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Abstract 1 

 2 

Arbuscular mycorrhizal (AM) fungi that belong to the phylum Glomeromycota associate 3 

with most land plants and supply mineral nutrients to the host plants. One of the four viral 4 

segments found by deep-sequencing of dsRNA in the AM fungus Rhizophagus clarus strain 5 

RF1 showed similarity to mitoviruses and is characterized in this report. The genome 6 

segment is 2,895 nucleotides in length, and the largest ORF was predicted by applying either 7 

the mold mitochondrial or the universal genetic code. The ORF encodes a polypeptide of 820 8 

amino acids with a molecular mass of 91.2 kDa and conserves the domain of the mitovirus 9 

RdRp superfamily. Accordingly, the dsRNA was designated as R. clarus mitovirus 1 strain 10 

RF1 (RcMV1-RF1). Mitoviruses are localized exclusively in mitochondria and thus 11 

generally employ the mold mitochondrial genetic code. The distinct codon usage of 12 

RcMV1-RF1, however, suggests that the virus is potentially able to replicate not only in 13 

mitochondria but also in the cytoplasm. RcMV1-RF1 RdRp showed the highest similarity to 14 

the putative RdRp of a mitovirus-like ssRNA found in another AM fungus, followed by RdRp 15 

of a mitovirus in an ascomycotan ectomycorrhizal fungus. The three mitoviruses found in the 16 

three mycorrhizal fungi formed a deeply branching clade that is distinct from the two major 17 

clades in the genus Mitovirus.  18 
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Introduction 19 

 20 

Arbuscular mycorrhizal (AM) fungi that belong to the phylum Glomeromycota associate 21 

with most land plants and supply mineral nutrients, in particular phosphorus, to the host 22 

plants through extensive hyphal networks constructed in the soil [15]. The plant-AM fungal 23 

symbiosis occurred more than 400 million years ago, and the coincidence of the appearances 24 

of early land plants and AM associations suggests that the associations were instrumental in 25 

the colonization of land by plants [14]. Although AM fungi have been playing a significant 26 

role in terrestrial ecosystems via enhancing P-cycling in the soil, biological characteristics of 27 

the fungi have been poorly understood due to their obligate biotrophic nature. 28 

Members of the genus Mitovirus in the family Narnaviridae composed of a single 29 

genome segment of positive-sense RNA that encodes only RNA-dependent RNA 30 

polymerase (RdRp) [3]. Mitoviruses are localized exclusively in mitochondria of the host 31 

fungi, except for Thanatephorus cucumeris mitovirus that is potentially able to replicate 32 

both in the cytosol and mitochondria [6]. The infection of mitoviruses often causes 33 

malformation of mitochondria, which leads, in the case of plant pathogenic fungi, to 34 

debilitation in virulence [18] due to attenuation of mitochondrial function [12]. Accordingly, 35 

their possibility as a biological control agent has been studied extensively [1]. The impact of 36 

mitoviruses on AM symbiosis is also of interest, but no mitovirus has been described in the 37 

Glomeromycota so far. 38 
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One technical limitation for virological study in AM fungi was the difficulty in 39 

obtaining a sufficient amount of fungal material for characterization of viral genomes. We 40 

have established an open culture system for mass production of AM fungal mycelia and 41 

initiated virological studies of the fungi recently, in which four distinct dsRNA viruses, 42 

including a new class of virus, were described for the first time in the phylum [5]. In the 43 

present study, one dsRNA that was found to be similar to mitoviruses in the previous study 44 

is characterized with reference to the members of the genus Mitovirus. 45 

 46 

Provenance of the virus material 47 

 48 

Rhizophagus clarus (Nicolson & Schenck) Walker & Schüßler strain RF1 (= Glomus sp. 49 

strain RF1) MAFF520086 was isolated by plant trap culture of Petasites japonicus subsp. 50 

giganteus grown in acidic soil in Hokkaido, Japan in 2005 [5] and has been maintained with 51 

sorghum and groundnut grown in a greenhouse. To obtain fungal material, the strain was 52 

grown with seedlings of Lotus japonicus cv. Miyakojima in the mesh bag-separated open 53 

culture system [2], and dsRNA was extracted from extraradical mycelia, purified, and 54 

electrophoresed [5]. Four dsRNA segments observed in the gel were excised from the gel, 55 

purified, and randomly amplified using the anchored-N6 primer according to Márquez et al 56 

[7]. The amplicons were directly sequenced by Roche 454 FLX GS Titanium using a 57 

1/8-scale gasket, and assembled. Among contigs obtained in the sequencing, an ORF of a 58 
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2.5-kbp contig showed similarity to RNA-dependent RNA polymerase (RdRp) of mitoviruses. 59 

The nucleotide sequence of the coding region of 2.5-kbp dsRNA was reconfirmed by 60 

sequencing three clones for each of two >1-kbp cDNAs obtained by nested RT-PCR, and the 61 

extreme ends were determined by sequencing three clones for each of three and two RACE 62 

products of the 5′ and 3′ ends, respectively (Supplementary Table S1 and Fig. S1). The 63 

sequences were analyzed and annotated with Artemis (Sangar Institute) and has been 64 

deposited in the DDBJ under accession no. AB558120. The amino acid (aa) sequence of 65 

predicted ORF was subjected to BLASTp searches and aligned with those of other 66 

mitoviruses using MUSCLE implemented in MEGA 5 [17]. Neighbor-joining (NJ) and 67 

maximum-likelihood (ML) trees were constructed with MEGA 5 for phylogenetic analysis. 68 

Four well-characterized mitoviruses and an uncharacterized mitovirus-like ssRNA were 69 

selected for comparative sequence analysis of the dsRNA of R. clarus RF1: TeMV found in 70 

the ectomycorrhizal fungus Tuber excavatum in Germany [16], CpMV found in a 71 

hypovirulent strain of the chestnut blight fungus Cryphonectria parasitica in USA [10], 72 

TcMV found in a hypovirulent strain of Th. cucumeris in USA [6], HmMV1-18 found in the 73 

violet root rot fungus Helicobasidium mompa in Japan [8], and an uncharacterized 74 

mitovirus-like ssRNA found in the AM fungus Rhizophagus sp. strain HR1 (= Glomus sp. 75 

strain HR1 [2]) (RMV-like ssRNA-HR1) in Japan. 76 

 77 
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Sequence properties 78 

 79 

The sequencing of the RACE products revealed that complete genome of the dsRNA was 80 

2,895 nucleotides (nt) in length, which was approx. 400-nt longer than that predicted by the 81 

454 sequencing. Between a 297-nt 5′ UTR and a 135-nt 3' UTR, the largest ORF (2,463 nt) 82 

was predicted by applying either the mold mitochondrial or the universal genetic code 83 

(Supplementary Fig. S2). The predicted ORF encodes a polypeptide of 820 amino acids (aa) 84 

with a molecular mass of 91.2 kDa and conserves the domain of mitovirus RdRp superfamily 85 

(Pfam PF05919), including the GDD motif (Fig. 1a). Accordingly, the dsRNA was 86 

designated as R. clarus mitovirus 1 strain RF1 (RcMV1-RF1). Generally functional RdRp in 87 

mitoviruses can be translated only if the mold mitochondrial genetic code is invoked [13]. 88 

This is because tryptophan residues in mitovirus RdRps are usually encoded either by a 89 

UGA or a UGG codon, but the former codon encodes a translation terminator in the 90 

universal genetic code (in the cytosol). In fact, 55, 52, and 84% of tryptophan residues are 91 

encoded by the UGA codon in the RdRps of TeMV, CpMV, and HmMV1-18, respectively. 92 

On the other hand, all tryptophan residues in RcMV1-RF1 RdRp are encoded by the UGG 93 

codon (Supplementary Fig. S2, TGG in cDNA) as well as those in TcMV RdRp [6] and 94 

putative RdRp of RMV-like ssRNA-HR1 (data not shown), suggesting that functional RdRp 95 

could be translated both in the cytosol and in mitochondria. The codons for all tryptophan 96 

residues within the conserved domain of the selected mitoviruses are shown in Fig. 1b. The 97 
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RdRp aa sequence of RcMV1-RF1 shows high levels of similarity to those found in the two 98 

mycorrhizal fungi throughout the ORF: 34% identity to that of RMV-like ssRNA-HR1 at 99 

98% coverage and 28% identity to TeMV RdRp at 96% coverage. Significant similarity to 100 

TcMV RdRp in which all tryptophan residues are encoded by the UGG codon, however, 101 

was observed only within the conserved domain (43% identity at 23% coverage). The three 102 

RdRps of RcMV1-RF1, RMV-like ssRNA-HR1, and TeMV found in the mycorrhizal fungi 103 

form a subclade within the Mitovirus clade I [3] in the NJ-tree (Supplementary Fig. S3), 104 

although the node separating the clades I and II is poorly supported by a low-bootstrap value 105 

(28%). Whereas in the ML-tree the three viral sequences form a deeply branching clade with a 106 

bootstrap value of 99%, which is distinct from the two major clades (Fig. 2). A similar tree 107 

topology was also reported recently [4]. These observations suggest that the mitoviruses from 108 

the mycorrhizal fungi is likely to create the third distinct group in the genus. 109 

 The first member of Mitovirus in the Glomeromycota has been characterized in the 110 

present study. It seems likely that the distinct codon usage found in RcMV1-RF1 is a 111 

common feature of mitoviruses in AM fungi. The virus is potentially capable of replicating 112 

in the cytoplasm as well as in mitochondria. This might be an advantageous trait for 113 

horizontal transmission among the fungi, because those that belong to the same anastomosis 114 

group can exchange not only nuclei but also cytosol. Given the 400-million-year history of 115 

the close association of the fungi with plants, we also consider another possibility that 116 

ancestors of RcMV1-RF1 might be able to shuttle between the fungi and the host plant 117 
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during a certain stage of their evolution. This idea is supported by the evidence that RdRps 118 

of the members in the genus Ourmiavirus, plant ssRNA viruses, are phylogenetically related 119 

to those of the members in the Narnaviridae [11], suggesting that mitoviruses and 120 

ourmiaviruses diverged from a common ancestor. It is thus expected that more mitoviruses 121 

employing the universal genetic code will be found in AM fungi when their sequences 122 

become available. 123 
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