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Abstract
We propose a high-precision method for measuring the orbital angular
momentum (OAM) spectrum of ultra-broadband optical-vortex (OV) pulses
from fork-like interferograms between OV pulses and a reference plane-wave
pulse. It is based on spatial reconstruction of the electric fields of the pulses to be
measured from the frequency-resolved interference pattern. Our method is
demonstrated experimentally by obtaining the OAM spectra for different spec-
tral components of the OV pulses, enabling us to characterize the frequency
dispersion of the topological charge of the OAM spectrum by a simple
experimental setup. Retrieval is carried out in quasi-real time, allowing us to
investigate OAM spectra dynamically. Furthermore, we determine the relative
phases (including the sign) of the topological-charge-resolved electric-field
amplitudes, which are significant for evaluating OVs or OV pulses with arbi-
trarily superposed modes.
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1. Introduction

During the last decade, optical vortices (OVs) have been enthusiastically studied because of
interest in the spatial phase of an electromagnetic wave changing linearly, over its cross-section,
with the azimuthal angle ϕ around the beam center. This phase dependence leads to a phase
singularity in the center, where there is zero field [1]. The phase profile is characterized by a
factor of ϕ( )mexp i , where m indicates the orbital angular momentum (OAM) per photon [2].
Here, m, the topological charge, can be any integer value, providing a new degree of freedom in
phase control. The study of these unique properties of OVs has attracted enormous attention
because of increasing applications in many fields, such as optical trapping [3, 4] (especially,
trapping for atom Bose–Einstein condensates [5, 6]) or manipulation [7, 8], optical
telecommunications [9, 10], super-resolution microscopy [11–13], quantum information
processing [14, 15], nulling interferometry for extra-solar planet searches [16] and nonlinear
spectroscopy [17, 18].

Since preceding research mainly concentrated on the spatial field distribution of OVs, for
most cases temporally-continuous OVs have been used so far. In contrast, we have recently
demonstrated the generation of ultra-broadband OV pulses [19] and few-cycle ultrashort OV
pulses [20] for applications in ultra-broadband/ultrafast nonlinear spectroscopy and high-peak
power field interactions with matter.

The topological charge m describes the essential quantum character of OVs or OV
pulses as well as their phase distribution. However, in many cases, these features have been
so far investigated by observing fork-dislocation lines [21] or spiral patterns [22] in
interferograms, dark lines using a cylindrical lens [23]/a tilted convex lens [24], or triangular-
diffraction patterns [25]. Thus, while only the dominant topological charges have been
determined, the purity or distribution of topological charge has not been discussed. Computer-
generated holograms and spatial filtering has been utilized for obtaining OAM spectra mainly
for continuous OVs rather than for dominant topological charge [14]. However, this is not
suitable for ultra-broadband OV pulses because of inevitable angular dispersion from the
diffraction effect of holograms on spatial light modulators (SLMs). To avoid the problem of
this method for ultra-broadband OV pulses, one needs massive band-pass filters introduced in
front of the SLMs and the adjustment of wavelength-dependent spatial filtering owing to
spatial dispersion, which is far from practical. Hence, for OV pulses, the purity in its broad
spectral region and the frequency dispersion relation of the topological charge m have not
been quantitatively evaluated. For applications such as quantum information processing or
ultrafast nonlinear spectroscopy by ultrashort OV pulses [17], frequency-resolved measure-
ment of OAM spectrum and evaluation of topological-charge dispersion is crucial. In
addition, determining the relative phases between electric-field amplitudes of each m
component, which is important for evaluating OVs or OV pulses with arbitrarily superposed
modes [26–28], is also quite difficult with previous methods.

In the present paper, we demonstrate an interferometric method of measurement of the
OAM spectrum of ultra-broadband OV pulses based on field reconstruction by using the
spatial Fourier transform. Our new method overcomes the drawbacks, such as angular
dispersions for ultra-broadband pulses, of previous topological charge measurement
methods. It also enables quantitative evaluation of the frequency-resolved OAM spectra
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(distribution of topological charge as a function of frequency) and the measurement of
topological-charge dispersion for ultra-broadband OV pulses.

Our measurements are composed of two principal steps. The first one is based on
reconstruction of the field information (phase and amplitude) of the OV pulses to be
measured. After selection of a desired wavelength component sliced from the whole
spectral region of the OV pulses, it interferes with the correspondent tilted (quasi-) plane
wave, forming an interferogram where the field information of the OV pulses for this
spectral component is preserved. The field distribution can be reconstructed by Fourier-
transforming and filtering a certain part out of the two-dimensional spatial frequency
domain of the interferogram and performing an inverse Fourier transform of this part, as
referred to as Takedaʼs method [29]. Field reconstruction for observing the OV structure
has been previously done from many interference images with different phase offsets
between an OV and a plane wave [30]. In contrast, our electric-field reconstruction using
the spatial Fourier transform needs only one interference pattern between an OV and a
tilted plane wave.

Next, making use of the Fourier-relationship between the azimuthal angle ϕ and
topological charge m [31], we are able to obtain the OAM spectrum of the electric-field
amplitude as a function of the radial coordinate r as well as m, by projecting the
reconstructed field (in spatial coordinates: r and ϕ) onto the topological charge domain.
Here it is worth mentioning that, in particular, this step of our method enables the
evaluation of the relative phases (including the positive or negative sign) of topological-
charge-resolved electric-field amplitudes, which is difficult by the use of previous methods.
After squaring the absolute value of this OAM spectrum of electric-field amplitude for each
m, the power spectrum of the OAM for this spectral component of the OV pulses can
finally be obtained by integration of the squared absolute value with respect to r. By our
simple experimental setup, which is designed to control the selected position and bandwidth
in the whole spectral region of the input to form the interferogram, the frequency-resolved
OAM spectra of the OV pulses in the wavelength range are acquired as a function of
topological charge m and wavelength λ. Thus, the topological-charge dispersion can also be
obtained for each m from this three-dimensional spectrum (power spectrum as a function of
m and λ).

2. Proposed method

The complex electric field of the ultra-broadband Laguerre–Gaussian OV pulses, with the
superposition of modes of topological charges m and radial indices p (LGp

m modes),

propagating in z-direction, can be expressed by

∫ ∑ ∑ϕ ω ω ϕ ω ω ω= −
−∞

∞

=

∞

=−∞

∞ ⎡⎣ ⎤⎦{ }( ) ( ) ( ) ( )E r z t c u r z k z t, , , d , , , exp i , (1)
p m

m p m p
0

, ,

where ω( )cm p, represents a complex mode coefficient, r is the radius from the beam center, ϕ is

the azimuthal angle in the cross-section, t is the time, ω is the angular-frequency, and ω( )k is

the wave number as a function of ω. The function ϕ ω( )u r z, , ,m p, of a LG p
m mode is given by
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Parameters R(z) and w(z) denote the radius of curvature of wavefronts and the beam size for the
Gaussian mode ( = =p m 0) at a propagation distance z, as expressed by

= + = +( )( ) ( )R z z z z w z w z z, 1 , (4)R
2 2

0
2

R
2

with the Rayleigh range

=z kw 2. (5)R 0
2

The constant w0 is the beam waist. The parameter Φ ( )zG denotes the Gouy phase, which is
known to be an additional phase shift for a focused and propagated beam, differing from that for
a plane wave.

Φ Φ= + + ≡ + +( ) ( ) ( )( ) ( )z p m z p m z z2 1 2 1 arctan , (6)G R

where Φ ( )z is the fundamental Gouy phase for the Gaussian mode. Here, for simplicity, we use

the expressions Φ( ) ( ) ( )k R z w z w z z, , , , ,0 R and Φ ( )zG , although they are functions of ω.
Only for purpose of describing the principle of our proposed method, we use, for

convenience, a continuous wave (with a frequency of ω) by omitting the integration with
respect to ω in equation (1). So the electric field of the OV then becomes
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Here, we express ω( )cm p, by cm p, for simplicity. The OV interferes at a distance =z z0 with a

reference plane wave ϕ( )E r z t, , ,ref expressed by

ϕ ω α= − − +⎡⎣ ⎤⎦( )( )E r z t B k z k y t, , , exp i . (9)z yref 0 0 0
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This reference wave has a wave vector = −( )k kk 0, ,y z0 0 0 and the same frequency ω as in

equation (7), which is tilted by angle θ (angle between k0 and −y-axis). Here θ=k k cosz0 ,
θ=k k siny0 , y ϕ= r sin , α0 is the constant phase, and B is a constant amplitude. Setting

β α= − −( )k k zz0 0 0 0, the interferogram ϕ( )I r,interf after time-averaging becomes

∑ ∑

∑ ∑

ϕ

ϕ β

∝ +

+ + + +*

=

∞

=−∞

∞

=

∞

=−∞

∞ ⎡⎣ ⎤⎦
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2

0
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2

0
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where the symbol * denotes the complex conjugate. By two-dimensional Fourier transformation
into the spatial frequency domain of kx and ky, three peaks appear at ( =k 0x , = ±k ky y0 ) and

( =k 0x , =k 0y ). After filtering out only the peak appearing at ( =k 0x , =k ky y0 ), we apply

the inverse Fourier transformation to this term and obtain the + AC part of the interferogram
ϕ+ ( )I r,AC as

∑ ∑ϕ ϕ β∝ + +*
+

=

∞

=−∞

∞ ⎡⎣ ⎤⎦( )( ) ( )I r A r z B m k y, , exp i . (11)
p m

m p yAC
0

, 0 0 0

Here β
0
is constant, hence multiplying the value of −( )k yexp i y0 , which is only related to tilted

angle θ, on both sides of the equation (11), we find, by changing the dummy index m to ′m ,

∑ ∑ ∑ϕ ϕ ϕ− ∝ ′ ≡*
+

=
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∞
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∞
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p

pAC 0
0

, 0
0

Since B is a constant amplitude, the field ϕ∑ =
∞ ( )F r,
p p0

, proportional to the electric field of the

OV to be measured, is finally obtained as a function of r and ϕ.
For the next main step, we first compute a complex inner product ( )D rm between the

reconstructed field ϕ∑ =
∞ ( )F r,
p p0

and ϕ( )mexp i (m are integers from −16 to 15 in our analysis)

expressed by

∫∑
π

ϕ ϕ ϕ= −
π

=

∞

( ) ( ) ( )D r F r m
1

2
, exp i d , (13)m

p
p

0 0

2

which represents the OAM spectrum of the electric field. It should be noted that the present
method can retrieve both the topological-charge-resolved amplitude and phase of the OV.
Although the mode decomposition concerning indices p can be performed, we here focus only
OAM-resolution, that is a decomposition to m modes. Hence, we examine m-resolved electric
fields with the superposition of p modes. Simultaneous m- and p-mode decompositions will be
discussed elsewhere.

Next, we carry out the integration of ( )D rm
2 for each m with respect to r in order to obtain

the OAM power spectrum Sm for the OV expressed by equation (7), that is,
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∫π= ( )S D r r2 dr. (14)m
r

r

m
2

min

max

Here, the maximum radius rmax is selected to assure that the part containing field information is
included, and the minimum radius rmin is determined by interpolation.

For ultra-broadband pulses, Sm can be rewritten as ω( )Im as a function of topological
charge m and angular frequency ω, since this procedure of continuous OV involves obtaining
the OAM spectrum corresponding to a certain frequency in the broadband OV pulses described
by equations (1) and (2). By repeating the calculation above for various spectral components,
the frequency- or wavelength-resolved OAM spectra of OV pulses composed of the OAM
spectra at different angular frequencies or wavelengths are acquired.

3. Experimental setup

In our experiment, a mode-locked Ti:sapphire laser oscillator is used as a light source (center
wavelength: ∼800 nm, repetition rate: ∼80MHz). Femtosecond pulses from the oscillator are
focused into a photonic crystal fiber (PCF; core diameter μ2.3 m, length: ∼30 mm, zero-
dispersion wavelength: 790 nm) to broaden their spectra (bandwidth: ∼600–∼950 nm). As
shown in figure 1, a linearly-polarized ultra-broadband pulse from the PCF is split into two
pulses in separate arms by a beam splitter (BS1). One beam passes through a pair of achromatic
convex lenses with focal lengths of =f

1
200 and =f

2
100 mm, and its beam size shrinks by a

factor of 1/2. Then this beam is converted into ultra-broadband OV pulses, with nominal
topological charge of =m 2 and made up of a superposition of radial modes with indices p, by
the use of an ultra-broadband OV converter (composed of an axially-symmetric wave plate
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Figure 1. Schematic of the experimental setup for frequency-resolved measurement of
the orbital-angular momentum spectrum of ultra-broadband optical vortex pulses. PCF:
photonic crystal fiber, P1, 2: linear polarizers, BS1, 2: beam splitters, L1–L4:
achromatic convex lenses, M1–3: mirrors, AQWP1, 2: achromatic quarter-wave plates,
ASWP: axially-symmetric wave plate, G: grating, CM: concave mirror.



ASWP and two quarter-wave plates AQWP1 and 2), in a way identical to our previous work
[20]. The other beam is magnified by a pair of achromatic convex lenses (focal lengths =f

3

100 and =f
4

200 mm) by a factor of 2, for use as a reference quasi-plane wave in comparison
with the shrunk beam above. The two beams are interferometrically recombined by another
beam splitter (BS2), which can also control the interference angle (set to be ∼ °0.25 in the
present experiment) between these two arms.

Instead of using many band-pass filters to obtain interferograms at different wavelength
components, which is not practical for ultra-broadband pulses, here we introduce a reflective
grating G (groove density =N 235 mm−1) to convert different wavelengths to correspondent
spatial frequencies. We filter out a certain wavelength component by putting a width-adjusted
slit at the focal image plane of a concave mirror (radius of curvature = −R 500 mm) and by
rotating the grating G. By this experimental setup, only the desired component in the whole
spectrum is reflected back by a slightly-tilted mirror positioned accurately behind the slit to
form an interferogram which is detected by a charge-coupled device (CCD) camera. This
experimental setup realizes full control of the position and the bandwidth of the wavelength
range by allowing the adjustment of the slit width and rotation of the grating, which is essential
for frequency-resolved OAM measurements for ultra-broadband OV pulses. Moreover, we
incorporate a newly-built software that enables quasi-real-time measurement (acquisition and
processing rate is higher than −2 s 1 even for a high resolution camera with 2560 × 1920 pixels).
This enables the inspection of a calculated OAM spectrum dynamically and more reliably in
real-time, as shown below.

4. Results and discussion

Figure 2(a) shows the interferogram centered at 700 nm (bandwidth: ∼10 nm) between a
generated nominally-pure (m = 2) ultra-broadband OV pulse and a tilted quasi-plane-wave
pulse. The intensity and phase profiles, reconstructed by the procedure described in section 2,
are respectively shown in figures 2(b) and (c). We find that both the intensity and phase profiles
are clearly reconstructed, the former of which closely resembles the directly measured intensity
profile shown in figure 2(f). The retrieved intensity profile was compared with the directly
measured intensity profile by a CCD camera, giving a mean-squared error G of ∼ −10 4, as listed
in table 1. This indicates that our reconstruction is excellent. The mean-squared error (per-pixel
error) G is defined [32] by

∑∑= −
= =

( )G
NM

I I
1

(15)
i

N

j

M

ij ij
1 1

retr meas 2

where Iij
retr and Iij

meas are the retrieved and directly-measured intensity profiles (normalized to

have unity peak) at ( )i j, pixel ( = =N M2560, 1920), respectively. The error is considered to
be mainly due to the speckle in the directly measured intensity profile, which exhibits a more
sensitive dependence in this profile than in the interferogram. The reconstructed phase profile
shows the azimuthal phase dependence clearly with topological charge of =m 2.

From the reconstructed field, the OAM spectrum of the electric-field amplitude

∑ =
∞ ( )A r z,
p m p0 , 0 was calculated. Figure 2(d) denotes ∑ =

∞ ( )A r z,
p m p0 , 0 (a real number as a
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function of r) at ∼700 nm (its top view is plotted on the right side). This indicates that the
=m 2 azimuthal mode is dominant compared with the small side azimuthal modes. From the

fact that ∑ =
∞

= ( )A r z,
p m p0 2, 0 manifests oscillatory behavior in r-direction, the =m 2

azimuthal mode is further decomposed into a dominant p = 0 mode and residual ≠( )p 0
modes. The OAM power spectrum obtained by integration through the above-mentioned
procedure is presented in figure 2(e). The center position of the cylindrical polar coordinates
was carefully selected to minimize the variance of the OAM spectrum, which is also calculated
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Figure 2. (a) Captured interferogram between an OV pulse and a quasi-plane wave
pulse. (b) Reconstructed intensity and (c) phase profiles of the OV pulse, (d) computed

OAM spectrum of electric-field amplitude ∑ =
∞ ( )A r z,
p m p0 , 0 (right: contour plot) and

(e) evaluated OAM power spectrum centered at ∼700 nm. (f) Directly-measured
intensity profile corresponding to (b).



and displayed in our software in real time. This figure shows that the OV pulses to be measured
possess a topological charge of m = 2 with very high contrast. Even though the optical power
corresponding to contamination of m is below 1% compared with that of the dominant value of
m, it can still be measured by our method.

By rotating the grating G, the OAM spectra at other wavelengths were also measured.
Figures 3(a) and (e) show typical examples of interferograms of other spectral components
(centered at 800 and 900 nm, respectively; bandwidths ∼10 nm). As is often the cases with
interference patterns between OVs ( ⩾m 1) and plane waves, we find that a singularity with

=m 2 breaks into two singularities with m = 1. Even though a singularity breaks, electric-field
reconstruction is well performed, as indicated in figures 3(b), (c), (f) and (g). It should be noted
that the phase profiles reconstructed by our method clearly resolve the splitting of the
singularities, as shown in figures 3(c) and (g). The OAM spectra at 800 and 900 nm are
obtained as shown in figures 3(d) and (h), respectively, which are evaluated to be similar to that
at 700 nm in our case. Whereas they show that the =m 2 modes are dominant with small side
modes below 1%, the power ratios of the =m 0 modes to the =m 2 modes at 800 and 900 nm
are higher than that at 700 nm. These higher power ratios cause the splitting of the singularities.
The mean-squared errors G at 800 and 900 nm were evaluated to be ∼ −10 3 and ∼ −10 4,
respectively, as listed in table 1. These results confirm that our generated ultra-broadband OV
pulses possess a topological charge of =m 2 with considerably high contrast throughout their
whole spectral region.

In order to further assess and evaluate our method, we introduce mixed-type OV pulses as
inputs. The method we use here is spatially blocking half of the input OV pulses by a knife edge
lying exactly along a diameter of the OV pulses (nominally =m 2), generated as in the
previous step. Only the part with the π-range azimuthal angle of the pulse beam passes through
and forms the interferogram with a reference quasi-plane wave pulse. The half-blocked OV
pulse is no longer an eigenmode of the paraxial equation and the spatial window of azimuthal
angle broadens the OAM spectrum of the original OV pulses [31, 33].

Figure 4(a) shows the interferogram centered at 700 nm (bandwidth: ∼10 nm) of the
mixed-type ultra-broadband OV pulses (m centered at 2). The reconstructed intensity and phase
profiles are shown in figures 4(b) and (c), respectively. The results of half-blocked intensity and
phase profiles (to the left of the solid lines) are well-reconstructed, in comparison with those to
the left of the unblocked OV pulses shown in figures 2(b) and (c). The mean-squared error G
was evaluated to be ∼ −10 4, as listed in table 1, giving nearly half the value of the unblocked
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Table 1. Evaluated mean-squared errors G for retrieved results in the measured
wavelength range.

Center wavelength (nm) Error G

650 × −1.184 10 4

700 × −2.203 10 4

750 × −1.239 10 3

800 × −1.075 10 3

850 × −1.564 10 3

900 × −2.706 10 4

700 (half-cut) × −9.744 10 5



case, which is reasonable. This is because almost null intensity was recorded in the half-portion
of the measured region in the half-blocked case. Figure 4(d) shows the measured OAM power
spectrum, together with the theoretically calculated result. The theoretical results take into
consideration OAM spectral broadening (equivalently the diffraction effect) by half-blocking.
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Figure 3. (a) Captured interferogram, (b) reconstructed intensity and (c) phase profiles
of the OV pulse at ∼800 nm, together with (d) evaluated OAM power spectrum from
(a). (e) Captured interferogram, (f) reconstructed intensity and (g) phase profiles of the
OV pulse at ∼900 nm, together with (h) evaluated OAM power spectrum from (e).



The electric-field amplitude ∑ =
∞ ( )A r z,
p m p0 , 0 of mixed-type OV pulses is calculated from the

convolution between that of the pure OV pulses and the sinc function (the Fourier transform of
the unblocked window). The measured and calculated OAM power spectra in figure 4(d) well
agree with each other, indicating that our method is useful and powerful for resolving OAM
spectra of mixed-type ultra-broadband OV pulses as well as pure ultra-broadband OV pulses.
Figures 4(e) and (f) show the computed amplitudes and phases of OAM-resolved electric fields

∑ =
∞ ( )A r z,
p m p0 , 0 as functions of r (camera pixel number), respectively, for = −m 1, 1, 2, 3 and
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Figure 4. (a) Captured interferogram of a half-blocked OV pulse and a quasi-plane
wave pulse, (b) reconstructed intensity and (c) phase profiles of the half-blocked OV
pulse. Solid lines show the half-blocked boundary as a guide to the eye. (d) Measured
OAM spectrum from interferogram (a), together with theoretical calculation by taking
account of the diffraction effect, denoted by crosses. (e) The amplitudes and (f) the

phases of the OAM-resolved electric fields ∑ =
∞ ( )A r z,
p m p0 , 0 for = −m 1, 1, 2, 3 and 5,

as functions of r.



5 (dominant components of OAM power spectrum shown in figure 4(d)). In the r-region (∼15-
∼350) where the OAM-resolved amplitudes are large (the inner ring region of OAM-resolved
vortices), the phases are clearly well-defined, giving almost constant values (1.76, −1.32, 2.53,
0.157 and −0.466 rad for = −m 1, 1, 2, 3 and 5, respectively). To our knowledge, this
represents the first determination of the relative phases of OAM-resolved electric fields. This
capability is important for characterizing OVs or OV pulses with arbitrarily superposed modes,
for example fractional vortices [26, 27].

To analyze the frequency dispersion of OAM spectrum or topological-charge dispersion of
ultra-broadband OV pulses, which is crucial for the previously-mentioned applications using
OV pulses, we performed measurements of the frequency-resolved OAM spectrum ranging
from 650 to 900 nm. By continuously rotating the grating G (using a spectrometer in front of
the camera to simultaneously monitor the spectral information of an input), a series of
normalized OAM spectra for consecutive spectral components were attained from the
correspondent input interferograms. Figure 5(a) shows the measured frequency-resolved OAM
spectrum in this wavelength range (sampling wavelength-spacing is 50 nm) as a function of
topological charge m and wavelength λ of the OV pulses to be measured (also plotted in linear
and log scales with interpolation for wavelength, as shown in figures 5(b) and (c), respectively).
By slicing this spectrum with a m-constant plane, we are able to obtain the topological-charge
dispersion, that is, the topological charge m as a function of wavelength or frequency. From
figure 5, while topological-charge dispersion is sufficiently small in this case, our method, in
general, enables one to characterize topological-charge dispersion even with such small
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Figure 5. (a) Frequency-resolved OAM power spectrum from 650 to 900 nm. (b) and
(c) show its contour plots in linear and log scales, respectively.



dispersion. In addition, our results support the fact that our previously-reported methods
generating ultrashort or ultra-broadband OV pulses by using axially-symmetric polarizers or
waveplates [19, 20] are free from topological-charge dispersion.

5. Conclusion

In conclusion, we have proposed and demonstrated a high-precision interferometric electric-
field reconstruction method in the spatial domain, combined with frequency slicing, to obtain
the frequency-resolved OAM power spectrum (topological charge distribution) of femtosecond
ultra-broadband OV pulses (∼600 −∼950 nm). Our method is based on the spatial
reconstruction of the electric-fields of the pulses to be measured from the frequency-resolved
interference patterns. We experimentally applied this method to ultra-broadband OV pulses
with nominally-pure topological charge. It is found that the electric fields in the spatial domain
were reconstructed well, giving mean-squared errors of below ∼ −10 3 between the retrieved and
directly-measured beam intensity profiles. The obtained OAM spectra gave high precision
results, enabling us to even detect below 1% contamination. In our method, the retrieval
proceeds in quasi-real time, allowing us to investigate the OAM spectra dynamically.
Furthermore, the comparison with experimental and theoretical results (intensity/phase profiles
and OAM spectra) for a half-blocked OV pulse confirms the reliability of our method. To our
knowledge, this is the first demonstration of the determination of the relative phases of OAM-
resolved electric fields. This capability of relative-phase determination is important for
characterizing OVs or OV pulses with arbitrarily superposed modes. In addition, our method for
providing the OAM- and frequency-resolved spectra enables us to access the frequency
dispersion of the topological charge of the ultra-broadband OV pulses to be measured. Our
measurement method should also prove practically applicable in related fields of research and
application, such as ultrafast nonlinear spectroscopy and quantum information processing by
ultra-broadband OV pulses.
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