about this definition is that Turing derived the idea for a

computing machine from considering a human "computer" in the process of
calculating a real number using paper and pencil. Thus, although the Turing

machine is abstract, it is an abstraction from a very familiar situation and the

distinction between computing paper and human memory is neither arcane nor

abstruse.

A second important point is the distinction Turing makes between an "m-

63

configuration" which is an internal state of the finite control part of the system, and

a "configuration" which is a pair consisting of an m-configuration and an external

symbol. Configurations rather than either m-configurations or symbols alone control
the behaviour of the machine from moment to moment. The implication is that
although behaviour is directly responsive to external input it is not uniquely
controlled by that input; behaviour is a function of two parameters, the input and

the current internal state. This point was discussed in Chapter 2.

The final, and most important, point for present concerns is that the person doing

the computing is compared with "a machine which is only capable of a finite

number of conditions." Turing's claim is that the appropriate model for the mind

of the person is a finite automaton. The automaton is supplied with a tape which

is the analogue of the paper on which a human computer calculates. Thus, the
original Turing machine was a model of a system consisting of a person working

with pencil and paper, and at the outset Turing established a clear distinction
between the automaton with a finite number of states which models the human mind

and the tape which models the paper on which the human computes.

This is important because there is already a prima facie incompatibility between

Turing's picture and those painted by various proponents of the generic theory.

Pylyshyn (1984, p.69), for example, maintains that "a computer (or a brain, for that

matter) is more appropriately described as a Turing machine than as a finite-state

automaton, though clearly it is finite in its resources" . Pylyshyn's argument for this

claim is slightly different from the language of thought and symbol systems

arguments described briefly in Chapter 1. Pylyshyn's argument is based on the

notion that a sequence of state transitions can count as a computation only if the

constituent states are capable of semantic interpretation, and his claim is that this is

true of the states of Turing machines but not of finite automata. Hence if the mind

is to meet the dual requirements that its states be computable and semantically

interpretable, it must be thought of as a Turing machine. Pylyshyn's approach has

been criticized by Nelson (1987). If the approach described in this thesis is correct,

Pylyshyn is right about computers but wrong about brains.

64

Briefly, the issues can be resolved by considering different ways of thinking about
what constitutes a computational state. Turing distinguished three possible

construals of the notion of "state" , to each of which he gave a different name. The
first is the "state of mind"; this is what Turing refers to as an m-configuration. It

is an element of the set {q 1 ,...q}. The second is an ordered pair (g i ,Si), where Si
 is an element of the alphabet of the machine. Turing called such a pair a

"configuration" and it is configurations which determine the moment by moment

behaviour of a machine. In terms of the discussion of Chapter 2, the elements of
configurations constitute the arguments to the transition function 3(q,a). The third

construal of the "state" notion is the global picture of the machine at a given time.

It includes the current configuration plus the entire sequence of symbols on the tape

of the machine and the position of the reading head with respect to that sequence.

Turing called this the "complete configuration" . It seems reasonable to require that

successive complete configurations must be semantically interpretable for a

computation to be of any value, but there can be no requirement that either

configurations or m-configurations must be semantically interpretable independently
of the context in which they occur. By insisting that states of mind must be

semantically interpretable Pylyshyn is, in effect, insisting that they must be
construed as complete configurations, and various passages in Pylyshyn (1984)

support this reading. However, it is clear that Turing did not intend the tape of the

machine to be construed as part of the "state of mind", and hence that Pylyshyn's

proposal is in conflict with Turing's analysis.

Another example of the conflict between Turing and the generic theory is to be

found in the influential work of Newell and Simon (1976) who describe the mind

as a physical symbol system, which is a universal machine by definition, and thus

clearly not a finite automaton. Both Pylyshyn and Newell & Simon, identify the

mind with a whole Turing machine, whereas Turing clearly identifies the mind with

just the finite state control of a Turing machine, and not with the tape as well.

Newell & Simon make a point about the study of Turing machines which bears on

the discussion of control memory. "The finite state control system was always

65

viewed as a small controller, and logical games were played to see how small a state

system could be used without destroying the universality of the machine. No

games, as far as we can tell, were ever played to add new states dynamically to the

finite control -- to think of the control memory as holding the bulk of the system's

knowledge." Newell & Simon (1976, p.44) From a technical point of view there

would, of course, be interest only in the attempt to reduce the number of states

needed for a universal controller, cf. Minsky (1967, Ch.14) but it by no means

follows that this is the right tactic for psychological research. Indeed, given that

Turing had good reasons for thinking of the human mind as a finite control system,
it seems clear that the predominant focus of interest on symbolic structures on the

tape is simply misleading from the point of view of psychological research into

memory. If Turing's model is taken seriously as a model of human cognitive

architecture, then knowledge is indeed encoded in the states of a finite automaton

and so is memory. Turing is explicit about this point; ' ...by altering its in-

configuration the machine can effectively remember some of the symbols which it

has "seen" (scanned) previously.' Turing (1936-7, p.117). This suggests the

implicit storage of symbols in states of the control and opens up the whole question

of how knowledge is represented. The possibility of implicit representation makes

plausible a very different picture of cognitive architecture from the traditional

computer based model.

3.2. Turing's definition of a computable number and his characterization of

mind.

Further evidence for the identification of the human mind with a finite automaton

comes from Turing's definition of a "computable number". Computable numbers

are the raison d'être of his paper and Turing defined them in the opening sentence

as "the real numbers whose expressions as a decimal are calculable by finite

means." The point of particular interest in the present context is the reason Turing

gave for the restriction to finite means, namely "the fact that the human memory is

necessarily limited." Turing (1936-7, p.117). This observation lies at the heart of
Turing's analysis.

66

The fact that a number is computable by finite means does not imply that the
number must have a finite decimal expression. ir , for example, is a computable

number. Similarly, the fact that a computable number may have a non-terminating
decimal expansion is not a reason for claiming that it cannot, in principle, be
computed by a finite agent. What is required is that the finite agent be capable of
cyclic processing and have access to unbounded resources of time and space. The

essence of the Turing machine is thus the specification of a set of interactions
between a finite agent and a potentially unbounded reservoir of external symbolic
resources. Such a specification constitutes the production process for a particular
computable number. Seen in this light, the identification of the (bounded) human

memory with the (unbounded) tape of a Turing machine which is characteristic of
the generic theory quite clearly runs directly counter to Turing's original analysis.

Turing's argument for the assertion that the mind is "necessarily limited" is brief
but clear. It is similar to the argument he advanced to show that the number of

symbols allowed for computation must also be finite. Both arguments are presented

in §9 of his paper. The argument for a finite number of symbols rests on the claim

that 'If we were to allow an infinity of symbols, then there would be symbols
differing to an arbitrarily small extent.' Turing (1936-7, p.135). This argument has
a physical basis which is characteristic of Turing's style and which distinguishes his
approach from purely abstract characterizations of computability. The emphasis on
physical constraints on computability is, of course, entirely appropriate when

considering questions about the nature of human cognitive architecture. Turing is

making two particular points with his argument. The first is that for mechanical
computation we must be able to regard symbols as "literally printed" Turing (1936-

7, p.135, footnote f) on a unit square and unless we are prepared to think of the

square as divisible into an indefinitely large number of pixel like regions, we have

to acknowledge a limit on the number of distinct points onto which symbols can be

mapped. The second point arises from the fact that symbols must also be

recognized. Members of an infinite set of symbols constrained to be printed on a
square of a certain fixed size would not always be pairwise discriminable owing to

67

limitations on the resolving power of a finite recognition system. Thus the

argument for a finite alphabet of symbols is an argument about perceivability. If

the difference between a pair of symbols were made arbitrarily small they would

become indistinguishable and deterministic computation would be impossible. But,

as Turing pointed out, the effect of accepting such physical limitations on symbols

is not serious, because compound symbols, consisting of sequences of tokens from

the fixed alphabet, can always be used instead.

The related argument for a finite number of states of mind is equally briefly stated

but also perfectly clear. 'We will also suppose that the number of states of mind

which need be taken into account is finite. The reasons for this are of the same
character as those which restrict the number of symbols. If we admitted an infinity

of states of mind, some of them will be "arbitrarily close" and will be confused.'
(Turing, op.cit. p.136) . This is an assertion of the supervenience of states of mind

on the brain. In his biography of Turing, Hodges (1983, p.108) suggests that by

the time the work on computable numbers was written, Turing was becoming "a

forceful exponent of the materialist view" . A finite bound on the number of states

of mind follows from the finitude of the brain and the supervenience of states of

mind on the brain. A significant point about this argument is Turing's further

observation that "the restriction is not one which seriously affects computation, since

the use of more complicated states of mind can be avoided by writing more symbols

on the tape." Turing (1936-7, p.136). Clearly this observation has weight only if

"states of mind" and "symbols on the tape" are distinct parts of the system.

In summary, Turing's paper explores the notion of a computable number, which is

a number whose expression as a decimal is calculable by finite means, i.e. by an

algorithm. The algorithm will, in many cases, require unbounded resources of time
and space. There is, therefore, a fundamental distinction to be made between the

fixed structure realizing the algorithm and the resources needed for temporary

storage and for recording the output of the computation. From consideration of the

example of a human engaged in a routine calculation, Turing developed a machine

model to capture the essential processes involved; the model consisted of a finite

68

control automaton which modelled the algorithm embodied in the mind of the
human, and an indefinitely expandable tape which modelled the paper on which the
calculation was worked. The identification of the human mind with the finite

control system was supported by an argument for the claim that the human brain
was capable of being in only finitely many different states.

3.3. Turing's later work on computers.

Turing's later work on computers is consistent with the ideas of his 1936 paper. In

1946 he produced a report for the National Physical Laboratory, in which he
provided a detailed design for a stored program computer to be called the ACE.
The report had elements in common with von Neumann's influential draft design
document for the EDVAC computer which Turing recommended should be read in

conjunction with his report. This is discussed in more detail in Chapter 4.
Although von Neumann suggested in passing that there was a correspondence
between computer memory and the nervous system, there is no suggestion of such
a parallel in Turing's ACE document. With respect to the storage requirements,

Turing's outline is very much of a piece with the thinking of his 1936 paper. "It

is evident that if the machine is to do all that is done by the normal human operator
it must be provided with the analogues of three things, viz. firstly, the computing

paper on which the computer writes down his results and his rough workings;

secondly the instructions as to what processes are to be applied; these the computer

will normally carry in his head; thirdly, the function tables used by the computer
must be available in appropriate form to the machine. These requirements all

involve storage of information or mechanical memory." Turing (1946, pp.20-21).
Notice the clear distinction between the computing paper on which results are
written and the instructions which are in the head of the computer.

In 1947 Turing gave a lecture about the ACE project to the London Mathematical

Society, in which he was quite explicit about the relationship between universal

Turing machines and digital computers and also about the nature of the memory of

digital machines. Digital computers were, he said, "practical versions of the

universal machine." Turing (1947, p.112), and their memories were analogous to

69

the infinite tape of the universal machine. The major problem was that access to
a one dimensional tape memory was unsatisfactory for a practical machine because
of the time spent shuttling up and down looking for a particular piece of
information. "This difficulty", he remarked, "presumably used to worry the
Egyptians when their books were written on papyrus scrolls. It must have been
slow work looking up references in them, and the present arrangement of written

matter in books which can be opened at any point is greatly to be preferred." Turing

(1947, p.107) The organization and size of the memory of the proposed ACE

computer was clearly of paramount importance and Turing used a. good deal of the

lecture to talk about it, "because I believe that the provision of proper storage is the

key to the problem of the digital computer, and certainly if they are to be persuaded
to show any sort of genuine intelligence much larger capacities than are yet available
must be provided." Turing (1947, p.112). This is an interesting observation because
it shows that Turing was thinking even at that early stage about the possibility of

digital computers displaying intelligence and had identified a large memory as a
crucial requirement. However, the fact that a computer would require a large
symbolic memory with tape like characteristics in order to display intelligence is not
an argument for supposing that human memory is of the same form, and Turing did

not advance such an argument despite his interest in machine intelligence and his
likely sensitivity to useful parallels between minds and computers. The reason why

a computer requires a large internal symbolic memory is precisely because it lacks

the complex perceptual apparatus which enables humans to engage in direct

transactions with the external environment as required. By contrast, a computer

which lacks such communicative ability must be provided in advance with all the
information which will be relevant to the performance of whatever task it is engaged
on plus storage for intermediate results and so forth. Hence the requirement for a

large symbolic memory. It is clear that pre-storage of all the relevant information
needed by a mobile machine interacting with a real environment poses formidable
problems of both technical and conceptual origin. Technical problems include the
development of representational and search methods which can cope with the ever

present threat of combinatorial explosion, and conceptual problems include the
difficulty of determining which aspects of the environment are relevant to a

70

machine.

Finally, there are references in the very well known paper Turing (1950) which
point to the identification of symbolic computer memory with the paper on which
a human computer calculates and not with human memory. In the 1950 work

Turing described the digital computer as a machine intended to carry out any
operations which could be done by a human computer. The human computer "has

an unlimited supply of paper on which he does his calculations" Turing (1950, p.43)

and the digital computer has a store which "is a source of information, and

corresponds to the human computer's paper" Turing (1950, p.44). Slightly further

on, this correspondence is re-iterated. "The computer includes a store corresponding

to the paper used by a human computer. It must be possible to write into the store

any one of the combinations of symbols which might have been written on the

paper." Turing (1950, p.47). These remarks are firm indicators of a continuing link

in Turing's thinking to the idea of the universal machine and to the distinction made

there between the finite state control which modelled human memory and the tape
which modelled the paper on which the human computer wrote.

Turing also explicitly recognized a distinction, at least at one level, between the

nervous system and computers. "The nervous system is certainly not a discrete-state

machine. A small error in the information about the size of a nervous impulse

impinging on a neurone, may make a large difference to the size of the outgoing

impulse." Turing (1950, p.57). This is a somewhat puzzling observation because

it appears to be in conflict with the notion of a "state of mind" which is a

fundamental component of the Turing machine concept and of Turing's analysis of

computation. The "state of mind" in the 1936 paper was certainly intended to be

a discrete state in the sense in which Turing used the term in the 1950 paper. In

an article written to mark the fiftieth anniversary of the Turing machine concept,

Turing's biographer, Andrew Hodges, suggested that Turing's thinking about this

issue was incomplete. "...we cannot feel that Turing had arrived at a complete

theory of what he meant by modeling the mental functions of the brain by a logical

machine structure." Hodges (1988, p.11). One possible answer is that Turing was

71

feeling his way towards an analysis of the issues in terms of a hierarchy of levels
of explanation such as that proposed by Marr (1982). In Marr's terms the "state of
mind" as Turing understood it is a construct at the algorithmic level whereas

Turing's discussion of nervous activity is pitched at the implementation level. This,
of course, is not an explanation of how discrete algorithmic states can be obtained
from continuous nervous activity, but it replaces the apparent conflict with a

question about how it might be possible to construct reliable discrete states from
assemblies of real neural elements. von Neumann also gave some consideration to
these issues at about the same time and wrote a notable early paper on the topic,
which is reprinted in Aspray & Burks (1987, ch.13). von Neumann proposed a
multiplexing scheme to control the global behaviour of circuits made from unreliable
basic components and showed how the probability of a signalling error could be

made arbitrarily small. From a different perspective, the phenomena of categorical
perception, cf. Hamad (1987), whereby continuously varying physical dimensions

are perceived as having discrete characteristics, suggest that Turing's analysis of

mental functioning in terms of discrete states of mind enjoys considerable empirical
support at an appropriate level of analysis. Notwithstanding the problems in

understanding how to reconcile Turing's apparently divergent remarks, they do, in

any case, provide further evidence for the suggestion that he was not trying to

explain the workings of the nervous system in terms of digital computation.

To summarize, the evidence of Turing's published work over more than a decade

clearly supports the claim that to treat the tape of a Turing machine or the symbolic
memory of a computer as a model of human memory is to make a major departure

from the Turing machine concept as its originator understood it. The generic
computer theory of mind makes just such a departure and cannot therefore be

considered to enjoy the support of Turing's theoretical analysis. The ETH, by

contrast, by treating the brain as a finite automaton and modelling memory as
control memory, argues for precisely the distinction that Turing made.

3.4. Turing's universal machine design.

Part of the difficulty with the concept of control memory is that for the sorts of

72

reasons given by Newell & Simon (1976) which were briefly discussed earlier it has
been a neglected topic. In a modern computer, control memory is nothing more

than the contents of the registers of the CPU plus the set of basic operations which
constitute the behavioural repertoire of the processor. The control of Turing's

universal machine is a large, complex automaton which provides numerous
interesting examples of the nature and uses of the control memory concept. For this

reason it is worth examining in greater detail. From the point of view of the ETH
it is the size and complexity of the automaton rather than the fact that it functions
as a universal interpreter which is of primary interest. To understand the structures
of the control it is necessary to introduce Turing's encoding scheme for the target
machines which the universal interpreter was to simulate and to say something about
Turing's notation and construction methodology. These are particularly interesting
in the context of implementation issues.

The universal machine operates by interpreting and acting upon the description of
another machine which is known as the "target machine" . This description, which

Turing called the "standard description", has to conform to certain syntactic
conventions. Each instruction has five components; if one thinks of the instruction

as a whole as a condition-action rule the first two components constitute the left
hand side or condition, the remaining three the right hand side or action. The five
components, in the order in which they appear in an instruction, are the current state
(q; , 1 _< i . m), the scanned symbol (S i , 0 < j <_ n), the output symbol (SO, the tape

movement indicator (Mu) and the next state (cu). This formulation differs slightly

from the definition of a Turing machine given in Chapter 2. In that definition an
instruction had four terms only, because a machine could either print a symbol or
move, but not do both as part of the same instruction. The point is a purely

technical detail. Turing's syntax specified that states were to be encoded by "D"
followed by i occurrences of "A", symbols by "D" followed by j occurrences of
"Cu, and tape movements by "L", "R" or "N" for left, right or no movement

respectively. Thus, for example, the encoding of the instruction g 1 ,S 0,S3 ,R,g4 , was

the string "DADDCCCRDAAAA" . Instructions were separated from each other by
semi-colons. Turing also specified that target machines had to be started in state q1

73

= "DA" scanning a blank tape, and that the encodings for "blank", "0" and "1" had

to be So = "D", S1 = "DC" and S2 = "DCC" respectively. These specifications

can be understood in the light of Turing's primary concern with computable

numbers. His formalism specified machines which printed out the binary encoding

of a real number. Turing called this encoding the "sequence" computed by the

machine. When he came to consider the universal machine, one of the requirements

was that it too should print the sequence computed by the target machine. This

would only be possible if the encoding used for the digits "0" and "1" was known

in advance and was the same for all targets. The encodings for "0" and "1" are the
only two which the universal machine "interprets" in the sense of substituting what

they stand for. The specific encoding for "blank" was needed in order to make the

first configuration of every target machine the same and hence to provide a starting
point for the universal machine's interpretive operations.

As a familiar example, consider machine M of Chapter 2. The definition of M, and

its machine table are reproduced below. M = (K,E,S,$) where K = {g0,gl,q2}, E

={#,(,),X,Y,N} and s = q0. The machine table is;

q a b(q,a) q a b(q,a) q a 6(q, a)

q0 # (q2,L) ql # (h,N) q2 # (h,Y)
q0 X (qO,R) ql X (q1,L) q2 X (q2,L)
q0
q0

(
)

(qO,R)
(q1,X)

qi ((qO,X) q2 ((h,N)

As it stands, M is not suited to simulation by Turing's machine, partly because its

starting state is not ql, partly because its starting symbol is not a blank, and partly
because its instructions are specified as quadruples rather than as quintuples.

Further, Turing did not specify a distinguished halt state. His machines would halt

if they reached a configuration for which no action was defined. However, with

minor modifications, a standard description for M can be produced. The first

requirement is to change the state identifiers so that the starting state is ql. The halt

state will be q4. Since no instructions are specified for q4, a transition which

specifies q4 as the next state will cause the machine to hang which is the desired

74

result. The second requirement is to change the quadruples to quintuples. This is
easily done as follows; first, whenever M prints an output symbol it does not move.
So the movement symbol 'N' can be used in these cases. Second, whenever M does
move, it does not print a symbol. The same effect can be had by specifying that the
output symbol be the same as the input symbol. The use of 'N' as a movement
symbol introduces a conflict with its use in the alphabet of M as an indicator of the

status of a string at the end of a computation. This can be got round by replacing

'Y' and 'N' for 'Yes' and 'No' with ' 1' and '0'. It is also evident that the condition
that the machine be started in state ql scanning a blank could easily be implemented
at the cost of an additional state. However, this is omitted here as the exercise is
intended simply as an example. Putting the changes in place gives a revised
machine table for a machine M' = (K,E,S,$) where K = €gl,g2,q3}, E =

{#, (,),X,Y,0,1} and s = q1. M' is functionally equivalent to M. The machine

table for M' is;

q 	Q 	a (q, cr) 	q 	ff 	S (q,Q) 	q 	Q 	S(q,o)

q1 	# 	(#,L,q3) 	q2 	# 	(O,N,g4) 	q3 	# 	(1,N,g4)
ql 	X 	(X,R,g1) 	q2 	X 	(X,L,q2) 	q3 	X 	(X,L,g3)
ql 	(((,R,ql) 	q2 	((X,N,gI) 	q3 	((O,N,g4)
q) 	(X,N,g2)

All that is then required is to specify standard encodings for the symbols ' (' ,')' , and

'X' and to make the appropriate substitutions. Setting '(' = DCCC, ')' = DCCCC

and 'X' = DCCCCC, the machine table for M' in standard description format

appears as follows;
DADDLDAAA;
DADCCCCCDCCCCCRDA;
DADCCCDCCCRDA;
DADCCCCDCCCCCNDAA;

DAADDCNDAAAA;
DAADCCCCCDCCCCCLDAA;
DAADCCCDCCCCCNDA;

DAAADDCCNDAAAA;
DAAADCCCCCDCCCCCLDAAA;
DAAADCCCDCNDAAAA

75

Two points are worth making. First it is clear that the encoding scheme could, in
principle, be applied to transform any machine description into a standard

description. Perhaps more important for present concerns is the obvious price paid
for the behavioural flexibility of the universal machine. That price is complete
inflexibility with respect to the encoding conventions. What this implies is that if,

as the generic theory suggests, thinking is essentially the activity of an internal

Turing machine, a process of encoding external stimulus energies into expressions

in an internal alphabet which corresponds, however weakly to the process

exemplified above, must be hypothesized to exist.

In addition to the alphabet used to encode standard descriptions, Turing's universal

machine required additional symbols to act as markers. One set of temporary

markers was specified; Turing used the letters "u", "v", "w", "x", "y" and "z" for

this purpose. He also used the colon, a double colon serving as a single symbol,

and an inverted and reversed lower case "e", as permanent markers. For
convenience here, the double colon is replaced by the asterisk "*" and the inverted

"e" is replaced by "e" . Turing called the digits "0" and "1" "figures" or "symbols
of the first kind"; all other symbols were "symbols of the second kind".

The tape of the universal machine was one-way infinite to the right of a fixed

starting point which consisted of the symbol "e" printed on two consecutive squares.

Turing considered the tape to consist of two alternating sequences of squares.

Counting squares from the left, he called the odd numbered sequence "F-squares"

and the even numbered sequence "E-squares". E-squares were used exclusively for

markers which could be erased, whereas the symbols on F-squares formed an

unbroken sequence. Once a symbol was printed on an F-square it was never

altered. Thus the end of the sequence printed on F-squares could be identified by

finding two consecutive blank squares and the start by finding the marker string

"ee" . A symbol 'ß' on an F-square, and also the F-square itself were said to be

marked by a symbol 'a' , if 'a' appeared on the E-square immediately to the right

of the F-square containing 'ß'. Marking is a highly significant operation in the

context of the universal machine. For example, it is the method by which the

76

current configuration is compared with the configuration of an instruction in the

standard description of the machine being simulated. The universal machine was

started on a tape which was blank except for the standard description of a target
machine printed immediately to the right of the marker string "ee" and terminated

with the symbol "a".

Given the large symbol alphabet and the task of producing a universal interpreter
which Turing was tackling de novo, it is unsurprising that the finite state control of
the first universal Turing machine is a complex structure of several hundred states.
To handle the complexity Turing developed an economical notation for the

description of commonly used processes which includes ancestors of the concepts

of a subroutine and of a formal parameter. It is not, however, a programming

language in the modern sense, but a way of abbreviating the machine table

description of a structural unit. The notation can be seen to point in two rather

different ways when one is thinking of implementation. These different

implementation possibilities are profoundly interesting in the context of the study of

real cognitive systems because they relate to the nature of control memory. They
can be explored by studying Turing's notation with the help of state diagrams.

The essential elements of the notation were what Turing called "skeleton tables" or

"m-functions" . An important example is shown in Table 1.

m-config.

f(C,B, a)

fl(C,B,a)

f2(C,B,a)

Symbol 	Behaviour 	Final m-config.

e 	L 	 fl(C,B,a)
not e 	L 	 f(C,B,a)
None 	L 	 f(C, B, a)

a 	 C
not a 	R 	 fl(C,B,a)
None 	R 	 f2(C,B,a)

a 	 C
not a 	R 	 fl(C,B,a)
None 	R 	 B

Table I. The skeleton table for f(C,B,a).

77

The process described in Table I finds the leftmost occurrence on the tape of a

symbol "a" if there is one. The scanning head is moved to the left until the end of
tape marker "e" is encountered. Then it is moved to the right looking for the target
symbol but also checking for the occurrence of two consecutive blanks indicating
the other end of the tape and showing that the target symbol does not occur.
Whereas an ordinary machine table would have named configurations in the first
column, Table I has the parameterized expressions f(C,B,a), f1(C,B,a) and
f2(C,B,a). These are m-configurations and the table as a whole is a skeleton table.

Parameters C and B are also m-configurations and a is a symbol. A final transition

is made to C if a is found and to B otherwise.

Turing said that "skeleton tables are to be regarded as nothing but abbreviations:
they are not essential." While this is true in a sense, it displays Turing's

characteristic modesty and underestimates the value of the technique. Two points

are particularly worth making. First, the m--function notation is very economical

although it can be difficult to comprehend. Second, the technique invites the

specification of complex structures in terms of simple parts. Turing used this
technique wherever possible in the specification of the control of the universal

machine even when simple, much more efficient alternative state structures could
have been devised. In fact, all but 14 of the 420 states in the universal machine

control were specified in terms of m-functions. To understand the technique both

Turing's notation and state diagrams are useful. In Figure 3.1 the state diagram of
f(C,B,a) and its relation to the machine table are shown.

The states f, fl and f2 of Figure 3.1 are the realizations of f(C,B,a), fl(C,B,a) and

f2(C,B,a) respectively and the target symbol a is 'a'. The three internal states of

the structure and the relations among them are what would be common to any

instance of the m-function. The transition arcs to states C and B are shown rather
than the final states themselves. Although the "f-unit" as it can usefully be called,
is an abstract logical structure, there is no reason why it should not be thought of

as a structural unit akin to a logic chip. This kinship becomes even more apparent

Leftmost instance of

'a' found. Next state

is given by C in f(C,B,a)

'a ' not found. Next state

is given by B in fCC,B,a)

` f 1 = f1(C,B,a)

State f = f(C,B,a) i n Turing 's

^
^

\' f2 = f 2(C, B, a)

notation

78

Ef(aDJ

'&' stands for any symbol not explicitly

accounted for elsewhere

Figure 3.1. The f-unit, the basic building block of Turing's machine.

when its use in the specification of a more complex structure is examined. Suppose

the task was to search for the first instance of symbol 'x' followed by the first

instance of symbol 'y' if an 'x' was found, with a final transition to state C given

both 'x' and 'y' found, and a final transition to state 'B' if either was not found.

In Turing's notation this would be expressed as f(f(C,B,y),B,x), i.e. a nesting of

two f-units. f(C,B,y) is specified as the state to which a transition is made if 'x' is

found'. By contrast, in f(C,f(C,B,y),x), the search for 'y' is carried out only if 'x'

is not found, because f(C,B,y) is parameter B in f(C,B,y). State diagrams for both

of these nested structures are shown in Figure 3.2.

Turing used a variety of other structures in addition to the f unit as foundations for

the universal machine construction. Like the f-unit these structures reflect the

organization of the tape.

Figure 3.3 shows the structures f (a), q(a) and con(a) as well as the f-unit f(«) .

f («) is an f-unit augmented by a single state which positions the control one square

The order of evaluation may initially be confusing for programmers. The outermost function
is carried out first, followed by whatever is conditionally specified to follow. For example, in

f(f(C,B,y),f(C,B,z),x) a search for 'x' is made first followed by a search for 'y' if 'x' is found or
for 'z' if 'x' is not found.

fC* CC. B,x),B.y)

• 0
410

R • • 	• 410 B

R • 0 or •
fCC,f{C, B, y), x)

R •
R I R R ,

•

79

Figure 3.2. Examples of function specification using nested f-units.

to the left of the symbol found. In such instances the symbol found is almost

invariably a marker. q(a) finds the rightmost occurrence of the symbol a. It is
assumed that there is at least one instance of a on the tape. Con(a) is used to mark

a configuration with the symbol a. A configuration is a sequence of symbols on F-

squares of the form DA(A*)D(C*), where (A*) and (C*) stand for zero or more

occurrences of A and C respectively. Configurations determine the operations of

Turing machines, hence their identification is a matter of fundamental importance.

Since a configuration is a sequence on F-squares, the E-squares between them can

be used for markers. DxAxDxCxCx is how the configuration DADCC marked with

'x' would appear on the tape of the universal machine.

In addition to structures for searching and marking, structures for erasing markers

are also needed. Figure 3.4 shows the e(a), eall(a) and er(M) structures. e(a) is

an f-unit to which a single state has been added which erases the symbol found.
eall(a) has the same state structure as e(a) but the transition after an instance of the

target symbol has been erased, reruns the whole process. er(M) is a simple

structure which erases any markers found on the tape.

The final m-functions which constitute components of the universal machine are

those which write output on the tape. They represent a second order of complexity

CfCa)]

Leftmost Instance of

'a ' found

'a ' not found

C f 'Ca)]

Scanning symbol to

I eft of leftmost

marker 'a '

Marker 'a ' not found

Rightmost instance

of 'x ' found C
R

EconCx)]

Nearest configuration

to right marked with 'x'

80

Figure 3.3. rn-functions for searching and marking.

as they include other m-functions as parts. Ce(v), pe(D) and pe2(0, :) are shown in

Figure 3.5. ce(v) copies each symbol marked by a 'v' to the end of the tape and

erases the markers. pe(D) is a component of ce(v). It uses an f-unit to position the

scanning head over the first F-square and then scans successive F-squares until a

blank one is found. Given Turing's conventions, the first blank F-square will be

at the end of the used portion of tape. pe2(0,:) illustrates very clearly the
inefficiency to which simple concatenation of structures can give rise because it

81

Figure 3.4. m-functions for erasing markers.

involves an entirely unnecessary traverse of the used portion of the tape in both

directions.

With these preliminaries in place, Figure 3.6. shows the complete set of structures

comprising the control of Turing's universal machine and Table II shows the

machine table as Turing presented it. Figure 3.6 provides the basis for a discussion

of control memory and implementation options. The circles indicate single states,

the solid rectangles m-functions, and the dashed rectangles indicate regions of the

structure which have a common purpose and are defined as multi-levelled m-

functions. The previous figures provide all the components needed to complete the

full state diagram. A brief description of the processing cycle will motivate the

discussion. The machine works by writing out successive complete configurations

of the target machine, interspersed with the sequence of '0's and ' 1's which

82

Figure 3.5. m-functions for copying and printing

constituted the number computed by the target. The machine is started on a tape

which is blank apart from the standard description of the target machine which is

written on F-squares at the left end of the tape and terminated with the symbol ' *' .

Processing is initialized by having the machine write the first configuration, marked

with 'y' at the end of the tape. This will always be DyAyDy indicating that the

target machine was started in state ql scanning a blank. The matching configuration

in the standard description of the target is found by a pattern matching search using

the 'kom' and 'Imp' structures. The'kmp' structure is particularly interesting both
for the brevity of its definition and for the complex task which is executed by a

system composed of nothing other than f-units and erasers. It is an outstanding
example of the concatenation of simple structures to produce a complex outcome

and is discussed further below. Once the appropriate instruction in the standard

description of the target has been identified, the 'sim' structures mark this

instruction in preparation for the next stage of processing. The configuration, which

Start

fC^^

LL

conCy)
RR:RRORRA Rz L

conCx]

(11 8
0 IN% Ittw.

[3]

f 'Cy)

c
f 'Cy)

A 	

f 'C Y)

eCx) —

[MP]

eCy)

eaI I(x) -^ ealI Cy)

LuRRR 	LyRRR

Ly

f 'CzD ^

RwR
RxLLL 	RvLLL RR

LLLL 	RxLLL

RR
fC u^

e
^ {

GC up

RE
L 	i

ce[vD

ceCYD

ceCxD

ceC LAD

ceCw)

& 	LLL 	I RRRR RR

pe 2C 0. 0 pe2C 1, :

r
RE ' i
	M

RE

ce(v) ceCxD ceC uO ce[yD ceC w) erCMa

ceCv) ce(x] ceCy) ceC u^ ^

83

Figure 3.6. The state diagram for Turing's universal machine.

was used to identify the instruction, is now redundant and is marked with blanks.

The operations, i.e. the symbol to write and the movement indicator are marked

with 'u', and the next state is marked with 'y'. Any remaining 'z' markers from

84

the pattern matching process are erased. Having marked the instruction, the
machine then marks out the most recent complete configuration on the tape. The

components of this, along with the appropriate parts of the marked instruction in the

standard description make up the next complete configuration. To simulate the
movement

m-config symbol operations final m-config

b f(bl,bl,*)
b 1 RR:RRDRRA anf

anf q(anfl,:)

anfl con(kom,y)

kom ; RzL • 	con(kmp,x)

kom z LL kom

kom not z or ; L kom

Imp cpe(e(e(anf, y), sim,x, y)

sim f (siml,siml,z)

sim2 A sim3

sim2 not A LyRRR sim2

sim3 not A Ly e(mk,z)

sim3 A LyRRR sim3

ink q(mk, :)
mkt not A RR mkt

mkt A LLLL mk2

mk2 C RxLLL mk2

mk2 : mk4

mk2 D RxLLL mk3

mk3 not : RvLLL mk3

mk3 mk4

mk4 con(1(1(mk5)),B)

mks Any RwR mks

85

mk5 None . sh

sh f(shl,inst,u)

sh 1 LLL sh2

sh2 D RRRR sh3

sh2 not D inst

sh3 C RR sh4

sh3 not C inst

sh4 C RR sh5

sh4 not C pe2 (in st, 0, :)

sh5 C inst

sh5 not C pe2(inst, 1, :)

inst q(1(instl),u)

instl a RE instl(a)

instl(L) ce5(ov,v,y,x,u,w)

instl(R) ce5(ov,v,x,u,y,w)

instl(N) ce5(ov,v,xy, u, w)

ov er(anf)

Table II. The machine table for Turing's universal machine.

of the target machine relative to its tape, Turing used a convention in which the m-

configuration was written immediately to the left of the scanned symbol in the

complete configuration. Thus the string DCCDCCDADCDCCDCC

represents a machine in state ql scanning the '0' of the string '11011'. Suppose the

instruction for configuration D A D C specified a move left and a transition to state

q2, the complete configuration DCCDCCDADCDCCDCC would need

to be replaced by DCCDAADCCDCDCCDC C. Turing managed this

with the following marking convention. The original complete configuration is

marked by the'mk' structures as DvCvCvDxCxCxD_A_D_C_DwCwCwDwCwCw,

where the underscore '' indicates marking with a blank. The part of the instruction

86

in the standard description indicating the output symbol and a transition to state q2
would . have been previously marked as DuCuDyAyAy by the 'sim' structures. The
simulation of movement is achieved by writing out the marked parts in the
appropriate order. Turing did this with the set of ce(a) structures which is
discussed below. For a move left the order is 'v','y','x','u','w' which, for the
example given, yields D C C followed by D A A followed by D C C followed by

D C followed by D C C D C C. Having written out the new complete
configuration the machine makes a transition to state 'ant' to begin the next
instruction matching cycle.

3.5. Control memory in Turing's universal machine.

The most significant portions of the universal machine control for demonstrating the

control memory concept are the 'kmp' set of structures and the 'ce(a)' structures.
The 'kmp' structures carry out a symbol by symbol configuration matching process
given a pair of configurations, somewhere on the tape, one of which has been
marked with 'x's and one with 'y's. Turing defined 'kmp' as a complex m-function
with a single entry point, and two exit points. The two exit points implement a

branching operation which is conditional on the success of the configuration
matching process. Thus the function of 'kmp' is to compute the conditional "If the
marked configurations are the same go to 'sim', else go to 'anf".

The first important point to note is how 'same' is implicitly defined in terms of the
symbol structures which can appear on the machine's tape and the possible routes

through the 'kmp' function. Two configurations are the same if and only if the

machine fails to find a 'y' marker while executing f(y), structure number [2] in the
state diagram for 'kmp' (Figure 3.6). Consider a hypothetical tape expression
DxAxDx#####DyAyDy, where ##### stands for an arbitrary number of intervening
squares with no 'x' or 'y' markers on them. 'kmp' works through this expression

by finding the first 'x' marker and noting the symbol it marks. Then it finds the
first 'y' marker and notes that the symbol it marks matches the symbol marked by
the 'x' marker. The first 'x' marker and the first 'y' marker are deleted and the

process is repeated on the expression D_AxDx#####D_AyDy. This cycle is

87

repeated twice more successfully but on the fourth invocation the machine finds

neither an 'x' nor a 'y' marker. This must signal that the configurations matched.

Consider the alternatives. First, the expressions marked with 'x' and 'y' might have
been of different lengths. In such a case the instances of either the 'x' or the 'y'

marker would be exhausted first leaving at least one instance of the other marker
still on the tape. If the 'x' markers had been exhausted there would still be at least

one 'y' marker on the tape which would be found by the machine executing
structure [2] . If the 'y' markers had been exhausted the machine would not have
entered structure [2] because an 'x' marker would have been found by f (x), and the

lack of a 'y' marker would then have been detected by the appropriate f(y) unit.

Alternatively a pair of symbols might have failed to match at some stage in the

processing. In such cases also, the machine would not have entered structure

number [2] and the mismatch would have been detected by one of the 'cp2' states.

Thus the only case in which the machine can be executing structure [2] and can fail

to find a 'y' marker is when there were equal numbers of 'x' and 'y' markers to
begin with and each pair marked a token of the same symbol. Bearing in mind that

the 'kmp' structure is 'internal' to the machine because it is part of the state
structure of the control automaton, and that the marked expressions are 'external'

because they are on the tape and the tape, by definition, is an external, auxiliary

memory resource, the notion of 'same' is derived from the interaction of internal

and external structures and is implicit in the actions of the control. Given the

standpoint of the ETH which equates the brain with the control of a Turing

machine, it follows that cognitive operations resulting in intentional notions like

'sameness' may also result from, or be modelled as, the interactions of internal and

external structure.

A second important point about the 'kmp' m-function is that it provides a very clear

example of a second form of implicit control memory for symbols. The first form,

discussed in Chapter 2, was a functional type of implicit memory. It was

appropriate to identify state qi of machine M as maintaining an implicit memory for

a right parenthesis because of its subsequent behaviour. The form discussed here

is a positional type of implicit memory. The relevant elements of the structure are

88

the 'cpl' state, the three f (y) m--functions to which it leads and the three 'cp2' states

to which they lead. The example is particularly clear because it does not matter
how symbol recognition is carried out by the 'cpl' and 'cp2' states. The first aspect

of the structure to note is that the three f (y) structures are functionally identical in

terms of their internal operations. This amounts to the claim that if they were real
objects which could be plugged into three positions in a printed circuit board they
could be swapped around without affecting the functionality of the system. Despite

their internal, functional identity their functional roles in the wider system of the

'kmp' m-function are different. One functions as an implicit memory for a 'D', one

for a 'C' and one for an 'A'. Two points justify this claim. The first is that exactly

three f (y) structures are needed because the machine has to deal with three different

symbols at this stage of processing. If only two f (y) units were available the

machine could not make all the necessary discriminations and would not be able to

carry out the configuration matching process. The second point is to note what

would happen if, for example, the 'cp2' state, numbered [3] were to make a

transition to e(x) if the symbol marked by 'y' were a 'C' rather than a 'D'. This

would constitute an error and would lead to failure of the configuration matching
process. The reason is that the path to the 'cp2' state numbered [3] is that used

when the symbol scanned by the 'cpl' state is a 'D'. Thus the f (y) unit that lies

on the path between the 'cpl' state and the 'cp2' state numbered [3] functions as an

implicit memory for a 'D' by virtue of its position in the larger 'kmp' structure.

Positional implicit memory is a significant feature of the control memory of Turing

machines in the context of the ETH and there is good reason to believe that position

is a significant organizational principle in the nervous system. Kuffler, Nicholls &

Martin (1984, p.6), for example, describe a fundmental principle of organization in

the brain in the following terms; "The quality or meaning of a signal depends on the

origins and destinations of the nerve fibers, that is, on their connections." Thus it

would seem that the nervous system makes substantial use of a form of memory

which is characteristic of finite automata. If the brain is better thought of as a finite

automaton rather than as a whole Turing machine as is claimed by the ETH, and if,
in consequence, human memory should be thought of as modelled by control

89

memory rather than tape memory, then it is of course important that the principles
of operation of control memory should be plausible for the brain.

The idea of positional implicit memory is interestingly linked to an apparently rather
plausible hypothesis about the relationship between memory and modular structure.

Control memory appears to imply modular structure in a way that symbolic, tape

memory does not. 'kmp' again provides an interesting example. The point to
notice is that although the behaviour of the machine in the states represented by each
of the three f (y) units is essentially identical, there must be no cross-talk between
them because they are subserving different memory functions. The logical state

structure thus implies an implementation constraint given the assumption that
memory is non-symbolic. This leads to an interesting secondary way of interpreting

state diagrams. Complex state diagrams look very much like printed circuit board

diagrams and although this can be very misleading the resemblance is not entirely

coincidental. Although a node in a state diagram is properly thought of as

identifying a global logical state of a machine, it can also be thought of as a marker

for a sub-assembly of parts which might be used to construct a machine with the set

of logical properties exhibited in the state diagram. The possibility of using a

simple network to implement the XOR function discussed in Chapter 2 suggested
as much, as does Turing's method of constructing complex m-functions from

multiple copies of simple units. Nodes linked by arrows imply sub-assemblies
linked causlly, and nodes unlinked by arrows imply autonomous sub-assemblies.

The linkage between position and content seen in control memory is not a principle

which is characteristic of the symbolic memories of computers or the tapes of
Turing machines. The fundamental point about these memories, although they are

modular in the sense of being divided into separate locations, is precisely that they
are undedicated in terms of content. It seems clear, therefore, that to distinguish,

as Turing did, between external symbolic memory, and internal, brain like, control

memory, is to make a distinction which accords to a first approximation with what

is known about the brain.

The other part of the universal machine construction which is of interest, both from

90

the point of view of the organization of control memory and as an example of

Turing's ingenuity in using existing definitions, is the set of ce(u) structures which

implement the copying of marked regions of tape in order to construct successive
complete configurations. As is apparent from Figure 3.6 these structures are

divided into three sets of five units, the choice among the three sets being

determined by the movement symbol in the active instruction of the target machine.

Although the set of ce(a) structures accounts for 315 of the 420 states of the

machine, the organization is entirely regular and straightforward. The major

structuring principle is the division into three separate paths corresponding, as

already observed, to the three possible movement symbols. It is appropriate to think

of each path as constituting an implicit memory for its originating movement
symbol, if only because it is the identity of this symbol which determines the order

in which the different marked regions are dealt with within the path. Each ce(a)
unit consists of an f (a) unit which finds the first occurrence of a symbol marked

with a, a 'cl' state which determines what action to take, three pe(ß) units which

print the appropriate symbol ' D' ,' C' , or 'A' at the end of the tape, and an e(a) unit

which erases the marker. This unit makes a transition back to the f (a) unit to

repeat the process which is terminated when no further instances of the marker are

found. Control is then passed to the next ce(7) unit. The large scale replication of

functional units, which is the most striking aspect of the ce(a) set of structures,

simplifies what would otherwise be a complex control problem at the cost of a

considerable increase in the size of the machine.

3.6. Styles of implementation.

This observation leads naturally to a question about implementation style. It is

important to remember that although it is tempting to treat diagrams like Figure 3.6

as a sketch for a printed circuit board, it is in fact a picture of logical structure

which is compatible with a variety of realizations. Two broad strategies, at opposite

ends of the spectrum are of particular interest. There is the strategy of using

multiple replications of functional units with minimal control circuitry and content

specified by position which is clearly seen in Figure 3.6 or there is the strategy of

using fewer functional units with parameter passing and more complex control

CE UNIT
Execute Next

Load

c
1NZrker registers

91

circuitry. These might reasonably be called the MAXH-MINC (maximum
hardware-minimum control) and MINK-MAXC (minimum hardware-maximum
control) strategies. Consider the ce(v) unit shown in Figure 3.5. Most of its
structure is identical to that of all the other ce((x) units. The only variation is in the
identity of the marker which is relevant at the finding and erasing stages. So the
question very naturally arises, when considering implementation, whether it might
be possible to find a way of passing this variable information to a real structure at
execution time. If this could be done, the physical replication of units could be
avoided in favour of a single unit plus an appropriate stream of instructions. The
seeds of the idea are to be found in Turing's notion of a skeleton table and it is this
which makes his own assessment of skeleton tables as mere abbreviations less than
generous. One obvious way of passing variable information is in the form of
explicit symbols. Figure 3.7 shows a schematic view of the sort of mechanism
which might be constructed pursuing the MINH-MAXC strategy. It is purely
notional and is intended solely as an illustration.

Figure 3.7. A hypothetical implementation scheme using only one ce(a) unit.

From whatever structure implements 'instl', control is passed to a 'Load' unit
which contains symbolic information about the marker parameters for the second,
third and fourth cycles through the CE unit. The first and fifth are fixed as 'v' and
'w' respectively which saves a certain amount of control wiring. The load unit
installs the appropriate values in the variable marker registers and initiates the
execution cycle which starts with the first marker register containing 'v' . This is
passed to the CE unit, whose internal operation would be as shown

92

in Figure 3.5. After all the 'v' markers are exhausted a signal is sent on the 'next'

line. Precise details are unimportant but the idea is that on the first pass the 'next'
signal would activate 'cl' in the 'v' marker register which would pass control to the
second marker register. This would send its marker to the CE unit and set 'c2'
ready to receive its own 'next' signal. And so on.

If the ETH is correct, discussion of implementation options is particularly important

and the issues which are considered here in the context of Turing's universal

machine are issues which would arise with respect to the implementation of any

complex machine. The ETH proposes a MAXH-MINC implementation, but if the

cognitive system is an implementation of a Turing machine, roughly of the same

type as digital computers as the generic theory suggests, then there is a strong

presumption in favour of the minimal replication, symbol based, complex control,

MINH-MAXC strategy. Some of the reasons for this are considered in Chapter 4.

What this strategy does, in effect, is to exchange hardware for software. One aspect

of the trade-off is ease of modifiability, and hence greater flexibility of function at

the cost of increased control complexity, and probably at the cost of slower

execution given the need to initialize components like marker registers.

One profound difference between the two strategies is the need, in the MINH-

MAXC case for the passing of symbolic parameters, whereas in the MAXH-MINC

strategy, which would be exemplified by a direct implementation of Turing's design,

what is needed is an activation signal rather than a symbolic parameter. In the

former, but not the latter case, explicit symbolic information is passed and thus it

is appropriate to think of the system as a symbolic information processor. When

the brain is considered, it seems almost certain that signals rather than explicit
information are what is passed at the level of neurons and this tends to suggest,

along with the evidence for the importance of position as a principle of brain

organization, that the brain implements a MAXH-MINC strategy and should perhaps

be thought of primarily as a signal processor rather than a symbolic information

processor. It is important to be clear just what this claim amounts to and it is

93

easiest to understand first in the context of the Turing machine. That the Turing
machine as a whole is an information processor is not in question. The information

which is processed is found on the machine's tape and the transformation of input
into output which constitutes the function computed is a paradigmatic information
process. The question at issue is whether the finite state control of a Turing
machine is also an information processor and the answer to this question appears to
depend on the implementation strategy adopted. It seems perfectly possible for a
system as a whole to be an information processor while its separate parts are not.
Broadly speaking, the MAXH-MINC strategy implies a view of automata which
takes them to be signal processors, and the MINH-MAXC strategy implies a view

which takes them to be information processors. Thus the suggestion that the brain,
construed as a finite control automaton is not an information processor does not
entail or imply the false claim that the cognitive system as a whole is not an
information processor. What is at stake is the description of the internal system of

components and their arrangement which implements the control system for the

information processes which the system as a whole executes.

To summarize the arguments of Chapter 3 thus far: from consideration of the
example of a human engaged in a routine calculation, Turing developed a machine
model to capture the essential processes involved; the model consisted of a finite
control automaton which modelled the algorithm embodied in the mind of the
human, and an indefinitely expandable tape which modelled the paper on which the

calculation was worked. The identification of the human mind with the finite

control system, and not with the tape, was supported by an argument for the claim

that the human brain was capable of being in only finitely many different states.

Turing's further published work over a period of more than a decade supports this

understanding of his analysis of computation. To treat the brain as a whole Turing
machine and human memory as modelled by symbolic tape memory is thus a misuse
of the model.

It has further been argued on the basis of an analysis of Turing's universal machine
construction that a positional form of control memory, in addition to the functional

94

form of control memory discussed in Chapter 2, can be identified and that a

distinction can be made between implementations of finite control automata which
take them to be information processors and those which take them to be signal
processors. Turing's machine model is compatible with both styles of
implementation. On the basis of the above, the idea that the brain is a finite, signal
processing automaton is perfectly compatible with the view that it is internally non-
symbolic but that it is a component of an information processing cognitive system
which makes use of explicit symbols externally. The ETH thus appears to be well
supported by Turing's analysis of computation.

3.7. Serial and parallel architectures.

Two further points are worthy of brief consideration here. First is the issue of

serial versus parallel architectures and processing. It has sometimes been suggested
that the brain cannot be a Turing machine because it is a parallel system whereas

a Turing machine is a serial system. This criticism might be thought to apply to the

ETH as well, even though it denies that the brain is a Turing machine, because a

finite automaton is also a serial processing system in that it passes from one global

state to the next. The first point to make is to distinguish the issues of architectures
and processing. A serial architecture is essentially one built according to the
MINH-MAXC strategy. In such an architecture simultaneous processes are

impossible if each process requires the same operation and only one hardware
component implementing the operation is available. This is the case with most
commercial computers which have a single CPU. A parallel architecture is one in
which multiple processors are available for a given operation thus allowing process

parallelism. It is apparent, however, that although a serial architecture rules out
parallel processing, a parallel architecture does not rule out sequential processing.
The architecture of the ce(a) units, for example, would be parallel if a MAXH-

MINC implementation were built, but processing would still be sequential. Parallel

architectures are discussed in greater detail in Chapter 4. For the present however,

the fact that the brain has a parallel architecture does not rule out its functioning as
a sequential system at the level of global state transitions.

95

3.8. Configurations, thought and behaviour.

The second point to make concerns the nature of the relationship between the
control of a Turing machine and its inputs. One of the most valuable features of the
generic computer theory of mind is that it seems to give a good account of how it
might be possible for the cognitive system to operate so as to make thought more
or less independent of the external stimulus environment. The picture of the mind
as an internal Turing machine communicating with the outside world via sensory
and motor transducers appears to give just the right sort of account, because internal
computational processing is independent of the world and yet connected to it. At
first sight it might appear that this semi-autonomy is sacrificed by the ETH, because
the ETH takes the concept of a configuration, i.e. the combination of current
internal state and current symbol scanned which determines the next step of a Turing
machine, to be a relation between the organism and the world whereas for the
generic theory it is an internal relation between different parts of the neural Turing
machine. Thus it might appear that the possibility of autonomous internal
processing is ruled out by the ETH.

In one sense this is true and part of the purpose of the ETH is to encourage a view
of the organism as more closely tied to the external environment than the generic
theory suggests. However, the grip of the environment as a component of
computational configurations is much less unyielding than might at first appear. As
before, it is necessary to examine Turing machines of considerable internal
complexity to get a true feel for what the relationship between symbol and state
amounts to and what is ruled out by supposing configurations to involve the external
world.

It was observed in Chapter 2 that the point of having a system with more than one
internal state was to enable more than one response to a given stimulus to be
possible while still retaining a deterministic approach to processing. What this
suggests is that it is not independence from external input which promotes autonomy
but an appropriately extensive set of internal states. The fact is that human
organisms are not insensate, unsituated entities in the way that computers are. In

96

ordinary circumstances the awake human cannot choose not to see or hear or feel.

But this does not diminish the human capacity for voluntary action. Thus the

immediacy of interaction with the environment implied by the ETH is not a recipe

for ironclad determinism. More significantly, in the Orwellian world of the Turing

machine, some symbols are more equal than others. Consider the f-unit, the basic

building block of Turing's machine, whose state diagram is shown in Figure 3.3.

For the f-unit in state '1' , its inputs are divided into two classes, instances of 'e' and

everything else, the point, of course, being that the occurrence of an 'e' causes a

state transition to state 'fl' while any other input leaves the machine in state 'f .

Once in state 'fl', 'e' loses its more equal status and becomes just another animal

in the farmyard while the target symbol and the blank become the 'privileged'

members of the alphabet. One might even want to assign the target symbol higher

status than the blank because it represents the acme of the f-unit's processing.

Another way of expressing the same point might be to say that different states are

sensitive to different symbols. The familiar example of driving a car while pre-

occupied and arriving at a destination with a very uncertain grip on how the journey

was achieved shows that this kind of differential sensitivity is characteristic of

humans as well. It is not that the cues to which one responds automatically when

driving are unimportant but that they are means to an end rather than ends in

themselves. Similarly, one might plausibly regard the sequence of symbols which

the f-unit has to traverse in pursuit of its target symbol as a means to an end. This

is not to deny that the behaviour of the Turing machine is determined by its

configurations. What it does imply is that the internal state provides the element of

control. Perhaps it would not be too confusing to suggest that behaviour is

determined by configurations and controlled by internal states. This idea can be

interpreted in a way which has an air of plausibility to it when thinking of the

sources of ordinary behaviour. If I were walking in the mountains and were

overtaken by an unexpected thunderstorm, I would be exercising a remarkably

intransigent notion of freedom if I continued to walk without putting on my

waterproofs and took no heed of the possibility of a lightning strike. That I would,

in such circumstances take the appropriate steps to weatherproof myself and get off

an exposed summit is to allow that my behaviour is determined by the weather. But

97

it is not a form of determination which robs me of freedom to act since my
behaviour in acting thus is controlled by my internal state. Furthermore, the
internal state which recommends the donning of waterproofs is subordinate to the

overarching state or set of states which constitute my wanting to continue my walk

without being soaked or blasted by a thunderbolt. It is very interesting to note that

the nesting of states within structures in complex machines echoes this dependence

of human behaviour on hierarchical mental state structures. The processing of an

f-unit in Turing's machine always constitutes a stage in a higher level process and

the processes which have f-units as their constituents may themselves be components

of still higher level processes. The erasers in the 'kmp' m-function are a good

example. These structures have f-units as components and are themselves

components of the pattern matching process which identifies the appropriate

configuration in the target machine. Thus, although it is clear that the moment by

moment behaviour of the machine is determined by its configuration, it is less easy
to say exactly which process is controlling behaviour. Is it the f-unit, the eraser or

the pattern matching process carried out by the 'kmp' m-function, or is it a

combination of all of these or even of some still more remote constellation of state

structures. Quite clearly then, the control of behaviour by internal states, as distinct

from the determination of immediate behaviour by the current configuration, can

extend over lengthy time sequences and embrace multifarious inputs. This is a view

which seems at least as plausible as the idea that behaviour is controlled by a semi-

autonomous internal computer which is isolated from direct contact with the world

in which the behaviour it controls has to happen.

In conclusion, both Turing's analysis of computation and the design methods he

used to develop the universal machine appear to support the claims of the ETH that

the brain should be considered as a finite control automaton rather than a complete

Turing machine. Control memory turns out to be a complex, multifaceted concept

which is at least as plausible a model of human memory as the more familiar model

based on symbolic, tape style memory. In addition the range of interactions

between internal states and external symbols appears to offer a plausible basis for

an account of the relationship between human cognizers and their environments.

98

Clearly such an account needs elaboration. What the present chapter has shown is
that it is not a task which is doomed from the start.

99

Chapter 4. Digital Computer Models.

In Chapter 3, Turing's analysis of computation was used to support the basic claim
of the ETH that the brain should not be considered to implement a whole Turing
machine, but the finite state control of a Turing machine. This suggestion runs
counter to a wide variety of well established and respected theories which have been
grouped together under the general label of the generic theory. It is characteristic

of generic theorists to argue that the brain does implement a Turing machine of
some kind and that the mind is essentially the program or set of programs which are
executed by this machine.

Clearly it would be absurd to suggest that generic theorists are committed to the
idea that the brain contains an infinite, linear tape which is traversed by a finite state
control, and it is relevant to ask what the generic theory proposes in the absence of

such an arrangement. Broadly speaking, digital computers have provided the model
for the architecture which the brain is hypothesized to implement and the purpose

of this chapter is to examine briefly what the commitments of such a model are.

4.1. The architectural commitments of the generic theory.

Clearly, the major commitments are to an internal separation of memory from

control and to explicit symbolic expressions. Although the generic theory is not

committed to the notion of a linear tape, it is committed to the notion of an internal
memory system which is symbolic, and which may provide both data and programs

for the executive system of the cognitive computer. The memory system is

separate, at least functionally, from the control system which manipulates the
symbolic expressions contained in the memory to produce such characteristic

phenomena of cognition as reasoning and decision making.

4.1.1. Location addressing.

One of the reasons why the generic theory is not committed to the idea of a linear

tape and a mobile control is the difficulty of access which such a medium imposes.
It is clear, therefore, that the generic theory must be committed to some form of

100

addressing scheme other than traversing a linear tape. The most common form of

addressing scheme in digital computers is location addressing. One way to think

about such a scheme which retains a contact with the material of Chapter 3, is in

terms of a Turing machine with a finite tape, each of whose squares has a hard-
wired connection to the control. The connection may be thought of as enabling the
control to read and write from the square as though it were scanning it. On the

assumption that the difference in distance between the nearest and most remote

squares contributes little if anything to the access time, such hard wired connections
provide constant time access to each element of the memory. The central processors
of digital computers enjoy connectivity to their memories of essentially this kind

even though the memory is normally two-dimensional. It is reasonable to consider

the byte as the unit of computer memory analogous to the square of a Turing

machine tape. Human memory may also be essentially two-dimensional if the

cerebral cortex is its seat.

The advantages of a memory whose locations are systematically addressable extend

beyond the simple fact of constant time access, important though this is, to the

organization of both programs and data. One of the pronounced inefficiencies of

Turing's universal machine is that it has to hunt through successive instructions of

the standard description of its target machine in order to find the one to execute.
By contrast it is standard practice in computers to arrange the instructions in

sequential locations so that the next to be executed is normally to be found in the

location following the location of the current instruction. Only when the current

instruction is a conditional branching instruction will this not normally be so since

the alternatives cannot both be next in line. The process whereby the central

processor gains its next instruction, known as the instruction fetch, is therefore both

fast and simple by comparison with the contortions of matching and marking which

Turing's universal machine has to carry out to achieve the same effect.

4.1.2. Virtual architecture.

The advantages of addressable memory locations are perhaps even more noticeable
when it comes to organizing data items. Although the basic unit is the byte or tape

101

square, which can hold a single symbol, larger aggregates are normally required for

computing. Given a system of addressable locations, larger scale structures can

easily be defined. This is done in terms of address arithmetic given a base address
which serves as the entry point to the structure. Suppose, for example, that a two

dimensional array of n x n squares or bytes were required given a linear tape as the

medium. From a base address k at which the first element of the first row, element

(1,1) was to be stored, the second element of that row would be at address k+ 1, the

third at k+2 and so on up to the n'th and final element of the first row (1,n) at
address k+n-1. The second row with element (2,1) would start at address k+n,
and its final element would be at k+2n-1. The final row would start at address

k+n2-n and the final element of the whole array (n,n) would be at address k+n 2-1.
To access a given element at location (r,c) a simple calculation of k+n(r-1)+c-1

gives the offset from the base address. This is an example of a virtual structure

which uses address arithmetic. There are few limits, other than space available and

the imagination, on the types of virtual structure which can be specified in this way.

The utility of such a structure, from the point of view of the programmer, depends

of course on the programmer's being able to think of the structure in terms of its

virtual characteristics rather than having to make the requisite address calculations,

and much of the effort in developing programming languages has had the provision

of virtual structure as a goal. When, as is commonly the case, the programmer has
no access to the real machine structures but only to virtual structures presented

through the constructs of a programming language, the language is taken to define

a virtual machine or virtual architecture. Many cognitive scientists believe that the
notion of virtual architecture is one of the keys to understanding the relationship
between mind and brain, and claim that the mind is a virtual architecture. It is

broadly for this reason that theorists of such persuasion tend also to argue that the

study of mind can be carried out independently of the study of brain because what

is of psychological interest is the virtual architecture whereas what is of

neuroscientific interest is the physical architecture which provides the medium in

which the virtual architecture is implemented. Given that thoughts appear to obey

principles of rationality, for example, whereas neurons obey principles of

biochemistry, the attraction of such a position is considerable.

102

4.1.3. Virtual architecture and control circuitry.

Although the attractions of thinking of mind as a virtual architecture are

considerable the view has costs as well as benefits. The costs are best appreciated

by thinking of the control circuitry needed for the real architecture which supports

the virtual structures. The need for address arithmetic and addressable locations

have already been introduced, and the latter have been seen to entail a finite store

with fixed data paths between control and memory locations. This implies a great

deal of wiring and switching capacity, in addition to the capacity for transmitting

symbols rather than just signals. The distinction between symbols and signals was

introduced in Chapter 3. Taking a crude example, if we imagine a line of people,

each standing within touching distance of the next, a signal can be passed down the

line by each poking the next in the ribs, whereas a symbol requires the passing of

a piece of paper with the symbol written on it as well as the poke in the ribs to draw

attention.

The extent of the constraints on implementation arising from the need for control

circuitry to manage information access and transfer can be understood from brief

consideration of the way they are managed in digital computers. Digital computers

operate almost exclusively with two state basic memory units known as bistables or

flip-flops. These units have been chosen for logical simplicity and because they

offer the easiest means of achieving the required reliability.

"Although other numbers of states are possible, and ternary (three-
state) machines have been proposed occasionally, digital technology
has developed exclusively to handle binary information. There are
several reasons for this. The first is the requirement for high
reliability... The second reason is the simplicity of the logic design
for binary representations... A final reason... is that no one has ever
found striking advantages from the resulting processing structure in
having more than two states."

Siewiorek, Bell & Newell (1982, pp.66-67)

Two states units can store only one binary digit or bit and have to be aggregated in

order to represent a wider variety of states or entities. Typically, the eight bit byte

103

is the basic unit of aggregation and can represent 2 8 = 256 different states.

Encoding schemes such as ASCII assign symbolic values to various of the 256

states. The fact that symbolic representations are encodings over aggregates of

binary digits means that the hard wired data paths from memory to the control have

to have at least as many bits as there are bits in the representation. Contrasting this

with the case of a signal for which a single wire suffices, the amount of wire needed

by symbolic encoding can be seen to be considerable.

Figure 4.1. A three bit address decoder for an eight byte memory.

The load imposed by a location addressing scheme is even more substantial.

Consider the simple address decoder for an eight byte memory shown in Figure 4.1.

The addresses are three bit numbers and are presented on the address input lines

shown at the left of the figure. The address lines are connected to eight AND gates

labelled AO to A7. The gates produce an output when all three of their inputs are

104

positive. The connections from the address lines to the gate inputs are shown as
filled circles. The unfilled circles represent inverters, which turn an input of '0'

from the address line into an input of '1' at the gate and vice versa. Inspection of
the pattern of inverters shows that each of the eight possible addresses produces an
output from just one of the AND gates. The address pattern '000' produces an
output from gate A0, pattern '001' from gate Al and so on. This output is the

address selection mechanism which, in conjunction with the appropriate control
signals on the read-write lines, will either send the pattern stored in the byte to the

control or write into the byte the pattern supplied by the control. For simplicity,

the read-write lines are shown connected only to Byte 0. Clearly the number of

locations which can be addressed by k address lines is 2'. Thus for a memory of

220 bytes, i.e. 1 Mb. organized using an addressing scheme of the kind shown,

twenty address lines would be needed plus 220 AND gates each with 20 inputs. In

practice, decoding strategies which are more economical in terms of the number of

gates needed are generally used, but they tend either to be slower than the type

shown or to require more complex circuitry at memory locations. A further
important point about all such systems is the need for almost flawless reliability in
the base components. If the address decoder is to work correctly, addresses must

appear correctly on the input lines, and the multi-input AND gates must also work
precisely so as to select the item required. Similarly, the read-write lines must

operate correctly. All of these requirements impose wiring and reliability

constraints of a kind which it may not be plausible to suppose that neurons support.

It may be objected that content addressing rather than location addressing is clearly

the method of choice for the neural system, particularly since human memory

appears to work in such a way. It is far from clear, however, that content

addressing eases the burden of control circuitry required. On the assumption that
the memory consists of a series of independently modifiable locations, which seems

to be required for a Turing machine, the control problem is in some ways worse for

content addressing schemes than for location addressing and may explain why the

great majority of computer architectures use location addressing. A variety of

content addressing schemes have been proposed but they all have in common the

105

specification of a tag or key which may be part of the data item required or may

constitute a separate but connected field. The requisite item is found by comparing

the relevant parts of the contents of each location with the key or tag to find a

match. Thus it may be necessary, in principle, to compare the contents of every
location in the memory with the search key in order to find the appropriate data
item. The control circuitry needed to manage the search process is at least as

complex as that required for an address decoder, and read-write circuitry is needed

just as in the location addressing scheme. Furthermore, content addressable

memories tend to be slow because of the search process, may yield multiple matches

to the search key which need to be dealt with and also pose problems when data

have to be written to the store. While on the subject of content addressable

memories, it is appropriate to note that Turing's universal machine uses content

addressing to locate the appropriate instruction in the standard description of its

target machine, using the configuration from the most recent complete configuration

as the key.

It seems most likely that when people think about content addressing and its

advantages they have in mind the sort of associative memory which is characteristic

of connectionist networks in which the input constitutes the search key, the set of

connection strengths of the network constitutes the stored data and the output

constitutes the recalled item. However, this style of memory is not available to

theorists who claim that the brain implements a Turing machine, first because the

control is not separated from the memory and second because the memory does not

consist of a set of independently modifiable locations whose contents are symbolic.

It seems clear, therefore, that the claim that the brain implements a whole Turing

machine carries substantial implications for the amount of control circuitry needed

and imposes rigorous requirements on the reliability of the basic components. It has

been suggested that these requirements make the claim implausible.

"The principles of computer memories can hardly be realized in biological
organisms for the following reasons: i) All signals in computers are binary

106

whereas the nerual signals are usually trains of pulses with variable
frequency. ii) Ideal bistable circuits which could act as reliable binary
memory elements have not been found in the nervous systems."

Kohonen (1988,p.12)

One further point which is of some interest is the implication that if the brain is a

Turing machine rather than a finite automaton its memory will be both less efficient
and of lower capacity. The reason is that control and memory states are not

distinguished in a finite automaton and thus the physical substrate can serve both

purposes simultaneously as discussed in Chapters 2 and 3. Assuming the brain to

implement the control circuitry for accessing a tape as well as whatever is required
to implement locations, it is clear that a large amount of neural capacity will simply

be unavailable for memory purposes in a way that is not the case for a finite

automaton implementation.

A further point which is of great significance is that in addition to the burden of

control circuitry which the internal Turing machine model entails, the generic theory

has also to specify how external stimulus energy is translated into symbolic input
which the internal computer can use and how the outputs of that computer can be

translated into behaviour. The characteristics of these mechanisms and the

conceptual problems to which they lead are explored further in the discussion in

Chapter 5. For the present, it is clear that they also represent an additional call on

neural resources which may be substantial.

In summary, in the light of Turing's analysis which specifically separated the finite

state control unit modelling the brain, from the tape modelling the paper on which

a human computer might write, and given the costs in terms of control circuitry

which would be needed if the brain were indeed structured like a digital computer

of some kind, the thesis that the brain does implement a Turing machine of a kind

must be questionable. In the remainder of this chapter, a short review of some of

the history of the development of computers and the means of using them is

presented. It is apparent that many of the decisions were dictated by engineering
considerations which while essential for the development of efficient machines

107

contribute to the implausibility of the view that the mind resembles or is
architecturally similar to a digital computer. Computer design is essentially
concerned with harnessing the power of the universal machine concept and, at least
until recently, has been directed towards the MINH-MAXC end of the
implementation dimension for a variety of sound engineering reasons. Both of these

choices focus attention on the exploitation of a large auxiliary memory. However,

in the absence of evidence either that the brain implements a universal machine
interpreter or that evolution has adopted the MINH-MAXC strategy, and given the
principled distinction which Turing made between human memory and auxiliary
memory, there is no good reason to suppose that the computer provides a

satisfactory model of the architecture of the mind. Indeed, the ETH suggests that
the strategic choices made in the development of computer architecture are precisely
the wrong ones from the point of view of developing a model of human cognitive

architecture. This is not, of course, to claim that the architecture of the mind could

not be simulated on a computer nor that the mind is not a computational system.
If the mind is a mechanical system then the Church-Turing thesis strongly suggests
the possibility of simulating its operations in the form of a program. But this is not

at all the same as claiming that the architecture of the mind is itself organized in the

way a digital computer is. Not all computational machines are universal. The

existence of an infinity of Turing machines which compute but are not universal

demonstrates this point.

4.2 The First Electronic Computers.
Although Turing's work was in print in 1937 and the first electronic computer was
not commissioned until 1946, the theory of computable numbers appears not to have

had a direct impact on the development of the very earliest machines which were

constructed in the U.S.A. Throughout the 1930' s the most sophisticated calculating

machines available were analogue differential analyzers, most notably those built by
Vannevar Bush and his colleagues at MIT, which approximated solutions to

differential equations, cf. Goldstine (1972, Chapter 10) and electro-mechanical

digital calculators based on Herman Hollerith's tabulating machines which were used
for the construction of astronomical tables among other things.

108

4.2.1 The ENIAC9 .
In 1943 funds were made available to the Moore School of Electrical Engineering

at the University of Pennsylvania to construct an electronic computer for the

Ballistic Research Laboratory of the Ordnance Department of the United States

Army. Herman Goldstine, who was the Ballistic Research Laboratory's

representative at the Moore School during this period said

"...one of the main functions of the Ballistic Research Laboratory
was the production of firing and bombing tables and related gun
control data. ...The automation of this process was to be the raison
d'être for the first electronic digital computer."

Goldstine (1972,p.135)

The machine was formally accepted by the U.S. Government in 1946 and operated

successfully until it was retired to the Smithsonian in 1955. The ENIAC was, by
modern standards, a physical giant but a computational midget. It was 100 feet
long, 10 feet high, 3 feet deep and weighed 30 tons. In operation it consumed 140

kilowatts of power. The clock had a period of 10' seconds, and the machine

performed some 330 multiplications per second. For all its impressive size, it had

storage for only 20 ten digit decimal numbers. Nonetheless, it represented a huge

step forward both in the sophistication and reliability of its engineering and in its

speed of operation which was some 500 times faster than its closest electro-

mechanical rival, the IBM Automatic Sequence Controlled Calculator (Goldstine
1972,p.117) . The ENIAC owed its speed to the use of electronic rather than

electro-mechanical components. Although this is now standard practice it was both

controversial and risky at the time. Some engineers claimed that the necessary
reliability could not be achieved and that the machine would never operate

successfully. By proving the doubters wrong, the engineering team led by J.P.

Eckert and LW. Mauchly ushered in the modern era of computing. Interestingly,

in view of future developments, the ENIAC was a parallel machine in which many

operations proceeded simultaneously. The machine had thirty basic units. Twenty

9Electronic Numerical Integrator and Computer

109

accumulators for the twenty numbers mentioned above, one multiplier, one
combined divider and square-rooter, three function table units which provided

additional storage for fixed tabular data, an input unit and an output unit, two
control units and a master programmer which provided overall direction for the
parallel operations of the machine.

The major problem with the ENIAC was programming. "This was a highly

complex undertaking and was one of the reasons why it was to be a unique machine.

This aspect of the machine was unsatisfactory, as the evolutionary process was to

reveal." Goldstine(1972,p.160). The difficulty lay in the fact that the ENIAC had

to be reconfigured physically, by means of numerous switches, every time a new
calculation was to be done. Not only was the programming procedure liable to
error; it was also very time consuming and meant that the machine was at a
standstill for much of the time. While the strategy of programming by
reconfiguration now seems hopelessly inefficient, Hackney and Jesshope (1988,
pp.9-10) make the following observations;

"...the architecture of the ENIAC was rearranged for each problem,
by using the plugboard to rewire the connections between the units.
One could say that the algorithm was literally wired into the
computer. It is interesting that such ideas are beginning to sound
very 'modern' again in the 1980's in the context of NIIMD 10

 computing, reconfigurable VLSI' arrays, and special-purpose
computers executing very rapidly a limited set of built-in algorithms.
However, the time was not ripe for this type of parallel architecture
in the 1940's ... The difficulty of programming parallel computers is
a recurring theme that is still with us today."

Some of the reasons for the difficulty of programming parallel computers are

discussed further below. From the point of view of the ET H, what is particularly
interesting is the fact that parallel architectures, by their nature, appear to be best
suited to special purpose tasks. Since the brain is a parallel machine, this provides

1°Multiple Instruction Stream/Multiple Data Stream.

"Very Large Scale Integration.

110

a further argument that it is likely to have evolved to compute special purpose tasks
rather than as a general purpose universal processor. The claim that the brain does

not include an auxiliary, tape-like memory is consistent with this suggestion.

4.2.2 John von Neumann and the Stored Program Concept.

Architecturally, the ENIAC was originally conceived as an electronic version of a

differential analyzer (Hackney & Jesshope 1988, p.9), and, as mentioned above, it

had to be re-arranged for each problem. In 1947, von Neumann, who had learned

about the ENIAC after a chance meeting with Goldstine, showed "how to convert

it into a centrally programmed computer in which all the programming could be

done by setting switches on the function tables" Burks (1966, pp.7-8). This meant

that the machine was, in effect, turned into a primitive stored program computer.
Another way of conceptualizing what was done is to think of the ENIAC in its

original form as a protean mechanism which could be configured as an arbitrary

Turing machine to compute a specific function. von Neumann showed how to
configure the ENIAC as a universal Turing machine. It was a significant
development. As Goldstine (1972, p.233) says "Although it slowed down the
machine's operation, it speeded up the programmer's task enormously. Indeed, the

change was so profound that the old method was never used again." Two points
should be marked. First the fact that configuring the ENIAC as a universal machine

slowed down its operation. This would be expected given the costs of interpretive

execution. Second, the significant point is that the loss sustained in this way was

more than offset by the gains in efficiency with regard to the task of programming,

because the basic speed of the machine was so high. Because of this very high

operating speed, the scope of the ENIAC was potentially much greater than its

designers had originally supposed, but this speed exposed two major flaws. The

programming problem has already been noted. The other flaw was its very small

storage capacity, which made it unsuitable for problems which generated large

amounts of intermediate data.

111

von Neumann, as a consultant to the EDVAC' project, and members of the
EN[AC, EDVAC and lAS 13 computer project teams, produced various reports

from 1945 onwards, dealing with the logical design of high speed computers, in

which proposals were put forward to overcome the difficulties experienced with the
ENIAC. The ideas reported in these papers "were widely circulated and served
many people as textbooks on logical design and programming" Randell (1973,

p.352). The first, and perhaps the most influential of them was the "First Draft of
a Report on the EDVAC" von Neumann (1945), which outlined what has since
become known as the "von Neumann architecture."'

4.2.3 The Design of the EDVAC.
The importance of the early documents for present purposes is the light they shed
on why modern computers, which continue to share many fundamental features with

their ancestors, are built as they are. When analogies are made between the
operations of the computer and those of the mind, it would be unfortunate if
technological fixes, no matter how ingenious, were mistaken for theoretical

necessities. The EDVAC, for example, was designed to use stored programs not
out of logical necessity, but for efficiency reasons.

'...it would make little sense for a computer to produce the results of
a calculation rapidly, only to wait idly for the next instruction. The
solution was to store the instructions internally with the data: what
has come to be called the "stored program concept":

Davis (1988a,p.166).

The draft report on the EDVAC argued for a number of features in a high speed

computer. First, because the machine would be used primarily for calculations it

t2Electronic Discrete Variable Computer.

13lnstitute for Advanced Study.

14TThe "First Draft" engendered a controversy about who was responsible for the stored program
concept. von Nenmann's name was the only one on the report which was prepared by him, and was
not initially intended for circulation beyond the group whose ideas it collated. Other members of the
group, in particular Eckert and Mauchly, felt that their contributions were not recognized when the
report was made public.

112

should have specialized arithmetic organs. Precisely which operations should be
built in was, and still is, a matter for discussion' s . The arithmetic processors or
central arithmetic unit (CA) would constitute one major part of the computer. The

second part would be a device which exercised central control (CC) over the
sequencing of operations. The point to notice here is the radical change from the
design of the ENIAC. In the new design, it was anticipated that the instructions to

the machine would be stored in the same way as its data, i.e. as numbers in the
memory, rather than being wired in as they were in the ENIAC. Thus the EDVAC
and its successors were designed to function as universal Turing machines. It was
anticipated that this would lead to much faster programming. The third requirement

was for a large memory (M) . This was needed to enable the machine to hold the
program instructions and to deal with complex numerical problems (various types

of partial differential equations being specifically mentioned) which might need large
amounts of storage for intermediate results.

In addition to C (CA & CC) and M, a computer would need an input device I and

an output device 0 which would manage the transfer of information between C and
M and an external recording medium R, which would be punched cards, magnetic
tape or wire, or some other suitable technology. It was envisaged that

communications would, as a rule, be between R and M and not between R and C.
Further discussion of the input and output devices can be found in Burks, Goldstine
& von Neumann (1947) where it is clear that the major preoccupation was to find
a suitable way of using the computer to control its own external storage so as to

minimize human intervention. As Rosen (1969,p.14) says "The early scientific
computers were designed in accordance with a philosophy that assumed that
scientific computing was characterized by little or no input or output. " von
Neumann argued that once a machine had been given the instructions for a particular
task, "it must be able to carry them out completely and without any need for further
intelligent human intervention." While this is exactly the sort of arrangement which

1SCuirent arguments about two strategies are continuing the debate started by von Neumann.
Proponents of RISC (reduced instruction set) computers favour unsophisticated but extremely fast
primitive instructions from which more complex instructions are composed, while proponents of
CISC (complex instruction set) computers argue for more sophisticated primitive instructions which
are slower than the RISC primitives but provide complex capabilities in fewer steps.

113

is suitable for high speed calculations, it is much less satisfactory as the basis for
a model of the cognitive system which is characterized by the constancy of its
interactions with the external environment and by the sensitivity and range of its
input and output systems.

4.2.4. Computer design and ideas about the nervous system.

The idea that computers were built specifically to facilitate calculation and that their
design was shaped largely by engineering considerations is in conflict with a line of
thought which claims that the first computers were explicitly modelled on what was
known about the nervous system at the time and hence provide a basis for models
of the cognitive system. Norman (1986, p.534) for example suggests that "the
architecture of the modern digital computer - the so-called Von Neumann
architecture - was heavily influenced by people's (naive) view of how the mind
operated." A similar point is made by Boden (1988, p.2); "In designing the digital
computer, von Neumann was influenced not only by Turing's earlier work on the
theory of computation, but also by some novel ideas about the logical functions of
the brain", which, she goes on to say, were due to the work of McCulloch and
Pitts. It is easy to overplay the extent to which these were significant influences.
Norman cites Wiener (1961) and the series of conferences on cybernetics sponsored
by the Macy Foundation, e.g. von Foerster (1952), as evidence for his suggestion.
What these documents really show is not so much an influence of brain function on
computer design, but a belief that there are interesting and important parallels
between computers and brains. This belief is grounded in the fundamental
assumption that the primary mode of operation of neurons is digital. Wiener, for
example, argued that the computer, "must represent almost an ideal model of the
problems arising in the nervous system" , because the "all-or-none character of the
discharge of the neurons is precisely analogous to the single choice made in
determining a digit on the binary scale" . Hence, he claimed that "The synapse is
nothing but a mechanism for determining whether a certain combination of outputs
from other selected elements will or will not act as an adequate stimulus for the
discharge of the next element, and must have its precise analogue in the computing
machine." Wiener (1961, p.14). This is a claim which is not as well supported by

114

current evidence as it would have appeared to be in the 1940's. Current evidence
suggests a much more complex picture in which the effects of particular synapses

depend on their type, their position on the target neuron and the states of the
numerous ionic currents which modulate the electrical activity of the neuron, cf.
McCormick (1990) .

The early documents discussed above which deal with practical computer design

issues show only a peripheral link with the then current understanding of brain

function. The paper by Burks, Goldstine & von Neumann (1947) which deals with

the design of the computer built at the Institute for Advanced Study in. Princeton,

makes no mention at all of any parallels with the nervous system, nor of any
influence of concepts from neuroscience. It is almost exclusively concerned with

detailed discussion of the technical problems associated with the arithmetic and
logical control organs of the machine. In the earlier EDVAC discussion document

there are two types of suggestion of linkage between computer and nervous system

concepts. First there is the suggestion of a correspondence of parts C and M of the
computer with associative neurons in the brain and second there is the fact that the
construction was described using models of switching elements based on the

idealized neurons of McCulloch & Pitts (1943).

With regard to the first suggestion, two points should be made. First, it is an

isolated claim which is not otherwise referred to and which has no impact on the

subsequent discussion. Second, it relies on a distinction between sensory and motor

areas of cortex on the one hand, and associative areas on the other in which the

sensory and motor areas are assumed to be dedicated to particular functions, while

the associative areas are assumed to be undedicated and the hall mark of higher

mental capacities. Nadel, Winner, & Kurz (1986,p.223) call this view into
question; "the implicit brain theory of the 1940's and 1950's which legitimated the

abiological stance of cognitive science appears to be wrong in all important respects.

The brain is not wired up in a way which could support the general-purpose

functions of classical Associationism. " Zeki (1993, p.4) has suggested, even more

trenchantly, that the doctrine of associationism "retarded our present notion of the

115

organization of the visual cortex and of brain function by well over a century."
Perhaps it is just as well that the influence of brain theory on computer design was
not too extensive.

The second apparent type of linkage between computer concepts and the nervous
system by way of McCulloch-Pitts neurons, in von Neumann's hands at least, was

primarily a methodological device aimed at clarifying the relationships between the
elementary units out of which a computer might be built and the arithmetic and
logical functions it was required to execute. von Neumann suggested that "The

ideal procedure would be to treat the elements as what they are intended to be: as

vacuum tubes. However, this would necessitate a detailed analysis of specific radio

engineering questions at this early stage of the discussion, when too many

alternatives are still open...All this would produce an involved and opaque

situation...In order to avoid this we will base our considerations on a hypothetical

element...This simplification is only temporary, only a transient standpoint, to make
the present preliminary discussion possible." von Neumann (1945, pp.29-30). The
use of a hypothetical element allowed von Neumann to discuss circuits, for example
for particular arithmetical operations, independently of the details of their

implementation. It appears to have been this, rather than any deep notion of

correspondence between brains and computers, which was responsible for the

adoption of the McCulloch-Pitts formalism. Some may find a pleasing irony in the

fact that a neural model was used to distance the logic of a design from its

implementation. As mentioned above, by 1947 when some of the general principles

were much clearer, analogies with the nervous system had entirely disappeared from

the preliminary design document for the 1AS computer.

A further point is that von Neumann was also very well aware of the important

disanalogies between the functioning of the nervous system and the functioning of

computers. The EDVAC document, for example, contains as many examples of

disanalogies between brains and digital computers as it does analogies. What the

foregoing discussion shows, therefore, is that although von Neumann, Wiener, and

other computer pioneers were undoubtedly interested in parallels between the human

116

nervous system and computer circuits, the suggestion that computer design was

heavily influenced by nervous system ideas overstates the case.

4.2.5. The case for serial processing.

The five parts of a computer described in the EDVAC draft design document, CA,

CC, M, I and 0, plus R which is properly considered as an extension of M,
constitute the structural heart of the von Neumann architecture. The most important
remaining feature in the "First Draft" is the argument for serial as opposed to

parallel processing. As has already been noted, the ENIAC was designed as a

parallel machine, but was eventually configured to operate as a serial machine in

order to ease the complex task of programming it, a task which as Hockney and

Jesshope pointed out remains difficult in parallel machines today. The point about

parallelism is that it provides an excellent way of increasing the throughput of a

machine with relatively slow components. What it means, of course, is that the

machine requires more of those components.

"This way of gaining time by increasing equipment is fully justified
in non vacuum tube element devices, where gaining time is of the
essence, and extensive engineering experience is available regarding
the handling of involved devices containing many elements...For a
vacuum tube element device on the other hand, it would seem that
the opposite procedure holds more promise."

von Neumann (1945,p.363).

The argument is founded on the state of the technology and engineering experience

in 1945. The vacuum tube was a bulky, expensive and error-prone piece of

equipment. Thus it was wise to use as few as possible. On the other hand it was

extremely fast by the standards of the day. von Neumann reported that the fastest

relays available had reaction times of 5 milliseconds at best, and more commonly

10 milliseconds or more, whereas the reaction times of vacuum tubes could feasibly

be made as short as 1 microsecond. Thus a single vacuum tube device operating

serially might in principle give about the same performance as some 5000 relay

devices operating in parallel. These figures led to the eminently sensible

conclusion,

117

"The device should be as simple as possible, that is, contain as few
elements as possible. This can be achieved by never performing two
operations simultaneously, if this would cause a significant increase
in the number of elements required."

von Neumann (1945,p.364).

4.3. Examples of von Neumann architectures.

In the relatively few pages of the "First Draft", von Neumann, with his incisive
insights and customary clarity of expression, set down principles which heavily

influenced the logical design of computers throughout the 1950's and 1960's. The

thesis that substantial performance gains could be had by improving the speed of

components rather than multiplying their numbers went against the conventional
wisdom of the time but has been fully justified. One of the most telling indications
of the continuing success of the von Neumann architecture is the striking similarities

which are found when ancient and modern instruction sets are compared. Three

examples are given and the differences can be seen to be quantitative rather than

qualitative.

4.3.1. The EDSAC order code.

One of the first practical stored program machines was the EDSAC (Electronic
Delay Storage Automatic Calculator) which was built at Cambridge and became
operational in 1949 (cf. Wilkes & Renwick 1950; Renwick 1950). The EDSAC had

storage for 1024 binary numbers of 17 digits each and could also handle two

adjacent storage locations so as to yield numbers of 35 digits. Thus its data types

were long and short numbers. The machine operated at a frequency of 0.5

megahertz. The instruction set or order code, as it was known, consisted of

eighteen instructions. Eight of the instructions were for arithmetic operations, one

carried out logical. AND, three were for data transfers, two were conditional

branching instructions, two were concerned with input and output, and the other two

were for checking and halting the machine.

4.3.2. The 6502 instruction set.
The 6502 microprocessor (cf Leventhal 1979) is representative of the generation of

118

eight bit microprocessors which launched the current computer revolution and took
computers into homes, offices and schools in the late 1970's and early 1980's. The
6502 has fifty six instructions and can address a memory of 216 or 64k bytes. Direct

comparisons with the EDSAC order code are somewhat artificial because the 6502
would always be used in conjunction with other devices which would manage input
and output for example, whereas the EDSAC order code was complete.

Nevertheless, the similarities are considerable. The 6502 runs at up to 2 megahertz.
Its basic data types are eight and sixteen bit unsigned numbers. There are nineteen
arithmetic instructions, five logic instructions, sixteen data transfer instructions and
fifteen conditional branch and jump instructions. The remaining instruction is a null

operation which has a variety of uses for timing, debugging and so forth. The most
notable differences between the two instruction sets are that the 6502 has no

multiplication instructions, that it has stack and interrupt servicing instructions, and

that it has more sophisticated memory addressing modes. Use of a stack facilitates

subroutine management and recursive computation, interrupt servicing instructions
enable peripheral equipment to be managed in a way that had not been invented
when the EDSAC was built, and complex memory addressing modes facilitate the
management of programmed data structures such as arrays.

4.3.3. The 80386 instruction set.

The Intel 80386 microprocessor (cf. Crawford & Gelsinger 1987) is a modern 32
bit processor which represents the state of the art in microprocessor design in the

mid 1980's. It can access up to four gigabytes, i.e. 2 32 bytes, of physical memory,
and up to 64 terabytes , i.e. 2 46 bytes, of virtual memory. It is capable of running
at clock speeds of 16-20 megahertz which makes it as much as forty times faster
than the EDSAC. When considered in conjunction with the 80387 floating point

processor with which it was designed to operate, the processor supports unsigned,

two's complement, binary coded decimal and floating point numbers of up to 80

bits, plus character and bit strings. There are 226 instructions in the instruction set,

supporting a range of activities which go well beyond the capabilities of both the

6502 and the EDSAC to include capabilities such as multi-tasking and virtual
memory access. There are twenty integer arithmetic instructions, six bit

119

manipulating instructions, sixteen conditional byte setting instructions, twenty three
conditional branching and jump instructions, eleven data transfer instructions, and

over seventy floating point instructions. Among this prodigal array of capabilities,
one particularly striking feature of the 80386 is that only two instructions are
concerned with input and output other than to and from the main memory. Two of

the EDSAC's eighteen instructions were also dedicated to these functions. The

situation is not quite as solipsistic as this bald statement might imply, since the

80386 has a separate memory space of 64 kilobytes devoted to the control of

peripheral devices. However, it is interesting to note the views of the chip's
designers on the question of input and output to external devices.

"...the addressing and protection of I/O devices is quite different
from the addressing and protection of program code and data.
Typically, an I/O device has only a few control ports, requiring only
a small number of bytes of addressable storage, and there are only
a small number of devices in the system... On the other hand,
program code and data require many thousands, even millions of
bytes of addressable storage, and need a different protection
mechanism."

Crawford & Gelsinger (1987, p.76)

4.3.4. Summary.

The view expressed by Crawford and Gelsinger is of a piece with the whole design

philosophy of serial machines from von Neumann to the present day. The emphasis

is on what happens internally, not on what is going on outside. While it is clear

that great progress has been made in the design and manufacture of electronic
devices for computing, even advanced processors like the 80386 are still

recognisably related to their ancestors like the EDSAC. This is to be expected.

Advances in computing technology have been cumulative and extrapolations to

future developments are frequently attempted (cf. Siewiorek, Bell & Newell, 1982,

p.7; Hockney & Jesshope, 1988, p.3; Hack, 1989, p.262). From the point of view

of understanding cognitive architecture, however, there is little evidence that the

considerations which shaped the design of the von Neumann architecture are

relevant to determining the nature of human cognitive architecture.

120

4.4. The return to parallel architectures.

In the . 1980's as hardware costs dropped, multiprocessor parallel systems became
economically feasible. Even so, much hardware development effort was still
devoted to increasing clock speeds, decreasing logic gate delays and otherwise
improving on the details of serial computation, rather than moving towards

multiprocessor systems. This process of successive refinements of serial technology

has some clear physical limits.

4.4.1. The limits of serial technology

The CRAY-2, a pipelined vector computer, which, although parallel in many aspects

is recognizably a successor of the EDVAC and EDSAC machines, demonstrates the
way in which the limits of performance improvement are being reached. Perhaps
the most striking observation about the CRAY-2, is that its performance depends on
keeping the wires connecting its circuit boards short (Hockney and Jesshope 1988,
p.121-122). The CRAY-2 has a maximum wire length of 16 inches, whereas the
CRAY--1 had a maximum wire length of 48 inches. The difference in signal
propagation time between wires of these two lengths is approximately 3 nano-
seconds, and the components of the CRAY-2 are so fast that savings of nano-

seconds are significant. Signal propagation delays impose a lower bound on
improvements in the clock rate for a computer and thus negate the benefits of faster
logic gate switching times. The solution to this problem is to pack the components

on a circuit board closer together so as to reduce wire length, but this means that

heat dissipation then becomes a significant problem. As a colourful illustration of

the problems, Hockney and Jesshope (1988, p.564) compare the task of cooling the
CRAY-1, which has lower chip densities than the CRAY-2, with "putting a 1 kW

electric element into a biscuit tin and trying to keep it just above room
temperature" . It is apparent from considerations of this kind that physical limits are
now being reached which will prevent further cost effective refinements of the serial
model (Hack 1989), and that the development of large scale multi-processing will
be essential for continued increases in computer speed. Experimentation with

parallel systems has been ongoing since the very early days, and, as remarked

earlier, the ENIAC which proved the viability of the whole electronic computing

121

enterprise was originally operated as a parallel machine. Until comparatively
recently, however, serious interest in multi-processor computers has been the
province of research groups. This is partly a result of the very high costs involved
prior to the development of VLSI technology, but is also a result of the
unwillingness both of suppliers and users to retool and learn new programming
methods. Despite such entrenched attitudes much has been learned about parallel

architectures which is of relevance to cognitive science.

4.4.2. Parallel tasks and parallel architectures.
One important general finding has been that once the von Neumann model is set

aside, questions about architectures become intimately linked to questions about

tasks. The nature of a problem determines the kind of architecture needed for the
most efficient solution, and, conversely, a particular type of architecture will be
better suited to certain kinds of problems than others. This is not a question of

absolute capability, but of efficiency, an issue which has been discussed by cognitive
scientists (cf. Thagard 1986; Krellenstein 1987; Ramsey 1989). Hockney &
Jesshope (1988, p.432) point out that to obtain optimum performance from any
computer it is necessary to tailor programs to the architecture of the machine. The

difference between parallel and serial computers lies in the ratio between the

performance of good and bad programs, which rises from a factor of two or three

with serial machines to ten or more with parallel machines. In an analysis of the
prospects for general purpose parallel computing, Hack (1989) concurred with this

view and went on to suggest that

"...the efficient utilization of a parallel architecture requires that the
user becomes directly involved in the detailed control flow of their
application program... The most serious challenge to the user is that
the most appropriate options are not always obvious, and are very
much a function of the specific hardware configuration."

Hack (1989, p.273)

Hack also argued that experimentation with different implementation alternatives of
an algorithm for a particular parallel hardware configuration was unavoidable if an
efficient match between the requirements of the algorithm and the capabilities of the

122

hardware were to be achieved. The fundamental reason for the diversity of

possibilities is the range of structural options open to the designer of a parallel

system. While the von Neumann design was the architecture of choice, the serial
processing mode meant that the relation between the central processor and memory

was not fundamentally problematic. Since there was only one processor, a high
speed bus carrying register sized chunks of information to and from a unitary

memory store as fast as the processor could deal with them was the obvious way to
do things. With multiple processors, the issue of structural organization becomes

much more intricate. How many processors should there be? Should each

processor have its own memory and communicate by passing messages, or should

processors share a large memory and communicate by having data in common? Is
there a best design for general purpose parallel computers? This is a much more

difficult question than might at first appear. The difficulty lies in the fact that

different problems have quite different orders of parallel decomposability. Suppose

a task has been identified as requiring twenty primitive instruction executions for its

solution. If each instruction were independent of all the others then a machine with

twenty processors could be utilized to complete the task in a single twenty fold
parallel step. At the other extreme, if a chain of dependencies existed such that the

twentieth instruction depended on the result of the nineteenth, which itself depended
on the result of the eighteenth, and so forth, down to the second which depended
on the result of the first, then no parallel machine could compute the solution faster

than a serial machine. Thus the design of a general purpose parallel machine is a

difficult problem. One answer is to build machines with configurable processor

arrays which are dynamically allocated to the elements of a task at run time. One

such machine is the Connection Machine (Hillis, 1985). The problem with

machines of this kind is that raw performance has to be sacrificed in order to

manage the synchronization of and communications among the various processors,

thus shifting the problem to another design dimension (Greenbaum 1989). The
evidence seems to be that really high performance from a parallel system is only

obtained when the machine is built to match, or happens to match, a particular task.

123

4.4.3. Control regimes in parallel systems

Apart from questions of structure and the relation of processors to memory, the

issue of control organization is one which comes to the fore in parallel systems as

a result of removing the constraints of the von Neumann architecture. This is to be

expected in the light of the distinction between the MAXH-MINC and MINH-
MAXC strategies introduced in Chapter 3. As with questions of structure, it is the

seriality of the von Neumann design which provides the primary constraint. If

access to the memory is made for just one item at a time, then it is almost inevitable

that control should consist of taking an instruction followed by its operands. It is
for this reason that the von Neumann model is sometimes also known as the control

flow model (Sharp, 1985, p.18). When instructions, data and multiple processors
are all available simultaneously, however, other control regimes become possible.

Perhaps the most interesting of these from the psychological perspective is the data
flow model (cf. Hockney & Jesshope, 1988, 248-250; Fox & Messina 1987;

Gelernter 1987; Sharp, 1985). In a dataflow computation, instructions do not

execute in a predetermined sequence under the control of a program counter.

Instead, an instruction waits until it has received all its operands, then executes its

operation and passes the results to those instructions which are waiting for them as

operands. A program for a dataflow computation is represented as a directed graph.
The nodes of the graph represent mathematical or logical operations, and the edges
represent the flow of data from one operation to another. Sequencing arises from

the decomposition of a problem into digraph form rather than from an algorithm

which explicitly defines the execution order of parts of the problem statement.

Evaluation of a data flow computation may be either demand driven or data driven.

In the demand driven mode, execution is driven by requests for data from operations

which need operands. In the data driven mode execution is driven by the

availability of inputs. The demand driven mode can be thought of as pulling data

through the system towards the output, whereas the data driven mode can be thought

of as pushing data through the system from the input. Sharp (1985, p.126)

suggested that a data flow machine might be built by implementing data flow graphs

directly in hardware.

124

Chapter 5. Computers, Models and Cognitive Theories.

The material of Chapters 3 and 4 demonstrates that the generic theory is only one

way in which computational ideas can be deployed in support of a theory of
cognitive architecture, and gives rise to the claim that it is not the best way.

Although it was the dominant theory until the revival of interest in connectionism,

the analysis of Chapter 3 shows that the generic theory does not follow from

Turing's analysis and, in fact, contradicts Turing's arguments which claim that the

brain should be considered as a finite state machine. Furthermore, Chapter 4 shows
that the requirements which the generic theory imposes on the medium of

implementation cast doubt on the plausibility of the approach when the brain is the
target medium. It might therefore be expected that accounts of the foundations of

the generic theory would provide justification for its basic tenets. In fact however,

as this chapter demonstrates, this is not the way in which such accounts proceed.

Generally, the claim that the brain is organized as a Turing machine is taken as a

basic assumption, and the consequences of that assumption are then spelt out. Much

of the literature is highly developed and the points made are skilfully argued, but,

from the point of view of the ETH much of the work is ultimately wasted effort

because the basic assumption is never argued for.

The reasons for this state of affairs are obviously complex, but in view of the
importance of the claim that the basic assumption of the generic theory is

unwarranted, it seems appropriate to trace some of the threads. First, it appears

that many theorists have drawn their inspiration primarily from digital computers
and only secondarily from Turing machines. This is not surprising, in view of the

treatment of Turing machines in influential early texts. Miller, Galanter, and

Pribram for example, in their very influential book "Plans and the Structure of

Behavior" made reference to Turing's work, but not directly to the paper on

computable numbers, and suggested that "One consequence of taking Turing's

theorem seriously is that it directs attention toward the electronic computer as the

right kind of machine to simulate human behavior." Miller, Galanter & Pribram

(1960, pp.46-47). Undoubtedly the computer is the right kind of machine to

125

simulate behaviour, but it is all to easy to move from that view to the very different
view that computer architecture provides the right kind of model for the architecture
of the mind. Second, since it is clear that digital computers are, as Turing himself

argued, essentially practical versions of universal Turing machines, it must seem,
if one is unfamiliar with the detail of Turing's analysis as distinct from the formal

definitions of the Turing machine developed in the subsequent literature, that the
Turing machine concept and the digital computer concept are essentially equivalent

in the motivation they provide for a theory of cognitive architecture. Since the
memory of a digital computer appears to provide a natural model for human
memory, and since the distinction between hardware and software seems to map so
naturally on to the distinction between mind and brain, it is understandably easy to

slide from a computer based theory of cognitive architecture to the assumption that
such a theory enjoys the theoretical support of Turing's analysis of computation.
Since, further, it is understood that Turing's model is in a sense as general a model
as it is possible to obtain, it would appear that no independent argument for the

basic assumption that the brain implements a Turing machine, is needed.

The conclusion to be drawn from the above is that study of Turing's original paper

is needed in order to appreciate the nature of his argument. However, the paper is

not widely available. Apart from the journal in which it was originally published,

which appears not to have a very wide circulation, the paper has been reprinted only
once in the collection edited by Davis (1965). Part of the reason for this may lie

in the involved construction which Turing used which contains a number of

technical slips. Because the result is of such importance, the Turing machine
concept has been presented in numerous other, formally equivalent but technically
much more accessible, forms thus rendering the original form of presentation

obsolete. [Wang 1957 perhaps] From the point of view of mathematicians and
computer scientists whose main interest is in developing and extending the theory

of which Turing's paper is one of the progenitors the result rather than the
arguments for its presentation is primary, and if such centrally involved researchers
take this position there is little reason why psychologists should be inspired to read

the paper.

126

The problem which this situation leaves for the proponent of an alternative account
like the ETH is one of coming to grips with the foundational literature, since what
has to be questioned is not specific arguments but the whole structure of thinking
on which the generic theory is based. The purpose of this chapter, therefore, is to

look at influential discussions of some of the foundational issues with a view to
clarifying certain areas of debate.

5.1. Putnam on the Mind-Body Problem.
It is appropriate to begin with Putnam's (1960) treatment of the mind-body problem
in terms of Turing machines which both Wilks (1975) and Jackendoff (1987)
acknowledge as probably the earliest reference to make the link between Turing
machines and psychological theory explicit. The first point about this paper which
is important for present purposes is Putnam's claim that "Any Turing machine is
completely described by a machine table,..." Putnam (1960, p.365) . What Putnam

should have said, strictly speaking, is that any Turing machine control is completely
described by its machine table. That the description of a complete Turing machine
requires reference to the sequence of symbols on the tape as well as to the structures
of the control is very clear from Turing's analysis. In section 9 part I of his paper,

Turing clearly included the tape as an essential part of the description of a machine.

"We know the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special order) , and

the state of mind of the computer." Turing (1936-7, p.136). In section 9, part III

of his paper, he also discussed a model of computation in which the notion of a state
of mind was replaced by a note of instructions which enabled the computer to carry

out one step of the computation and write the next note. Of such a model he said

that "... the state of progress of the computation at any stage is completely
determined by the note of instructions and the symbols on the tape." Turing (1936-
7, pp.139-140) . The sequence of symbols on the tape formed part of what Turing
called the "state formula" which constituted the complete description of a machine
at a given time. Thus it is misleading to assert, as Putnam did, that the machine
table alone provides a complete description of a Turing machine. It is misleading
because it diverts attention from the question of the relation between tape and

127

control and how this should be understood.

In a later paper, Putnam (1967), Putnam discussed what he called the "natural

generalization" of a Turing machine to allow for interaction with an environment.
This generalization, quoted in detail in Chapter 1, suggests that we should think of
the brain as implementing a whole Turing machine, equipped with sensors to
monitor the environment and to write appropriate "reports" on the tape from time

to time. Quite apart from Putnam's own influence, this view has been propounded
in the influential work of Jerry Fodor, who was one of Putnam's students. Neither
Putnam nor Fodor argues for this generalization.

It is interesting to note that Putnam explicitly makes the point that the appropriate

model for a real computing agent is the finite automaton. "...I am going to consider

a hypothetical 'community' made up of 'agents', each of whom is in fact a Turing

Machine, or, more precisely, a finite automaton." However, he immediately goes
on to say, "(Of the many useful equivalent definitions of 'finite automaton', the
most useful for present purposes is the one that results if the definition of a Turing

Machine is modified by specifying that the tape should be finite)" Putnam (1967,
p.409) . Again, he offers no argument for the claim that the definition of a finite

automaton as a Turing machine with a finite tape is the most useful one for the

discussion of theoretical issues in psychology.

A clue to the thinking underlying Putnam's choice of model comes somewhat later

in the paper. He says "Usually we think of a Turing Machine as having a memory

in the form of a paper tape upon which it prints symbols; however, this can be

regarded as mere metaphor. Instead, in the case of a finite automaton, i.e. a Turing

Machine whose tape is finite instead of potentially infinite, the tape may be thought

of as physically realized in the form of any finite system of memory storage. What
we mean by a 'symbol' is simply any sort of trace which can be placed in this

memory storage and later 'scanned' by some mechanism or other." Putnam (1967,

p.412).

128

It is a sad irony that Putnam prefaced the comments above with the suggestion that

they "may perhaps prevent some misunderstandings". Instead, they are potential

sources of confusion. First, in Turing's analysis, the paper tape form of memory

is "no mere metaphor". Paper is very much part of the ordinary process of

computation as Turing visualized it. He argued that the two-dimensionality of a

sheet of paper was inessential but never suggested that the paper could be dispensed

with altogether. "In elementary arithmetic the two-dimensional character of the
paper is sometimes used. But such a use is always avoidable, and I think that it will
be agreed that the two-dimensional character of paper is no essential of computation.

I assume then that the computation is carried out on one-dimensional paper, i.e. on
a tape divided into squares." Turing (1936-7, p.135)

To argue as Putnam does encourages four types of confusion. The first is to make
it easy to confuse tape memory with control memory, the second is to ignore the

distinction between finite means of production and potentially infinite product which

is part of the essence of the Turing machine concept, the third is to blur the

distinction between the "inner" finite part of the machine, and the "outer" storage

medium, and the fourth is to blur the distinction between a symbol and an internal

state of the system. Turing did not regard a 'symbol' as "any sort of trace" . In a
footnote he went to some lengths to define a symbol as a set of points of a unit

square occupied by printers ink.

Putnam's position is understandable when one is thinking of the Turing machine as

an abstract model of a digital computer, but to argue as he does is to ignore the

motivation for Turing's construction, and, in particular, the distinction between the

internal, finite set of "states of mind" which constitute the control of the Turing

machine, and the external, potentially infinite tape on which the results of the

calculation are written. It is worth recalling Turing's point that the definition of

computable numbers as those which are calculable by finite means rests on "the fact

that the human memory is necessarily limited" while the numbers include many
whose expressions are unbounded. "I show that certain large classes of numbers are

computable. They include, for instance, the real parts of all algebraic numbers, the

129

real parts of the zeros of the Bessel functions, the numbers ir, e, etc." Turing (1936-
7, p.116).

5.2. Functionalism.

Apart from his discussions of the nature of the Turing machine concept, the early

Putnam is notable for his functionalist stance. "The functional organization
(problem solving, thinking) of the human being or machine can be described in
terms of the sequences of mental or logical states respectively (and the
accompanying verbalizations), without reference to the nature of the 'physical

realization' of these states." Putnam (1960, p.373). Putnam initially defended this
functionalist thesis with an argument to the effect that human mental states were
Turing machines states. In Putnam (1973) he rejected Turing machine functionalism
specifically and in Putnam (1988) he argued that computational models of the
mind/brain were in general insufficient for cognitive psychology, because "We
cannot individuate concepts and beliefs without reference to the environment."
Putnam (1988, p.'73). This is a view with which the proponent of the ETH can

agree while maintaining that the Turing machine is an appropriate model for
cognitive architecture. The point is developed in Chapter 6. For the present

discussion, what is most relevant is the way in which the central distinction between
"mental" or "logical" states on the one hand and their "physical realization" on the
other has been deployed. There is a noticeable tendency in the literature to run
together arguments that should be kept separate.

Johnson-Laird (1983) provides an example. 	He starts his discussion of
functionalism by making reference to Craik's notion of a "relation-structure" . Craik

developed this idea in the context of working out what it was about a model which
illuminated its explananda. His answer was that a model had a similar relation-

structure to that which it explained, meaning by this that it worked in the same way

as the process it paralleled but was in some useful way simpler, quicker or more
convenient. Craik proposed the hypothesis that thought models reality symbolically,

i.e. he suggested that we think by constructing internal symbolic models which have
a similar relation-structure to that part of external reality which they model. One

130

way, as pointed out by numerous theorists, in which such a capacity might be
advantageous is in allowing its possessor to predict what might happen by thinking

through a model rather than working blindly by trial and error. Craik' s notion of
similarity of relation-structure appears to have much in common with Putnam's
notion of functional isomorphism. For Putnam, two systems are functionally
isomorphic if "there is a correspondence between the states of one and the states of
the other that preserves functional relations." Putnam (1973, p.291).

Johnson-Laird says of the relation-structure notion that "the importance of this idea
has become clear since the development of programmable computers. Once you
know the way in which a computer program works, your understanding of it is in
no way improved by learning about the particular machine on which it runs on this
occasion or that. The same program may be translated into completely different
codes for controlling different makes of computer that operate in different ways, and
yet it is the same program that computes the same function however it is physically
realized -- whether the machine uses cogs, hydraulic valves, vacuum tubes, or

silicon chips." Johnson-Laird (1983, p.9).

While one might take issue with some of the details of the argument, in the main
it seems unexceptionable. However, Johnson-Laird goes on to claim "There is a

major lesson for cognitive science here... the mind can be studied independently

from the brain. Psychology (the study of the programs) can be pursued
independently from neurophysiology (the study of the machine and the machine
code). The neurophysiological substrate must provide a physical basis for the

processes of the mind, but granted that the substrate offers the computational power
of recursive functions, its physical nature places no constraints on the patterns of

thought. This doctrine of functionalism...has become commonplace in cognitive

science." Johnson-Laird (1983, p.9).

There are two principal flaws in Johnson-Laird's argument. First, the fact that a

computer program stands in a certain relation to the hardware on which it is
executed contains a lesson for cognitive science only if it is known that the relation

131

between minds and brains is of the same sort. But this is not known, it is

hypothesized. At best therefore, Johnson-Laird is entitled to the claim that IF the

mind stands in the same relation to the brain as a computer program stands to its
underlying hardware then the mind can be studied independently of the brain. The
"IF" is of primary importance and Johnson-Laird's failure to acknowledge the need

for it is a clear example of the tendency, mentioned at the start of the chapter, for

theorists to assume what has to be demonstrated. In addition to this, Johnson-Laird

also appears to be suggesting that functionalism, as a theory of the relation between

mind and brain, implies that the brain is structured as a universal interpreter. This

seems to be the intended force of the claim that the physical nature of the substrate

in which mind is realized places no constraints on the patterns of thought provided
that it "offers the computational power of recursive functions".

Philosophically, functionalism is a thesis about the individuation conditions on

mental states which claims that what individuates a mental state is not the substrate

in which it is physically realized but the functional role it plays in a sequence of

mental activity. Thus a state is individuated by considering its connections to other
states and to its inputs and outputs. Functionalism, if true, is likely to apply to all

sorts of systems other than universal machines and certainly does not imply that any

system which can be described functionally is a universal machine. Any Turing

machine can be described functionally, but not all Turing machines are

computationally universal. Undoubtedly, a program for a computer is an example

of a functional characterization, par excellence, but this does not support the

conclusion that all functionally characterizable systems are programmable computers
which appears to be the conclusion Johnson-Laird is trying to draw. The effect of

his argument is to run together the idea of functionalism with the idea that the mind

is the program of the brain.

A rather similar, but perhaps less contentious, presentation of the foundations of the

generic theory has been given by Jackendoff (1987), who states the case as follows;
.. ...the information content of data and programs... can be stated independently of

physical instantiation in any particular computer...Thus there is a sense in which,

132

like the mind, the information in the computer is autonomous -- inhabits a separate
domain -- from the (mere) hardware that supports computation...the computer
analogy suggests the following hypothesis: just as we need not deal with the actual
wiring of the computer when writing our programs, so we can investigate the
information processed by the brain...independent of questions of neurological
implementation. This approach is often called functionalism; the idea behind this
term is that the function rather than the physical substance of the brain is significant

in studying the mind...It is now routine to speak of the information in the brain as

mental representations and of the processes operating on such representations as

mental processes. In short, the mind is taken to stand to the brain as the software

and data of the computer stand to the hardware." Jackendoff (1987, pp.15-16).

Jackendoff explicitly makes the point that the computer analogy suggests a
hypothesis about the relation between mind and brain rather than demonstrating the
independence of the one from the other, but the autonomy of mind is taken as a
given and the final sentence somewhat contradicts the idea that the computer analogy
is a hypothesis and not demonstrable fact.

What functionalism does highlight as an issue for careful consideration is the nature
of the relationship between functional and physical descriptions. In Chapter 1.4 the

issue was briefly discussed. What seems clear is that there is a range of degrees of
constraint which merit discussion. Consider the functional description "An

instrument for eating". This is a description which enjoys freedom from constraint
in at least two dimensions. First it applies to a range of utensils which meet the

description in different ways such as cups, spoons, knives and forks, and second it
applies to utensils which are of the same functional type, e.g. spoon, but are made

of different materials such as metal, wood or plastic. By making the functional
description more specific, e.g. "An instrument for eating liquid foods" the
constraints on its realization can be increased, and it seems possible to tighten the
constraints to an arbitrary degree. Compare "A vehicle for travelling from London

to Edinburgh" with "A vehicle for travelling from London to Edinburgh in less than
one hour." Despite the possibility of tightening constraints arbitrarily, however,
there will always be a gap, at least in principle, between functional and physical

133

descriptions. There are at least two reasons why this is so. First, functional and
physical descriptions serve different purposes and use different vocabularies, and
second, there seems to be no clear limit to the power of the imagination to conjure
up different ways in which specific functions can be implemented. It seems unlikely
then that a simple theory delineating the entire range of relationships between
functional and physical descriptions can be constructed.

As far as the relation between mind and brain is concerned, if it turns out that the
brain does implement a general purpose computer or universal Turing machine then
the links between function and substance will be as loose as it is possible for them

to be, but it is worth emphasizing again that this is a hypothesis not a demonstrable
truth and it may be that function and substance are more closely linked in the case

of mind and brain than the generic theory suggests. von Neumann, for example,

in his address to the Hixon symposium in 1948 suggested that the only practical way

of describing what constitutes a complex function like the capacity to make visual
analogies might be to give a description of the connectivity of the visual part of the
brain. Far from its being "mere hardware", it may be that the study of the brain
is the best way to understand its functions.

5.3. Functional and physical description of Turing machine control states.

For present concerns, although it is a major contention of the thesis that the brain
is not organized as a general purpose computer, it is argued that the brain is part of
a computational system which, together with aspects of the environment realizes a

Turing machine, and hence it is claimed that the functional states of the brain may

be thought of as analogous to the states of the control of a Turing machine. Thus,

rather than trying to encompass the full range of connection between functional and
physical descriptions, it is appropriate to consider the relationship between the
functional and physical descriptions of Turing machine control states.

A helpful concept in this discussion is Pylyshyn's concept of an "instantiation
function" . Pylyshyn deploys the concept to explain the relationship between the

physical and computational (i.e. functional) states of a computer. The point that he

134

wants to make is that we need a way of picking out certain physical properties of
a computer if we want to describe its computational states, because most of the

indefinitely large number of physically discriminable properties such as its colour
and its mass which might be mentioned in a physical description are irrelevant to
its computational description. The properties which are relevant are those properties
of components which are meant to react in particular specified ways to changes in

their input conditions. The instantiation function is, therefore, a prescriptive
specification of two sets; first, the set of properties of the machine which are
relevant to the specification of its computational states and second the set of values
of those properties which define a computational state or states. A given
computational state is thus "an equivalence class of physical states indistinguishable
from the point of view of their function in the machine's abstract computational

description." Pylyshyn (1984, p.56). As a pertinent example consider the binary
states which consititute the primitive computational states of a digital computer

system. These are nominally known as the '0' state and the '1' state. In digital
computer systems, various different schemes have been used for assigning voltages

to these states. Generally logical states are defined in terms of bands of voltage

sometimes with a forbidden region between them. Thus the '0' state might be

defined as the band between zero and one volt, and the '1' state as the band between

two and five volts, Cripps (1977, p.3). In this case, the instantiation function
represents a simple mapping of voltages onto computational states. A simple
instantiation function of this kind might then form part of a more complex

instantiation function to map the relevant physical states of the transistors

constituting an AND gate, say, onto the requisite computational states of logical
AND. An example of a physical property of such a transistor device which is

irrelevant to the specification of its computational properties, although essential for

its proper functioning, is the state of its power supply.

It is clear that the specification of the instantiation function specifying the

computational states of a whole computer would be a massively complex task which

nobody would attempt because there would be no point to it. Because computers
are structured hierarchically, appropriately chosen instantiation functions at the

135

lowest logic levels coupled with rigorous construction methods ensure that

aggregations of physical units will correctly map onto the compositions of logical

functions which they represent. Whether such a logically perspicuous, hierarchical

type of instantiation function can be described for the relation between the physical
and computational states of the brain is a matter for empirical investigation.

The essential difference between physical properties and computational states as far
as computers are concerned is that their physical properties are intrinsic qualities of
the media out of which they are constructed whereas their computational states are
prescribed via an instantiation function in terms of equivalence classes of relevant
physical properties and values of those properties. It is the prescriptive nature of
computational states which makes it possible for them to be implemented in multiple

media, given that a medium has physical properties with the requisite characteristics.

It is clear from the example of the AND gate, that the instantiation functions of

digital computers are such that there will be some physical properties, such as

colour, which are strictly irrelevant to their computational states, and others, like
power supplies to logic switches which are essential to the maintenance of correct

logical functioning, but do not contribute directly to that functioning themselves.
The latter properties are part of what Pylyshyn (1984) calls the functional
architecture. The fact that many essential properties of a machine may not

contribute directly to its computational states raises the question of the proportion
of the physical mass of a machine which does contribute to its computational states.

It is easy to imagine how it might be possible to develop some kind of index of

efficiency based on something like the ratio of the mass of the machine and its
power consumption to the number of logical decisions made, for example. Clearly

the early machines like ENIAC were very inefficient while the brain is extremely

efficient.

It is important to note that considerations related to efficiency impose a variety of

physical limits in the real world. A flying bird with the mass of an elephant, for

example, is impossible because muscle is not a sufficiently effective power source

136

to raise such a mass off the ground. It is therefore pertinent to ask whether there

might not also be physical limits related to efficiency constraining the media suitable

for implementing cognitive processes. One way . to envisage how this might happen
is to imagine an instantiation function which makes such efficient use of the physical

properties of its medium that redundancy is minimal. The mapping from physical
to computational states is such that almost every physical property has a
computational role. It would still be the case that one could give separate logical
and physical. descriptions of the functioning of such a creature, but it might be the
case that the constraints were such as to ensure that the implementation medium was
uniquely suited to its tasks. Might it not be the case that such minimal redundancy
turned out to be an essential feature of the engineering of an intelligent creature,
given the other physical demands such as mobility which the organism would need
to support? Perhaps the brain is a medium of this sort. Against this of course
would have to be set the fact that the brain is capable of effective operation under

a variety of conditions of loss and damage and exhibits a form of redundancy via

replication or multiplexing. However, a creature whose computer made inefficient

utilization of its medium might turn out to be so heavy that its muscle power was
insufficient to enable it to escape from a potential predator which its intelligence had

enabled it to identify. The idea that intelligence is based on a computational
architecture whose medium is not an essential part of its specification is so much an
article of faith that it is important to try to envisage situations in which this might
not be the case. It may not be biological chauvinism as Block (1980) argues to

maintain that intelligence is exclusively a property of brains.

The idea that the efficiency with which physical resources are utilized might be a

useful parameter to consider when trying to understand the nature of cognitive

computation suggests that it is appropriate to try to understand the human
instantiation function or functions rather than seeking to isolate the study of
cognitive processes from the study of brain processes. If, as is likely to be the case,

human computational states make much more efficient use of the brain than our

computational artefacts do of their media, it may turn out that detailed understanding
of neural circuits is essential to a detailed understanding of cognitive processing.

137

von Neumann's suggestion about visual analogy being best understood in terms of

the organization of the visual areas of the brain may turn out to be yet another of
his prescient insights.

The functioning of transistors in computer circuits provides a final example related
to instantiation functions and efficiency. The junction transistors commonly used

in these circuits can be operated in three modes known as active region, saturated

and cutoff, Bartee (1981, p.186). For digital switching purposes transistors tend to
be operated at or near the extremes of their range, that is in either saturated or
cutoff mode. The active region mode of operation is not used for switching

purposes and hence would not be relevant to an instantiation function which used
the saturated and cutoff modes to provide instantiations for logic '1' and '0'.
However, Mead (1989) has shown that using the active region of transistors to
implement a variety of non-linear, analogue computational primitives makes much

more efficient use of their intrinsic properties, and he and his colleagues have begun

to explore the simulation of human neural circuits using the intrinsic analogue
properties of silicon circuits as computational primitives rather than driving them to
the extremes of their operational ranges to implement binary switches. Some of the

work of this group is described further in Chapter 6. The direction in which it
clearly points is that the intrinsic nature of the computational medium may be much
more important for understanding natural computation than digital models allow.

It seems quite clear, therefore, that the relationship between the logical or functional
states of Turing machines and physical realizations of them is a complex issue which
cannot be settled by fiat. While instantiation functions are prescriptive in the case
of computers, the human instantiation function, if such can be found, is a result of
evolution and needs to be discovered not stipulated. It does not seem to be the case
as Johnson-Laird suggests, that functionalism implies that the mind must be

organized as a general purpose computer.

138

5.4 Functionalism and Multiple Instantiation.
The relationship between functionalism and the argument from multiple instantiation,

i.e. the claim that the medium of implementation is irrelevant to the functional
specification of a system because the same functional system can be implemented
in different media, has been the subject of a relatively recent exchange in the journal
"Cognitive Science" (cf Thagard 1986, 1987; Krellenstein 1987; Ramsey 1989).

Thagard (1986) claims that the argument from multiple instantiation constitutes the
core of the functionalist position and should, in principle, rule out parallel hardware
as irrelevant. This, he says, makes functionalism "computationally naive", because

parallelism allows "qualitatively different kinds of algorithms for intelligent
operations. " Thagard further claims that the Turing machine model, while
mathematically satisfactory, is "seriously defective" as a model for understanding
intelligence because it ignores the constraint on human intelligences that they must

operate in real time. Intelligence, says Thagard, "should be viewed as relative to
the environment in which behavior must occur." Clearly, Thagard has in mind here
the Turing machine model as deployed by generic theorists.

Both Krellenstein (1987) and Ramsey (1989) take issue with Thagard's construal of
functionalism. Krellenstein argues that the primary concern of functionalism is not

with different means of physical instantiation as Thagard suggests, but with the

distinction between a (virtual) machine and a program. Krellenstein also argues that

"A program running on a parallel machine that produced some sort
of intelligence will also run on a serial machine, and this is enough
to show the hardware irrelevant for explaining the nature, if not the
evolution, of that particular intelligence."

Krellenstein (1987, p.155).

Thagard (1987) accepts the "in principle" argument, but suggests that the practical
aspects of the speed up provided by parallel hardware are more significant than

Krellenstein allows. A similar position has been taken towards Krellenstein's

argument by Clark (1989, pp.121-122).

139

Ramsey's (1989) critique of Thagard's position, asserts that multiple instantiability
is not the basis of functionalism1', and also that functionalism does not license the

neglect of neuroscience. Ramsey argues that Thagard's attack depends on two
claims about functionalism Ti' 7 and T2, and two claims about parallel systems T1'
and T2'.

Ti 	Functionalism depends on an explicit distinction between hardware
and software.

T1' Parallel systems blur the distinction between hardware and software.

T2 	Functionalism asserts that considerations of physical implementation
are largely irrelevant to the characterisation of psychological states.

T2' Parallel systems support qualitatively different kinds of algorithms
from those available on von Neumann style stored program serial
machines.

Thagard, says Ramsey, uses T1' to argue that the distinction made in T1 is not well

founded and T2' to argue that T2 is false. Hence functionalism is false and so is

the argument from multiple instantiability. Ramsey mounts a defence which
maintains that T1 is not a thesis of functionalism and that T2 properly understood

is not undermined by T2' . Ramsey makes the case against T1 as follows. First he

distinguishes two possible construals of functionalism, Fl and F2.

Fl 	Psychological states are determined by their functional or causal roles
and not by first order physical properties.

F2 	Psychological states are determined by their roles in programs and
not by the way those programs are realised in hardware.

Fl, says Ramsey, is a proper statement of functionalism in psychology. F2, which

has a superficial similarity to F1, makes it appear as though functionalism requires

16Multiple instantiability in principle, is a theoretical consequence of Ramsey's construal of
functionalism. Multiple instantiation in practice, would be contingent on the existence of suitable
physical media.

"These labels are not taken from Ramsey's original paper. I have used them in order to try to
clarify the complex points he makes.

140

a hardware - software distinction, but Ramsey points out that there are two ways of
understanding the term "program" . It may be used to refer to a causally inert

description such as a flowchart which simply describes the workings of an
algorithm, or it may be used to refer to a set of commands in a programming
language which causes a machine to behave in such and such a way. The two uses
of the term "program", which may be called the "descriptive" and "operational"
uses are easily confused because a clearly written program, intended to be
operational, may also serve as a description of the algorithm which it
implements1ß . However, functionalism requires only the descriptive use of the
term "program" which is independent of the existence of hardware. Thus, even
though F2 may be true when properly construed, it does not license T1, hence T1',
which may also be true, does not show functionalism to be false.

Ramsey goes on to suggest that an equivocation with respect to the term "hardware"

undermines Thagard's argument from T2' to the falsity of T2 and thus to the

downfall of functionalism. Ramsey claims that "hardware" may be used to refer
both to the "stuff' from which a system is made and to the "architecture" of that
system. Thagard's concern in T2' is architectural. Since he argues from T2' to the

falsity of T2, he must be claiming that "considerations of physical implementation"
in T2 is also a reference to architecture. Ramsey denies that this is the correct
reading of the functionalist claim in T2. Functionalism, says Ramsey, claims that

the nature of the "stuff' out of which a system is constructed is irrelevant, i.e. you

could realise functionally equivalent systems in brain or in silicon. However,
functionalism does not claim that architectural considerations are irrelevant. Thus
Thagard's argument from T2' to the falsity of functionalism also fails.

The clarification of the issues provided by Ramsey's analysis suggests that

Thagard's arguments against functionalism are not just untenable but also

18While this is particularly true of logic programming languages like Prolog, c.f Clocksin and
Mellish (1984, p.vii, & p253), it is noteworthy that much of the effort which has gone into
developing other new computer languages has also been intended to enable programmers to produce
operational specifications of algorithms descriptively.

141

unnecessary, because his main point is compatible with functionalism. The

argument from multiple instantiation is an argument about stuff rather than
architecture, says Ramsey, and thus quite compatible with the notion that
considerations of parallelism may be relevant to psychology.

5.5. A theoretical case for parallelism.

The attack on Thagard by Krellenstein, asserting the reducibility, in principle, of
any parallel machine to a serial one is the kind of argument frequently advanced by
those who wish to claim the theoretical high ground, and such arguments leave a
residual feeling of unease even among the most hardened of those to whom practical
considerations such as real time responding are of fundamental importance. Wells
(1993) discusses recent work in mathematical logic which provides an argument for
the importance of parallelism in principle. The case is based on work by

Shepherdson (1975, 1988) and by Gandy (1980) which develops a more general

understanding of the nature of computation than is provided by Turing's original

analysis. This work is motivated by a desire to provide firm foundations for the
claim that anything which can be computed by a machine is calculable. The point

at issue is succinctly put by Gandy. He distinguishes two claims which he calls

Theorem T and Thesis M.

Theorem T. What can be calculated by an abstract human being working
in a routine way is computable.

Thesis M. What can be calculated by a machine is computable.

Gandy claims that Turing (1936-7) provides a proof of Theorem T but not of Thesis

M. One of the reasons why Thesis M. is not proven by Turing's original work, is

that it is possible for a machine to print, or otherwise operate on, an arbitrary

number of symbols simultaneously whereas Turing's analysis, modelled on the way

in which a human computes with paper and pencil, is restricted to serial operations

on just one symbol at a time. The justification of Thesis M. must, therefore, take

parallel working into account. One way of doing this is to define aspects of
parallelism in terms of extensions to the standard single tape, single read-write head

142

Turing machine, and to show that such extensions do not add to the set of
computable functions. It can be shown, for example, that parallelism in the form

of multiple tapes and/or multiple read--write heads does not increase computational
power. This is accomplished by showing that the squares of multiple tapes can be
mapped systematically onto the squares of a single tape, and that the operations of
multiple scanning heads can be tracked and performed by a single head. Lewis and

Papdimitriou (1981, pps.198 ff) provide a proof. Shepherdson discusses cases for

which the reductive tactics above do not succeed;

"In the case usually considered, of computation over total structures,
i.e., ones whose functions and relations are defined for all
arguments, parallel procedures are no more powerful than serial
ones, for one can obviously serialize a parallel procedure by
subdividing the time scale. This is no longer true if there are partial
functions, e.g. the function f defined by

f(x) = x if fi (x) is defined or f2(x) is defined
= undefined otherwise,

obviously cannot be computed by any serial procedure because it
might choose the wrong one of fl , f2 to evaluate first."

Shepherdson (1988,pp.584-585).

The point is that if a function is undefined for a given argument it will not return

a value in a finite amount of time but will behave like a computer program in an

infinite loop. Hence, with a serial procedure in a case, say, where f2(x) is defined

but fi (x) is not, if fi(x) is tried first the computation will never terminate. With two

processors, however, the computations of 11(x) and f2(x) can be started

simultaneously and independently of each other; f2(x) will, in due course, yield a

value to feed to f(x) and the attempted non-terminating computation of f l (x) can be

discarded as irrelevant. Hence a parallel system is more powerful than a serial one

for this type of function. The argument depends, of course, on the assumptions

made about the capabilities of the processing units which evaluate the functions fi (x)

and f2(x). In particular, if it is assumed that the units proceed in a series of steps

and can be stopped and restarted where they left off, then the capabilities of a pair

of processing units operating in parallel can be simulated by a serial procedure

143

which alternately computes single steps of f1 (x) and f2(x) . However, as Shepherdson
says, "even if this is possible it seems to be an unnatural and inefficient trick for

serialising what is essentially a parallel procedure" (Shepherdson 1975, p.469).

It would appear, therefore, that theoretical justification for a parallel system rests,
in part, on the nature of the domain over which the system computes. If the domain

is such as to include some arguments for which the functions computed by the
system may be undefined, then a parallel system is, given appropriate assumptions,

more powerful than a serial one. It seems perfectly possible, indeed highly likely,
that the domains over which psychological computations are defined will include
partial functions. Gandy's work is considered further in the development of the
ETH in Chapter 6.

5.6. The Physical Symbol Systems Hypothesis.

An influential line of thought which has been systematically developed for some
twenty years by Allen Newell, often in conjunction with Herbert Simon (Newell &
Simon, 1972, 1976; Newell 1980, 1982, 1990) is the Physical Symbol Systems
Hypothesis (PSSH). The symbol systems hypothesis is one of the major

contributors to the standpoint described in the thesis as the generic theory. Newell

is a determined advocate of a view which claims that the brain realizes a symbol
system which is a universal machine by definition, and that the characteristic
flexibility of intelligence is a consequence of the computational universality of the

brain. In some circles the PSSH has acquired the status of a "central dogma"
(Pinker & Mehler, 1988). Pinker (1994, p.78) suggests that the symbol systems
hypothesis is "as fundamental to cognitive science as the cell doctrine is to biology

and plate tectonics is to geology."

5.6.1. Definition of a Physical Symbol System.

In a systematic statement of the symbol systems hypothesis in their 1975 Turing
Award Lecture, Newell and Simon defined a physical symbol system as follows;

"A physical symbol system consists of a set of entities, called
symbols,which are physical patterns that can occur as components of

144

another type of entity called an expression (or symbol structure)... A
. physical symbol system is a machine that produces through time an
evolving collection of symbol structures. Such a system exists in a
world of objects wider than just these symbolic expressions
themselves."

Newell & Simon (1976, p.40)

Two other central ideas were also defined. These are the ideas of designation and

interpretation. Designation is the means by which a symbol or expression is

related to an object, and interpretation is the process by means of which designating
structures of symbolic expressions are evaluated. The thing to have in mind when
trying to visualize a physical symbol system, is a general purpose computer running

LISP.

"The type of system we have just defined is not unfamiliar to
computer scientists. It bears a strong family resemblance to all
general purpose computers. If a symbol-manipulation language, such
as LISP, is taken as defining a machine, then the kinship becomes
truly brotherly."

Newell & Simon (1976, p.41).

The physical symbol systems hypothesis, based on the notion of a system defined

above is simple but of very broad scope.

"A physical symbol system has the necessary and sufficient means for
general intelligent action."

Newell & Simon (1976, p.41).

Newell and Simon maintained that the PSSH was nothing new in principle, but
simply a systematization of a collection of more or less inchoate ideas which had

been arrived at by a variety of people as a result of a number of influences. The
influences identified were the development of formal logic, Turing's work on the

theory of computation, the stored program concept and the idea of list processing
(Newell & Simon 1976, 42-46). The PSSH was intended to make a quite specific

architectural assertion about the nature of intelligent systems, based on a proprietary

145

notion of a symbol, which went beyond the theoretically motivated roots of the
discipline of computation provided by Turing. Newell and Simon also explicitly

acknowledged the influence of the evolution of digital computers on the form of the

PSSH, thus making clear its empirical nature. The evidence adduced for the
hypothesis in the 1976 paper was scanty. Newell and Simon in fact suggested that
the primary evidence for the PSSH was negative, i.e. the absence of competing

hypotheses as to how intelligent activity might be achieved.

5.6.2. The Nature of Symbols.

In his 1980 paper, Newell provided a more detailed account of the PSSH in which

he argued for the necessity and sufficiency of symbol systems as the basis for
intelligence rather than simply making the assertion as he and Simon had done in
the earlier paper. From the point of view of the ETH and the analysis of Chapter
4 it is striking that Newell saw no need to argue for the assumption that the brain

contains a symbol system. Given that a symbol system is a universal machine by
definition, Newell's hypothesis is equivalent to the claim that the brain contains or
implements a universal Turing machine. Indeed, part of his argument includes

showing that his schematic symbol system is universal by showing how to

implement a Turing machine in the formalism. Thus the symbol systems movement
is a clear example of a program which assumes part of what it needs to prove.

Quite apart from this fundamental problem there are problems of detail with

Newell's analysis. The symbol concept is pivotal to Newell's argument which
hinges on the contention that the properties of symbols and symbol processes in
physical symbol systems as Newell describes them, are essential properties of every
universal machine. It is argued here that Newell's arguments do not establish his

case.

It is important from the outset to distinguish various uses of the root term "symbol"
and its cognate forms and this is done using a subscript notation. In particular there

is a distinction to be made between "symbolN" and "symbolT" . SymbolN is a notion

which is internal to the concept of a physical symbol system. A symbolN

146

implements the capacity of "designation" introduced in the 1976 paper by providing
"distal access" to an object, process or symbol other than itself. "Designation"
amounts in effect to a scheme for binding symbolic identifiers to processes.

SymbolT is a term which denotes a member of the alphabet of simple symbols which
are used by a Turing machine when reading from or writing to its tape. The

essential property of these symbols is the nominal property of type identity. A

token of a given symbol must be indistinguishable from any other token of the same
symbol and distinct from every token of any other symbol. The simple unadorned
term "symbol" is used in the discussion when neither of the specific terms applies
and in direct quotation.

5.6.3. An outline of Newell's argument.

In outline, Newell's argument runs as follows. Symbols r are sufficient for the

specification of machines which compute single fixed functions. These are
machines like ordinary Turing machines or finite automata. In order to construct
a universal machine, however, decomposition of the input to the machine into two

parts must be introduced, such that one part of its input is the program of the target
machine and the other part is the data which the target machine would receive as

input. This decomposition may be done directly with symbols N or by using strings

of symbols-i and an addressing scheme on the unbounded tape of a Turing machine

which together amount to a symbols system. SymbolisationN is thus a necessary

condition for a universal machine. Finally, the physical symbol system hypothesis

asserts that symbolisations is a concept of sufficient generality to encompass all

other instances of symbolization in cultural symbols and symbolic artefacts

generally. SymbolizationN is thus the crucial concept which unites the primitive

mechanisms at the lowest level of a system with the mental entities at the highest

level and with entities in the external environment within which a system exists.

5.6.4. The argument in detail.

The detailed explanation of symbol systems starts with a specific example which

Newell describes in detail, and which turns out to look very much like a slightly

abstract version of a Lisp interpreter. The resemblance is intended, and Newell

147

reiterates the view of the 1976 paper that this is a good thing. The description of
the example system is followed by the assertion that symbol systems constitute a
class of universal machines.

"Symbol systems form a class -- it is a class that is characterized by
the property of universality."

Newell (1980, p.147)

This claim is followed by a discussion of universality and an introduction to various

formulations of the class of effective procedures and the difficulties which attend the

construction of universal machines. One of these difficulties concerns the fixity of

machines and leads to the requirement for the partitioning of the input into a

description of the machine to be simulated and a description of the contents of the
target machine's tape. Newell asserts, with respect to the input that

"the basic decomposition into two parts has far-reaching
consequences -- it guarantees the existence of symbols."

Newell (1980, p.149)

Newell clearly means symbolsN here, in accordance with the outline argument

above. By this stage of the argument then, Newell has described an example

symbol system, discussed the nature of universality and made two important claims

as follows;

Cl: Symbol systems are universal machines.
C2: Computational universality guarantees the existence of

symbolsN.

Newell demonstrates the truth of Cl for the example system by showing that it can

be used to simulate a universal Turing machine, but has, at this point, no general

characterisation of symbol systems to justify the claim for the class as a whole. One

might therefore expect the development of the argument to continue with a

characterization of the class and a proof that Cl is indeed true for the whole class.

Instead Newell takes what he admits to be the curious step of making Cl true by

148

definition. "Symbol systems are the same as universal machines." (p. 154). Newell
takes this step because he recognises

"that we do not have an independent notion of a symbol system that
is precise enough to counterpoise to a universal machine, and thus
subsequently to prove their equivalence."

Newell (1980, p.155)

Newell argues, however, that the apparently arbitrary equation of symbol systems

and universal machines is legitimate because

"we have discovered that universal machines always contain within
them a particular notion of symbol and symbolic behavior, and that
this notion provides us for the first time with an adequate abstract
characterization of what a symbol system should be. Thus,
tautologically, this notion of symbol system, which we have here
called physical symbol system, is universal."

Newell (1980, p.155)

This claim suggests that on examination a universal machine is always found to use
a particular notion of a symbol (symbol N) and a notion of symbol processing, and
it is these notions which define symbol systems and all other universal machines.

Thus the argument turns out to be a more complex account of the simple assertion

of the 1976 paper. But it is certainly far from obvious that every universal machine
contains the concept of symbolN. A striking point about universality is that very

little machinery is needed to achieve it.

Newell tries to buttress his claim by asserting that every universal machine exhibits
in some form all the essential properties of any other universal machine. This may
be so, but unless it is clear what those essential properties are, the observation does

not advance the argument. Newell makes the suggestion that although there are
differences among universal machines, which may in some instances be critical,

"these differences are not critical for the nature of symbols." (Newell, 1980, p.155)

149

It is worth expending considerable effort to be absolutely clear about just what

Newell's claim entails, and whether there is a case for it, because the notion of

symbol involved, symbolN, is pivotal not just for Newell's account in the 1980
paper, but for much of his work over the decade to 1990 on the SOAR architecture.
At the heart of the notion is the concept of designation, for which Newell provides
the following definition.

"Designation. An entity X designates an entity Y relative to a
process P, if, when P takes X as input, its behavior depends on Y."

Newell (1980, p.156)

Designation, according to Newell, has two primary features. It grounds the notion

of symbolisation in the behaviour of a process and it provides, as Newell puts it,

"action at a distance" (1980, p.156). The means for providing this distal access are

to be found in the early list processing languages identified as an influence on the

development of the symbol systems hypothesis in the 1976 paper. Newell was part

of the development team of the IPL (Information Processing Language) languages

IPL-1 to IPL-5. List processing has been described as "One of the most significant

events that has ever occurred in programming" (Sammet, 1969,p.388) and IPL-5

was widely implemented. Distal access was achieved by having addresses as the

elements of lists. These addresses provided access to other lists. Thus the concept

of designation is essentially the concept of addressing.

An example of designation is the use of symbolic identifiers in LISP to denote
functions. This can be a highly complex business, (cf. Steele 1984; Wilensky

1986). A simple introduction is provided by Tatar (1987, chapter 3). When a user

defines a function in LISP using DEFUN, which is a function definition function,

a binding is set up between the identifier which names the function and the code

which constitutes it. Thus, the line

(defun square (x) (* x x))
defines a function named "square" which takes a single argument "x" and multiplies

it by itself. Once the definition above has been evaluated, calls to the function will

150

yield the appropriate numerical results.

(square 3)
9
(square (square 3))
81

In terms of Newell's definition, the identifier "square" designates the function which
calculates the product of a number with itself, relative to the process of evaluation
carried out by the LISP interpreter, because, when the interpreter takes the identifier
as input, its behaviour depends on the function code. The identifier is bound to the
function code by storing the address of the code as part of the information associated
with the identifier. Thus designation is a name for the method of location

addressing which is characteristic of digital computers.

Once the concept of designation and its roots in the construction of list processing

language entities is understood, the operation of interpretation is easy to put into

perspective. Newell defines interpretation as follows;

"Interpretation. The act of accepting as input an expression that designates
a process and then performing that process."

Newell (1980, p.158)

What should be clear from the above examples is that the notions of designation and
interpretation are technical notions describing the internal processing of a
computational system, and are particularly related to how a digital computer obtains
the operands for its instruction processing. This is not just a feature of Newell's

presentation in 1980. It remains central in his "Unified Theories of Cognition"

(1990), where he refers explicitly to the role of symbolsN as providers of distal

access to non-local structure. The argument there is simple. It is a natural law,

says Newell, that processing in the physical world is always local, i.e. takes place

in a limited spatial region. If this were not so, there could be action at infinite
distances in contravention of physical law. Localization implies that as tasks grow

in size, there will come a time at which additional structure from outside the local

151

region will have to be accessed in order to complete the task. Symbols N which

designate non-local structure are the means by which such distal access is managed

in computational systems.

"The symbol token is the device in the medium that determines
where to go outside the local region to obtain more structure."

(Newell, 1990, p.74)

5.6.5. Designation and Representation.

The argument that symbolsN are necessary for computational universality includes
an important equivocation on the term "designation" . In some instances Newell uses

it to talk about the representational aspects of symbolization, in others about the
specifics of distal access mechanisms. The equivocation is disguised to some extent

by the fact that Newell takes a very broad view of the concepts which the term
encompasses. Immediately prior to the definition of designation given above, Newell

says,

"We call this concept designation, though we might have used any
of several other terms, e.g. , reference, denotation, naming, standing
for, aboutness, or even symbolization or meaning. The variations in
these terms, in either their common or philosophic usage, is not
critical for us. Our concept is wholly defined within the structure of
a symbol system."

Newell (1980, p.156)

The terminological looseness of the above allows Newell to make plausible sounding

claims like the following;

"Designation is at the heart of universality. For one machine to
behave as an arbitrary other machine, it must have symbols that
designate that other."

Newell (1980, p.157)

The flaw in the argument is a failure to distinguish the designatory capacity of the

symbol tokens which provide distal access in a given system, from the symbolic

152

expressions which provide the descriptive reference to a target machine. The need
for a distinction can be seen immediately by noting that distal access to unbounded

regions of structure is required, not just by universal machines, but by any machine,
e.g. a parenthesis checker, whose input may be of unbounded size. Hence the

capacity for distal access and universality must be distinct. The issue can be
clarified by distinguishing direct from virtual input. A direct input is defined as one

which is causally related to the hardwired behaviour of a machine. Thus, to a first
approximation, the symbol alphabet of a Turing machine provides its direct inputs,

and a binary machine instruction is a direct input to a digital computer. A direct
input may consist of more than one element i.e. it may consist of a string of Turing

machine symbols, but the length of the string must be fixed. A virtual input, by
contrast, consists of expressions constructed from elements of direct input which
may be taken, by an external observer, to refer to or to represent entities external
to the system. Virtual inputs are things such as strings of Turing machine symbols

of arbitrary length or elements of high level languages. Virtual inputs express
logical rather than causal relations, and the trick with universal machines is to

arrange their direct inputs in such a way as to produce the same output as a machine

whose direct inputs had the causal structure mirrored by the logic of the virtual

inputs to the universal machine.

One point of the definition of designation as Newell gives it is to tie the concept of
designation to the concrete behaviour of a process. Designation is thus a local

capability, properly ascribed to a specific process with particular input and output
capabilities. The essence of this capacity is its finitude not its universality.
Designation is a property of direct inputs. Representation, by contrast, is a function
of virtual inputs, and it is representation, not designation, which is at the heart of

universality.

Turing's universal machine provides a clear example of the distinction between

direct and virtual inputs (cf. Chapter 3.4). Direct inputs produce the sequence of

figures which would be computed by the target machine, whereas virtual inputs are

indirectly responsible, via matching and copying, for the sequence of complete

153

configurations which describes the target machine's computations. The first point
to notice is that the "figures" produced by a machine in Turing's original scheme,
i.e. the elements of "the sequence computed by the machine" are just the binary
digits 0 and 1. These digits are mapped via the standard description scheme to the
expressions "DC" and "DCC" respectively. Similarly, the starting state of every
machine is mapped to the expression "DA" and the direction of travel operations,

left, right, and no movement are mapped to the primitive symbols "L", "R" and

"N" . The importance of this scheme is that it provides all the designatory capacity

needed for the universal machine to interpret the description of the target machine.
All that is required of the other symbols used by the target machine, is that they be

coded consistently throughout, and in such a way as to reflect systematically and
accurately the instructions defining the target machine. They do not have, indeed
cannot have, a fixed designatory mapping to the primitive symbols of the universal
machine. Consider, for example, the standard description of machine M in Chapter

3.4. The symbol "X" of M is mapped to the expression "DCCCCC" and the
symbol "(" is mapped to "DCCC" . This is not a designatory mapping, because it
makes no direct contact with the inner mechanics of the universal machine, which
would still work properly, provided all the necessary changes were made to the

standard description of M if the mapping were the other way round. By contrast,
if the mappings for 0 = "DC" and 1 = "DCC" were changed, the internal structure

of the universal machine would have to be reprogrammed for it to produce the

correct output of those target machines which print '0's and '1's. Likewise with the

mappings for the start state and the direction of movement indicators. The

simulation mechanism is sensitive to these mappings. Thus the direct inputs to
Turing's universal machine are the elements of its symbol alphabet, plus the
expressions, "DA", "DC", and "DCC". The direct involvement of the expression
"DA" can be seen in the universal machine state "b 1" and the involvement of

expressions "DC" and "DCC", in states "sh2", "sh3", "sh4" and "shy". Unlimited

representational capacity via virtual inputs is achieved with the finite designatory
capacity of the direct inputs. To argue as Newell does, that designatory capacity

is fundamental is correct in one sense, but misses the crucial relation between

designation and representation.

154

5.6.6. External Reference.

The technical flaw described above is symptomatic of a related but much deeper
problem with Newell's hypothesis which is a direct consequence of the assumption
that an internal Turing machine model is the correct basis on which to understand
cognitive architecture. Given such a model, external inputs are virtual inputs to the
cognitive machine and must be translated into direct inputs by transducers. The

solipsistic bias inherent in such a position, which is characteristic of all versions of
the generic theory, is particularly evident in Newell's recent work, and is manifest

in his treatment of the issue of the relation between symbols in a symbol system and
the external world. The point to notice in the 1980 treatment which foreshadows

the later remarks is that although designation is a relation which is ultimately
intended to cover all instances of reference both internal and external, it is defined
as a concept which is wholly internal to the structure of a symbol system.

"The prototype symbolic relation is that of access from a symbol to
an expression, not that of naming an external object. Thus, it is an
implication of the formulation, not part of its definition, that the
appropriate designatory relations can be obtained to external objects
(via chains of designation)."

Newell (1980, p.169)

It is significant that Newell takes it to be an "implication" rather than a hypothesis,
that the appropriate relations can be found. This follows from the assumption that
the cognitive architecture is a Turing machine implemented in the brain. Given that

the mind does make adequate contact with the external world, then, because it is a

Turing machine, it must be the case that there are appropriately structured

transducers etc. which manage the transfer of information from outside to inside and

vice versa. Hence there can be no difficulty in principle in the production of

adequate direct input. This seems to be the reason for Newell's very sketchy

treatment of the problems of reference and intentionality which concern virtual
input. He raises the question,

"How does it ever happen that a symbol actually refers to or denotes
or designates or stands for or is about something outside the system

155

itself?"
Newell (1990, p.78)

The answer is apparently rather simple assuming there to be knowledge systems,
(Newell 1982) which are symbol systems with a well defined level above the symbol

level in which knowledge is the medium and rational principles govern behaviour.

Knowledge, says Newell, is about its domain which is external to the system. It is
a way of describing a system from an observer's perspective (Newell, 1990, p. 78).
Symbol systems realize knowledge systems, hence they are about the same external

things as the knowledge systems they realize. The realization is achieved by
"implementing representation laws so that the symbol structures encode the

knowledge about the external world" (Newell, 1990, p.79). And that, apparently,

is that.

"That's all there is to be said about intentionality, except for the
details of how to build symbol systems that approximate knowledge
systems closely enough."

Newell (1990, p.79)

The easy optimism is a consequence of the fact that Newell is concerned with direct

rather than virtual input, with processing rather than with representation. He says,

for example

"...that complex systems require symbol structures, in the sense of
embedded symbol tokens that provide distal access, is separate from
the notion of representation. It is a requirement that arises from the
constraints of processing, not from the contraints of establishing
relations to the external world."

Newell (1990, p.75)

This approach is of a piece with the view, consistent throughout his work since the

early papers on the Logic Theorist in the 1950's (cf. Newell, Shaw, & Simon

1958), that it is purely a tactical question to concentrate on internal symbolic

processing and not to deal with perceptual and motor systems.

156

The difficulty is that the total system is too complex to handle all at
once, and the sorts of considerations that go into perception and
motor action seem too disparate to integrate. So the strategy is
divide and conquer."

Newell (1990, p.160)

Divide and conquer is perfectly respectable as a scientific strategy, of course, but
it is worrying that the strategy should so neatly consign to the sidelines precisely
those aspects of the total system which were peripheral to the von Neumann model
of computation, when it seems entirely obvious that people and computers are at
opposite ends of the spectrum of environmental connectedness. It also demonstrates
again, if further demonstration be needed, how deeply ingrained is the assumption
that the brain is a whole Turing machine, served by perception and motor processes
rather than a finite state machine connected to its memory by perception and motor

processes such that the whole system implements a Turing machine.

5.6.7. System levels and the brain.

A discussion of one further aspect of Newell's approach is relevant to the aims of

this chapter. This is the question of how the levels of computational systems as he
describes them are hypothesized to map onto the brain in the human cognitive
system. This is not an issue on which much time is spent in the 1980 paper, but in

"Unified Theories of Cognition", a substantial effort is spent in Chapter 3 on
describing how neural analogues of the various system levels described in earlier
chapters might be identified.

Newell identifies, four different phenomenal worlds, which are characterized by the

time scale on which actions in those worlds occur. Each world comprises a number

of levels which are grouped into bands. Thus the worlds are known as the

biological band, the cognitive band, the rational band, and the social band (Newell,

1990, pps. 121-122). The area of particular relevance for present concerns is the

set of four levels comprising the cognitive band. Newell suggests that these occupy
time scales from approximately the 10 millisecond level at which neural circuits

(rather than individual neurons) operate, to the 10 second level at which the units

157

of cognitive tasks are manifest (Newell, 1990, p.140). He argues, persuasively, that
the time available for cognitive operations is bounded from above by experimental

psychological data, and from below by the operational speed of neurons. Hence,
the operations predicted by the symbol systems hypothesis are constrained to occur
within the time band identified. The methodology is admirable but the conclusions
are open to serious question. The methodology locates the basic operation of distal

access at the level of neural circuits which operate at approximately the 10
millisecond time scale. The process of distal access involves locating the
appropriate distal structure, (which would be done via its address in a digital
computer implementation) and retrieving the information stored in the structure at

the given address. According to Newell, this process of access and retrieval is
carried out in the brain by neural circuits. Addressing of the kind required, as
discussed in Chapter 4, is achieved in computers by constructing the memory and
logic devices from highly reliable bistable devices and doubts about the plausibility
of such schemes as the basis for the implementation of neural computation have
been raised.
There is a fundamental question about the suitability of neural tissue as a substrate

for the process described. It is also not clear that information retrieval is the kind

of thing that the brain does at the neural circuit level. The point about distal access

is to bring remotely stored information back to the local site. While
neurophysiological evidence is consistent with the idea that mental representations

can be defined as states of activity of brain cells (Changeux and Dehaene, 1989),

it is not clear that information retrieval and the integration of multiple sources is
carried out by successive distal accesses in the way proposed by the PSSH. It
seems more likely that simultaneous activity at multiple sites is integrated by global

temporal synchronization (Damasio 1989).

Even if it were plausible to explain single acts of distal access in the way proposed
by the PSSH, there is the equally serious difficulty posed by the need to combine

these basic acts into sequences comprising higher level actions. The problem exists

because the PSSH methodology assumes that the way to get higher level

functionality is by chaining sequences of lower level acts. The top level of activity

158

proposed in the cognitive band in Newell's account occurs at a time scale which is
three orders of magnitude greater than the time scale for elementary acts of distal
access. The implication of this difference is that the composed operations at the top
cognitive level will involve possibly thousands of elementary acts at the lowest

cognitive level. Thus the structure is logically deep. High level programming
languages, which also rely on chaining extensive sequences of low level operations,

have substantial hidden control structures, often in the form of system stacks to
manage the associated sequencing and access problems. Newell's candidate general

architecture SOAR, also makes essential use of a structure called the "context stack"
to manage its decision cycles (Newell 1990, pps.171 ff.). However, nowhere in the

part of his book devoted to the mapping from the PSSH to neural structures is there
any mention of a stack. The basic implausibility of proposing logically deep styles
of storage management as characteristic of the brain has been known, and written
about since the early days of computers.

"...whatever language the central nervous system is using, it is
characterized by less logical and arithmetical depth than what we are
normally used to."

von Neumann (1958, p.81)

But if a stack is not postulated, the operational composition of elementary acts is
compromised. In the absence of any convincing alternative hypothesis about the

management of such logical depth, it is likely that there is something wrong with

the idea that the structures which support rational, intelligent action in the brain are
like those which support processing in a digital computer.

5.7. Pylyshyn's analysis of cognitive computation.
Many of the difficulties attendant on Newell's position arise from the basic,
unsupported assertion that the brain implements a universal Turing machine.
Similar problems arise in the work of another influential theorist, Zenon Pylyshyn,

who has written extensively about the computational foundations of cognitive

science. Pylyshyn's primary concern, in his book "Computation and Cognition"

(1984), is to establish a science of cognition on firm foundations. Pylyshyn comes

159

to grips with the philosophical issues involved in the study of cognition in a way
which Newell seems to believe is unnecessary. Pylyshyn offers arguments which
purport to show that if the idea of cognition as computation is taken as a literal
empirical hypothesis rather than just as a metaphor, then it can be demonstrated that
the cognitive system must be structured as a physical symbol system. In particular,
Pylyshyn claims to show that cognitive computation must involve the transformation
of structured symbolic expressions rather the state transitions of a finite automaton.
Thus, he claims, that the brain must be considered to instantiate a Tiring machine.
Pylyshyn's arguments are important for the ETH because, if they are correct, they
show that the ETH must be false given its commitment to the view that the brain
should be thought of as a finite automaton.

5.7.1. Psychological Explanation.
Pylyshyn's approach to cognitive computation is rooted in his approach to
psychological explanation. When we wish to explain, rather than simply to
describe, behaviour, he says, we have to appeal to the beliefs, knowledge and goals,
i.e. to the mental representations, of those individuals whose behaviour is under
investigation. Informally, a paradigmatic explanation sentence is of the form "X did
Y because he/she believed (hoped, wished, feared, expected, etc.) that P. In such
a sentence, X is an actor, Y a behaviour, and P a description of an intentional
content. Thus "Mrs. Jones ran for the bus because she believed that there wasn't
another one for several hours" explains the running behaviour of Mrs Jones by
appealing, inter alia, to the content of one of her current beliefs. The issue which
Pylyshyn identifies as a fundamental problem is how to link the intentional contents
of thoughts to actions: the problem with claiming that intentional contents really are
the causes of behaviour is that it is hard to see how such contents could form the
basis of a respectable science. They seem to be the wrong sorts of entities to be
involved in causal transactions.

"How is it possible for properties of the world to detemine behavior
when the properties are not causally related in the required sense to
the functional states of the system, which is what we seem to be
claiming when we say, for example, that what determines the

160

person's behavior in rushing to the phone is something like his
anticipation of, or desire to obtain help?"

Pylyshyn (1984. p.26)

One manifestation of the difficulties is that intentional state types appear to cross

classify the natural kind categories which might provide the necessary causal agency
(Fodor, 1975) . There is no simple mapping from, say, the characterization of a
situation as an emergency, to a type of physical event which explains how an

emergency causes the behaviours associated with responding to it, e.g. the behaviour

of summoning assistance. This is because there are no principled constraints on the

physical ways in which an emergency can occur and be responded to.

5.7.2. Semantics, Symbols and Implementation.

Pylyshyn's solution is that desires to obtain help, and other intentional phenomena,

are not literally causes of behaviour. The causes of behaviour are physically

instantiated internal representations of the phenomena which they represent,
consisting of symbolic expressions in an internal code which is realized in some

physical substrate. Thus, on Pylyshyn's account, scientifically respectable

psychological explanation requires a tri-level explanatory hierarchy. There is the

semantic characterization of an event, there is the symbolic representation of that
event which mirrors all the relevant aspects of the semantic characterization, and

there is the realization of the symbolic representation in a particular physical system

which is causally efficacious.

Pylyshyn claims that "the classical view" of computing assumes that computer

systems also have three distinct levels of organization (Pylyshyn 1989, p.57). These

are the semantic level, the symbol level and the physical (or biological) level. The

semantic level explains why appropriately programmed computers do what they do,

by appealing to the contents of their data structures, the symbol level describes the

structures in which the system's knowledge is encoded, and the physical level
explains the system as a physical rather than a functional object. Pylyshyn explicitly

161

associates the semantic level with the knowledge level of Newell (1982)19. The

levels of computer systems thus described can be seen to map neatly onto the

explanatory requirements of materialist theories of cognition, and Pylyshyn argues
that cognitive science should be based on the strong hypothesis that minds literally

are computational systems of the kind outlined above. Clark (1989) has described
such systems, in which there is a close mapping between the entities found at the

top level of analysis and their syntactic computational analogues, as "semantically

transparent".

Given such a tri--level system, it is appropriate to ask how the symbol level is

organized because this level is underdetermined from the point of view of cognitive

theory. The semantic level characterizes behaviour in terms of reasons, goals etc.,

and the physical, or implementation, level, characterizes behaviour in terms of

neural impulses, and so forth, which will be mapped onto computational states at

the symbol level via an instantiation function. In one sense then both of these

system levels are satisfactorily constrained, at least in principle, the semantic level
via our everyday mentalistic talk, the implementation level by what is known about

the physical medium of the brain. Pylyshyn claims that the symbol level must be

organized as a Turing machine if it is to provide the appropriate linkage between the

semantic and implementation levels.

'Foster (1990) has argued that this is confused because there is a substantial difference between
the knowledge level and the semantic level.

"Whereas Newell is very careful to separate the knowledge level view of a system
in terms of beliefs, goals and the principle of rationality, all implemented somehow
(but we do not want to say how), Pylyshyn's view relies crucially on those
distinctions being reflected at the syntactic level."

Foster (1990, p.28)

I think Foster is wrong to distinguish the semantic and knowledge levels in this way for two reasons;
first, although Pylyshyn certainly does claim that semantic distinctions are mirrored at the finest grain
in the symbolic structures encoding them at the syntactic level, he is also quite clear that the semantic
level is an autonomous system level, constrained by a principle of rationality (Pylyshyn 1984, p.38).
Second, although Newell certainly characterizes the knowledge level as a distinct system level, he
is quite clear that a body of knowledge constituting the knowledge level of a system is realized by
representations existing at the symbol level (Newell 1982, p.100; 1990, pps 78-80).

162

Like Newell, Pylyshyn takes the behavioural plasticity of the universal Turing
machine to be one of the important indicators that cognitive processing may be a
form of computation. "This extreme plasticity in behavior is one reason why
computers have been viewed all along as artifacts possibly capable of exhibiting
intelligence." Pylyshyn (1984, p.53). For this reason he is committed to the view
that the cognitive computer is computationally universal and hence must be a Turing
machine.

Pylyshyn stresses the importance being able to attach semantic interpretations to
symbols. "This quality of symbols and of computational states, whereby they can
consistently be given a semantic interpretation, is not the only thing that makes
useful computation possible; but it is one of the most important characteristics
shared by computation and cognition." Pylyshyn (1984, p.63). The point that he
wants to make is that we can see from the example of computers how the semantic
characteristics of a program can be translated into effective symbolic processes
which, as it were, shadow the semantic characteristics so as to produce
transformations of their inputs which produce interpretable outputs respecting the
semantics of the function which the symbolic processes execute. The reason why
this is important is that "Although computation may not be the only way to realize
a semantically described process, it is the only one we know how to achieve in a
physical system. Put another way, nobody has any idea how it might be possible,
even in principle, to build a system whose behavior is characterized in terms of
semantic rules without first describing the system in terms of operations on symbol
structures." Pylyshyn (1984, p.63) This is a further reason for thinking of the
mental computer as a Turing machine.

Pylyshyn develops two more detailed arguments about the need to treat cognitive
states as symbolic expressions on the tape of the brain's Turing machine. The first
is intended to establish that cognitive states must be implemented as symbolic
expressions rather than as sequences of state transitions. The argument is based on
an analysis of the following putative cognitive rules;

163

R1: If you perceive an event E as an instance of the category
"emergency" (call this cognitive state S 1), then create the goal to get
help (call this S2), and

R2: If you have the goal of getting help, and you know that help can be
obtained by telephone (call this combined state S 4), then create the goal of
locating a telephone (resulting in state S 5) .

Pylyshyn (1984, p.63)

The question which arises is how to represent the cognitive states S 1 , S2, S4, S5.

Pylyshyn makes two points about the rules connecting these cognitive states which
bear on the question; first he notes that we describe R1 as holding between S 1 and
S2 by referring to what these two states represent. Second he notes that single
cognitive states can have complex contents in the sense of having distinct
components. S4, for example, is a combined goal and knowledge state. Pylyshyn
uses these two points to argue that we cannot represent the two rules
computationally in terms of transitions between two internal states as follows;

R1: S 1 --> S2
R2: S4 -- > S5

The reason why state transitions are unsatisfactory according to Pylyshyn is that
internal states are atomic entities which cannot have constituent components. Thus
they are unable to reflect the fact that the rules depend on the constituent
components of the cognitive states.

"For instance, R2 must refer to the S2 component of the S4 state in
a way that identifies it as the same representational content that
appears in RI. Thus, R2 cannot be expressed simply as a rule
between S4 and S5; the inclusion of two distinct parts of S4 must be
explicitly represented in R2, and one part must be identified as being
identical to the consequent state of rule RI."

Pylyshyn (1984, p.64)

All these distinctions and sub-distinctions as well as others must be represented, says
Pylyshyn "by some functional feature of the state." and this, he claims,

164

demonstrates the need for symbolic expressions. One shortcoming of this argument
is that it rests on the assumption that a given cognitive state, say S i , has to be
represented by a single state of an automaton. This is an assumption for which
there does not seem to be any justification. The particular difficulty in Pylyshyn's
example is that the antecedent of R2 is a conjunction of terms one of which relates
to the consequent of RI. This means that R2 cannot be specified in terms of a
single state transition but it does not preclude a more complex state transition
treatment. What is needed is something like the following;

R2: If you have the goal of getting help (call this S2), then create the
goal of searching your knowledge base for a means of obtaining help
(call this S3), and if you are searching in S3 and you find "telephone
call" as a means of obtaining help then terminate the search (call this
S4), and create the goal of locating a telephone (resulting in state S5).

This elaboration of R2 yields the following set of state transitions expressing rules
R1 and R2.

R1: S i --> S2
R2: S2 -- > S3 ; S3 -- > S4; S4 -- > S5

In effect, R2 is rather like one of Turing's m-functions. One might, for example,
think of the f-unit of Chapter 3 as implementing the cognitive state "Find the first
instance of a" where "a" is the symbolic parameter to the m-function. A cognitive
state might be taken to consist of a related set of internal states of this kind. There
is a starting state and one or more final states connected by a chain of other states
of arbitrary length and complexity. In a similar way, it would be possible to add
functionality to maintain the other internal distinctions which Pylyshyn says are
important, such as the fact that S i is a state resulting from perception rather than
from inference. It seems therefore that even if Pylyshyn is right to claim that a
single internal state cannot adequately represent a cognitive state with complex
content, he is not justified in concluding that structured sets of internal states will
not suffice.

165

Pylyshyn's second argument for the need for symbolic expressions is based on the
potentially unbounded generativity of certain cognitive capacities, language being
an obvious example, and thinking also, if one accepts something like Fodor's (1975)
view of the relation between thinking and language. Pylyshyn argues that if a finite
characterization of the processing underlying such capacities is to be achieved then

they must be described in terms of operations on formal expressions rather than as

sequences of state transitions. This is a much sounder argument. As the analysis
of Chapter 2 showed, the processing of strings of symbols generated by recursive,

specification, such as the parenthesis strings processed by the machine M, can only
be achieved in general by a Turing machine.

However, it is not clear that Pylyshyn has established his claim that the brain must
be organized as a Turing machine. Like Newell, and like many other generic

theorists, he simply assumes that the brain is the exclusive locus of cognitive
computation and that universality is the basis of cognitive flexibility. Neither of

these points is argued for. What Pylyshyn clearly recognizes as a problem,
however, in a way that Newell seems not to have done, is the way in which his
theory isolates the computational processing of the cognitive computer. The point
is that because the cognitive computer is hypothesized to be part of the brain and

a universal machine, there is a need for input systems to translate external stimuli

into the neural symbolic codes used by the cognitive computer and a need for output

systems to translate the codes output by the computer into suitable behaviour.

The task of characterizing input systems is demanding because, as Pylyshyn
acknowledges, there are semantic constraints on the functioning of these non-

cognitive mechanisms which he calls transducers. "Because the output is to serve

as the basis for the only contact the cognitive system ever has with the environment,

it should provide all (and only) cognitively effective information. It should not
provide information that could never serve as the basis for a cognitive

distinction...On the other hand, the output must provide the basis for all potential

distinctions that could show up in cognitive phenomena... Consequently, the output

of the set of transducers available to an organism must preserve all distinctions

166

present in the environmental stimulation that are also relevant to the explanation of
some behavioral regularity." Pylyshyn (1984, p.158).

As a result of these constraints, Pylyshyn's version of the generic theory, and by
implication all other versions as well, face what appears to be an unanswerable

question about how the transducers which are deemed to be non-cognitive, are
supposed to determine the cognitive relevance or otherwise of their input. The

problem appears to be of the same order of difficulty as the frame problem in

Artificial Intelligence and it is far from clear that there is a solution to the frame
problem. On the assumption that a computational architecture for cognition must

be structured as Pylyshyn suggests, however, there is little option other than to

accept the challenge and try to live with it. Pylyshyn is disarmingly frank about the

nature of the problem, and acknowledges a number of constraints arising from

transducers being considered parts of the functional architecture. These include the

constraints that the input to a transducer must be stated in the language of physics

and that the output of a transducer must be an atomic symbol or at best an n-tuple

of symbols.

It is evidence of the grip which the generic theory exerts that Pylyshyn does not

consider his own arguments to constitute a reductio of his position, given that a

clear way to avoid the requirement for transducers is to abandon the idea that

cognitive representations are internal symbolic encodings like the symbolic

expressions on the tape of a Turing machine or in the memory of a computer.

There are at least two reasons for favouring this move. The first, as Chapter 3

showed, is that it is consonant with Turing's analysis of computation and the second

is that transducers seem to have an impossible job to do. The major cost of making

the move is that it is no longer possible to construe the relation between mind and

brain as like that between the program of a computer and its hardware. In

particular, it requires the abandonment of the idea that the brain instantiates a

universal computer.

167

5.8. Combinatorial syntax and structure sensitive processes.

The final arguments examined in this chapter are some of those used by Fodor &

Pylyshyn (1988). Although their paper was designed as a critique of connectionism,

it is useful for the light it sheds on the commitments and assumptions of certain
aspects of the generic theory which Fodor and Pylyshyn refer to as the "Classical"
approach to cognitive computation. Classical models of the mind, say Fodor and

Pylyshyn, are minimally committed to the structures of Turing machines and von
Neumann style computers, in the sense that "the kind of computing that is relevant
to understanding cognition involves operations on symbols" (Fodor & Pylyshyn

1988, p.4). Fodor & Pylyshyn claim that classical computational models are

"Representationalist", because they propose that "there are states of the mind which

function to encode states of the world" (Fodor & Pylyshyn 1988, p.'7). To present

matters in this way, is already to finesse at least one of the issues of substance,

which is the question whether the mind is in the head or involves external objects

in some relation other than encoding. There is characteristically no argument for

this central point which is simply assumed. It is taken to be the hallmark of a

cognitive analysis that it should appeal to (internal) representations. "...any level

at which states of the system are taken to encode properties of the world counts as

a cognitive level; and no other levels do." (Fodor & Pylyshyn 1988, p.9).

Classical computationalism is also fearlessly materialist. "...neurons implement all
cognitive processes... by supporting the basic operations that are required for

symbol-processing." (Fodor & Pylyshyn 1988, p.11). Classical theories are

distinguished by their commitment to "complex" mental representations or "symbol

structures" and to "structure sensitivity of processes" . The point of the latter claim

is to establish that classical mental operations apply to mental representations by

virtue of their form. A paradigmatic mental process maps classes of representations

to other classes, with classes being determined by their abstract structural

descriptions. Hence an operation which infers a single term from its appearance as

the antecedent of a conjunction could infer either or both of, P from P & Q and (A

v B v C) from (A v B v C) & (D v E v F), by virtue of the structure sensitivity of

the process. Fodor and Pylyshyn are at pains to point out the seriousness of their

168

commitment to the physical realization of these characteristics of the classical
architecture;

"the symbol structures in a Classical model are assumed to
correspond to real physical structures in the brain and the
combinatorial structure of a representation is supposed to have a
counterpart in structural relations among physical properties of the
brain... the Classical theory is committed not only to there being a
system of physically instantiated symbols, but also to the claim that
the physical properties onto which the structure of the symbols is
mapped are the very properties that cause the system to behave as it
does.... a Classical model is very different from one in which
behavior is caused by mechanisms, such as energy minimization, that
are not reponsive to the physical encoding of the structure of
representations. "

Fodor & Pylyshyn (1988, p.13-14)

In a long footnote (note 9, pp.13-14), Fodor and Pylyshyn examine the conditions
which have to hold on a mapping from expressions to brain states, if the causal
relations among the latter are to reflect the structural relations among the former.
For the scheme to work properly, there have to be two components; "(a) the
definition of a primitive mapping from atomic symbols to relatively elementary
physical states", and "(b) a specification of how the structure of complex
expressions maps onto the structure of relatively complex or composite physical
states." The latter specification will most likely be formulated in terms of a
recursive mapping, since arbitrarily complex expressions must be dealt with.

A puzzling feature of this analysis, and one which indicates a degree of carelessness
in its formulation, is the claim that the mapping discussed is an "instantiation
function" as defined by Pylyshyn (1984) and discussed above. This claim cannot
be correct given the nature of the instantiation function in Pylyshyn (1984). The
mapping discussed by Fodor and Pylyshyn (1988) is a mapping from symbolic
expressions to physical states. This sort of mapping must, in general, be one to
many (and thus, mathematically, not a function), if it is to do a philosophically
respectable job, because there is, in principle, no limit to the kinds of physical stuff
which might instantiate a symbolic expression (silicon, beer cans, regiments of

169

Chinese etc.), and also no requirement that different tokens of the same symbolic
expression be realized in the same way on different occasions (cf. Fodor 1975). By

contrast, the "instantiation function" of Pylyshyn (1984) is a mapping from "an

equivalence class of physical states" to "a computational state of the machine"
(Pylyshyn 1984, p.56). This is a many to one mapping and is properly described
as a function.

The task Fodor and Pylyshyn set for themselves in imposing constraints on the
physical medium with the mapping they discuss, is very different from the task of
specifying computational states by aggregating physical states of a given medium via

an instantiation function. In the latter case one can at least choose mappings which
make the best possible use of natural groupings of physical states for example.
Trying to specify a mapping from computational states to physical states is very
much more difficult. Numerous awkward decisions have to be made. The most

important of these is the specification of atomic symbols. Unless these are known,

the mapping cannot be got off the ground. The atoms have to be identified in order
to get a feel for the problem of developing a mapping which will preserve a

sufficiently high signal to noise ratio to provide stable computational performance.

But even if that were possible the whole project seems ill considered. Unless you
know something about the physical properties of the proposed medium in advance,
there is no way to tell whether or not it will support the desired atoms in the right

sort of way, and if you do know something about the medium then you will start

from there.

Fodor and Pylyshyn do not acknowledge just how strong are the constraints on the
medium which their theoretical position imposes. They readily dismiss "the

(absurd) hypothesis that cognitive architectures are implemented in the brain in the

same way as they are implemented on electronic computers" (Fodor & Pylyshyn

1988, p.55), while apparently retaining the requirement for arbitrarily deep logical

structure which drove the development of just those computers. There is a striking

irony in their claim that "The physical requirements of a Classical symbol-

processing system are easily misunderstood." (Fodor & Pylyshyn 1988, p.57).

170

Nevertheless, Fodor and Pylyshyn offer a variety of arguments for the classical
model. The first of these is that thought is productive in the sense that the
representational powers of the cognitive system are unbounded under appropriate
idealization (Fodor & Pylyshyn 1988, pps.33-37). Since this unbounded expressive
capability is produced by finite means, we must treat the system of representations
as expressions belonging to a generated set. Hence they have combinatorial
structure, and thus imply a symbol system. Fodor and Pylyshyn conclude from this
that "the mind cannot be a PDP" (p.33), because "Connectionist architectures
cannot, by their very nature, support an expandable memory, so they cannot support
productive cognitive capacities." (p.35). This is very much like the second of
Pylyshyn's arguments discussed above. If mind is known to be implemented solely
in the brain, then Fodor and Pylyshyn have a case. But Fodor and Pylyshyn need,
and do not provide, an argument to the effect that the brain is the sole locus of the
mind. The productivity argument alone does not suffice.

Fodor and Pylyshyn's second argument is based on the notion that cognitive
representation is systematic. The examples they use are linguistic, and the point that
they want to make is that the ability to deal with some sentences is intrinsically
connected with the ability to deal with other sentences, by virtue of structural
commonalities in their form. Thus, they say, the ability to understand the sentence
"John loves the girl" entails and is entailed by the ability to understand the sentence
"The girl loves John" . Systematicity is thus a property of mastery of the syntax of
a language. The point of the argument is that

"thought is systematic too, so there is a precisely parallel argument
from the systematicity of thought to syntactic and semantic structure
in mental representations."

Fodor & Pylyshyn (1988, p.39)

Just as you don't, apparently, find people who can understand "John loves the girl"
but not "The girl loves John", so too you don't, apparently, find people who can
think the thought that "John loves the girl", but not the thought that "The girl loves
John" . "...systematicity arguments infer the internal structure of mental

171

representations from the patent fact that nobody has a punctate intellectual

competence. " (Fodor & Pylyshyn 1988, p.40).

This argument, and two further arguments have a similar form. Fodor and
Pylyshyn claim that cognitive competences are all fundamentally systematic and that
the only way to explain this systematicity is to appeal to processes which are

structure sensitive.

"Cognitive capacities come in structurally related clusters; their
systematicity is pervasive. All the evidence suggests that punctate
minds can't happen... The only mechanism that is known to be able
to produce pervasive systematicity is Classical architecture."

Fodor & Pylyshyn (1988, pps.49-50)

There are various reasons for caution about this conclusion. First, it is notoriously
difficult to argue from task performance to a mechanism. Fodor has made the point
himself; "there are, in general, lots of mechanisms that can perform a given task,
so that inferences from a task to a mechanism are up to their ears in affirmation of

the consequent" (Fodor 1990, p.207). Thus, even if Fodor and Pylyshyn are right
with their systematicity claims, they may still be wrong in their mechanistic

assertions. The neuropsychological literature is a ready source of findings which

suggest that the systematicity of normally functioning cognitive capacities, such as

it is, is the result of the simultaneous activation of mechanisms which have very

little in common with the, admittedly very sparse, outline provided by Fodor and

Pylyshyn (cf. Walsh 1978; Shallice 1988). In the face of an increasing amount of
evidence, it is also surprising to find Fodor and Pylyshyn claiming that "our

knowledge of how cognitive processes might be mapped onto brain tissue remains
very nearly nonexistent" (Fodor & Pylyshyn 1988, p.57).

Like the arguments proposed by Newell and by Pylyshyn, those of Fodor and

Pylyshyn take as their starting point the view that the brain is organized as a Turing
machine. Many other examples of the same assumption can be found in the

literature. Because the starting point is an assumption, it is not explicitly argued for

172

and is thus difficult to attack, other than indirectly by pointing to the problems it
poses and to its departure from Turing's analysis. An alternative is to develop a
different account. The foundations of such an account are presented in the next
chapter.

173

Chapter 6. The External Tape Hypothesis.

The starting point for the External Tape Hypothesis is the fundamental claim that
the Turing machine was not, and was not intended to be, simply a model of the
inner workings of the mind. It was a model of a system of states of mind
interacting with external symbols. In consequence, the Turing machine model does
not imply, much less entail, that cognitive processes must involve manipulation of
internal symbolic expressions. Turing gave no indication that internal states would

or should be constituted in such a way as to include symbolic expressions as parts.

The different functions of tape and control may require entirely different types of

explanation and principles of organization. The definitions of both states of mind

and symbols were pared down by Turing to the barest essentials but there is no

doubt about their relative locations, the one within and the other without the

organism. The Turing machine is thus a micro-world in which a minimal mind

interacts with a minimal environment. What is profoundly interesting is that such

a spartan system can nevertheless be configured as a universal process simulator.

What is also clear is that such exiguous notions of state and symbol need to be

fleshed out if they are to ground a theory of cognitive architecture which locates the
mind in the brain and in the world. The preceding chapters of the thesis have

argued for a number of points which demonstrate the plausibility of the ETH as an

alternative model of cognitive computation. These points are summarized below;

1) Turing's analysis of computation, described in Chapter 3, is based on a

principled distinction between the finite state control of a Turing machine

which models the mind of a human computer, and the tape which models the

paper on which the human writes.

2) The generic computer theory of mind takes the brain to implement a whole

Turing machine rather than just the finite state control. In this respect it

contradicts Turing's analysis.

3) The causal nexus of the Turing machine is the configuration, which is a

combination of the current internal state and the currently scanned symbol.

In terms of definition 2.1 of Chapter 2, the internal state and the symbol

174

scanned are the two parameters q, and a, of the transition function 8(q, a) .
These two parameters enable a deterministic system to be capable of more
than one response to a single input. Multiple internal states enable multiple
responses to single inputs. The ETH proposes a model of cognitive
computation which is faithful to Turing's analysis and locates the internal
state, parameter q, inside the organism and the symbol, parameter a, outside
the organism. The ETH is thus committed to a view of cognitive states as
involving aspects of the external environment because cognitive states are
identified with the computational configurations of the system. The
existence of multiple internal states rather than autonomous internal symbol
structures is hypothesized to provide the behavioural flexibility of the
system.

	

4) 	Identifying the brain with the finite state control of a Turing machine implies
that human memory must be treated predominantly as control memory rather
than as tape memory. Two forms of control memory, functional and
positional were identified in chapters 2 and 3 and some indication of their
potential was given.
If the brain is a finite state control machine, then the flexibility and
responsiveness of the cognitive system does not result from its being
structured as a universal machine. It is more likely that the cognitive system
consists of a large variety of interacting, special purpose mechanisms.

6) Using Pylyshyn's notion of an "instantiation function" which is a mapping
from the physical states of a system to its computational states, it is clear
that instantiation functions might differ with respect to the extent that
intrinsic properties of a medium function to implement computational
properties. An extremely efficient implementation might use almost all the
intrinsic properties of a medium. Knowledge of these properties would
therefore be essential to a proper understanding of the computational
properties of the system as a whole. It is quite possible that the
computational properties of the brain are very closely related to its physical
properties. There seem, at least, to be good reasons for doubting that the
brain instantiates binary primitives in the way that computers do.

175

The central claim of the ETH is, in one sense, entirely traditional, but in another
sense quite radical. It is traditional in that it claims like the generic theory that
cognitive states should be understood as the configurations of Turing machines. It
is radical because it denies that the brain alone implements the cognitive Turing
machine. This gives the claim that cognitive states are configurations a completely
different character. In particular, it means that aspects of the external environment
enter into cognitive states.

To develop the ETH there is a need for theories of various kinds to put flesh on the
formal bones of Turing's analysis. First, there is a need for a theory of internal
states to understand how such states can be implemented and to explore the relations
between structure and function in systems of states such as the control automata of
Turing machines where there is no separation between structure and function of the
kind found in universal machines and digital computers. Part of such a theory will
be the development of accounts of the different types of control memory which were
introduced in Chapters 2 and 3.

Second there is a need for a theory of symbols to determine what kinds of entities
other than conventional alphanumeric tokens can serve as the symbolic components
of causal configurations. This theory must include an account of locations and of
the conditions of stability and permanence which characterize conventional
computational symbols and will need to have counterparts in theories of external
computational objects.

Third, there is a need for a theory of computational configurations to tackle the
enormous complexity of the systems of interaction which exist between external
entities and internal states and among sets of internal states. Approaches to
automata theory like that of Rosenschein (1985), can contribute to this enterprise,
and the ecological approach pioneered by Gibson (1966,1979) is also likely to
provide a source of insights. Because the human organism is essentially mobile,
another requirement is an understanding of the significance of movement.

176

6.1. Developing an account of internal states.
Turing distinguished what he called automatic machines, whose behaviour was

completely determined, from those he called choice machines, whose next moves
were only partly determined by their current configuration and would need to be

determined by a choice made by an external operator. The machines he discussed

in the 1936-7 paper were all automatic machines as are modern computers.

Haugeland (1981) also describes computers as automatic formal systems, but uses

the notion of automaticity somewhat differently from Turing. For Turing a machine

was automatic if and only if it was completely deterministic. For Haugeland, a

machine is automatic provided it can proceed without external intervention. A non--

deterministic machine, plus a set of heuristics to do the choosing when necessary,

is automatic in his terms.

For present purposes the crucial point is to see that a deterministic procedure need

not be carried out automatically, using the latter term in Haugeland's sense. There

is an important distinction to be drawn between determinism and automaticity. This
distinction highlights a difference between Turing machines and digital computers

on the one hand and people on the other which is entirely obvious but worth stating

because it affects the conception of an internal state which is needed for the ETH.

The difference is that the behaviour of computers and Turing machines is both

deterministic and automatic whereas the behaviour of humans even when computing

deterministic procedures is rarely, if ever, automatic, because it involves operations

of the will. For instance, if I were to ask you to carry out, with paper and pencil,

the multiplication of 284613 by 18737265, you would no doubt be able to do so
using a deterministic algorithm which you learned as a child. But the deterministic

nature of the algorithm would not make your behaviour automatic if only because

you could decide to stop and leave the computation unfinished at any time. Further,

the involvement of the will in human action is not dispensable from a psychological

point of view. Cognitive and conative processes are intrinsically connected.

The issue of automaticity links with the question of whether the brain is a finite

automaton or a Turing machine in an interesting and important way. If the brain

177

is in fact a whole Turing machine, then automaticity at the level of global state
transitions is a desirable feature because the brain is an automatic system over
whose operation we have relatively little conscious control, and global state
transitions, on this model, are internal operations of the brain. Further, it is the
automaticity of the brain viewed as a computer which protects the generic theory
from the need for homunculi. If, however, the brain is not a whole Turing machine
but the finite control system only, then automaticity at the level of global transitions
is an embarrassment, for the sorts of simple reasons outlined in the previous
paragraph, viz. that humans are able to stop and start deterministic computations at
will. Volitional, motivational and affective phenomena must be incorporated in
accounts of the aetiology of behaviour at such a global level of analysis, if the
account is to be psychologically plausible.

What seems to follow is that when states of mind are thought of as global, as Turing
intended, rather than as internal relations between control processes and symbol
structures in the brain, a psychologically adequate characterization of state
transitions will have to acknowledge a range of degrees of automaticity and will
have to include accounts of attentional and motivational processes where
automaticity is not assumed. These requirements, allied to the experientially
obvious but theoretically obscure phenomena of consciousness suggest that a full
account of the notion of internal state will need a great deal of development.

The ETH is therefore committed to an understanding of the notion of "internal
state" which spans a wide range of descriptive phenomena at a variety of levels of
abstraction. At the level of abstract analysis, the notion is Turing's notion of a
"state of mind" which is global and unitary. At the level of everyday psychological
description the "internal state" is a complex assemblage of, for example, attentional,
motivational, affective and rational phenomena which are likely to depend on the
interacting operations of multiple mechanisms. The question is whether these
different levels of analysis can be brought together in a way which preserves
Turing's state notion. What is required is an analysis which retains the abstract
unity of the notion of internal state while allowing that the realized, physical state

178

may be complex. As a simple example of the required contrasts consider the
following different ways of describing the states of a car. Abstractly we might
describe the car as moving forward in first gear or second gear, as moving in
reverse, as stationary etc. These global descriptions correspond to a description of
a Turing machine as being in such and such a functional state. When we come to
describe what implements the state of "moving forward in first gear", however, it
is clear that a complex description is needed of the interactions of the various parts
of the vehicle which contribute to this state. The states of the fuel system, of the
electrical system, of the cylinders, of the gearbox, of the wheels, etc. all constitute
elements of the global description.

6.1.1. Gandy's principles for mechanisms.

Typically, when thinking of Turing machines, one tends to think of their global
states as being irreducibly unitary and thus as unsuitable vehicles for the structural
complexities which are clearly constitutive of real cognitive systems. However, it
was apparent from the discussion in Chapters 2 & 3, that it is possible to think of
the state diagram of a Turing machine as something like a logical blueprint for a
system of parts which could implement the set of transitions constituting the
machine. Gandy (1980) has made an important theoretical advance by describing,
in very general terms, the constraints which such complex structures composed of
multiple, parallel subassemblies must meet if sequences of their states are to
implement Turing computable functions.

Using the formalism of hereditarily finite sets, Barwise (1975), Gandy proposed four
principles which he proved had to be satisfied by any discrete deterministic device
if its successive states were to form a computable sequence. In order to describe
a machine, one starts by assigning labels to represent the basic components and their
states. "We suppose that labels are chosen for the various parts of the machine --
e.g., for the teeth of cog wheels, for a transistor and its electrodes, for the beads
and wires of an abacus. Labels may also be used for positions in space (e.g., for
squares of the tape of a Turing machine) and for physical attributes (e.g., the color
of a bead, the state of a transistor, the symbol on a square)." Gandy (1980, p.127).

179

Functional aggregates of components, which constitute complex parts, are described
by forming a hierarchy of sets of labels. The global state of a machine is
constituted by the set of sets thus formed and state transitions are defined in terms
of a "structural function" which describes "the transition between physical states
with some persistent elements." Gandy (1980, p.129).

The four principles for mechanisms describe and constrain the hierarchical systems
which can be constructed in this way. The first principle states that any machine
can be described by giving a structural set SM c HF of state-descriptions, together
with a structural transition function, F: SM SM, which describes the state
transitions of the machine. The importance of the structural function is that it
applies to potentially complex structures with parts, and allows the definition of
transitions in which some parts persist, while others are changed. In this way the
joint seriality and parallelism of a process can be described. The process is serial
because the structural function maps the global states of a structure at successive
moments, and it is parallel in that it describes potentially multiple simultaneous local
changes in the structure which occur in the space of a single state transition.

The other principles place restrictions on the set of state-descriptions and on the
transition function. The second principle, called "The Principle of Limitation of
Hierarchy", requires that there be an upper bound on the set-theoretic rank of the
state-descriptions, i.e. that the number of levels of descriptive structure must be
finite. This means that there must be a finite limit to the nesting of parts within
parts, therefore that the parts of a machine may not be infinitely complex.

The third principle called "The Principle of Unique Reassembly" states that any
machine must be constructible from parts of bounded size which can be labelled so
that there is a unique way of putting them together. This prevents the specification
of an infinitely large machine in a way which is not forbidden by the second
principle, i.e. by having infmitely large rather than infmitely complicated parts.
Thus, for example, a gear wheel with an arbitrarily large number of teeth would be
disallowed, as would a lever of unbounded length. The principle also enshrines the

180

physical fact that the indentity of an object is a function of the arrangement, rather
than the individual identities, of its parts.

"According to quantum mechanics... any two electrons must
necessarily be completely identical, and the same holds... for any two
particles whatever, of any one particular kind... What distinguishes
the person... is the pattern of how his constituents are arranged, not
the individuality of the constituents themselves. "

Penrose (1990, p.32)

The final principle, "The Principle of Local Causality" is the most important. In
Turing's analysis of computation, the next state of a machine was determined solely
by its current state, and the current scanned symbol. Turing justified this restriction
by appealing to the finite perceptual capabilities of a human calculator. "We may
suppose that there is a bound B to the number of symbols or squares which the
computer can observe at one moment. If he wishes to observe more, he must use
successive observations." (Turing 1936-7, p.136). This is an instance of the
dependence on human capacities which Gandy's analysis seeks to replace. The
justification for the principle of local causality which replaces the perceptual bound,
"lies in the finite velocity of propagation of effects and signals: contemporary
physics rejects the possibility of instantaneous action at a distance" Gandy 1980,
p.135). Newell (1990) bases an argument for distal access on the same physical
considerations. The principle of local causality requires that the next state Fx of a
machine can be assembled from a set of overlapping regions, each of which is
produced by a "causal neighbourhood" of x which is of bounded size. This amounts
to the claim that the causal whole is the sum of its causal parts. A helpful example
of the principle in action is the way in which the global states of a connectionist
network are computed. Each node in a network, except in the case of a fully
connected net, takes its inputs from one subset of the other nodes and delivers its
output to another subset of those nodes. The activation level of a node, and the
weights on its connections to its neighbours are all determined locally. Hence, the
next state of any node in a network can be computed by considering a restricted
"causal neighbourhood" of other nodes and connections, and the next state of the
whole network can be arrived at by sequential consideration of the set of such causal

181

neighbourhoods. If this were not so, the simulation of connectionist networks on
serial digital computers would not be possible. The principle of local causality
could also be taken to imply the validity of orthodox scientific tactics which work
towards an understanding of the whole of a complex structure or process via
piecemeal study of its parts.

An important general point about the principles is the following; 'It is perhaps worth
emphasizing how unrestrictive the principles are. Unlike most automata and
algorithms which have been proposed, our treatment does not depend on singling
out any set of "elementary" operations.' Gandy (1980,p.145).

The unrestrictiveness of Gandy's principles has a number of consequences for
cognitive theorizing. First they show that it cannot be demonstrated that cognitive
processing has to involve explicit, internal symbolic expressions in order to be
"computational". A system is computational if and only if it meets the requirements
of Gandy's four principles and these do not specify that explicit, internal symbolic
expressions are required. Symbolic expressions will often be convenient, relatively
easy to implement, etc. but they are not necessary. A connectionist network is an
example of a type of computational system which meets the requirements without
involving structured expressions. This calls into question certain arguments to the
contrary. Pylyshyn (1984), for example, has argued that explicit symbols are
constitutive of computation and hence must be involved in cognition if it is indeed
a kind of computation. "...so long as we view cognition as computing in any sense,
we must view it as computing over symbols. No connectionist device, however
complex, will do, nor will any analog computer;" Pylyshyn (1984, p.74). Gandy's
position may be thought somewhat more secure because he provides proofs for the
four principles whereas Pylyshyn's argument about computation is informal and
intermingled with ideas about the requirements for cognitive explanation.

Second the unrestrictiveness of the principles seems to show that connectionism will
not rewrite the bounds of the computable as suggested, for example, by Smolensky
(1988). Although Gandy explicitly intended the principles to cover discrete devices

182

only, his interpretation of what constitutes a discrete device is liberal. 'In principle
the state of any concrete device can be adequately described by specifying, to a
certain degree of approximation, the relevant physical parameters (chemical
composition, pressure, current flow and so on) of sufficiently small regions of
space. (By using the words "concrete", "mechanical" and the like, we intend that
these regions will always be very much larger than the size of an atom). ' Gandy
(1980,p.130) The approximations to continuous systems provided by the computer
realizations of connectionist nets seem to fall within the scope of Gandy's principles
and thus not to transcend the boundaries of Turing computable functions.

The unrestrictiveness of the principles, taken in conjunction with the fact that the
brain, in Turing's scheme realizes a finite state machine and not a Turing machine,
suggests that the traditional abiological stance of cognitive science may need revision
in order to encompass a satisfactory notion of internal state. There are two reasons
for this. The first is that the principles suggest that there need not be a privileged
symbol level at which distinctively "computational" operations take place. The
second is that the identification of brain with a finite state machine suggests that
there is no simple distinction to be made between program and hardware. Taken
together, these two points suggest that a full understanding of cognitive processes
will require consideration of a much wider range of levels and linkages between
them than has traditionally been supposed. The principled distinctions which exist
between the various levels of a computer system, for example, may simply not exist
in the brain. It may be, for example, that a rather detailed account of the properties
of neurons will be required to explain the computational capacities of the brain as
a result of the efficiency of its instantiation function. To argue thus is not to claim
that psychologists should stop doing psychology and start doing neuroscience. It is
simply to claim that the principled separation of program from hardware which
exists in computers and in universal Turing machines, and which ensures that, at a
certain level of analysis, the program level is clearly separable from the hardware
which executes it, need not be characteristic of the brain as a finite control machine.

183

6.1.2. Mead's analogue silicon modelling technique.

In chapter 5, brief mention was made of the work of Carver Mead, cf. Mead (1989)
on the synthesis of analogue circuits in silicon. This work is relevant to developing
an understanding of the way in which internal computational states might be realized
in the brain. Consider first, by contrast with the generic theory, what kind of
account is being sought. The discussion can usefully be based on Turing's
distinction between states of mind, i.e. m-configurations, and states of the system,
i.e. complete configurations. In the generic theory, the expressions "computational
state" and "internal state" are generally both taken to refer to what Turing would
have called complete configurations, i.e. combinations of the state of the internal
Turing machine control and the state of the internal symbolic memory, and a change
of state is generally thought of as involving a transformation of some symbolic
entity in the latter part of the system. For the ETH, this is the wrong way to think
about internal states, which should be thought of solely in terms of the m-
configuration part which combines control and memory storage in the same set of
states, as does a connectionist network. Thus, if one wants to understand the states
of such a system it is not appropriate to ask what symbolic encodings it might
contain. An investigation of the properties of its implementation medium is
required, so as to see what sort of an instantiation function it might support and
hence how it might support the complex physical interactions which constitute
implementation of a set of logical states.

Mead's work can be seen as part of an attempt, based on physical principles, to
understand the low level capacities of neural circuits which might be capable of
supporting higher level, e.g. cognitive, phenomena. The basis of Mead's work is
a conviction that a fundamental understanding of the performance of any efficient,
complex system must be based on understanding how the intrinsic properties of the
medium are exploited. One way to understand why this work is being done now
and what its significance might be is to think in terms of research having come full
circle since the beginning of the computer age with respect to the relation between
mind and brain. The circle starts with Turing who took an important step towards
separating the study of the logical functioning of the mind from the details of its

184

instantiation in the brain by abstracting the notion of a " state of mind" from the

details of its implementation in the brain. Turing had almost nothing to say about

the constitution of these states, apart from arguing that there could be only finitely

many of them and that they could be organized systematically in the service of
routine computation. The separation of function from substance allowed for the
development of computers which performed logical, apparently mind-like tasks on

the basis of clear organizational principles. These principles were synthesized and

understood at a time when the kind of detailed knowledge of cortical micro-circuitry

which is now current was still some way in the future. Much of the modern study

of cortical circuitry depends on techniques developed since the late 1970's, Douglas

& Martin (1990, p.433). The impressive speed and range of the new computers

suggested that perhaps the mind was organized as a computer. Aspects of neural

functioning, such as the action potential suggested a possible basis for binary coding
in the brain which might function as the binary encoding at the basis of computer

operation. The development of high level programming languages whose syntax

more closely approximated that of natural languages than did the syntax of machine
languages confirmed the possibility of a variety of levels of understanding of

computer systems which were redolent with insights for those seeking to understand

the relationship between brain and mind. The computer thus came to serve as a

model of how the mind might be organized. Hence the generic theory. However,

some forty years of experience has served to demonstrate that for most cognitive

tasks, the computational power of the brain is orders of magnitude greater than that

of the fastest supercomputers, even though the computational primitives of the latter

are millions of times faster than neurons. Now the point has been reached where

the brain is once again the focus of attention. If its computational processes can be

understood the potential will be there for another explosion of growth in computer

technology. As Mead demonstrates, the fabrication techniques for very large and

wafer scale integration have reached a level of sophistication where it becomes

possible to think of building systems which are neurally realistic with respect to both

numbers of processing elements and their processing style.

From the point of view of the ETH, work of this kind must be of fundamental

185

importance in the long term for the development of cognitive theory. The brain,
according to Turing's analysis, is a control automaton with an astronomically large
but finite number of states. Most computer technology is not of assistance in
understanding the structures and processing of such automata because, with rare
exceptions, it has been dedicated to minimizing the control circuitry and
concentrating on maximizing the internal memory space available. The point, of
course, is that if the control is structured as a universal interpreter it is provably
sufficient to compute any computable function and everything else can be done in
software. The fundamental difference that thinking of the brain as a finite
automaton makes is that structure and function are inseparable and cannot be
separated in the way that software and hardware can be separated in a computer.
Limited insights into the ways in which sets of states of an automaton might be
aggregated to produce complex functionality can be obtained from the construction
and study of large automata like Turing's original machine, but it is quite clear that
study of the brain can be expected to yield increasingly important insights as both
neuron staining techniques and techniques for live monitoring of brain function
continue to improve. It is both sobering and exciting to realize just how limited
have been the techniques with which current knowledge of the brain has been won
and thus how much new progress can be expected with the techniques currently
being developed. It is only since the 1980's, for example, with the advent of tracers
like horseradish peroxidase that morphological and functional properties of single
neurons in neocortex have been able to be identified simultaneously, Douglas &
Martin (1990, p.391).

Mead's work is based on the following considerations. First that "neural systems
evolved without the slightest notion of mathematics or engineering analysis...But
evolution had access to a vast array of physical phenomena that implemented
important functions. It is evident that the resulting computational metaphor has a
range of capabilities that exceeds by many orders of magnitude the capabilities of
the most powerful digital computers." Mead (1989, p.5). The second point is the
maturity of transistor fabrication technology as mentioned above. Mead's proposal
is to use this technology, evolved for digital computation, as a modelling substrate

186

in the service of the study of the brain. The method is to develop a silicon nervous
system.

"The constraints on our analog silicon systems are similar to those on neural
systems: wire is limited, power is precious, robustness and reliability are
essential... The effectiveness of our approach will be in direct proportion to
the attention we pay to the guiding biological metaphor...First we will
describe the relevant aspects of neural wetware at the level of abstraction
where we will be working. We will then develop the operations that are
natural to silicon, and examine how they can be used to implement certain
known neural functions." Mead (1989, pp.7-8).

Early results from the research programme have been encouraging and suggest that
it is indeed a valuable method. The silicon retina (Mahowald & Mead, 1991) is an
interesting example. Its performance is intriguing, particularly the fact that it is
subject to some of the same illusions as the human visual system. Implicit support
for a proposal like the ETH is quite evident;

"The interplay of context and adaptation is a fundamental principle
of the neural paradigm. It also imposes some interesting constraints
on neurally inspired circuits... change is a necessity for neural
systems... This requirement for change firmly situates a neural circuit
in the world that it observes, in contrast to digital circuits, whose
design implicitly assumes separation between the system and the
outside world."

Mahowald & Mead (1991, p.44.)

6.1.3. Conrad's trade-off principle.

An analysis of some slightly different issues which are relevant to questions about
the nature of the states of automata can be found in the work of Michael Conrad
(1974, 1985, 1988). Conrad argues that there is a trade-off principle relating a
variety of fundamental factors in computational systems;

"A system cannot at the same time be effectively programmable,
amenable to evolution by variation and selection, and
computationally efficient. The von Neumann computer opts for
programmability. The trade-off theorem suggests that an alternative
domain of computing is in principle possible, where programmability
is exchanged for efficiency and adaptability. Biological systems, as
the products of evolution, must operate in this alternative domain."

187

Conrad (1985, pps. 464-465)

To understand the arguments for the trade-off principle it is crucial to understand
the physical basis of the analysis. Information processing systems are "systems
which dissipate energy in certain interesting (or highly selective) ways. " (Conrad
1974, p.83), and Conrad maintains that programmable systems are essentially much
less efficient than non-programmable systems, because of the way they use their
physical resources.

The basic idea is quite simple but depends on a potentially controversial notion
about what sorts of processes can be called computational. The standard answer is
that the definitive notion of a computable process is the Turing machine. Conrad
argues that this view is unjustifiably restrictive.

"Turing machines... are particular models of computation. They are
particularly useful as reference points for evaluating the amount of
computational work performed by arbitrary dynamical systems, not
as delimiting the class of behaviors admitted to be forms of
computing."

Conrad (1988, p.287)

Conrad argues, on the basis of a strong interpretation of the Church-Turing thesis,
that any physical process can properly be treated as a computational process.

"...all physically realizable dynamics are equivalent to computation
in that they can be simulated by a von Neumann computer under the
idealization that space and time bounds can be ignored."

Conrad (1985, p.468)

The difference between a Turing machine and an arbitrary physical system, says
Conrad, is not that the one computes and the other doesn't but that the former has
a potentially universal simulation capability, i.e. is programmable, whereas the latter
will usually have a very restricted simulation capability, i.e. is not programmable.

188

Conrad developed what he calls the "trade-off principle" to explore the differences
between programmable and non-programmable computational systems. The principle
can be used to show that programmability is purchased at the cost of efficiency.
The reason for this cost is that programmability implies controllability, and
exercising control is an energy intensive business. This is a fundamental aspect of
physical processes generally. The internal combustion engine in a car, for example,
converts only a fraction of the energy it consumes into motion. This is due, in part,
to the large amount of energy required to control the sequence of explosions which
delivers power to the wheels. Computation is also a physical process in real, as
opposed to abstract, machines and Conrad's argument shows that controlling
computational processes necessarily decreases the energy available for task specific
performance just as control of any other physical process decreases the available
task energy. This is clearly true of digital computers, and is evident in the large
amount of heat which has to be dissipated when they are run. This aspect of the
trade-off principle also explains the very notable differences in efficiency between
universal machines and the machines they simulate. The description of a target
machine on a universal machine's tape is a control process which constrains the
subsequent behaviour of the universal interpreter.

Perhaps more surprising is an aspect of the trade-off principle which shows that
programmability and evolutionary adaptability are incompatible. One might be
inclined, intuitively, to suppose that the general purpose capacity which is conferred
by programmability would be consistent with adaptability. Newell (1990) for
example, argues strongly for this point. Conrad develops an argument which shows
this is an unreliable intuition. He starts by arguing that for a system to be evolvable
it must be capable of "accepting" at least one structural change. "A system accepts
a structural change if its performance improves or if it is capable of lasting long
enough to accept another change, eventually leading to an improvement. " (Conrad
1988, p.294). The argument for this threshold condition rests on probabilistic
analyses relating the time scale of evolutionary processes to the likelihood of

multiple, simultaneous, structural changes. Conrad then argues, using a proof
similar to Turing's proof of the unsolvability of the halting problem, that the

189

problem of ascertaining whether a programmable system meets this condition, is,
in general, unsolvable, even when the criterion for an "acceptable" structural change

is very weak. By contrast, there are structural changes which non-programmable
systems can be shown to "accept" in the required sense. Thus at a minimum,

"programmable systems are not as effectively structured for evolution as

nonprogrammable systems." (Conrad 1988, p.293).

Conrad's arguments lead towards a conclusion which supports the ETH. The brain

is clearly an evolved system, and hence likely to be non-programmable, i.e. it is

unlikely to be organized like a digital computer or a universal Turing machine.

This supposition is reinforced by that aspect of the trade-off principle which shows

that it will also be more efficient if it is non-programmable. There is no reason,

however, why the brain should not have evolved so as to include among its huge
number of internal states, a set which functions as the finite state control of a

universal machine, whose programs are to be found in the environment. This yields

a system which is both efficient and responsive to its environment. Conrad draws

much the same conclusion;

"...it would be possible to build a structurally nonprogrammable
computer that is nevertheless effectively programmable at an
interpretive level. There is a model for such a machine: People can
read and follow rules despite the fact that the human brain, as a
product of evolution, must be structurally nonprogrammable."

Conrad (1985, p.475)

6.1.4. Summary.
To summarize the discussion of internal states viewed from the perspective of the

ETH, the following points are particularly noteworthy. Turing's analysis leaves open

the question of how such states are implemented. The discussion of chapters 2 and

3 suggested that memory was implicit and positional in the control automata of

Turing machines, so the hypothesis of the ETH is that these forms of memory will

also be characteristic of the brain and some evidence was cited in chapter 3 which

suggests that this is indeed so. Sets of states computing deterministic functions need

190

not be executed automatically. This gives rise to the requirement for an analysis of
attentional, affective and motivational mechanisms as proper parts of internal states.
Gandy's principles for mechanisms show how complex, structured systems of parts
can function as "states" of Turing machines. Mead's work with analogue silicon
systems suggests that the intrinsic properties of the brain may be fundamental to its
computational functioning, and Conrad's trade-off principle suggests further reason
for doubting that the brain implements a programmable computer of the kind we are
familiar with. The conclusion to be drawn from this discussion is that the ETH
argues for the relevance of neurobiology and other relatively low-level investigative
disciplines to the construction of a proper understanding of internal states. It is
important, however, to be aware that cognitive states are not identified with internal
states in the ETH. Cognitive states are identified with the configurations, (and
possibly complete configurations) of the organism-environment Turing machine.
Thus it is entirely appropriate to argue both for the indispensability of neurobiology
to the understanding of cognitive processes and also for the irreducibility of
cognitive states to neural states. Cognitive states involve external symbolic entities
because they are Turing machine configurations not m-configurations.

6.2. Developing an account of external symbols.

For an abstract Turing machine, the set E of symbols which constitutes its basic
inputs and outputs is arrived at by definition and is generally thought of as a set of

alphanumeric symbols. The alphabet may be small since it is known that all
computable functions can be defined over the alphabet E = {0,1 } . Binary alphabets
have proven most suitable for digital computers because binary number systems and
binary logic are both easily amenable to implementation in digital electronics. The
essential formal property of symbols for computation is type identity, such that each
token of a given symbol is unmistakably identifiable as such and unmistakably
distinguishable from tokens of any other symbol. Conventional alphanumeric
symbols are particularly clear exemplars since they have few other intrinsic
properties, but there seems to be no reason to suppose that entities with properties
in addition to type identity might not serve as computational primitives. Because
Turing was investigating the computation of real numbers expressed in binary

191

notation, he was concerned exclusively with numerical symbols, but in consequence
of his work it is clear that computation is a very general type of process which
might be carried out over basic elements of many kinds provided, at a minimum,
that they meet the type identity condition. Appropriate entities are those which can
be reliably identified and paired with internal states to act as configurations which
determine behaviour.

Because the ETH locates the "tape" of the cognitive Turing machine in the
environment, its machine table must be taken to describe a system of organism -
world interactions, rather than a system of interactions between states of the brain
which function as symbolic representations of external events and objects, and states
of the brain which process those representations. This poses an immediate problem.
Organisms interact with a wide variety of external inputs and not just with
conventional alphanumeric symbols. Indeed, it is likely that there is an indefinitely
large possible set of inputs which might impinge on the human organism. However,
a machine table is, by definition, a finite structure. Thus it is clear that if a
machine table is to make reference to external entities, either these must be
restricted to conventional symbols, or a way must be found to characterize the
notion of symbol in a way which allows for the richness of organism-environment
interactions, but at the same time imposes sufficient constraints for finite realization.
Given that there is no principled reason why conventional symbols should be
privileged, the latter option is preferable. One promising way to proceed is to think
in terms of the relationship between the primitive symbols of a universal Turing
machine and the encodings of target machine symbols constructed out of them. This
suggests that perhaps there may be symbolic primitives among the inputs which
humans receive which serve as the basis for more complex, probably learned,
symbols. A clear place to look for these would be in the behavioural repertoires of
neonates and young infants. If one were to observe systematic differences of
response to specific classes of stimuli, at ages sufficiently early to making learning
an improbable explanation, there would be grounds for suggesting that these classes
of stimuli functioned as basic symbols.

192

Recent research in child development strongly suggests that babies are equipped at,
or very shortly after, birth with a range of reactions to specific classes of stimuli.
These results are in marked contrast to the prior Piagetian orthodoxy which argued
that children at birth were equipped only with very general sensory and
discriminative capacities. Neonates are particularly responsive to auditory stimuli
within the frequency range of the human voice, and they show special sensitivity to
human speech sounds, Aslin, Pisoni & Jusczyk (1983); Eimas, Miller & Jusczyk
(1987). Infants also appear to be specifically equipped to recognize human faces.
By two to three months when infants are sensitive to pattern structure they prefer
a schematic face to scrambled arrangements of features, Maurer (1985) . More
recently, Johnson & Morton (1991), Morton & Johnson (1991) have shown that
neonates preferentially attend to stimuli with a face like arrangement of elements.
Johnson & Morton hypothesize that two neural mechanisms underlie this
performance. The first, which they call "CONSPEC" is a sub-cortical mechanism
which is functional at birth. The second, "CONLERN" is a cortical mechanism
which takes input from "CONSPEC" and controls face recognition from about the
age of two months. Being able to distinguish faces from non-faces reliably is
logically the same sort of process as being able to distinguish 'O's from ' 1's
reliably, and there seems no reason to deny that faces can act as computational
primitives given that binary digits can. From the point of view of the ETH, the
combinations (FACE,CONSPEC) and (FACE,CONLERN) can be thought of as
configurations of the cognitive Turing machine.

Pre-linguistic infants also seem to be sensitive to a distinction between animate and
inanimate objects based on the different ways in which they move, Mandler & Bauer
(1988), and Premack (1991) has argued that movement is the basis for a built in
capacity to distinguish intentionality from causality. He argues that infants are hard-
wired so as to divide objects into two classes, those which are self-propelled and
those which are not. He suggests that the induced movements of non-self propelled
objects are the basis for perceptions of causality and that the free movements of self-
propelled objects are the basis of perceptions of intentionality. More generally, the
infant's perception of objects appears to make use of a variety of built in

193

mechanisms which instantiate four principles, boundedness, rigidity, cohesion and
no action at a distance, Spelke (1990); Karmiloff-Smith (1992, Chapter 3) .

The famous visual cliff apparatus developed by Gibson & Walk (1960) also suggests

that infants are sensitive to marked environmental discontinuities. The visual cliff

was used to show that by the time babies can crawl they are sensitive to potentially

dangerous drops and behave accordingly, and other types of studies, for example
by Arterberry & Yonas (1988) indicate that kinetic depth perception is present at an
even earlier stage, by three or four months of age. The perception of dangerous
versus safe in terms of potential drops appears to have the logical qualities required
for a primitive symbol.

6.3. Developing an account of configurations.
The accounts of states and symbols described above lead very naturally to a
consideration of the interactions between them. Once the machine table of a Turing
machine is seen as describing a system of organism-environment interactions, a new
perspective on cognitive computation becomes possible. There is a profoundly
suggestive analogy to be drawn between the complex interlocking of internal control
states and symbol structures on the tape of a Turing machine on the one hand and
the interlocking of organisms and their environments on the other. This analogy
suggests that Turing's analysis of computation is an ideal basis for a formal
understanding of human ecology. Turing's machine model shows that to understand
the cognitive system requires understanding not just the organization of the brain but
also the organization of the environment and the system of relations which
constitutes the basis of interaction between brain states and environmental entities.
The crucial generalization, for psychological as distinct from logical approaches to
computation, is to broaden the scope from the treatment of conventional symbolic
entities such as digits, which constitute the symbolic resources with which Turing
was exclusively concerned, to any sets of entities which, when paired with sets of
brain states to implement configurations, constitute the definitions of effective
procedures. The point to press as the focal issue for the development of
psychological theory is not the central logical feature of universality which Turing

194

demonstrated such that any clearly describable entity or process can be represented
in conventional symbolic terms and simulated by a single machine, but the central
ecological feature of polymorphism such that any clearly describable systems of
relations between sets of type identifiable entities and states of the brain which result
in systematic action can be considered as computations.

6.3.1. Gibson's concept of affordance.
J.J. Gibson developed an ecological theory of perception which has marked
commonalities with the ETH. Gibson makes the central point that

"animal and environment make an inseparable pair. Each term
implies the other. No animal could exist without an environment
surrounding it. Equally, although not so obvious, an environment
implies an animal (or at least an organism) to be surrounded."

Gibson (1979/1986, p.8)

Gibson's concept of "affordance" implies an involvement between external objects
and organisms which is somewhat similar to the relation between an external symbol
and an internal state which, from the perspective of the ETH, constitutes a
computational configuration. Gibson described affordances as follows; "The

affordances of the environment are what it offers jers the animal, what it provides or
furnishes, either for good or ill... [It is] something that refers to both the
environment and the animal in a way that no existing term does. It implies the
complementarity of the animal and the environment." Gibson (1979/1986, p.127).
The nature of the complementarity was further described as follows: "An affordance
cuts across the dichotomy of subjective-objective and helps us to understand its
inadequacy. It is equally a fact of the environment and a fact of behavior. It is
both physical and psychical, yet neither. An affordance points both ways, to the
environment and to the observer." Gibson (1979/1986, p.129).

It is a common misrepresentation of Gibson's claim to suggest that an affordance

represents only one pole of the environment-subject complementarity. Part of the
difficulty stems from Gibson's claim that affordances are directly perceived. This

195

is often taken as the claim that the perception of affordances involves no internal
processing at all, a claim which many critics have found incoherent. But Gibson
does not claim that direct perception involves no internal processing. "The inputs
of the receptors have to be processed, of course, because they in themselves do not
specify anything more than the anatomical units that are triggered." Gibson
(1979/1986, p.251). The theory of direct perception is not a denial of internal
processing but part of an attempt to try to understand why percepts are meaningful,
and what Gibson wants to deny is that external stimuli are given meaning as a result
of information processing. His claim is that meaningfulness is a consequence of a
prior, fundamental, organizational principle such as adaptation, which shapes
cognitive structures so as to relate environment and behaviour.

The problem of meaning is a difficult one for all computational accounts of
cognition. For the generic theory, a central part of this difficulty is to understand
how it is that internal, computational states can stand in the relations to external
objects which they must have in order to maintain the activity of the organism,
given that they are also supposed to be semi-autonomous. This problem does not
arise for the ETH which maintains that external objects contribute directly to the
computational configurations of the organism. The criticism that such direct
involvement of the environment renders the organism totally stimulus bound was
discussed in Chapter 3. It appears that the richness of the organism's set of internal
states refutes this criticism. Understanding the meaningfulness of inputs is not, of
course, explained by the direct involvement of external objects in cognitive states,
but suggests that the beginnings of an account may be found in the evolutionary
history of the species, and a determination of those aspects of environments which
would have been particularly salient for our ancestors. For the present it is worth
re-iterating one of the central points of Turing machine theory which is that the set
K of internal states and the alphabet E of elementary symbols have, in a sense, to
be made for each other. States and symbols "mean" what they do by virtue of the
behaviour which they cause. A configuration is an interlocking pair. This is true
not just of mono-functional Turing machines but also of universal machines although
in the latter case, a higher order meaning is also given through the encoding

196

convention for states and symbols of the target machine.

6.3.2. Rosenschein's situated automata approach.
Gibson's approach to the relation between organism and environment was largely
informal but a theorist who has given a prominent place to the interaction between
machine and environment in a more formal account is Rosenschein (1985).
Rosenschein was concerned with the concept of knowledge and with understanding
what is being claimed when a machine is said to know a proposition. He shows that
it is possible to give a formal account of knowledge for a system which does not
contain interpreted symbolic expressions, by deriving a notion of the information
content of the system's internal states. Rosenschein describes two ways of
understanding claims to knowledge as two different mappings between the real
world and a formal model of "knowledge" as an operator in an epistemic logic
based on the modal logic S5, Hughes & Cresswell (1968). In the formal model, the
truth value of a knowledge claim is evaluated in terms of an "epistemic accessibility
relation" over possible worlds, which is such that a claim to knowledge in world w,
is supported if and only if the claim is supported in all possible worlds w' ,
accessible from w. Rosenschein distinguishes two ways of understanding the
epistemic accessibility relation in terms of computational systems.

According to the standard, interpreted symbol structures approach, the epistemic
accessibility relation is understood in terms of a machine's knowledge base. A
machine can be said to know a proposition either if that proposition is explicitly
coded as an interpreted sentence in its knowledge base (the syntactic conception),
or, if it can be derived from other explicitly coded sentences using an appropriate
set of logical rules (the semantic conception) . The different states of the knowledge
base constitute representations of the possible worlds relevant to assessing a
knowledge claim. Under the semantic conception of knowledge, a machine could
be said to know the infinite corpus of consequences of its knowledge base. Newell
(1982), for example, takes this view of the knowledge of a machine. Rosenschein
suggested that a serious problem with either conception was that knowledge, thus
understood, was not an objective property of the way a machine was embedded in

197

the world but depended on the interpretation given to whichever of its symbolic

structures were taken to encode facts about the world. Under a different

interpretation, the machine would possess different knowledge. This is clearly a
problem which applies, not just to theories in A.I. which were Rosenschein's
principal concern, but also to any version of the generic theory which takes
knowledge to consist of interpreted symbolic expressions stored on the tape of the

cognitive Turing machine. One answer to the problem of multiple interpretations,
discussed by Pylyshyn, suggests that in practice the interpretation may be fixed.

"If, however, we equip the programmed computer with transducers so it can interact

freely with a natural environment... it is far from obvious what if any latitude the

theorist...would still have in assigning a coherent interpretation to the functional

states" Pylyshyn (1984, p.44). Pylyshyn recognized, however, that this somewhat

ad hoc solution might still lead to debate over the propriety of ascribing a particular

semantic content to states thus constrained.

Rosenschein's second approach avoids this problem and is also much more in

keeping with the aims and motivation of the ETH. He proposed "to ground the

notion of knowledge in objective correlations between machine states and world

states. " Rosenschein (1985, p.352). Since different world states constitute the

possible worlds over which the epistemic accessibility relation is defined, the key

to this alternative conception is to establish a link between machine states and states

of the world. Rosenschein's model is based on a deterministic finite automaton with

output, connected to an environment which can be in one of a (presumably very

large) number of states. The states of the environment are defined as a lattice of

instantaneous world conditions ordered in terms of their generality. If world

conditions are taken to be sets of states of affairs, the ordering can be thought of set

theoretically such that more general conditions contain more specific conditions as

subsets. The environment generates the inputs for the DFA and responds to its

outputs. A link between world states and inputs to the automaton is established in

terms of the "strongest postcondition" function which is the most specific world

condition, notated as 4/a, that can be guaranteed to hold at time t', given that

condition irk holds at time t and that the input to the automaton at t is a. The

198

function is extended recursively to deal with sequences of inputs and in this way
Rosenschein arrives at the notion of the most specific world condition which can be
guaranteed to hold after the machine has experienced a given sequence of inputs.
At this stage, a link has been established between world conditions and inputs to the
automaton but not between world conditions and states of the automaton.
Rosenschein observes that for each state s of an automaton it is possible to define
an associated language LS which is the set of input sequences which leave the
machine in state s when it is started in its distinguished starting state s o. Languages
serve as the means for establishing a link between world conditions and states of the
automaton. Specifically, Rosenschein defines L(0), the language of condition 0,
which is the set of input sequences picking out world condition 4), and 4(L), the
condition of language L, which is the strongest, i.e. most specific, world condition
guaranteed to hold after the occurrence of any sequence of L. Rosenschein uses
0(L) to establish the desired link between a machine state and a world condition by

defining the information content of a state s as info(s) = 0(Ls). Finally he shows

that the epistemic accessibility relation can be defined in terms of the information
contents of states of the automaton, such that a state of the automaton has a given
information content in world w, if and only if it has that content in all possible
worlds w' accessible from w.

The latter approach to knowledge, which Rosenschein calls the "situated-automata"
approach has one particular feature which deserves comment from the point of view
of the ETH. As Rosenschein observes, the situated-automata approach "indicates
how propositional content can be assigned systematically to arbitrary computational
states that are not prestructured as interpretable linguistic entities, and thus it serves

as at least prima facie evidence against the need for a language of thought in order
to achieve full semanticity." Rosenschein (1985, p.356) Given that the ETH also
proposes a model in which a deterministic finite automaton interacts with an external
environment, Rosenschein's analysis suggests that a workable account of knowledge

will be possible within the framework of the ETH.

199

6.3.3. The significance of movement.

Rosenschein's approach was explicitly intended to facilitate the design of mobile
robots, and, more generally, "embedded agents" , which are computer systems that
sense and act upon their environments, Kaelbling & Rosenschein (1990). In
Chapter 1 it was suggested that one of the features which makes the Turing machine
attractive as a model of cognitive architecture is the fact that it includes motion
relative to the tape as an essential aspect of its functioning. When the Turing
machine is thought of as a model of an organism interacting with its environment,
this feature suggests that human mobility is a fundamental characteristic of the
cognitive system.

A digital computer, as discussed in Chapter 4, characteristically accesses data by
using address arithmetic to select a hardwired path to the required location. A
Turing machine traverses its tape and finds its data by pattern matching. This data
access method is, of course, one of the principal reasons why the Turing machine
is an unsatisfactory model for high speed, program driven computation, but it might
be much more satisfactory as the basis for understanding the data processing of an
organism, such as the human being, which is essentially mobile. The intuitive
attraction of the idea is based on the relative permanence and immobility of the
physical environment. Barring acts of war, earthquakes, volcanic eruptions and the
activities of the construction industry, the physical environment can be counted upon
to remain much the same over the sorts of time scales which people are sensitive to.
This is true at a variety of spatial scales. Buildings remain where they are from day
to day, and a note written on a sheet of paper and placed in a filing cabinet, can
normally be retrieved at will.

Objects take up space, and moving around to gain access to them is an essential
feature of everyday experience. The generic theory, of course, relies on the
permanence of objects and the natural environment just as much as the ETH does.
There is no point in having a memory system which consists of representations of
an external environment unless the represented environment has at least some
relatively stable features. But if environmental stability is granted, and if a way can

200

be found of relating directly to the environment without thereby being stimulus
bound, then the utility of internal symbolic representations as means of freeing the

organism from the deterministic tyranny of the local stimulus environment becomes
questionable.

There is evidence to suggest that our basic sense of orientation to the physical

environment is maintained by information derived from movement, rather than from

the perception of gravitoinertial force as is widely believed (Stoffregen & Riccio,

1988). It is also clear that the neural system is configured to respond primarily to

change, and change is most clearly produced by movement.

"Most of the input to our sensory systems is actively generated by
our body movements. In fact, it is fair to view all sensory
information as being generated either by the movement of objects in
the world around us, or by our movements relative to those objects."

Mead (1989, p.127)

The generic theorist might respond by distinguishing sensory information from

perceptual information and arguing that perceptual information results from an

encoding process which transforms the information about change registered by the

senses, into the kind of static, representational codes which constitute the elements

of structured symbolic expressions. It may be impossible to prove that this

approach is wrong, but there is evidence (Freyd 1983, 1987) for "dynamic

representations" which appear to have a rather different character.

The ETH suggests that we must regard the cognitive system as a system which is

necessarily associated with movement. The primary information processing

capabilities of the organism are dedicated to extracting information from a

dynamically changing sensory flux whose characteristics are, at least in the case of

vision, derived to a considerable extent from the organism's own movements. A

point that is easily missed if mobility is thought of simply as one among the many

behaviours in the repertoire of an organism, is that mobility has to be associated

with a variety of other capacities if it is to be useful. Generally, it helps to be able

201

to see if you can move, but seeing will only help you if you can process the

information which vision provides at a rate which is appropriate to your speed of

motion. It is, for example, of little use to be able to sense the chasm yawning at
your feet, if the cognitive system is unable to process the information fast enough
to trigger an appropriate behavioural response before you step over the edge.

"...the mobile organism most likely to succeed is one that is willing
and able to act quickly on messy and even inconsistent data, is able
to perform sensory processing tasks in real time, is preferably able
to integrate the data received through various modalities and deploy
it flexibly in new situations, and is generally an all-round biological
achiever."

Clark (1989, p.63)

Movement also appears to be involved in triggering processes that result in the

formation of memory traces via the long term potentiation of synapses in the

hippocampus (Cotman & Lynch 1989) . An optimal pattern for trace induction

corresponds to a naturally occurring "theta" rhythm which appears when an animal

is exploring its environment (Larson, Wong, & Lynch 1986). These neurobiological

considerations may provide some indication as to why the classic mnemonic

technique known as the "method of loci" (Anderson 1990, pps. 200-202) promotes

accurate recall. To use this method a person imagines a path through a familiar

area. To remember a series of objects, the person "mentally walks" along the path,

associating the objects with places encountered along the path. Recall is achieved

by taking another mental walk down the path, retrieving the associated objects as

successive "locations" are "reached".

If motion in the external world has something to do with memory, as the ETH

suggests, then real world analogues for tape locations have to be found if the model

is to be anything other than figurative. A reasonable natural analogue for a tape

square is the idea of a place or location, somewhere like Trafalgar Square perhaps,

or a particular lecture theatre, and there is a certain amount of psychological

evidence which suggests that place can be associated with memory performance.

Smith, Glenberg & Bjork (1978), for example, reported that memory for paired

202

associate lists of words was significantly better in the room in which they were
learned than in another room.

There is also evidence from studies with rats, that specific neural ensembles in the
hippocampus function as place recognizers (O'Keefe & Nadel, 1979; O'Keefe,
1989), and at least one connectionist model has been constructed (Zipser, 1986).
Hippocampal place cells store information about the current environment and the
animal's location within it. O'Keefe (1989, p.239) makes the interesting point that
map construction in rats appears to be motivated by curiosity, rather than by a non-
cognitive factor such as the reduction of hunger or thirst. O'Keefe and Nadel also
intended their original theory to make contact with the neuropsychological evidence
relating to amnesia, although this aspect of the work has been controversial (Horel
1979; Squire, 1979).

6.3.4. Brooks' studies of mobile robots.

One other approach to the study of intelligence which is particularly relevant to the
ETH is the work of Brooks (1990,1991). Brooks claims that A.I. has foundered on
the issue of representation, and that thinking about representation is the wrong way
to approach the problems which have to be solved. He motivates his discussion
with some reflections on the timecourse of biological evolution. On the basis of
these reflections, he argues that the essential basis for intelligence is not the
development of sophisticated symbolic representations but "the ability to move
around in a dynamic environment, sensing the surroundings to a degree sufficient
to achieve the necessary maintenance of life and reproduction." Brooks (1991,
p.141). Brooks suggests that the traditional "decomposition by function" analysis
of intelligent systems into peripheral perceptual and motor modules interacting with
a central symbolic information processor, is not the best way to proceed. He argues
for an alternative "decomposition by activity" approach. "An alternative
decomposition makes no distinction between peripheral systems, such as vision, and
central systems. Rather, the fundamental slicing up of an intelligent system is in the

orthogonal direction dividing it into activity producing subsystems. Each activity,
or behavior producing system individually connects. sensing to action. We refer to

203

an activity producing system as a layer. An activity is a pattern of interactions with
the world." Brooks (1991, p.146). The methodology inspired by this approach is
to begin by building a very simple autonomous system and testing it in the real
world. One example is a mobile robot which avoids hitting things. Once this is
working properly, an incremental layer, operating in parallel with the first layer can
be added and tested. The example which Brooks gives is the activity of trying to
visit distant visible places. These two activities working together constitute a
machine which tries to visit distant places but avoids hitting obstacles on the way.
The control interactions between the layers have to be carefully engineered, but the
advantage of the approach is that it gives an incremental path from very simple
systems to complex systems. At each stage it is only necessary to build a small
piece and to interface it to a complete working system. The methodology has been
used to construct mobile robots which exist in a real office environment and behave
in a variety of ways.

Brooks argues that with multiple layers each contributing sensing and acting, there
is no central representation of the world in the system. The machine is simply a
collection of competing behaviours. Brooks hypothesizes that "much of even human
level activity is similarly a reflection of the world through very simple mechanisms
without detailed representations. " Brooks (1991, p.149).

From the point of view of the ETH, it is very interesting to note just how many
parallels there are between Brooks's "decomposition by activity" approach to
hardware design and Turing's methodology for constructing the control of the
universal machine. Turing's hierarchical method of construction, based on multiple
copies of simple m-functions such as the f-unit, hard-wired to produce particular
types of behaviour, is strongly analogous to Brooks's use of layers of simple finite
automata. Furthermore, Turing's m-functions individually connect sensing to action
just like the layers of Brooks's machines. When one has in mind the model of the

Turing machine as a complex system of states of mind interacting with an external
environment the likeness between the two proposals is striking. Perhaps this should
not be too much of a surprise. If the picture of Turing's analysis of computation

204

given in Chapter 3 is correct, it is appropriate to view the brain as a complex multi-
functional finite automaton just as Brooks suggests. From an evolutionary point of
view, it seems highly plausible also to suppose as Brooks does, that human cognitive
capacity arose as a result of successive modifications to machines which were
already functional.

6.3.5. Representations.

Finally, it is appropriate to discuss the nature of representations in the ETH. It is
essential for this purpose, to bear in mind Turing's distinction between m-
configurations which model the "states of mind" of the human computer, and
configurations which consist of pairs (q,a) of m-configurations and symbols, where
the m-configuration, q, is internal to the machine and the symbol, a, is external.
The point of this distinction, as far as the ETH is concerned is that it supports a
distinction which needs to be made between cognitive states which are world
involving and mental states which are states of the brain. Whereas the generic
theory argues that cognitive states are states of the brain and hence, by analogy with
digital computers, must involve symbolic representations, the ETH claims that it is
only mental states that are states of the brain and that these, therefore, need not
involve explicit symbolic representations of the type found on the tapes of Turing
machines and in the symbolic memories of computers. From the discussion of
internal states in chapters 2 and 3, it is apparent that the ETH supports the idea that
internal states, i.e. mental states or states of the brain are representational, but the
primary mode of representation is by virtue of their implicit memorial capacities
rather than because they are structured as semantically transparent, syntactic
analogues of external world entities and events. Given that the functions and
organization of the various parts of the brain are not, as yet, completely understood,
it must be the case that the representational capacities of neural tissue and its
organization are also not yet completely understood. It may be, as discussed in the
next chapter, that some parts of the brain do operate in a more explicitly symbolic
mode than the above analysis suggests. However, the ETH is strongly committed
to the view that, until proved otherwise, the parsimonious hypothesis about mental

states as opposed to cognitive states is to think of them as representing implicitly by

205

virtue of their various levels of functionality in the economy of the brain as a whole.
By contrast, cognitive states consist of configurations of mental states and external

symbolic objects and represent accordingly. The importance of the mental state

component of cognitive states is that they provide the control of the system's

operations. A distinction was made in Chapter 3 between the determination of
behaviour and the control of behaviour. It was suggested there that external objects

and events could usefully be thought of as contributing to the determination of

behaviour while internal, mental states, controlled it. One point of the distinction

was to describe how the nesting of m-functions, which appears to be characteristic

of complex automata, can lead to complex behavioural outcomes which are best

thought of in terms of multiple sources of control, even though, at any given

moment, only a single configuration is operative. The representational content of

cognitive states will depend at least in part on whether or not the external

components of those states have consensually agreed referents. The discussion of

representation is continued in the next chapter in the context of links between the

ETH, connectionism, and the representational redescription hypothesis of Karmiloff-

Smith (1992).

206

Chapter 7. The External Tape Hypothesis, Connectionism and

Cognitive Development.

In the first part of this chapter the relationship between connectionist networks and
the finite control automata of Turing machines is discussed. The discussion is
initially limited to feedforward networks trained using the backpropagation algorithm
because these are the networks which have figured most prominently in
psychologically oriented applications. The purpose of the discussion is to establish
a link between connectionist research and the ETH. There has been considerable
debate over the theoretical status of connectionist models. Smolensky (1988), for
example, argued that they may constitute a new class of computing machines,
whereas Fodor & Pylyshyn (1988) argued that connectionism is best thought of as
an implementation strategy for what they call "classical" architecture, i.e. the view
of cognitive architecture as a Turing machine implemented in the brain. Much of
the debate has been focussed on the claim that structured, symbolic representations
are needed for an architecture to be capable of modelling the cognitive system. In
a response to Fodor & Pylyshyn, Smolensky (1991) accepted that any satisfactory
model of the cognitive system would need to satisfy two informal principles which
he took to be fundamental to Fodor and Pylyshyn's position. These are the
requirements a) that models of thought must have composite structure because
thoughts have composite structure and b) that models of mental processes must be
sensitive to this composite structure because mental processes are sensitive to the

composite structure of thoughts. Smolensky suggested, however, that connectionist
methods for implementing these requirements, such as tensor product variable
binding, were sufficiently different in their commitments from traditional symbol
processing models as to count as quite different theoretical approaches.
Nevertheless, Smolensky accepted the long term need to show how composite
structure and structure sensitive processing could be incorporated in connectionist
models.

From the point of view of the ETH, of course, the case for structured, symbolic
representations of the kind required by Fodor & Pylyshyn rests, at least in part, on

207

the disputed assumption that the brain implements a Turing machine. Thus it
appears that Smolensky has tied himself more closely than need be to the ideas of

the symbol processing school about what the fundamental requirements are. What
the ETH has to offer the debate is the suggestion that a radical rethinking of the

relation between symbolic structures and internal mechanisms is appropriate. The
suggestion is not that significant structure is not needed, but that a fundamental

distinction must be made between the kind of symbolic structures available external

to the organism and the kind of internal control structures that are needed to process

elements of the external structure.

7.1. The ETH and connectionism
The ETH suggests, following the basic claim that the brain should be thought of as
a finite automaton, that connectionist networks should also be thought of as finite
state control automata. To make this suggestion is not to belittle the achievements
of connectionism. The demonstration that arbitrary functions from input to output
can be learned from training examples and error feedback is an obviously important
contribution. The suggestion that connectionist networks should be thought of as
finite automata opens up a discussion about the amount and kind of internal
structuring which is needed in a network and suggests reasons why feedforward nets
are insufficient for modelling cognitive phenomena and that more attention should
be paid to relevant structure in the external environment. The external environment
is an essential part of the computational capabilities of the cognitive system in the
same way that the external tape is an essential part of the computational capabilities
of the Turing machine.

For this argument to work it must be shown that connectionist networks are
correctly construed as finite automata. It is clearly the case that fixed neural
networks are correctly construed thus, cf. McCulloch & Pitts (1943), Arbib (1987,

Chapter 2). The question then is whether the learning of which multi-layer
connectionist networks are capable changes the characterization. In chapter 2 a
relatively brief argument to the effect that it does not was advanced. In this section
the capacities of multi-layer feedforward connectionist networks which learn by

208

backpropagation are examined in more detail, and the argument of chapter 2 is
reinforced. The discussion is based on a generic example feedforward network and
the equations determining its behaviour adapted from Simpson (1990). Some
connectionists have stressed the "brain-like" properties of feedforward nets, but
Smolensky (1986) considers them to constitute a distinct analytical level,
intermediate between the neural and symbol levels, and Douglas & Martin (1990,
pp.436-7) have drawn attention to a variety of important differences between
feedforward nets and cortical circuits.

Figure 7.1. A generic feedforward network.

Figure 7.1 shows the topology of the basic feedforward network. There are three
layers of nodes. a1 ...an is the input layer, b 1 ...bp is the "hidden" layer, and c 1 ...cq

 is the output layer. Subscripts n,p,q represent the fact that there may be different

numbers of nodes in each layer. In many connectionist models there are fewer
nodes in the hidden layer than in either the input or output layer, a property which
encourages the formation of encodings which will generalize to novel inputs. The

209

connections between the input and hidden layers are labelled v 11 ...v1n, and those
between the hidden and output layers w 11 ...w1, . The connectivity shown is full with
each node at a given level having connections with every node at the next level.
Other patterns of connectivity are possible, but full connectivity is the norm and
other patterns do not alter the operation of the backpropagation algorithm. It is also
possible to have multiple hidden layers of nodes, but again this does not alter the
operation of the backpropagation algorithm. Pairs of input-output patterns (A k, Ck)
are defined with elements alk...ank and cik...cgk. The pattern elements may take
arbitrary real values, but are most frequently taken to be binary elements
representing the presence or absence of features in the domain over which the
semantics of the associative pairs are defined. The input and output patterns are
commonly interpreted as feature vectors.

Two types of tasks are commonly studied with feedforward nets. The first is the
task of reproducing an arbitrary mapping from input to output. Typically the
psychologically oriented researcher chooses a set of input output mappings which
has an appropriate interpretation in a specific domain, for example the mapping
between present and past tense forms of verbs. The task for the network is to learn

the mapping such that when it is presented with an input vector Ak it produces as
output the matching vector Ck. In some cases final success is the only issue of
interest but in others such as the learning of past tense verb forms, where there are
developmental phenomena such as over-regularization to account for, the learning
trajectory as well as the final performance is of interest. The second type of task
is classification or categorization, in which the input vectors Ak are treated as
members of categories Ck. In a typical case a subset of the patterns constitutes the
training set and the remainder the test set. The task of the network is to induce the
"rules" for category membership from the training set alone so as to exhibit
generalization by classifying the members of the test set correctly without explicit
training on them. The generic method for training feedforward nets is as follows;

1) The network is initialized with a suitable set of starting values. Random values,
usually sampled from the interval [-1, + 1], are assigned to each of the v hi and the

210

wij . These are the starting values for the connection strengths between nodes in the
different layers. Random values are also assigned to the activation thresholds of the
nodes in the hidden and output layers. The set e = {o f ; 1 < i <_ p} is the set of
activation thresholds for the hidden layer nodes and the set I' = {'y, I 1 5. j < q}
is the set of activation thresholds for the output layer nodes. Thresholds are not
needed for the input layer nodes because these pass the elements of the input pattern
to the first layer of connections unchanged.

2) The training phase. In the training phase, the patterns in the training set are
presented to the network one at a time. One presentation of the complete set of
training patterns constitutes an epoch. A large number of training epochs may be
needed for the network to reach criterion performance. Within an epoch the
presentation order of training patterns would normally be randomized. Failure to
do this can result in anomalous representations being formed. A single pattern
presentation includes the following stages;

a) The elements a l ... an of the particular input pattern are transferred to the input
layer nodes. Each of the hidden layer node activation values b ; is then calculated
using the equation

n

bi = f E ahvhi + @l 	EQ1
h=1

EQ1 assigns to each of the nodes in the hidden layer the sum of its weighted inputs
from the input layer plus its current threshold value, which is an independent term
with an important function in the error backpropagation process, the whole being
constrained by the sigmoid threshold function f(x) = (1 + X)-1 . f(x) is sometimes
known as a "squashing" function because it maps an arbitrary domain of input
values into the range [0,1]. Some such function is needed to stabilize the network's
performance by preventing inputs which produce high activation levels from
dominating the representations formed.

b) Once the hidden layer node activation values have been calculated, the process

211

is repeated to calculate the output layer node activations, c using the equation

P
ci = f 	b=wy yj 	 EQ2

The values thus arrived at constitute the calculated output pattern which, to begin
with at least, will bear no relation to the desired output because it is produced using
random connection strengths and thresholds.

c) The third step is to calculate the discrepancy between the desired and the
computed output for each of the output nodes cj . This is done using the equation

dj = ci(1 - c)(cik - cj) 	EQ3

The cj are the computed values and the cjk are the desired values. The term cj(1 -
cj) ensures that the computed discrepancy is larger relative to the absolute
discrepancy when the cj lie near the middle of the interval [0,1] than when they lie
near either extreme. This means that the rate of change decreases as the cj approach
the asymptotic values of 0 and 1. The d i values constitute the feedback which is
used as the basis for the adjustment of node thresholds and connection strengths.

d) Given the di the next step is to calculate the error of each of the hidden layer
nodes b i relative to each of the di . This is done with the equation

ej = bi(1 - b^) E wdi 	EQ4
j=l

EQ4 shows that the error at each of the hidden layer nodes contains a contribution
from each of the d; proportional to the strength of the connection wij . Like the
the rate of change of the ei decreases as they approach their asymptotic values.

e) At this stage modifications to the w ij , i.e. the connection strengths between the
hidden layer nodes and the output nodes, can be made. The change is defined by

dw=j = ab=rij 	EQ5

where a is a positive constant controlling the learning rate. a would normally be

212

small relative to the activation values b ; . Large values for a produce more change,
but tend to make the learning less stable. EQ5 shows that the change to a given
weight w;; is proportional to the product of the errors of the appropriate hidden layer
and output nodes b ; and

f) The output layer node thresholds are then altered using the same learning rate
parameter a. The change is given by

A; = ad; 	EQ6

g) The input to hidden layer node connections v v; are then modified using

Avki = Bake= 	EQ7

where ß is a positive constant controlling the learning rate. a, is the value of the
h'th element of the input vector.

h) Finally the hidden layer node thresholds are altered according to

a 6z = ße 	EQ8

At this stage, one training pattern has been presented and the appropriate action
taken to modify the responses of the network in the direction of the required
association. Steps a) to h) are repeated until the d ; are zero or have reached some

acceptably low value.

The performance of the network as a whole is achieved by statistical juggling of the
node threshold values and the connection strengths between nodes. Connectionists
sometimes talk of a network learning to satisfy multiple simultaneous constraints.
The most obvious place where this can be seen is in EQ4. The term Ew ;;di shows

that the error calculation for a particular hidden layer node involves all of the output
layer discrepancies and all of the connections from that hidden layer node to the
output layer. Clearly some of these contributions will be in conflict with each
other. What happens is that the network minimizes the overall error by finding

similarities in the (Ak , CJ) pairs, such that the conflicting requirements on hidden

213

layer nodes can be reduced.

The important questions for present purposes are how to characterize the
functionality of feedforward networks and what their performance limitations are.
The first point is the question of capacity. Assuming the cardinality of the input and
output layers of the network to be the same, and assuming that both input and output
vectors are binary, both of which are common assumptions, then there are 2 N input
patterns and 2N output patterns definable over layers with N nodes. Thus the input
and output vectors constitute a finite alphabet of patterns. The question of the
maximum number of input-output mappings which a network can store with respect
to a given performance criterion is more difficult to determine because multi-layer
feedforward networks are resistant to analysis in this respect, Amit (1989, p.271).
However, although the connection strengths between nodes which serve as the
system's memory for patterns are continuous, and although the storage of patterns
is distributed over the nodes and connections among them, there is every reason to
suppose that network capacity is finite. For simpler but similar, fully connected
network topologies using distributed storage, provable capacity limitations are
known, Amit (1989, Chapter 6) which show that the number of patterns which can
be stored and successfully retrieved is proportional to the number of nodes in the
network. There is no doubt that some similar limitation applies to feedforward nets.

The second question is what sort of functions a given feedforward network can learn
to compute with this finite capacity. Despite the impressive and thought provoking
performances of a variety of feedforward network applications, the class of
functions which simple feedforward networks can learn to compute is a subset of the
class of functions computable by finite state machines. Once one ceases to be

bewitched by the fascinating learning process, it is clear that a feedforward network
learns to approximate a function which is defined by a look-up table consisting of

the set of patterns (Ak,Ck). "Simple function approximation is one level above a

look-up table in computational complexity; functions can at least attempt to
interpolate between examples, and generalize to examples that are not in the learning

214

data set. Learning is still fairly simple, although already the subtleties of probability
and statistics begin to complicate the matter. However, simple function
approximation has less computational capability than a finite state machine. At
present, there are no good learning algorithms for finite state machines. Without
counting, conditional looping, etc. , many problems will simply remain insoluble."
Farmer (1990, p.183)

Informally, the exlanation for the limitations on the performance of a feedforward
net can be couched in terms of its possible responses to its inputs. Consider first
a feedforward net without error correction by backpropagation. The net has some
fixed set of connection strengths and some fixed set of node thresholds chosen at
random. When the net is given an input, its response is produced by applying EQ1
to produce activation of the hidden layer nodes and EQ2 to produce activation of the
output layer nodes which produce the elements c; of the output vector. Because the
equations EQ1 and EQ2 are fixed, the response of the network for any particular
input is also fixed. The crucial point to note is that although the activation, and
hence the response, of the network varies from input A ; to input A; , for a given
input A. the response of the network at different times tn, to+k will be the same. The
network's state is not altered by the processing of inputs. For this reason, it is

appropriate to describe the network as computing a function from input to output
which can be computed by a one-state finite automaton defined for the purpose, and
that the network constitutes an implementation of the machine table for that
function.

Now consider a network which, having learned to compute a given function from
a set of training examples using backpropagation, is being tested on a set of test
inputs. By definition the network is no longer learning, i.e. backpropagation has
been turned off. For the reasons outlined in the preceding paragraph, it is clear that
the network will produce a single fixed output for each of its inputs. The only
difference between this case and the case above is that the function computed is one
chosen by the experimenter and taught to the machine rather than one arrived at by
chance as a result of the random assignment of connection strengths and node

215

thresholds. Thus, a fully trained, correctly functioning feedforward net, is also
appropriately described as an implementation of a single state finite automaton.
What the training has done is to make systematic, structural modifications to the
network to change the function it computes, i.e. it has changed it from a network
which computes an arbitrary function 4 (A k) to a network which computes a desired
function tP(Ak) . It is worth repeating that this is not a trivial achievement but no
purpose is served by overestimating what such networks are capable of. The
reason, therefore, why simple function approximation by feedforward nets using
backpropagation has "less computational capability than a finite state machine" is
that such nets can approximate only those functions which can be computed by
single state finite automata.

If that were the end of the story, it would eventually spell the demise of interest in
connectionist networks for much the same reasons as interest in single layer
perceptrons declined after the critique of Minsky & Papert (1969). However, the
situation is much more promising than that. One of the major problems with simple
feedforward nets has been finding ways of making them sensitive to temporal
sequences. It is easy to see, in the light of the discussion above, why there should

be difficulties of this sort. In order for the temporality of a sequence to be
discriminated it is essential that a given input occurring at one point in the sequence
be discriminable from the same input appearing at another point. In other words,
it is essential for more than one response to be associable with a given input. This,
as described in Chapter 2 requires multiple states and that is precisely what is
lacking in a simple feedforward network. One solution has been to simulate
temporal sequence with spatial position. In this way, a vector of n bits can be
treated as a "window" on the state of a single bit at n successive moments of time.
The most obvious limitation on this technique is that the size of "window" is limited

by the size of the vector onto which it is mapped.

A much more promising technique is the adoption of a network topology which

includes recurrence. McCulloch & Pitts (1943) showed that nets with "circles"
were capable of more complex behaviour than nets without circles, because the

216

former, but not the latter could "make reference to past events of an indefinite
degree of remoteness." McCulloch & Pitts (1943,p.33). This point has an
interpretation in terms of architectural differences between connectionist networks.
A circle is an internal loop, so the distinction between nets with and without circles
is essentially a distinction between nets which have internal processing loops and
those which do not. A distinction of this kind exists between simple feedforward
networks, and networks with recurrent connections such as those of Jordan (1986)
and Elman (1990).

Work reported by Servan-Schreiber, Cleeremans & McClelland (1989) and
Cleeremans (1993) using Elman's network architecture has made a significant
advance in understanding the processing of temporal sequences. In addition to
input, output and hidden unit layers, Elman's recurrent network has a layer of
context units which take their input from the hidden unit layer and feed their output
back to it. The input. to the context units is a copy of the activation vector of the
hidden units at each time step t. The context units store but do not alter this vector
which is fed back unchanged to the hidden units as part of their input at time t+1.

This means that at all times other than to, the hidden unit layer input consists of an
input feature vector plus a copy of its own activation pattern from the previous time
step. Cleeremans (1993) has demonstrated how this recurrent context layer input
to the hidden units can be made functionally equivalent to a modification of the base
state of the network, thus allowing it to learn to behave as a multi-state finite
automaton, and become sensitive to long distance dependencies in its input
sequences.

This is an important result for a number of reasons. First it suggests that
connectionist networks with recurrence are sufficient to implement the finite state
control structures which Turing's analysis suggests are what is required of the neural
part of the cognitive system. Second it shows that this functionality can be learned
given appropriate starting structures and adequately distinct input sequences,

although Cleeremans reports some difficulties with the backpropagation algorithm.
Third, Cleeremans reports that the representations developed over the hidden units,

217

given sufficient numbers of those units, can manifest sensitivity to sequences of
inputs, provided these are of fixed length, as well as achieving the functionality of
a finite state machine. This increased functionality has led Cleeremans and his
colleagues to describe suitably trained recurrent networks as "graded state"
machines. In so far as people often remember something of how they arrived at
their current cognitive state as well as what their current options are this is a
promising characteristic for a network to possess. It is interesting that such a
marked increase in functionality should come about as a consequence of a simple
loop which copies activation in a set of units at a given time out to a simple store
and then back to those units at a later time. The ubiquity of reciprocal and re-
entrant pathways in the nervous system which might perhaps indicate functionality
of this kind is a major feature of its organization which is widely held to be of great
significance, Damasio (1989); Edelman (1989); Zeki (1993).

The previous paragraph should not be read as claiming that the cognitive system can
be explained as a single recurrent network. It seems highly probable that the
cognitive system will turn out to involve a large number of modules of varying
degrees of autonomy. If that is so, then the recurrent network model may turn out
to be a useful basis for understanding the inner workings of modules. What then
remains to be done to complete the picture from the point of view of the ETH,
given the idea of a connectionist net as the implementation of á finite automaton, is
to understand what is involved in implementing the same kind of relationship

between the network and its environment as exists between the finite state control
of a Turing machine and its tape. At this stage, work in robotics, particularly of
the kind carried out by Brooks, discussed in the previous chapter may provide a
useful link.

If the description of cognitive architecture argued for throughout the thesis is
correct, then we can think of the cognitive system as realizing a Turing machine,

with the embodied brain as the control and aspects of the environment as the

symbolic resources. It seems plausible to view the brain and the structures required
for cognition as capable of being modelled by a modular system of communicating,

218

recurrent connectionist networks, each implementing a specific cognitive function.
This suggestion appears to support the view argued for earlier, that there is no a
priori requirement for internal structured, symbolic expressions. The control states
of the finite automata implemented in the brain interact directly with external
symbols of a variety of kinds. One consequence of this view is that the knowledge
of the system is implicit in its structure.

7.2. The ETH and representational redescription.

The question which is considered in the final part of this chapter is whether, in
addition to the primary architecture, there are grounds for postulating the existence
of a secondary system in which part of the knowledge of the system is made more
explicit. There seem to be two lines of thought leading in this direction. The first
is the capacity which humans develop for making explicit both to themselves and to
others at least part of what they know. Just how this capacity should be related to
the structure of the cognitive architecture is far from clear, but it is, perhaps, a
point in favour of the generic theory, that the postulation of explicit internal
symbolic representations can account for this capacity. Humans can make explicit
to themselves what they know to the extent to which they have access to their own
knowledge structures. Access of this kind is harder to explain if the ETH is correct
because knowledge on the ETH account is implicit in the large scale structures of
the system. It should be noted, of course, that consciousness is an important
element of the kind of direct access which the generic theory appears to give a
reasonably natural account of, but the generic theory has no more need of
consciousness to explain its processing than does the ETH.

A second, perhaps more compelling reason for thinking that at least part of the
knowledge of the human may become more explicit than the primary architecture
of the ETH suggests, is the growing body of experimental evidence which shows
that children have differing types of access to what they know at different points
during their development. Annette Karmiloff-Smith has argued, in a series of
papers and a recent book, Karmiloff Smith (1992) for a model of development

which incorporates what she calls a process of representational redescription. "The

219

RR model attempts to account for the way in which children's representations
become progressively more manipulable and flexible, for the emergence of
conscious access to knowledge, and for children's theory building. It involves a
cyclical process by which information already present in the organism's
independently functioning, special-purpose representations is made progressively
available, via redescriptive processes, to other parts of the cognitive system. In
other words, representational redescription is a process by which implicit
information in the mind subsequently becomes explicit knowledge to the mind, first
within a domain and then sometimes across domains." Karmiloff-Smith (1992,
pp.17-18).

According to the RR model, development involves three recurrent phases. During
the first phase, the child focuses predominantly on input from the external
environment to create "representational adjunctions" which are more or less
independent additions to the behavioural repertoire. Phase 1 culminates in what
Karmiloff-Smith calls "behavioural mastery" which is the ability to perform with
consistent success in a given cognitive micro-domain, e.g. balancing blocks on a
narrow support. During the second phase "system-internal dynamics take over such
that internal representations become the focus of change." Karmiloff-Smith (1992,
p.19) . These internal representations are hypothesized to pre-dominate over direct
input from the environment, and may lead to a decrease in successful behaviour,
thus giving rise to a U-shaped developmental curve such as has famously been
observed with respect to forming the past tenses of verbs. Finally in phase three

"internal representations and external data are reconciled, and a balance is achieved
between the quests for internal and external control." Karmiloff-Smith (1992, p.20).
The three phases work at different times and at different rates within different

cognitive domains. Four different levels of knowledge representation are

hypothesized to underlie the three phases of development. These are termed
Implicit (I), Explicit-1 (El), Explicit-2 (E2) and Explicit-3 (E3). Level I
representations are in the form of procedures for analysing and responding to stimuli
in the external environment. They provide "the ability to compute specific inputs
in preferential ways and to respond rapidly and effectively to the environment. But

220

the behaviour generated from level-I representations is relatively inflexible."
Karmiloff-Smith (1992, pp.20-21). Level El representations are compressed,
abstract redescriptions of the level I representations. They are simpler, in the sense
of losing inessential detail, but they are more cognitively flexible because they are
detachable from the specifics of the context in which they were generated. They
exist alongside, but do not replace, the level-I representations which remain
available for operations requiring speed and automaticity. Although El
representations are available as data to the system they are not necessarily available
to conscious access or to verbal report. Level E2 representations are available to
consciousness but not to verbal report, while level E3 representations are "recoded
into a cross-system code. This common format is hypothesized to be close enough
to natural language for easy translation into statable, communicable form."
Karmiloff-Smith (1992, p.23). Karmiloff-Smith draws a distinction between the
process of representational redescription which she takes to be domain general, and
the RR model which gives a specific account of the process in operation in a variety
of cognitive micro-domains. This distinction is made so as to allow the process to
survive the refutation of any particular model incorporating it.

An impressively wide variety of developmental evidence with a general bearing on
the model and experiments designed to test specific aspects of it are presented in the
book, but little detail is provided of the mechanisms which might implement the
process of representational redescription. This is largely deliberate. "In my view,
soft-core modeling often leads to a broader intuitive understanding of general
principles of change, whereas both the information-processing use of the flow chart
and the symbolic approach to computer simulation run the serious risk of reifying
into one or more boxes or single-named operators what is in fact the product of a
highly interactive system." Karmiloff-Smith (1992, pp.175-6). What does seem
clear is that level-I representations and the notion of behavioural mastery, which
together form the foundation on which the representational redescription process
operates, have a very natural interpretation in terms of connectionist models. "...the
intuition underlying the notion of behavioral mastery maps rather well onto the
connectionist notion of a network's having settled into a stable state." Karmiloff-

221

Smith (1992, p.182). "It seems plausible that connectionist models can indeed lend
precision to an account of what I have called phase-1 learning - the phase that
results in behavioral mastery (i.e. the period of rich interaction with environment
during which level-I representations are built and consolidated)." Karmiloff-Smith
(1992, p.189).

What is much less clear is what sort of mechanism might be involved in producing
the El level representations and what sort of form they might take. Clark &
Karmiloff-Smith (1990) and Clark (1993) refer to the technique of skeletonization,
Mozer & Smolensky (1989) as a possible candidate mechanism. Skeletonization
computes a measure of functionality or relevance over the input and hidden layers
of a network and uses this measure to prune the least relevant nodes, but it is not
clear that this technique effects the kind of transformation of representational format
which seems to be central to the representational redescription hypothesis.

The proposal put forward here is that the Turing computable process of self-
description, originally described by Lee (1963), might serve to effect the
transformation from level-I to level-El representations. Further, given the way in
which this process might work in the context of the kind of architecture proposed
by the ETH, an additional advantage is that it provides at least a partial solution to
the symbol-grounding problem, Hamad (1990). The symbol-grounding problem is
the problem of understanding how the semantics of a formal representational system
can be made intrinsic to the system rather than parasitic on the interpretation

assigned by an outside observer, as is the case, for example, with the symbol
systems manipulated by computers, cf. Rosenschein (1985) and the discussion of his
work in Chapter 6.3.2.

There are three additional reasons why computable self-description might be a
satisfactory candidate process for the level-I to level-El transformation. The first
is that it executes precisely the type of function which Karmiloff-Smith requires, i.e.

the transformation of an implicit structure into an explicit representation of that

structure. In the case of a self-describing Turing machine, the process can be

222

understood informally as follows. We think of the machine's control as a black box
whose machine table is unavailable to an observer. The tape of the machine is
blank at the start of the computation. Thus the observer has no clue as to the
structures and functioning of the machine. The machine is put into operation and
begins to write symbols on its tape. When it halts, the sequence of symbols left on
the tape, is a copy, in some standard format, of its own machine table, which is
now available to the observer. The second reason why computable self-description
might be a candidate for the first step in the process of representational redescription
is that self-description is highly constrained and requires very specific structures and
sequencing to operate correctly. It should, therefore, be amenable to experimental
testing. Third, it is a purely automatic process. This is an important characteristic
for a process which is assumed to provide the basis for explicit knowledge of a
domain. A process which required consciousness or explicit access to its knowledge
in order to construct a representation would clearly be unsatisfactory.
Skeletonization, which uses a measure of relevance as the basis for altering network
structure is a dubious candidate for this reason.

To understand the proposal, the process of self-description needs to be set out in
some detail. It has its origins in von Neumann's investigation of the logic of self-
reproduction. von Neumann asked whether it was possible to construct a machine
which, given a reservoir of suitable elementary components, would be able to
construct an identical copy of itself. He answered the question in the affirmative
and outlined the sequence of steps which such a machine would need to carry out.
He noted that the self-reproduction capacity was strongly analogous to Turing's
notion of computational universality. von Neumann's work stimulated logicians to
tackle the associated problem of self-describing machines. The question was, could
a Turing machine be constructed which, when started on a blank tape, would
eventually halt and print out a description of the structure of its finite state control
in some standard format? Lee (1963) provided the first description of such a
machine and Thatcher (1963), motivated by Lee's work, produced a considerably

simpler machine. The point to notice about such a machine process in the context

of representational redescription is that it does two of the things which Karmiloff-

223

Smith requires. First it produces an explicit symbolic description of the structure
of its control, and second it does this without altering that structure. The latter
point is important because Karmiloff-Smith is quite explicit about the co-existence
of level-I and level-El representations.

The way in which the self-describing process works is best understood, initially, in
the context of a high level programming language. The examples are written in
Pascal. The blank tape constraint is replaced by the constraint that a program may
not read its own source code from an external file. If this were allowed, the task
would be trivial. With the blank tape constraint, or its equivalent, the task is rather
more demanding. At first sight it appears impossible because it seems to demand
an infinitely long program. Consider the simple program below;

program simple(output);

begin
write('Hello')

end.

This program outputs the single word "Hello" , but does not describe itself. Now
consider a program to describe program simple, i.e. a program whose function is
to output the source code of program simple. This is easily done as follows;

program describe_simple(output);
begin

writeln('program simple(output);');
writeln('begin');
writeln(' 	write("Hello")');
writein('end.')

end.

The description is achieved by encoding program simple as a sequence of strings
which are then printed. There is a syntactic complication in the line "writeln('
write("Hello")'); ", which requires a repeated quote mark to indicate that it is itself
part of the string to be printed and not one of the string's delimiters. Even so, the
program is straightforward, and, in general, there is no problem in writing one
program which describes another. However, the same technique applied to the task
of constructing a self describing program, quickly runs into insoluble difficulties.

224
program self describe(output);
begin

writeln('program self_describe(output);');
writeln('begin');
writeln('writetn(" program seif_describe(output); ");');
writeln('writeln(" begin ");');
writeln('writeln(" writeln(" " program self_describe(output);

wri teln('wr i teln("wri teln(""begi n""); ");');

Clearly, a finite self-describing program cannot be written in this way. The
problem with the method is that the whole structure grows inexorably, because each
line of the program requires another line to describe it. A solution to the problem
is shown below.

program self_describe(output);
var

store : array[1..12] of string[80];
i : integer;

begin
storell] :_ 'program self_describe(output);';
store [2] :_ 'var';
store[3] := ' 	store : array[1..12] of stringE80];';
store[4] := ' 	i : integer;';
storeE5] :_ 'begin';
store [6] := ' 	store(';
store[7] ._ '] ._ ';
store[8] :_ ' 	for i := 1 to 5 do writeln(store[i]);';
store [9] 	' 	for i := 1 to 12 do';
store[10] :_ ' 	writeln(store[6],i,store[7], chr(39),store[i],chr(39),chr(59));';
store[11] :_ ' 	for i := 8 to 12 do writeln(store[i])';
store(12] :_ 'end.';
for i := 1 to 5 do writeln(store[i]);
for i := 1 to 12 do

writeln(store[6],i,store(7], chr(39),store[i],chr(39),chr(59));
for i := 8 to 12 do writeln(store[i])

end.

The key to understanding the solution is to see that the program is divided into two
sections. The first is the construction of a reservoir of strings of program code.
This is the array called "store" defined in line 3. It is analogous to von Neumann's
reservoir of elementary parts for a self-reproducing machine. Lines 6 to 17 stock
the array with the required components. The second part of the program, lines 18
to 21 uses the contents of the array to construct a program description. The first
five and last five lines of the program are constructed simply by copying out the
contents of the appropriate locations of the store. The construction of the twelve
lines describing the stocking of the store is slightly more complicated. In order to
get round the problem of inexorable growth, these lines are put together using
subcomponents as well as components and require a syntactic fiddle. The
subcomponents are found in locations 6 and 7 of the store and the syntactic fiddle
is seen in line 20 of the program. The fiddle involves two different ways of

225

referring to characters. One is via direct quotation. The other is via the Pascal
construction "chr(n)" which represents the ASCII character whose underlying value
is the byte sized binary pattern representing decimal number n. Thus "chr(59)"
represents the semi-colon because the semi-colon is mapped onto the binary pattern
00111011. The importance of the fiddle is that it makes it possible to refer to the
single quote character without having to double it up. The line "write(chr(39))" is
equivalent to "write("")" and outputs a single quote mark.

Some important points about the general form of the process of self description can
be made by observing two ways in which the program might fail to operate
correctly. First there is the possibility that one or more of the assignments to the
storage reservoir is incorrect. If, for example, store[5] contained the string "start"
rather than the string "begin" , the program would run but would not accurately
describe itself. Second there is the possibility that the construction part of the
program incorrectly manipulates the description contained in the array of strings.
If, for example the final "for" statement read "for i : = 8 to 11 do ... " the
terminating "end. " statement would be omitted from the self description. These two
sources of error are quite independent of each other. The assignment of contents
to the store is independent of the way in which the store is later used, and there is
nothing in the construction part of the program which is sensitive to the contents of
the store. The match between the parts is a contingent one.

As it stands, the self-describing program is a curiosity, the sort of tricky exercise
that gets assigned to students learning a programming language. From the point of
view of a possible model of the process underlying representational redescription,
the program needs to be taken one step further to show that a program which does

something apart from describing itself can also be made self-describing. One of the
features of the first self-describing Turing machine constructed by Lee (1963) was
that it was universal, which demonstrated that any program could, in principle, be
made self-describing. For present purposes, a simple demonstration suffices.
Consider the following program which prompts the user for a pair of numbers and
returns their sum.

226

program add(output);
var

i,j : integer;
begin

write('Enter a number » ');
readln(i);
write('Enter another number » ');
readln(j);
writeln('The sum is ',i +j)

end.

This function can be incorporated in a self-describing program by using exactly the
technique adopted for program self describe as shown below.

program add_and_self_describe(output);
var

store : array[1..26] of string[80];
: integer;

begin
write('Enter a number » 1);
readln(i);
write('Enter another number » ');
readln(j);
writeln('The sun is ',i +j);
store[1] :_ 'program add_and self_describe(output);';
store[2] :_ 'var';
store[3] := ' 	store : array[1..26] of string[80];';
store[4] :_ ' 	i,j : integer;';
store[5] :_ 'begin';
store[6] :_ ' 	write(';
store[7] :_ 'Enter a number » ';
store[8] :_ 'Enter another number » ';
store[9] :_ ');';
store[10] :_ ' 	readln(i);';
store[11] :_ ' 	readln(j);';
store [12] :_ ' 	wri teln('; .
store[13] :_ 'The sun is ';
store[14] := 'i +j);';
store[15] :_ ' 	store[';
store[16] := '] := ';
store[17] :_ ' 	for i := 1 to 5 do writeln(store[i])';
store[18] :_ ' 	writeln(store[6], chr(39),store[7],chr(39),store[9])';
store[19] :_ ' 	writeln(store[10])';
store[20] := ' 	writeln(store[6], chr(39),store[8],chr(39),store[9])';
store[21] :_ ' 	writeln(store[11])';
store[22] :_ ' 	writeln(store[12], chr(39),store[13],chr(39),store[141)';
store[23] :_ ' 	for i := 1 to 26 do';
store[24] :_ ' 	writeln(store[15],i,store[16], chr (39),store[i],chr(39),chr(59));';
store[25] :_ ' 	for i := 17 to 26 do writeln(store[i])';
store[26] :_ 'end.';
for i := 1 to 5 do wri teln(store [i]);
writeln(store[6], chr(39),store[7],chr(39),store[9]);
writeln(store[10]);
writeln(store[6], chr(39),store[8],chr(39),store[9]);
wri teln(store[11]);
writeln(store[12], chr(39),store[13],chr(39),store[14]);
for i := 1 to 26 do

writeln(store[15],i,store[16], chr (39),store[i],chr(39),chr(59));
for i := 17 to 26 do writeln(store[i])

end.

The program has a number of features which make it interesting as a candidate
process for representational redescription, when one thinks of it in terms of the
hypothesized shift from level-I to level-El. Suppose a child to be capable of asking
for two numbers and adding them together. This level-I competence might be

227

modelled in terms of a compiled version of program add . The fact that the source
code of a program is generally not recoverable from the machine code into which
it is compiled serves to reinforce the point that the child's representations at that
stage are implicit. The stand alone version of program add represents behavioral
mastery but no more. Once behavioral mastery has been achieved, or perhaps while
it is being achieved, one can hypothesize a process of breaking down and storing the
components of the task performing mechanism in individual, non-efficacious chunks.
This process is modelled by the part of program add_and_describe in which contents
are assigned to the store. One might speculate that these somewhat fragmented
contents could model what Karmiloff-Smith (1992, p.18) calls "representational
adjunctions" . The final stage in the shift from I to El is completed by the internal
generation of processes, modelled by the construction part of the program, which
operate on the store to produce an explicit version of what was initially an implicit
process. Finally, if one further hypothesizes that the output of the redescriptional
process is to an area of the brain independent of the part subserving task
performance, it is possible to see how the implicit and explicit versions of the
program could co-exist. It is also clear that the explicit representation thus arrived
at might be neither conscious nor available for verbal report thus remaining
consistent with the postulation of further development at levels E2 and E3 of
Karmiloff Smith's model.

Two other points are worthy of note. The first is the specificity of the task and the
generality of the process. Karmiloff Smith hypothesizes that the RR process is
domain-general but can be applied to a variety of specific cognitive capacities. This
distinction is maintained in add and_describe. The second point is the clear
separation of task performance from the re-descriptional process. Empirical data
suggest that representational redescription takes place only when behavioral mastery
has been achieved. Such a position is consistent with the program although not
entailed by it.

An important question is why a self-describing process is more appropriate for a
treatment of representational redescription than a modified program of the same type

228

as program describe simple. Consider how program add might be treated so as to
provide both functionality and a description.

program add and__deseribe_add(output);
var

j i j : integer;
begin

write('Enter a number » ');
readln(i);
write('Enter another number » ');
readln(j);
writeln('The sum is ',i+j);
write('program add(output);');
write('var');
write('i,j : integer;');
write('begin');
write(' 	write(" Enter a number » ");');
write(' 	readln(i);');
write(' 	write(" Enter another number » ");');
write(' 	readln(j);');
write(' 	writeln("The sun is " ,i+j)');
write('end.')

end.

It might be suggested that program add and_describe add is a better basis for a
model of representational redescription because it provides the functionality of
program add and also outputs an explicit description of it without all the
complication of add and_self describe which might, in any case, be thought
psychologically unrealistic because it describes its own inner structure completely
which does not seem to be characteristic of the human cognitive system.

Perhaps the simplest answer to this suggestion is that we do not know what limits
exist within the cognitive system on the extent to which redescriptive processes can
make previously implicit structure available as explicit data. Complete self-

description is therefore an idealization of a capacity which we appear to have to a
considerable extent, but it is no more arbitrary than the idealization which suggests
that the brain implements a Turing machine even though it is clearly finite in its
capacities. It may turn out, of course, that the idealization to complete self-
description is flawed in a way comparable to the way in which this thesis suggests
that the model of the brain as a Turing machine is flawed, but that does not make
it an arbitrary or un-useful idealization. A second point is that if the cognitive
system consists of a set of autonomous mechanisms implementing specific
capacities, i.e. if the cognitive system is modular, it is possible that the functioning
of individual modules may be made completely explicit via self-description. This

229

can be hypothesized without supposing that every module and hence the cognitive
system as a whole must at some stage be made explicit.

Given the program models above as illustrative examples, it is now appropriate to
turn to the notion of a self-describing Turing machine. The distinction between a
store which holds the elements of a description and the constructor which puts
together the description from the elements in the store, is a feature of the Turing
machine model as well as of the Pascal program versions. It appears that these
characteristics are invariant features of any completely self-describing system.

The original self-describing universal machine of Lee(1963) and a simpler non-
universal machine described by Thatcher (1963) were both based on Wang's (1957)
program model of computation rather than directly on Turing's machine model.
Minsky (1967, p.287) outlines the way to construct a self-describing Turing
machine. The first step is to construct a machine T, which converts an arbitrary
sequence of symbols s ;i si2 ... , s; from a fixed alphabet Is ' , s2 , ... ,sr} to the sequence
go,B,qi ,s;i ,1,X,gi ,B,q2,s 2,1,X,...q ; , B,q,„sia,1,X,s;i ,s;2 ,.•,,s;a where q; is the
integer representation of state i and B is the representation for a blank square.
When the sequence s;i , si2 , ... , s; is a representation of the machine T itself, the long
sequence is a description in quintuple form of a self describing machine.

Somewhat less formally, a self-describing Turing machine requires a subset of its
states to implement a machine M i , which prints a string of symbols, S i , on its tape.
S i is interpretable as the description of a machine M2 which manipulates strings of
symbols. The dynamics of Mi are extremely simple. It consists of a long chain of
states each of which prints a single symbol. There are no loops or branches and the
machine moves in one direction only. Bearing in mind that the tape of the machine
is blank by definition at the start of the self-describing computation, the
configurations of the machine Mi are all of the form (q;,B). Once the string S i has
been printed, a new subset of states implementing machine M2 takes over. M2 has
much more complex dynamics. It takes each element S u of Si in turn and includes
it as part of a string which is interpretable as an instruction of Mi , specifically the

230

instruction to print S1 ,;. M2 is constructed so that the first such string it prints is
interpretable as the first instruction of M 1 and so forth. Thus, when M2 has
processed each element of S 1 in turn, it will have printed another string S2 which is
interpretable as the description of M 1 . If M2 includes instructions to print the
original string S 1 at the end of S2, then the concatenated string S2S 1 can be
interpreted as a description of the combined machine M 1M2 . Since the machine
which prints the concatenated string is precisely the combined machine M 1M2 , MiM2

 is self-describing.

The mapping between the parts of such a Turing machine and the parts of program
self describe, while not exact, is indicative of marked functional similarity. The
string S 1 is roughly analogous to the contents of the store in the program, and hence
the sub-machine M 1 can be thought of as analogous to the parts of the program
which define the store and assign contents to it. The sub-machine M2 which
operates on string S 1 is roughly analogous to lines 18-21 of the program which
construct the full description from the elements of the store. A further point of
similarity is that functionality can be added to a self-describing Turing machine by
incorporating a set of states which carry out the desired function, in much the same
way that functionality was added to pure self-description with the move from
program self describe to program add and_self describe.

The links between the ETH, self-description and representational redescription are
hypothesized to occur as follows. First, it is hypothesized that the cognitive system
as a whole is modular or functionally specialized, i.e. that the control automaton of
the system, while amenable to description in terms of a set of global states, consists
of a set M = {mi I 1 <_ i n} of n interacting mechanisms much like the system
of mechanisms (kmp, ce(a), etc.) realizing the control of Turing's universal
machine. Each of the m implements the internal control system for a particular
behavioural capacity such as the capacity to draw a human figure, for example.
Thus each of the m i is hypothesized to consist of a set of k states mil ...ma . An
individual control system m i interacts with a set of external media such as paper and
pencil to produce its characteristic symbolic output. Thus the configurations of the

231

sub-system m i are of the kind hypothesized by the ETH, i.e. they combine an
internal control state with external media and the sub-system as a whole can be

thought of as a Turing machine. Behavioural mastery is reached when externally
specified performance criteria can be met successfully. The machine table of the

sub-system m i is not available to the cognitive system as data at this stage because

the external media are external and the internal states m ;; are accessible only in the

course of execution of the behaviour. It is structures of this kind which are assumed
to constitute Level-I representations.

The way in which self-description is hypothesized to work to produce level El

representations given the basis described above is as follows; it is assumed that

some part of the brain's storage capacity is available to the growing organism, and

we might think of this, to a first approximation, as an additional, internal, tape of

fixed, but possibly quite large capacity. It is hypothesized that this internal tape

receives the output of the self-descriptive process as it is applied to specific

behaviour producing sub-machines m i . The suggestion is that this auxiliary tape acts
like the store array of the self-describing programs and becomes stocked with

behavioural fragments in the course of the organism's commerce with the external

world. Some of these fragments will be sensory impressions, others the reactions

of the organism to those sensory impressions and so forth. As the control system

of the brain develops it acquires the self-descriptive functionality which in due

course enables it to process the behavioural and sensory fragments in the store into

explicit accounts of the activities which produced them. What is particularly

significant is the way in which the process of self-description interacts with the

components of the architecture as hypothesized by the ETH. At the stage of

behavioural mastery, the symbols with which the system works are explicit but

external. The child is assumed to be able to interact with them but not to reason

about them because internal representations of them have not been formed. At the

same time, the states of the sub-machine m ; are internal but purely implicit. Thus

again, the child is able to use them but not to reason about them. By hypothesizing

an internal memory resource as the locus of the output of the self-descriptive

procedure, the external symbols involved in a capacity become internalized and

232

remain explicit while the internal states remain internal but are made explicit and
are specifically linked to the internal descriptions of the symbols. Thus a
description of the whole process becomes available to the system. The reason why
such a process represents a partial solution to the symbol-grounding problem is that
the symbols which form the explicit representational accounts produced from the
store are based on the experiential interaction of the organism with aspects of the
external environment.

To take the treatment in the direction of biological plausibility and build a bridge
between the linear tape of a Turing machine and the neural substrate of the brain it
is possible to describe some of the basic processes of laying down fragments in
terms of a canonical network scheme described in Conrad (1985). This scheme
represents state transitions in a standard form in a simple network and may be
thought to enhance the plausibility of the suggestions made above. Consider the
state transition of the simple machine shown in Figure 7.2 when it is in state q0 and
receives input 0. It makes a transition to state q0.

Machinery to realize this state
transition is shown in the network
of Figure 7.3. The network has
two columns of nodes representing
the states q0 and q1 of the

Figure 7.2. A simple example automaton.
automaton, and two input lines,
carrying the inputs 0 and 1 respectively. The nodes are threshold elements which
will fire if the sum of their inputs equals or exceeds the value shown inside. All the
nodes in Figure 7.3 have a threshold of 2.

A state is instantiated when either of the nodes in its column fires. A state
transition, g l ,si ,q;; is instantiated in the network by making a connection from each
of the nodes in the i'th column to the i'th node in the j'th column. In this way,

when one of the nodes in a column representing a state and an input line both fire
at time t, the appropriate node for the i,j'th state will fire at time t+ 1. Figure 7.4

233

Figure 7.3. Network representation of g0,0,g0.

Figure 7.4. Network representation of g0,1,g1.

shows the connectivity needed to
realize the state transition g0,1,g1.

The networks of Figures 7.3 and
7.4 can be combined as in Figure
7.5 to give the network
representation of q0, 0, q0 and
g0,1,g1. Inspection of Figure 7.5 shows that combining state transition instructions
in a single network of the kind shown
distinguish the two instructions. It
makes the appropriate state
transition for all combinations of
state node and input line when the
current state is q0. This
performance generalizes to the
situation where the instructions
involving state ql are also
introduced into the network. The
full system is shown in Figure 7.6.

does not affect the network's ability to

What this canonical network capability suggests, thinking in terms of the Turing
machine model of self-description is that the human equivalent of machine M1 might
be thought of as laying down instructions as state transitions in an area of neural
space, by modifying its basic connectivity. Thus, rather than printing instructions
sequentially on a linear tape, the human M1 superimposes successive instructions,
which remain functionally separable, on a suitably large area of neural space. A
feature of S 1 which makes the above treatment plausible is that it is divisible in a
variety of ways. At the finest grain, each element of S 1 is a symbol. Thirty of
these symbols form the description of a machine instruction. One to four

instructions constitute the description of a state (depending on the possible inputs to
the system in a given state), combinations of states form submachines at various

234

levels of complexity, and the
whole • of S 1 constitutes the
description of a machine. Thus S 1

 manifests organization at the levels
of symbol, instruction component,
instruction, state, sub-machine and
machine. The finest grain analysis Figure 7.5. Network representation of q0

is not likely to be psychologically transitions.

significant, because it is unlikely
that the nervous system uses binary addresses. The levels of instruction components
and instructions, however, are much more appropriate. Setting aside for the present
the questions of output signal and movement relative to the tape, an instruction
determines the transition to a new state associated with a particular current state and
current input. An instruction is an autonomous unit because the set of instructions
defining a target machine can appear in any order on the tape of a machine
simulating it without altering the functional performance of the simulator. The
order of the instructions in S 1 , defining the machine M2, is, in this sense, arbitrary.
An instruction component is not autonomous in the same way as an instruction.
Thus an instruction represents an indivisible unit of Turing machine performance,
less than a complete state but more than a component.

The hypothesis thus stated requires that experience comes in instruction sized chunks
if it is to be realized as patterns of connectivity in a neural space analogous to the
tape of a Turing machine. Is this a reasonable supposition? In view of the limited
attention span of the human infant, the suggestion has at least some plausibility. It
is also clear that patterns of connectivity can be established in networks as a result
of repeated experience. Perhaps then, the operations of M 1 of the self-describing
Turing machine are not completely implausible as a rather abstract account of the
acquisition of an internal record of experience of the world. The external tape of
the human provides a source for the structured material in S 1 . As the organism
grows and its sensory systems become better tuned, these internalized action
sequences become more differentiated and precise.

4(2.) 	

go 	 q1

state

Figure 7.6. Network representation for all q0 and q1 state

transitions.

235

q0
	

q1

0

1
might be developed. The
important function of the
submachine M2 is that it
organizes the S 1 input into a
temporal sequence. This it
does by embedding S 1 instruction components, as output symbols, in an ordered
succession of new instructions. The proposal is to think of the human equivalent
of M2 , not so much as a machine which lays down instructions, but as a machine
which generates instruction execution sequences. M2 as constituted in the self
describing scheme, constructs an execution sequence of states which implements the
machine M1 , and then appends its own description to complete the M 1M2

 concatenation, but it need not do only this.

The operations of the M2 part
of the self-describing Turing
machine provide a hypothesis
about the way in which
thinking and self awareness

M1 and M2 are, in principle, autonomous machines. This provides an interesting
possibility. It may make sense, developmentally, to suppose that the machine M 1 ,
which has the simpler dynamics, represents the organism at a relatively early stage
of representational processing during which it does little except to register input.
This fits with Karmiloff-Smith's suggestion that the early representational focus is
predominantly on information from the external environment. But the sensory
registration process might very well also alter the structure of the total system of
which it forms a part. Thus, it might be hypothesized that machine M2 develops as
its description is being laid down. The sort of process that might be involved here
could be the gradual differentiation of say, exogenous and endogenous sources of
stimulation. Redescription will begin as soon as M2 is sufficiently developed to be
able to access the record of sensory experience which shaped its own construction.
This suggests a) that redescription is consequent upon sufficient appropriate

236

experience, and b) that this early form of redescription is a precursor of self

awareness because M2, which controls the generation of the state execution

sequences which constitute redescription, uses action sequences laid down as part
of its own development. Perfect self-description will never be possible for this kind
of machine, because the dynamics of its operations constantly modify its structure.
Thus its self descriptive capacities remain one step behind its experience, which is,

perhaps, how it should work out.

This chapter has been speculative, particularly in the latter part but it has served to

bring the ETH into contact both with connectionism and with the cognitive scientific

study of development, and to provide a picture of how it might illuminate work in

both of these areas.

237

Chapter 8. Summary, Conclusions and Prospects.

In the previous seven chapters an argument has been constructed to support a new
view of the nature of the human cognitive architecture considered as a computational
system. The argument is based on Turing's analysis of computation rather than on
comparisons with the structures and processes of digital computers. It has been
suggested that both symbol processing approaches to cognitive computation, referred
to collectively as the generic theory, and connectionist approaches are in need of
revision.

8.1 The Generic Theory.

The generic theory is founded on the idea that there is a structural isomorphism
between the architecture of general purpose digital computers and the architecture
of the cognitive system which licenses the use of computational concepts in the
theoretical description of cognitive structures and processes. Justification for this
idea comes from two main sources. First there is the belief that the designs for
early stored program computers were modelled on what was known about the human
nervous system. Second there is the theoretically more interesting suggestion that
the link between cognitive and computer architectures is a consequence of the fact
that both are isomorphic to the abstract Turing machine architecture. Digital
computers are essentially practical versions of Turing machines, and Turing derived
the concept of the Turing machine from consideration of a person engaged in a
routine numerical calculation. Hence, it is claimed, by transitivity of isomorphism,
that digital computers and human cognitive architecture share fundamental structural
features.

The assumption of transitivity of isomorphism is controversial because Turing
machines are formal, idealized and abstract isomorphs of minds. In particular,
Turing machines are idealized to have an unbounded memory in the form of an
indefinitely extendible tape, but unboundedness cannot be true of human memory
which is supervenient on the brain. The arguments used to resolve this difficulty
lead to the heart of the issues with which the thesis is concerned. At the most

238

general level of analysis there are two strategies to be found in the literature. The

first, which leads to various versions of the generic theory is to argue that the

idealization is fruitful and provides support for distinctions between competence and

performance.

8.1.1. The generic theory and the language of thought.

The arguments offered in support of the generic theory fall into two main classes.
The first is characterized by the view that the idealization to unbounded memory is
justified by the productivity of thought which is hypothesized to be unbounded in
principle. The best known and most influential exponent of this view is Jerry
Fodor, and the locus classicus of the approach is Fodor (1975). In that work Fodor
argued that to treat the mind as a computational system entailed the attribution of

a representational medium. Further he claimed that the medium must be

implemented in such a way as to allow, in principle, for "an infinity of distinct

representations." Fodor (1975, p.31). The most plausible way to think of such a
system, he argued, was in terms of a set of conceptual primitives, like the symbol

alphabet of a Turing machine, plus a working space, like the tape of a Turing

machine, in which complex representations could be composed out of the conceptual

primitives. Because such a system resembled a natural language in its combinatorial

characteristics, it was appropriate to call it the language of thought. Thus Fodor

argued that it is appropriate to think of the mind as organized like a Turing
machine, even though the mind is finite, partly because of the generality of the
Turing machine concept, but mainly because the symbol manipulating capacities of

the Turing machine offer an explanation of the productivity (in principle) of thought,

while practical limitations on the sizes and structures of the computational devices

subserving thought constrain the idealized theoretical capacity to produce observed

performance.

8.1.2. The generic theory and the physical symbol systems hypothesis.

The second influential line of thought which argues for the propriety of the Turing

machine as a model of cognitive architecture is the physical symbol systems

hypothesis. The best known and most influential exponents of the foundations of

239

this view have been Allen Newell and Herbert Simon, in a series of books and

papers published over a period of more than twenty years. Symbol systems theorists

differ from Fodor and other LOT theorists in the basic argument which is used to

justify the idealization to unbounded memory. The symbol systems hypothesis is

based on the claim that computational universality rather than the unbounded

productivity of thought is the essential criterion for cognitive architecture. This

claim entails that programs as well as data must be expressible as explicit, symbolic

expressions in "a neutral, stable medium that is capable of registering variety"

Newell (1990,p.61). This is a stronger claim than the Fodorean claim. However
since both the productivity of thought and computational universality arguments

require potentially unbounded symbolic resources the net result is much the same

as far as the basic architecture is concerned.

In summary, proponents of the generic theory argue that the Turing machine and

the digital computer are appropriate bases for models of cognitive architecture

because they view the idealization to unbounded memory as principled and the

practical constraints on finite realization as a fertile source of empirical hypotheses.

8.2. Connectionism

The second major strategy mentioned above, which is found in much connectionist

theorizing, but has a wider constituency, suggests that the requirement for

unbounded memory whose contents consist of symbolic expressions, shows the

Turing machine concept to be at best irrelevant and at worst actively misleading

about the organization of memory and the nature of cognitive processes. Clark

(1993), for example, has argued that the generic theory, particularly in its Fodorean

form, is overly text based and anti-developmental. Other arguments on various

grounds such as neural implausibility and operational fragility have been extensively

discussed. Connectionist research, by and large, looks to neuroscience or to physics

rather than to formal methods for its inspiration. It has even been suggested that

connectionism may "challenge the strong construal of Church's thesis as the claim

that the class of well-defined computations is exhausted by those of Turing

240

machines." Smolensky (1988,p.3).

As yet there is no clear resolution to the debate. Connectionist systems are
generally better at the "softer" kinds of tasks like pattern completion and
generalization to novel stimuli, while symbol systems are generally better at tasks
requiring temporally extended sequences of processing and/or highly structured
representations. Various projects have looked to hybrid symbolic/connectionist
architectures as a means of resolving some of the difficulties. Unfortunately, many
such proposals have a distinctly ad hoc flavour or run into difficulties in specifying
the nature of the interface between the components, although Cooper & Franks
(1993) have described some of the principles governing the specification of hybrid
systems.

8.3. Turing's analysis of computation.
The suggestion developed in the thesis is that the nature of the linkages between the
Turing machine concept and architectural hypotheses arising from both the generic
theory and connectionism can be clarified by re-examining Turing's seminal work,
Turing (1936-37), in which the concept of a universal machine was first introduced.
The major conclusion reached is that Turing's analysis of computation does not
support the generic theory's model of cognitive architecture. The crux of the
argument is the claim that the principles of cognitive architecture on which the
generic theory is based, model human memory in a way which contradicts a
principled argument used by Turing to develop his formal machine model. The
primary point is that in Turing's scheme the tape of the machine corresponded to
the paper on which an individual worked a calculation and not to the human
calculator's memory. It was a distinct, external resource which supplemented the
human memory and Turing had good arguments for separating the two. In digital
computers, however, symbolic, random access memory serves the same function as
the tape of the Turing machine and it is this form of memory which is used to
model human memory in the generic theory. The mapping from computer memory
to human memory thus directly contradicts Turing's analysis and is neither
compatible with it nor entailed by it. This point has substantial consequences for

241

theories of cognitive architecture based on Turing's analysis. Perhaps the most
surprising is the way in which connectionist theorizing can be seen to be entirely
consonant with Turing's analysis when connectionist networks are thought of as
implementations of the finite state control automata of Turing machines. A
secondary point is that the generic theory makes use of an unnecessarily
impoverished concept of what a symbol is which is an accidental consequence of the
focus of Turing's interest, rather than an essential feature of the definition of an
effective procedure. In view of the many problems faced by the generic theory with
respect to issues as diverse as its dubious neural plausibility and the difficulties
encountered in finding a defensible philosophical approach to its account of the
nature of mental content, removing the theoretical support of Turing's analysis of
computation must lead to a reappraisal of its tenability.

8.4. The External Tape Hypothesis.
The ETH was developed to address the issues raised above. The starting point is
the fact that the Turing machine was not, and was not intended to be, a model of
the internal workings of the mind. It was a model of a system of states of mind
interacting with a set of external symbols. At the time when he developed the
model Turing was interested specifically in the nature of routine computation and
his analysis is restricted to dealing with numerical symbols and processes but it is
proposed that the idea of a symbol for computation can be extended beyond
conventional alpha-numeric symbols to embrace a variety of objects in the world,
provided, at a minimum that they satisfy the type identity criterion.

The critical notion for the ETH is that of a computational "configuration" which is
a pair consisting of a "state of mind" and an external symbol. The ETH proposes
that cognitive states should be thought of as configurations of Turing machines.
Thus they are distinct from mental states. Mental states are considered to be
supervenient on the brain but cognitive states are not because they have external
components. Thus the same mental state can, in principle, form part of different
cognitive states by being paired with different external symbols.

242

8.5. Current areas of weakness.

No doubt there are many more weaknesses and shortcomings in the approach than

are recognized and acknowledged here. The author is perhaps more than usually

indebted to others for pointing out problems with the approach and the process of

critical exchange is very illuminating. From the point of view of the author,

however, perhaps the principal omission at present is a detailed account of how the

ETH might make contact with the approach of evolutionary psychology, cf. Barkow,

Cosmides & Tooby (1992). Adaptationists, as these authors sometimes call

themselves and others of a similar persuasion, argue against the picture of cognitive

architecture as a content independent, general purpose, programmable,
computational system of the kind proposed by generic theorists (see especially

Newell 1990, pp.54-65), and in favour of a picture of cognitive architecture as a

collection of special purpose, content dependent mechanisms. This approach to

cognitive architecture is entirely consonant with Turing's analysis of computation

and with the ETH. What is particularly important is that experimental predictions

are being derived from the adaptationist stance and applied to a variety of cognitive

topics. The work of Cosmides (1989) on forms of content in the Wason selection

task is particularly interesting.

Additional areas of weakness are the underdeveloped state of the theories of internal

states, external symbols and configurations identified as important needs in Chapter
6. A better understanding of the forms and possibilities of control memory will be

a particularly important improvement to the theory of internal states.

8.6. Areas for future research.

Apart from making good the omissions noted in the previous section, there are many

areas which offer prospects for further development. The application of the ETH

to the modelling of representational redescription as outlined in Chapter 7 is a

compelling topic as is the question of how to build recurrence into models of

internal states. Of particular interest is the need to incorporate accounts of

attention, motivation and emotion into the theory of internal states. The extent to

which these issues can be tackled in a way which yields tractable models and

243

testable hypotheses will be a measure of the extent to which the ETH will be a
valuable approach for psychologists.

244

References.

Aho, A.V. & Ullman, J.D. (1977). Principles of Compiler Design. Reading, MA:
Addison-Wesley.

Amit, D.J. (1989). Modeling Brain Function. The world of attractor neural
networks. Cambridge: Cambridge University Press.

Anderson, J.R. (1990). Cognitive Psychology and Its Implications. 3rd Edition.
New York: W.H. Freeman and Company.

Andler, D. (1990) . Untitled paper, read at the University of Sussex, conference on
Concepts and Categorization, 6th-8th April 1990.

Arbib, M. (1987). Brains, Machines, and Mathematics. Second Edition. New
York: Springer-Verlag.

Arterberry, M.E. & Yonas, A. (1988). Infants' sensitivity to kinetic information
for three-dimensional object shape. Perception and Psychophysics, 44, 1-6.

Ashcraft, M.H. (1989). Human Memory and Cognition. Glenview Illinois: Scott,
Foresman and Company.

Aslin, R.N., Pisoni, D.B., & Jusczyk, P.W. (1983). Auditory development and
speech perception in infancy. In M.M. Haith & J.J. Campos (Eds.)
Handbook of child psychology; Volume 2. Infancy and developmental
psychology. 4th. Edition. New York: Wiley, 573-687.

Aspray, W. & Burks, A. (Eds.) (1987). Papers of John von Neumann on
Computing and Computer Theory. Vol. 12 in the Charles Babbage Institute
Reprint Series for the History of Computing. Cambridge, MA: MIT Press.

Backus, J. (1978). Can Programming be Liberated from the von Neumann style?
A Functional Style and Its Algebra of Programs. Communications of the
Association for Computing Machinery, 21(8), 613-641.

Baddeley, A. (1986). Working Memory. Oxford: Oxford University Press.
Barbacci, M.R. & Uehara, T. (1985). Computer Hardware Description Languages:

The Bridge Between Software and Hardware. Computer, 18(2), 6-8.
Barkow, J.H., Cosmides, L., & Tooby, J. (1992). The Adapted Mind.

Evolutionary Psychology and the Generation of Culture. Oxford: Oxford
University Press.

Barr, M.L. & Kiernan, J.A. (1988). The Human Nervous System. An Anatomical
Viewpoint. Fifth Edition, Philadelphia PA: J.B. Lippincott Company.

Bartee, T.C. (1981). Digital Computer Fundamentals. Fifth Edition. McGraw-Hill
Inc.

Barwise, J. (1975). Admissible Sets and Structures. An Approach to Definability
Theory. Berlin: Springer-Verlag.

Barwise, J. & Etchemendy, J. (1986). Turing's World: A Computer-based
Introduction to Computability Theory. Ventura CA : Kinko's Academic
Courseware Exchange.

Bechtel, W. (1988). Connectionism and Rules and Representation Systems: are
they compatible? Philosophical Psychology, 1(1), 5-16.

Bechtel, W. & Abrahamsen, A. (1991). Connectionism and the Mind. An
Introduction to Parallel Processing in Networks. Oxford: Basil Blackwell.

Berkeley, E.C. (1949). Giant Brains or Machines that Think. London: Chapman
& Hall.

245

Block, N. (1980). Troubles with functionalism. In N. Block (Ed.) Readings in
Philosophy of Psychology. Volume 1. London: Methuen, 268-305.

Block, N. Ed. (1981). Readings in Philosophy of Psychology: Volume 2. London:
Methuen.

Block, N. & Fodor, J.A. (1972). What psychological states are not. Philosophical
Review, 81, 159-181.

Boden, M.A. (1988). Computer Models of Mind. Cambridge: Cambridge
University Press.

Boden, M.A. (Ed.) (1990). The Philosophy of Artificial Intelligence. Oxford:
OUP. Oxford Readings in Philosophy.

Bolliet, L. (1968). 	Compiler Writing Techniques. In Genuys, F. (Ed.)
Programming Languages. London: Academic Press, 113-289.

Boolos, G.S. & Jeffrey, R.C. (1989). Computability and Logic. Third Edition,
Cambridge: Cambridge University Press.

Borland (1985). Turbo Pascal Version 3.0. Reference Manual. Scotts Valley, CA
: Borland International Inc.

Borland (1991). Turbo Assembler Version 2.5 User's Guide. Scotts Valley, CA:
Borland International Inc.

Bowden, B.V. (Ed.) (1953). Faster than Thought. A symposium on Digital
Computing Machines. London: Pitman.

Brand, M. & Harnish, R.M. (1986). The Representation of Knowledge and Belief
Tucson: The University of Arizona Press.

Broadbent, D. (1985). A Question of Levels: Comment on McClelland and
Rumelhart. Journal of Experimental Psychology: General, 114(2), 189-192.

Brooks, R.A. (1990). Elephants Don't Play Chess. Robotics and Autonomous
Systems, 6, 3-15.

Brooks, R.A. (1991) . Intelligence without representation. Artificial Intelligence,
47, 139-159.

Bundy, A. Ed. (1984). Catalogue of Artificial Intelligence Tools. Berlin: Springer-
Verlag.

Burks, A.W. (1966). Editor's Introduction to Von Neumann (1966).
Burks, A.W., Goldstine, H.H., & von Neumann, J. (1947). Preliminary

Discussion of the Logical Design of an Electronic Computing Instrument.
Reprinted in Aspray, W. & Burks, A. (Eds.) (1987).

Carpenter, B.E. & Doran, R.W. (1977). The Other Turing Machine. Computer
Journal, 20(3), 269-279.

Carpenter, B.E. & Doran, R.W. (Eds.) (1986). A.M. Turing's ACE Report of 1946
and Other Papers. Vol. 10 in the Charles Babbage Institute Reprint Series
for the History of Computing. Cambridge, MA: MIT Press.

Changeux, J-P., & Dehaene, S. (1989). Neuronal models of cognitive functions.
Cognition, 33, 63-109.

Chater, N. (1991). Learning to respond to structure in time. Paper given at the
British Psychological Society Annual Conference, Bournemouth, April 1991.

Church, A. (1936). An Unsolvable Problem of Elementary Number Theory. The
American Journal of Mathematics, 58, 345-363. Reprinted in Davis (1965),
pps. 89-107

Churchland, P.M. (1989). A Neurocomputational Perspective. The Nature of Mind

246

and the Structure of Science. Cambridge, MA: MIT Press.
Churchland, P.S. (1986). Neurophilosophy : Toward a Unified Science of the

Mind Brain. Cambridge Massachusetts : The MIT Press, A Bradford Book.
Clark, A. (1989). Microcognition: Philosophy, Cognitive Science, and Parallel

Distributed Processing. Cambridge, MA: MIT Press. A Bradford Book.
Clark, A. (1993). Associative Engines. 	Connectionism, Concepts, and

Representational Change. Cambridge, MA: MIT Press.
Clark, A. & Karmiloff-Smith, A. (1990). The Cognizer's Innards: A psychological

and philosophical perspective on the development of thought. Manuscript.
Cleeremans, A. (1993) . Mechanisms of Implicit Learning. Connectionist Models

of Sequence Processing. Cambridge, MA: MIT Press.
Clocksin, W.F. & Mellish, C.S. (1984). Programming in Prolog. Second Edition.

Springer-Verlag.
Conrad, M. (1974). Molecular Information Processing in the Central Nervous

System. Part I: Selection Circuits in the Brain. In Conrad, M., Göttinger,
W., & Dal Cin, M. (Eds.) Physics and Mathematics of the Nervous System.
Berlin: Springer-Verlag, 82-107.

Conrad, M. (1985). 	On design principles for a molecular computer.
Communications of the Association for Computing Machinery, 28(5), 464-
480.

Conrad, M. (1988). The Price of Programmability. In Herken, R. (Ed.) The
Universal Turing Machine. A Half Century Survey. Oxford: Oxford
University Press, 285-307.

Cooper, R. & Franks, B. (1993). Interruptibility as a constraint on hybrid systems.
Minds and Machines, 3, 73-96.

Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped
how humans reason? Studies with the Wason selection task. Cognition, 31,
187-276.

Cotman, C.W. & Lynch, G.S. (1989). The neurobiology of learning and memory.
Cognition, 33, 201-241.

Cotterill, R.M.J. (Ed.) (1988). Computer simulation in brain science. Cambridge,
Cambridge University Press.

Craik, F.I.M., & Lockhart, R.S. (1972). Levels of processing: A framework for
memory research. Journal of Verbal Learning and Verbal Behavior, 11,
671-684.

Craik, K.J.W. (1943). The Nature of Explanation. Cambridge: Cambridge
University Press.

Craik, K.J.W. (1966). The Nature of Psychology. Writings by the Late Kenneth
Craik. Ed. S.L. Sherwood. Cambridge: Cambridge University Press.

Crawford, J.H. & Gelsinger, P.P. (1987). Programming the 80386. Alameda CA:
Sybex Inc.

Cripps, M. (1977). An Introduction to Computer Hardware. London: Edward
Arnold.

Cummins, R. (1989). Meaning and Mental Representation. Cambridge MA : MIT
Press, A Bradford Book.

Damasio, A.R. (1989). Time-locked mulitregional retroactivation: A systems-level
proposal for the neural substrates of recall and recognition. Cognition, 33,

247

25-62.
Davidson, D. (1981). The Material Mind. Chapter 12 in Haugeland (1981).
Davies, M. Connectionism, modularity, and tacit knowledge. British Journal for

the Philosophy of Science, 40, 541-555.
Davis, M. (1965). The Undecidable. Basic Papers on Undecidable Propositions,

Unsolvable Problems and Computable Functions. New York: Raven Press
Books Ltd.

Davis, M. (1988a). Mathematical Logic and the Origin of Modern Computers. In
Herken (1988), pp.149-174.

Davis, M. (1988b). Influences of Mathematical Logic on Computer Science. In
Herken (1988), pp.315-326.

Dennett, D.C. (1978). Brainstorms: Philosophical Essays on Mind and Psychology.
Hassocks, Sussex : Harvester Press.

Dennett, D.C. (1984). Cognitive wheels: the frame problem of AI. In Hookway,
C. (Ed.). Minds, Machines and Evolution. Cambridge, CUP. pps. 129-
151.

Dennett, D.C. (1986). The Logical Geography of Computational Approaches: A
View from the East Pole. In Brand & Harnish, Eds. (1986), pp. 59-79.

Dennett, D.C. (1987). The intentional Stance. Cambridge, MA: MET Press. A
Bradford Book.

Dijkstra, E.W. (1987). The Humble Programmer. 1972 ACM Turing Award
Lecture. Reprinted in ACM Turing Award Lectures. The First Twenty
Years, pp.17-32. Addison-Wesley Publishing Company.

Douglas, R.J., & Martin, K.A.C., (1990). Neocortex. In G.M. Shepherd (Ed.)
The Synaptic Organization of the Brain. Third Edition, Oxford: Oxford
University Press, 389-438.

Eckmiller, R. & von der Malsburg, C. (Eds.) (1989). Neural Computers. Berlin:
Springer-Verlag.

Edelman, G.M. (1989). Neural Darwinism. THe Theory of Neuronal Group
Selection. Oxford: Oxford University Press.

Eimas, P.D., Miller, J.L., & Jusczyk, P.W. (1987). On infant speech perception
and the acquisition of language. In S. Hamad (Ed.) Categorical Perception.
The groundwork of cognition. Cambridge: Cambridge University Press,
161-195.

Elman, J.E. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-
211.

Fahlman, S.E. (1979) . NETL: A System for Representing and Using Real-World
Knowledge. Cambridge, MA: MIT Press.

Farmer, J.D. (1990). A Rosetta Stone for Connectionism. Physica D, 42, 153-
187.

Feigenbaum, E.A., & Feldman, J. (Eds.) (1963). Computers and Thought. New
York: McGraw-Hill Book Company.

Feldman, J.A. & Ballard, D.H. (1982). Connectionist Models and Their
Properties. Cognitive Science, 6, 205-254.

Fodor, J.A. (1975). The Language of Thought. Hassocks, Sussex: The Harvester
Press.

Fodor, J.A. (1980). Methodological Solipsism Considered as a Research Strategy

248

in Cognitive Psychology. The Behavioral and Brain Sciences, 3, 63-109.
Reprinted in Haugeland (1981), pp. 307-338.

Fodor, J.A. (1981). Some notes on What Linguistics is About. Introduction to
Part Three of Block (1981).

Fodor, J.A. (1983). The Modularity of Mind. An Essay on Faculty Psychology.
Cambridge, MA: MIT Press. A Bradford Book.

Fodor, J.A. (1985). Fodor's Guide to Mental Representation: The Intelligent
Auntie's Vade-Mecum. Mind, 94, 76-100. Reprinted in Fodor, J.A.
(1990). A Theory of Content and Other Essays. Cambridge, MA: MIT
Press, 3-29.

Fodor, J.A. (1987). Psychosemantics. The Problem of Meaning in the Philosophy
of Mind. Cambridge, MA: MIT Press. A Bradford Book.

Fodor, J.A. & Pylyshyn, Z.W. (1981). How direct is visual perception?: Some
reflections on Gibson's "Ecological Approach" . Cognition, 9, 139-196.

Fodor, J.A. & Pylyshyn, Z.W. (1988). Connectionism and cognitive architecture:
A critical analysis. Cognition, 28, 3-71.

Foster, C.L. (1990). Algorithms, Abstraction and Implementation: A Massively
Multilevel Theory of Strong Equivalence of Complex Systems. Ph.D.
University of Edinburgh.

Fox, G.C. & Messina, P.A. (1987). Advanced Computer Architectures. Scientific
American, 257(4), 45-52.

Freyd, J.J. (1983). Representing the dynamics of a static form. Memory and
Cognition, 11(4), 342-346.

Freyd, J.J. (1987). Dynamic Mental Representations. Psychological Review,
94(4), 427-438.

Frost, R.A. (1986). Introduction to Knowledge Base Systems. London: Collins.
Gandy, R. (1980). Church's Thesis and Principles for Mechanisms. In Barwise,

J., Keisler, H.J., & Kunen, K. (Eds), The Kleene Symposium. Amsterdam:
North-Holland Publishing Company, 123-148.

Gandy, R. (1988). The Confluence of Ideas in 1936. In Herken (1988), pp. 55-
111.

Gardner, H. (1985). The Mind's New Science. A History of the Cognitive
Revolution. New York: Basic Books. Issued in paperback with an epilogue
by the author, 1987.

Gelernter, D. (1987). Programming for Advanced Computing. Scientific
American, 257(4), 65-71.

Gibson, E.J., & Walk, R.D. (1960). The "visual cliff". Scientific American, 202,
64-71.

Gibson, J.J. (1986/1979). The Ecological Approach to Visual Perception.
Hillsdale, NJ: Lawrence Eribaum Associates. Originally published in 1979.

Godden, D.R., & Baddeley, A.D. (1975). Context-dependent memory in two
natural environments: On land and under water. British Journal of
Psychology, 66, 325-331.

Goldstine, H.H. (1972). The Computer from Pascal to von Neumann. Princeton,
NJ: Princeton University Press.

Greenbaum, A. (1989). Synchronization costs on multiprocessors. Parallel
Computing, 10, 3-14.

249

Grossberg, S. (1987). Competitive Learning: From Interactive Activation to
Adaptive Resonance. Cognitive Science, 11, 23-63. Reprinted in Grossberg
(1988, pp.213-250).

Grossberg, S. (1988). Ed. Neural Networks and Natural Intelligence. Cambridge,
MA: MIT Press.

Hack, J.J. (1989). On the promise of general-purpose parallel computing. Parallel
Computing, 10, 261-275.

Hanson, S.J. & Burr, D.J. (1990). What connectionist models learn: Learning and
representation in connectionist networks. Behavioral and Brain Sciences,
13(3), 471-518.

Hamad, S. (Ed.) (1987). Categorical Perception. The Groundwork of Cognition.
Cambridge: CUP.

Hamad, S. (1990). The Symbol Grounding Problem. Physica D, 42, 335-346.
Haugeland, J. Ed. (1981). Mind Design: Philosophy, Psychology, Artifical

Intelligence. Cambridge MA: MIT Press, A Bradford Book.
Haugeland, J. (1985). Artificial Intelligence: The Very Idea. Cambridge, MA:

MIT Press, A Bradford Book.
Hawthorne, J. (1989). On the Compatibility of Connectionist and Classical Models.

Philosophical Psychology, 2(1), 5-15.
Hendriks-Jansen, H. (1994). Brain-Models, Mind-Modesl and Models of Situated

Behaviour. AISB Quarterly, 87, 29-35.
Herken, R. Ed. (1988). The Universal Turing Machine A Half-Century Survey.

Oxford: Oxford University Press.
Hillis, W.D. (1985). The Connection Machine. Cambridge, MA: MIT Press.
Hinton, G.E. & Sejnowski, T.J. (1986). Learning and Relearning in Boltzmann

Machines. In Rumelhart, McClelland & the PDP Research Group (1986),
Ch.7.

Hitachi (1984). Hitachi 8-Bit - 16-Bit Microprocessor and Peripheral Data Book.
Catalog No. D88/16 MC 8404. Hitachi (UK) Ltd.

Hitachi (no date). Hitachi IC Memory Data Book. DBICM/8404. Hitachi (UK)
Ltd.

Hoare, C.A.R. (1985). Communicating Sequential Processes. London: Prentice-
Hall International, UK, Ltd.

Hochberg, J. (1968). In the Mind's Eye. In Haber, R.N. (Ed.) Contemporary
Theory and Research in Visual Perception. London: Holt, Rinehart &
Winston.

Hockney, R.W. & Jesshope, C.R. (1988). Parallel Computers 2. Architecture,
Programming and Algorithms. Bristol, Adam Eiger.

Hodges, A. (1983). Alan Turing: The Enigma. London: Vintage Books.
Hodges, A. (1988). Alan Turing and the Turing Machine. In Herken (1988), Part

1 , pp.3-15.
Holland, J.H., Holyoak, K.J., Nisbett, R.E. & Thagard, P.R. (1987). Induction:

Processes of Inference, Learning, and Discovery. Cambridge, MA: MIT
Press.

Horel, J.A. (1979). Lost Maps and Memories. Commentary on O'Keefe & Nadel:
Hippocampus as cognitive map. Behavioral and Brain Sciences, 2(4), 506-
507.

250

Hughes, G.E. & Cresswell, M.J. (1968). An Introduction to Modal Logic.
London: Methuen.

Jackendoff, R. (1976). Toward an Explanatory Semantic Representation.
Linguistic Inquiry, 7(1), 89-150.

Jackendoff, R. (1978). Grammar as Evidence for Conceptual Structure. In Halle,
M., Bresnan, J., & Miller, G.A. (Eds.) Linguistic Theory and
Psychological Reality. Cambridge, MA: MIT Press, 201-228.

Jackendoff, R. (1983). Semantics and Cognition. Cambridge, MA: MIT Press.
Jackendoff, R. (1987). Consciousness and the Computational Mind. Cambridge

Massachusetts : The MIT Press, A Bradford Book.
Jensen, K. & Wirth, N. (1974). PASCAL: User Manual and Report. Second

Edition. Berlin: Springer-Verlag.
Johnson, M.H., & Morton, J. (1991). Biology and cognitive development: The case

of face recognition. Oxford: Basil Blackwell.
Johnson, S.C. (1975) . YACC - yet another compiler compiler. Computing Science

Technical Report 32, Murray Hill, NJ: AT&T Bell Laboratories.
Johnson-Laird, P.N. (1983). Mental Models : Towards a Cognitive Science of

Language, Inference, and Consciousness. Cambridge : Cambridge
University Press.

Jordan, M.I. (1986). Attractor dynamics and parallelism in a connectionist
sequential machine. In Proceedings of the Eighth Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates.

Kaelbling, L.P., & Rosenschein, S.J. (1990). Action and Planning in Embedded
Agents. Robots and Autonomous Systems, 6, 35-48.

Karmiloff-Smith, A. (1992). Beyond Modularity. A Developmental Perspective on
Cognitive Science. Cambridge, MA: MIT Press.

Kelly, P. (1989). Functional Programming for Loosely-Coupled Multiprocessors.
Research Monographs in Parallel and Distributed Computing. London:
Pitman.

Kirk, R. (1986). Mental Machinery and Gödel. Synthese, 66, 437-452.
Knuth, D.E. (1973). The Art of Computer Programming. Volume One:

Fundamental Algorithms. 2nd. Edition. Reading MA : Addison- Wesley.
Knuth, D.E. & Pardo, L.T. (1980). The Early Development of Programming

Languages. In Metropolis, Howlett, & Rota (Eds.) (1980).
Kohonen, T. (1988). Self-Organization and Associative Memory. Second Edition.

Berlin: Springer-Verlag.
Krellenstein, M. (1987). A Reply to "Parallel Computation and the Mind-Body

Problem". Cognitive Science, 11, 155-157.
Kuffler, S.W., Nicholls, J.G. & Martin, A.R. (1984). From Neuron to Brain. A

Cellular Approach to the Function of the Nervous System. 2nd. Edition.
Sunderland, MA: Sinauer Associates Inc.

Larson, J. , Wong, D. , & Lynch, G. (1986). Patterned stimulation at the theta
frequency is optimal for induction of long-term potentation. Brain Research,
368, 7-35.

Lee, C.Y. (1963). A Turing Machine which prints its own code script.
Proceedings of the Symposium on Mathematical Theory of Automata,
Brooklyn, NY: Polytechnic Press of the Polytechnic Institute of Brooklyn,

251

155-164
Leslie, A.M. (1987). Pretense and Representation: The Origins of "Theory of

Mind". Psychological Review, 94(4), 412-426.
Leventhal, L.A. (1979). 6502 Assembly Language Programming. Berkeley, CA

: Osborne/McGraw-Hill.
Lewis, H.R. & Papadimitriou, C.H. (1981). Elements of the Theory of

Computation. Englewood Cliffs, NJ : Prentice-Hall Inc.
Lipschutz, S. (1976). Schaum's Outline of Theory and Problems of Discrete

Mathematics. London: McGraw-Hill Book Company.
Lockwood, M. (1989). Mind, Brain and the Quantum. The Compound 'I'.

Oxford: Basil Blackwell.
Longuet-Higgins, H.C. (1987). Mental Processes. Studies in Cognitive Science.

Cambridge, MA: MIT Press. A Bradford Book.
Mahowald, M.A. & Mead, C. (1991). The Silicon Retina. Scientific American,

264(5), 40-46.
Mandler, J.M., & Bauer, P.J. (1988). The cradle of categorization: Is the basic

level basic? Cognitive Development, 3, 247-264.
Marr, D. (1982). Vision : A Computational Investigation into the Human

Representation and Processing of Visual Information. San Francisco : W.H.
Freeman & Co.

Maurer, D. (1985). Infants' perception of facedness. In T. Fields & N. Fox,
(Eds.), Social Perception in infants. Norwood, NJ: Ablex, 73-100.

McClelland, J.L., Rumelhart, D.E. & the PDP Research Group, (1986). Parallel
Distributed Processing. Explorations in the Microstructure of Cognition.
Volume 2: Psychological and Biological Models. Cambridge, MA: MIT
Press. A Bradford Book.

McCormick, D.A. (1990). Membrane Properties and Neurotransmitter Actions.
In G.M. Shepherd, (Ed.), The Synaptic Organization of the Brain. Third
Edition. Oxford: Oxford University Press.

McCulloch, W.S. (1965). Embodiments of Mind. Cambridge, MA: MIT Press.
McCulloch, W.S. & Pitts, W.H. (1943). A Logical Calculus of the Ideas

Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, (5),
115-133. Reprinted in Boden (1990), pp.22-39.

Mead, C. (1989). Analog VLSI and Neural Systems. Reading MA: Addison-
Wesley Publishing Company.

Mead, G.H. (1934). Mind, Self, and Society from the Standpoint of a Social
Behaviorist. Edited with an introduction by Charles W. Morris, Chicago:
University of Chicago Press.

Mehler, J. & Fox, R. (Eds.) (1985). Neonate Cognition: Beyond the Blooming
Buzzing Confusion. Hillsdale, NJ : Lawrence Erlbaum Associates.

Metropolis, N., Howlett, J., & Rota, Gian-Carlo (Eds.) (1980). A History of
Computing in the Twentieth Century. A collection of essays. New York:
Academic Press.

Meyer, B. (1988). Object-Oriented Software Construction. London: Prentice-Hall
International (UK) Ltd.

Miller, G.A., Galanter, E., & Pribram, K.H. (1960). Plans and the Structure of
Behavior. Holt, Rinehart and Winston, Inc.

252

Milner, R. (1989). Communication and Concurrency. London: Prentice Hall.
Minsky, M.L. (1967). Computation: Finite and Infinite Machines. New Jersey:

Prentice-Hall Inc.
Minsky, M.L. & Papert, S.A. (1969,1988). Perceptrons. An Introduction to

Computational Geometry. First Edition 1969, Expanded Edition 1988.
Cambridge, MA : MIT Press.

Moore, W.R. (1989). Conventional Fault-Tolerance and Neural Computers. In
Eckmiller & von der Malsburg (1989) pp.29-37.

Morse, S.P. (1982). The 8086/8088 Primer. An Introduction to Their Architecture,
System Design, and Programming. Second Edition. Rochelle Park, NJ:
Hayden Book Co. Inc.

Morton, J., & Johnson, M.H. (1991). CONSPEC and CONLERN: A two-process
theory of infant face recognition. Psychological Review, 98, 164-181.

Mozer, M.C. & Smolensky, P. (1989). Using Relevance to Reduce Network Size
Automatically. Connection Science, 1(1), 3-16.

Nadel, L., Cooper, L.A., Culicover, P., & Harnish, R.M. (Eds.) (1989). Neural
Connections, Mental Computation. Cambridge, MA: MIT Press. A
Bradford Book.

Nadel, L., Winner, J., & Kurz, E. (1986). The Neurobiology of Mental
Representation. In M. Brand & R.M. Harnish, Eds. (1986), The
Representation of Knowledge and Belief. Tucson: The University of Arizona
Press.pp. 219-257.

Neisser, U. (Ed.) (1987). Concepts and conceptual development. Ecological and
intellectual factors in categorization. Cambridge: Cambridge University
Press.

Nelson, R.J. (1987). Machine models for Cognitive Science. Philosophy of
Science, 54, 391-408.

Nelson, R.J. (1989). The Logic of Mind. 2nd. Edition. Amsterdam: Kluwer
Academic Publishers.

Newell, A. (1980). Physical Symbol Systems. Cognitive Science, 4, 135-183.
Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18, 87-127.
Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard

University Press.
Newell, A., Shaw, J.C., & Simon, H.A. (1958). Elements of a Theory of Human

Problem Solving. Psychological Review„ 65(3), 151-166.
Newell, A. & Simon, H.A. (1972). Human Problem Solving. Englewood Cliffs,

NJ: Prentice-Hall.
Newell, A. & Simon, H.A. (1976). Computer Science as Empirical Inquiry:

Symbols and Search. Communications of the Association for Computing
Machinery, 19, 113-126. Reprinted in Haugeland (1981, pp.35-66).

Nilsson, N.J. (1982). Principles of Artificial Intelligence. Berlin : Springer-
Verlag.

Norman, D.A. (1986). Reflections on Cognition and Parallel Distributed
Processing. In J.L. McClelland, D.E. Rumelhart & the PDP Research
Group, (1986). Parallel Distributed Processing. Explorations in the
Microstructure of Cognition. Volume 2: Psychological and Biological
Models. Cambridge, MA: MIT Press, 531-546.

253

Norris, D. (1991). The constraints on connectionism. The Psychologist, 4(7), 293-
296.

O'Keefe, J. (1989). Computations the hippocampus might perform. In Nadel, L.,
Cooper, L.A. , Culicover, P. , & Harnish, R.M. (Eds.) Neural Connections,
Mental Computation. Cambridge, MA: MIT Press, 225-284.

O'Keefe, J. & Nadel, L (1979) . Multiple book review of J. O'Keefe and L. Nadel.
The Hippocampus as a cognitive map. The Behavioral and Brain Sciences,
2(4), 487-533.

Patton, P.C. (1985). Multiprocessors: Architecture and Applications. Computer,
18(6), 29-40.

Pellionisz, A.J. (1988). Vistas from tensor network theory: a horizon from
reductionalist neurophilosophy to the geometry of multi-unit recordings. In
Cotterill (1988), pp.44-73.

Penrose, R. (1990). The Emperor's New Mind. Concerning Computers, Minds and
the Laws of Physics. Oxford: OUP 1989. Vintage paperback edition 1990.

Pinker, S. (1994) . The Language Instinct. The New Science of Language and
Mind. London: Allen Lane, The Penguin Press.

Pinker, S., & Mehler, J. (1988). Guest Editors' Introduction. Cognition, 28, 1-2.
Pinker, S. & Prince, A. (1988). On language and connectionism: Analysis of a

parallel distributed processing model of language acquisition. Cognition, 28,
73-193.

Posner, M. (Ed.) (1989). Foundations of Cognitive Science. Cambridge, MA:
MIT Press. A Bradford Book.

Post, E.L. (1936). Finite Combinatory Processes. Formulation I. Journal of
Symbolic Logic, (1), 103-105. Reprinted in Davis (1965,pp.289-291).

Post, E.L. (1947). Recursive Unsolvability of a Problem of Thue. Journal of
Symbolic Logic, (12), 1-11. Reprinted in Davis (1965, pp.293-303).

Pratt, T.W. (1984). Programming Languages: Design and Implementation. Second
Edition. Englewood Cliffs, NJ: Prentice-Hall Inc.

Premack, D. (1991). The Infant's Theory of Self-Propelled Objects. In D. Frye
& C. Moore (Eds.) Children's Theories of Mind. Mental States and Social
Understanding. Hillsdale, NJ: Lawrence Erlbaum Associates, 39-48.

Putnam, H. (1960). Minds and Machines. In Putnam (1975) pp.362-385.
Putnam, H. (1967). The Mental Life of Some Machines. In Putnam (1975),

pp.408-428.
Putnam, H. (1973). Philosophy and our Mental Life. In Putnam (1975), pp.291-

303.
Putnam, H. (1975). Mind, Language and Reality. Philosophical Papers. Volume

2. Cambridge: Cambridge University Press.
Putnam, H. (1988). Representation and Reality. Cambridge, MA: MIT Press.
Pylyshyn, Z.W. (1980). Computation and cognition: Issues in the foundation of

cognitive science. The Behavioral and Brain Sciences, 3(1), 111-169.
Pylyshyn, Z.W. (1984). Computation and Cognition: Toward a Foundation for

Cognitive Science. Cambridge, MA. : MIT Press.
Pylyshyn, Z.W. (1989). Computing in Cognitive Science. Chapter 2 in Posner

(Ed.) (1989).
Ramsey, W.M. (1989). Parallelism and Functionalism. Cognitive Science, 13,

254

139-144.
Randell, B. (Ed.) (1973). The Origins of Digital Computers. Selected Papers.

New York, Springer-Verlag.
Renwick, W. (1950). The E.D.S.A.C. Demonstration. Report of a Conference on

High Speed Automatic Calculating Machines. Cambridge, University
Mathematical Laboratory. Reprinted in Williams & Campbell-Kelly (Eds.)
(1989), pps. 21-26.

Rosen, S. (1969). Electronic Computers: A Historical Survey. Computing Surveys,
1(1), 7-36.

Rosenblatt, F. (1962). Principles of Neurodynamics. Washington: Spartan Books.

Rosenschein, S.J. (1985). Formal Theories of Knowledge in Al and Robotics.
New Generation Computing, 3(4), 345-357.

Rumelhart, D.E., Hinton, G.E. & McClelland, J.L. (1986). A General Framework
for Parallel Distributed Processing. Chapter 2 in Rumelhart, McClelland et
al. (1986).

Rumelhart, D.E., Hinton, G.E. & Williams R.J. (1986) Learning Internal
Representations by Error Propagation. Chapter 8 in Rumelhart, McClelland
et. al. (1986).

Rumelhart, D.E. & McClelland, J.L. (1985). Levels Indeed! A Response to
Broadbent. Journal of Experimental Psychology: General, 114(2), 193-197.

Rumelhart, D.E., McClelland, J.L. , & the PDP Research Group (1986) . Parallel
Distributed Processing. Explorations in the Microstructure of Cognition.
Volume I: Foundations. Cambridge, MA: MIT Press, A Bradford Book.

Sammet, J.E. (1969). Programming Languages: History and Fundamentals.
Englewood Cliffs, NJ: Prentice-Hall Inc.

Schnelle, H. (1988). Turing Naturalized: Von Neumann's Unfinished Project. In
Herken (1988), pp. 539-559.

Servan-Schreiber, D., Cleeremans, A., & McClelland, J.L. (1989). Learning
sequential structure in simple recurrent networks. In D.S. Touretzky (Ed.)
Advances in Neural Information Processing Systems 1. San Mateo, CA:
Morgan Kaufman, 643-652.

Shallice, T. (1988). From Neuropsychology to Mental Structure. Cambridge:
Cambridge University Press.

Sharp, J.A. (1985). Data Flow Computing. Chichester: Ellis Horwood Ltd.
Shepard, R.N. (1989). Internal Representation of Universal Regularities: A

Challenge for Connectionism. In Nadel et. al. (Eds.) (1989), pps. 104-134.
Shepherdson, J.C. (1975). Computation over Abstract Structures: Serial and

Parallel Procedures and Friedman's Effective Definitional Schemes. Logic
Colloquium '73 (Eds. H.E. Rose, & J. C. Shepherdson. Amsterdam: North-
Holland Publishing Co., 445-513.

Shepherdson, J.C. (1988). Mechanisms for Computing over Arbitrary Structures.
In Herken, R. (Ed.) The Universal Turing Machine. A Half Century Survey.
Oxford, OUP., 581-601.

Siewiorek, D.P., Bell, C.G. & Newell, A. (1982). Computer Structures: Principles
and Examples. International Edition, McGraw-Hill Book Company.

Simpson, P.K. (1990). Artificial Neural Systems. Foundations, Paradigms,

255

Applications, and Implementations. New York: Pergamon Press.
Smith, . E.E., & Medin, D.L. (1981). Categories and Concepts. Cambridge, MA:

Harvard University Press.
Smith, S.M., Glenberg, A., & Bjork, R.A. (1978). Environmental context and

human memory. Memory and Cognition, 6, 342-353.
Smolensky, P. (1986). Neural and Conceptual Interpretation of PDP Models. In

J.L. McClelland, D.E. Rumelhart, and the PDP Research Group, Parallel
Distributed Processing. Explorations in the Microstructure of Cognition.
Volume 2: Psychological and Biological Models. Cambridge, MA: MIT
Press, 390-431. •

Smolensky, P. (1988). On the proper treatment of connectionism. The Behavioral
and Brain Sciences, 11, 1-74.

Smolensky, P. (1989). Connectionist Modeling: Neural Computation/Mental
Connections. In Nadel et. al. (1989), pp.49-67.

Smolensky, P. (1991). Connectionism, Constituency, and the Language of
Thought. In B. Loewer, & G. Rey (Eds) Meaning in Mind. Fodor and his
Critics. Oxford: Basil Blackwell, 201-227.

Spelke, E.S. (1985). Perception of Unity, Persistence, and Identity: Thoughts on
Infants' Conceptions of Objects. In Mehler & Fox (1985), Chapter 6,
pp.89-113.

Spelke, E.S. (1990). Principles of object perception. Cognitive Science, 14, 29-56.
Squire, L.R. (1979). The hippocampus, space, and human amnesia. Commentary

on O'Keefe & Nadel: Hippocampus as cognitive map. The Behavioral and
Brain Sciences, 2(4), 514-515.

Steele, G.L. Jnr. (1984). Common Lisp. The Language. Digital Press.
Stoffregen, T.A. & Riccio, G.E. (1988). An Ecological Theory of Orientation and

the Vestibular System. Psychological Review, 95(1), 3-14.
Tatar, D.G. (1987). A Programmer's Guide to COMMON LISP. Bedford MA:

Digital Press.
Taylor, J.G. (1989). Living neural nets. In Taylor & Mannion (1989), pp.31-52.
Taylor, J.G. & Mannion, C.L.T. (Eds.) (1989). New Developments in Neural

Computing. Bristol: Adam Hilger, IOP Publishing Ltd.
Taylor, S. (1989). Parallel Logic Programming Techniques. Englewood Cliffs,

NJ: Prentice-Hall International Inc.
Thagard, P. (1986). Parallel Computation and the Mind-Body Problem. Cognitive

Science, 10, 301-318.
Thagard, P. (1987). Reply to Krellenstein on Parallel Computation. Cognitive

Science, 11, 159-161.
Thatcher, J.W. (1963). The Construction of a Self-Describing Turing Machine.

Proceedings of the Symposium on Mathematical Theory of Automata,
Brooklyn, NY: Polytechnic Press of the Polytechnic Institute of Brooklyn,
165-171.

Thompson, J.M.T. & Stewart, H.B. (1986). Nonlinear Dynamics and Chaos.
Geometrical Methods for Engineers and Scientists. Chichester : John Wiley
and Sons.

Tulving, E. (1983). Elements of episodic memory. Oxford: Oxford University
Press.

256

Turing, A.M. (1936-7). On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
ser. 2, vol. 42, 230-265. Reprinted in Davis (1965) pp. 116-154.

Turing, A.M. (1939). Systems of Logic Based On Ordinals. Proceedings of the
London Mathematical Society, ser.2, vol.45, 161-228. Reprinted in Davis
(1965), pp.155-222.

Turing, A.M. (1946). Proposal for Development in the Mathematics Division of
an Automatic Computing Engine (ACE) . Reprinted in Carpenter & Doran
(Eds.) (1986), pps. 20-105.

Turing, A.M. (1947). Lecture to the London Mathematical Society on 20 February
1947. Reprinted in Carpenter & Doran (Eds) (1986), pps.106-124.

Turing, A.M. (1950). Computing Machinery and Intelligence. Mind, 59, 433-460.
Reprinted in Feigenbaum and Feldman (1963), pp.11-35, and in Boden
(1990), pps. 40-66.

von Foerster, H. (Ed.) (1952). Cybernetics. Circular Causal and Feedback
Mechanisms in Biological and Social Systems. Josiah Macy, Jr. Foundation.

von Neumann, J. (1945). First Draft of a Report on the EDVAC. Reprinted in
Aspray & Burks (1987). Sections 1 to 5 reprinted in Randell (1973), pp.355-
364.

von Neumann, J. (1951). The General and Logical Theory of Automata. Collected
Works, Volume 5, pp.288-328. Ed. A.H. Taub, (1963), New York :
MacMillan. Reprinted in von Neumann (1987), pps. 391-431.

von Neumann, J. (1956). Probabilistic Logics and the Synthesis of Reliable
Organisms From Unreliable Components. Collected Works, Volume 5,
pp.329-378. Ed. A.H. Taub, (1963), New York : MacMillan.

von Neumann, J. (1958). The Computer and the Brain. New Haven: Yale
University Press.

von Neumann, J. (1966). Theory of Self-Reproducing Automata. Edited and
completed by Arthur W. Burks. University of Illinois Press.

von Neumann, J. (1987). Papers of John von Neumann on Computing and
Computer Theory. (Eds.) Aspray, W. & Burks, A. Cambridge, MA: MIT
Press.

Vosniadou, S., & Ortony, A. (Eds.) (1989). Similarity and Analogical Reasoning.
Cambridge, Cambridge University Press.

Walsh, K.W. (1978). Neuropsychology. A clinical approach. Edinburgh:
Churchill Livingstone.

Wang, H. (1957). A Variant to Turing's Theory of Computing Machines. Journal
of the Association for Computing Machinery, 4, 63-92.

Wells, A.J. (1993). Parallel Architectures and Mental Computation. British
Journal for the Philosophy of Science, 44, 531-542.

Wiener, N. (1961). Cybernetics: or Control and Communication in the Animal and
the Machine. Second Edition. Cambridge, MA: MIT Press.

Wilensky, R. (1986). Common LISPcraft. New York: W.W. Norton & Company.
Wilkes, M.V. (1951). The Best Way to Design and Automatic Calculating

Machine. Manchester University Computer. Inaugural Conference.
Reprinted in Williams & Campbell-Kelly (1989), pps. 182-184.

Wilkes, M.V. & Renwick, W. (1950). The EDSAC. Report of a Conference on

257

High Speed Automatic Calculating Machines. Cambridge, University
. Mathematical Laboratory. Reprinted in Williams & Campbell-Kelly (Eds.)
(1989), pps. 16-20.

Wilks, Y. (1975). Putnam and Clarke and Mind and Body. British Journal for the
Philosophy of Science, 26, 213-225.

Williams, M.R. & Campbell-Kelly, M. (Eds.) (1989). The Early British Computer
Conferences. Vol. 14 in the Charles Babbage Institute Reprint Series for the
History of Computing. Cambridge, MA: MIT Press.

Woodger, M. (1958). The History and Present Use of Digital Computers at the
National Physical Laboratory. Reprinted in Carpenter & Doran (Eds.)
(1986), pps. 125-140.

eeki, S. (1993). A Vision of the Brain. Oxford: Blackwell Scientific Publications.
Zipser, D. (1986). Biologically Plausible Models of Place Recognition and Goal

Location. In McClelland, J.L., Rumelhart, D.E., & the PDP Research
Group. Parallel Distributed Processing. Explorations in the Microstructure
of Cognition. Volume 2: Psychological and Biological Models. Cambridge,
MA: MIT Press, 432-470.

