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Abstract Invasion status and impacts of nonnative brook trout (Salvelinus fontinalis) in 29 

a Hokkaido stream were investigated with field surveys and genetic analyses. Nonnative 30 

brook trout was detected in nine (41 %) of 22 sampled reaches in three tributaries of the 31 

Sorachi River, Hokkaido, Japan. Based on the external pigmentation, twelve putative 32 

hybrids between brook trout and native white-spotted charr (Salvelinus leucomaenis) 33 

were collected in two reaches. Microsatellite and mitochondrial DNA data established 34 

that 58% of these hybrids were first generation (F1) progenies between male brook trout 35 

and female white-spotted charr. Our results suggest potential negative impacts of 36 

nonnative brook trout on native charr populations in Hokkaido through interspecific 37 

interactions. 38 

 39 

Keywords Brook trout ·White-spotted charr · Invasion · Directional hybridization 40 
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Introduction 42 

 43 

Invasion by nonnative trout is a serious threat to the conservation of freshwater 44 

ecosystems (Fuller et al. 1999; Rahel 2002). Rainbow trout (Oncorhynchus mykiss), 45 

brown trout (Salmo trutta), and brook trout (Salvelinus fontinalis) are among the most 46 

widely introduced fluvial salmonid species worldwide in cool-temperate regions (Elliott 47 

1994; Fausch et al. 2001). Evidence suggests these species have negative impacts on 48 

native biota through competition, predation, indirect cascade effects, and hybridization 49 

(Fausch 1988, 2007; Leary et al. 1993; Townsend 1996; Baxter et al. 2004). 50 

In Hokkaido, northern Japan, rainbow trout originated from western North 51 

America and brown trout from Europe have rapidly expanded their distributions during 52 

the last four decades by both human-mediated introductions and natural dispersal 53 

(Takami and Aoyama 1999; Arai et al. 2002). Concerns have consequently emerged 54 

over the impacts of rainbow and brown trout on native salmonids, including masu 55 

salmon (Oncorhynchus masou), white-spotted charr (Salvelinus leucomaenis), Dolly 56 

Varden (Salvelinus malma), and Sakhalin taimen (Parahucho perri) (Kitano 2004; 57 

Nomoto et al. 2010; Hasegawa et al. 2012a, 2012b). Previous studies have demonstrated 58 

competition or niche segregation between masu salmon and rainbow trout (Taniguchi et 59 

al. 2000, 2002; Inoue et al. 2009; Hasegawa et al. 2010) and replacement of 60 

white-spotted charr by brown trout (Takami et al. 2002; Morita et al. 2004; Hasegawa 61 

and Maekawa 2009).  62 

Stocking of brook trout in Japan is not as popular and expansion is less evident 63 

when compared to rainbow or brown trout (Kitano 2004); yet brook trout originated 64 

from eastern North America could be one of concerned invasive species in headwater 65 

drainages because of their short life cycle, wider habitat preference, and tendency to 66 

overpopulate small streams (Scott and Crossman 1973). In western North America, 67 

introduced brook trout have displaced native cutthroat trout (Oncorhynchus clarki) 68 
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through interspecific competition after the widespread establishment of reproducing 69 

populations in headwater streams and lakes (Griffith 1988; Dunham et al. 2002; 70 

Benjamin et al. 2007). Moreover, hybridization between native bull trout (Salvelinus 71 

confluentus) and introduced brook trout occurs over a wide geographic area in the 72 

western North America (Kanda et al. 2002). For example, Leary et al (1993) described a 73 

rapid and almost complete displacement of native bull trout by introduced brook trout in 74 

Montana streams, in which initial phases were characterized by frequent hybridization. 75 

Although this is not introgressive hybridization forming hybrid swarms mainly due to 76 

low fertility of F1 hybrids, wasted reproductive potential can promote displacement of 77 

bull trout by brook trout since hybridization tends to occur predominantly between 78 

female bull trout and male brook trout (Leary et al. 1993, 1995; Kanda et al. 2002). Also 79 

in Japanese headwater streams, introduced brook trout and white-spotted charr hybrids 80 

have been documented based on appearance in streams in Honshu, central Japan 81 

(Suzuki and Kato 1966; EAGJ 1982). Little is known about mechanism of hybridization 82 

between these two species due to lacking of genetic analysis, but we should pay 83 

attention to interspecific hybridization when brook trout invaded into native charr 84 

habitats in Japan. 85 

 In the present study, we focus on the invasion of brook trout and their potential 86 

impacts on native white-spotted charr in upper reaches of the Sorachi River, Hokkaido 87 

where brook trout have already been documented (Kondo et al. 2000). We predicted that 88 

interspecific hybrids between brook trout and white-spotted charr should be present 89 

within this river and utilized genetic analyses to verify putative hybrids identified by 90 

external appearance. 91 

 92 

 93 

Materials and methods 94 

 95 
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Study area. The study was conducted during 24–27 June, 2003 at three tributaries of 96 

upper Sorachi River in the Sorachi district in central Hokkaido, Japan (Fig. 1). 97 

Twenty-two study sites (reach length: ca. 50–100 m) were established over the three 98 

streams to investigate fish distribution and abundance. Streams at the study sites were 99 

generally small (first to third order), with low to moderate channel gradient (Table 1). 100 

The upper Sorachi River is inhabited by white-spotted charr, Dolly Varden, brook trout, 101 

rainbow trout, Sakhalin taimen, crucian carp (Carassius auratus langsdorfii), Siberian 102 

stone loach (Noemacheilus barbatula toni), sculpin (Cottus nozawae) and brook 103 

lamprey (Lethenteron reissneri).  104 

Field surveys. We made one pass electrofishing to estimate the relative 105 

abundance of fish using an electrofishing unit (Model 12 Backpack Electrofisher, 106 

Smith-Root Inc.). The captured fish were identified to species based on appearance 107 

(Nakabo 2000) and standard lengths were measured. Individuals with ambiguous wavy 108 

lines on the dorsal fin were marked as putative hybrids between brook trout and 109 

white-spotted charr (Suzuki and Fukuda, 1973; Fig. 2). For Salvelinus spp. which were 110 

well known for interspecific hybridization (e.g., Suzuki and Fukuda 1974; Leary et al. 111 

1993), fin clips (less than several square millimeters) were preserved in 99 % ethanol 112 

for subsequent DNA analyses.  113 

 We recorded physical environmental variables (water temperature, reach length, 114 

channel width, a maximum depth, and dominant substrate) by measuring at the center of 115 

each reach. The channel gradient, expressed as percent change in relative height to 116 

reach length, was estimated on 1:25,000 topography maps (Published by Geographical 117 

survey institute, government of Japan) by measuring stream length at 10m-incremental 118 

changes in elevation. 119 

 Genetic analyses.  Total genomic DNA of fish were isolated from fin tissue by 120 

Proteinase K/SDS digestion at 55 oC, and followed by phenol-chloroform extractions. 121 

Samples were precipitated in 2.5 volumes of EtOH and 0.1 volume of 2 M NaCl. 122 
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 We used three microsatellite loci (SFO-12, SSA-197, MST-85), which are 123 

expected to be diagnostic between brook trout and white-spotted charr, to determine 124 

nuclear DNA ancestry of putative hybrids (Angers et al. 1995; O’Relly et al. 1996; 125 

Presa and Guyomard 1996; Angers and Bernatchez 1998). Microsatellite amplification 126 

was performed on a thermal cycler (Perkin-Elmer Inc.) in a 10 µl reaction containing 50 127 

mM KCl, 1.5 mM MgCl2, 10 mM Tris-HCl (pH 8.3), 0.2 mM dNTP, 0.5µM of each 128 

primer and 0.25 units of Taq DNA polymerase. Microsatellites were analyzed on an ABI 129 

310 (Applied Biosystems) automated sequencer. Scoring of allele sizes was performed 130 

using Genescan version 2.1 and Genotyper version 2.0 (Applies Biosystems), with 131 

reference to the internal standard. We included a reference white-spotted charr sample 132 

with known allelic sizes on all runs. 133 

 PCR-RFLP of NADH dehydrogenase 1 region (ND1: ca. 2,000 bp) of 134 

mitochondrial DNA were used for determining maternal ancestry of putative hybrids 135 

(Cronin et al. 1993). The ND1 region was chosen because it is expected to have a less 136 

intraspecific variation when compared to other mtDNA regions (see Kanda and 137 

Allendorf 2001). Amplifications were in 20-µL reaction mixtures containing 50 mM 138 

KCl, 1.5 mM MgCl2, 10 mM Tris-HCl (pH 8.3), 0.2 mM dNTP, 0.5 units of Taq DNA 139 

polymerase. The PCR profile consisted of 95 oC, 9 min followed by 30 cycles of 140 

denaturation (94 oC, 0.5 min), annealing (55 oC, 0.5 min) and extension (72 oC, 2 min). 141 

Amplified segments were initially screened for variation with 8 different enzymes: 142 

HinfI, HpaII, HaeIII, XbaI, TaqI, AluI, AfaI (RsaI), and DdeI. Digests were performed in 143 

12-µL of PCR product and 2–3 units of restriction enzymes. Digested fragments were 144 

separated with 6 % polyacrylamide gels and ethidium bromide staining then visualized 145 

by ultraviolet transillumination. Based on the results of an initial screening of baseline 146 

samples of Salvelinus leucomaenis and S. fontinalis, TaqI was selected as the restriction 147 

enzyme with highest interspecific resolution. TaqI digested ND1 into six segments (657, 148 

525, 510, 208, 90, and 21 bp) for brook trout (DDBJ: AF154850) and six segments (ca. 149 
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925, 510, 420, 110, 80, and 20 bp) for white-spotted charr. 150 

 The software NewHybrids (Anderson and Thompson 2002) was used to 151 

estimate the posterior probabilities that each individual belongs to one of six genotypic 152 

classes: two parental (P0, P1), first generation hybrids (F1), second generation hybrids 153 

(F2), backcrosses of F1 with the first parental (B0), backcrosses of F1 with the second 154 

parental (B1). Software parameters were set as follows: without individual or allele 155 

frequency prior information and independent of “Jeffreys-like” or “Uniform” priors for 156 

both mixing proportions and allele frequencies (posterior probabilities were not affected 157 

by these priors). Posterior distributions were evaluated after discarding an initial 158 

“burnin” of 25,000 sweeps and105 iterations of the Monte Carlo Markov Chain. 159 

Individuals were assigned to the class with the highest posterior probability. Individuals 160 

with probability under 0.9 were not assigned. 161 

 162 

 163 

Results 164 

 165 

Fish distribution and abundance.  Eight fish species and 12 putative interspecific 166 

hybrid individuals were caught in this study (Table 1). Salmonid fish were major taxa 167 

occurring in 19 study sites, and native white-spotted charr was the predominant 168 

salmonid fish occurring in 13 (59 %) of 22 sites. Dolly Varden was caught in only one 169 

headwater site. Nonnative trout were common, brook trout occurred in nine (41 %) sites 170 

and rainbow trout in six (27 %) sites. Five (23 %) study sites were comprised only of 171 

nonnative salmonids, and in eight (36 %) sites nonnative salmonids were sympatric with 172 

native charr. The sites with highest occurrence of brook trout were steeper in gradient 173 

(F1,11 = 7.81, P = 0.02 by ANOVA for arcsin-square-root-transformed gradient) than 174 

those of rainbow trout. The density of white-spotted charr was not significantly 175 

correlated with that of brook trout (Pearson’s r = -0.31, P > 0.05) nor with that of 176 
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rainbow trout (r = -0.029, P > 0.05) among 17 sites (F1–3, F5, N1–4, N6–11, T1, T3–4) 177 

where either of these salmonid fish (SL > 6 cm) was caught. Putative hybrids between 178 

white-spotted charr and brook trout were detected in two sites where these two species 179 

co-occurred or inhabited closely. Abundant hybrids were found on the site F5 with the 180 

highest salmonid density. The benthic fish abundance differed greatly among streams, 181 

rather than among the study sites. For example, stream loaches were abundant in the 182 

Furebetsu and Nishitappu streams, but uncommon in the Nunobe stream. Similarly, 183 

sculpin commonly occurred in the Nunobe and Nishitappu streams but not in the 184 

Furebetsu. Negative effects of invasive nonnative trout on the benthic fish were not 185 

clear. 186 

 Body length distribution of white-spotted charr and brook trout was bimodal 187 

with fry (age-0: 4–6 cm in standard length, SL) and older fish (age > 0: SL > 8 cm), 188 

indicating self-reproducing populations (Fig. 3). Body lengths of rainbow trout and 189 

putative hybrids also varied among individuals, although age-0 cohorts were not clearly 190 

identified for them. 191 

DNA analyses of charr. Genetic variation at microsatellite loci was assessed in 192 

63 individuals with >10 cm SL identified by appearance as white-spotted charr, brook 193 

trout, and putative hybrids. All three microsatellite loci were polymorphic and variable 194 

in both white-spotted charr and brook trout with certain differences in allele size 195 

distributions [Table 2, Electronic Supplemental Material (EMS) Table S1]. 196 

 Of these individuals, most were assigned to pure white-spotted charr (n = 23), 197 

pure brook trout (n = 29) or F1 hybrid category (n = 7) with a posterior probability 198 

higher than 0.9 (Table 2). The remaining 4 individuals (#119, #120, #121 and #127) 199 

could not be assigned to a particular class and may present backcrosses or later 200 

generation hybrids (Table 3). Among these, only individual #120 (14.7 cm SL) obtained 201 

relatively high support P = 0.72 for parental brook trout. One small putative hybrid 202 

#117 (12.7 cm SL) was assigned to pure white-spotted charr. These may partly due to 203 
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phenotypic variability along developmental stage. 204 

 Of the seven individuals (#1, #118, #122–126) assigned to the F1 category with 205 

high probability (P ≥ 0.9) by NewHybrids, white-spotted charr was identified as the 206 

maternal parent in all cases, i.e., the first generation hybrids were from mating between 207 

male brook trout and female white-spotted charr. Variable genotypes of microsatellite 208 

markers also indicate that they were not derived from single clutch, though these 209 

hybrids were from almost single study site. 210 

 211 

 212 

Discussion 213 

 214 

We found a broad zone of brook trout and rainbow trout invasion in the upper Sorachi 215 

River in central Hokkaido. Moreover, we report the first instance of interspecific 216 

hybridization between introduced brook trout and native white-spotted charr in 217 

Hokkaido. Nonnative trout invasions and following interspecific interactions potentially 218 

have negatively impacts on native salmonid species. 219 

Nonnative brook and rainbow trout were most likely introduced into the 220 

Sorachi River area during the 1950’s to 1990’s for aquaculture. Based on a 221 

questionnaire to a local angler’s shop, aquaculture escapees of brook trout had 222 

successfully established self-reproducing populations in tributaries of Nishitappu 223 

Stream as early as the 1980’s (M. Yamamoto, personal communication). Rainbow trout 224 

might be occasionally stocked by private anglers since we found some had deformed 225 

fins, a common occurrence on aquaculture fish. Water temperature, especially maximum 226 

summer temperature, is probably the chief factor determining the success in 227 

establishment of nonnative trout (e.g., Dunham et al. 2002; Benjamin et al. 2007). The 228 

temperatures recorded in this study (10–15 °C) are consequently conducive to survival 229 

of nonnative brook and rainbow trout.  230 
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Although negative relationship was not clearly observed between nonnative 231 

trout and native white-spotted charr abundance, the absence of native salmonids in some 232 

study sites might result from strong ecological interactions between natives and 233 

nonnatives. The potential impacts of nonnative salmonines on native species are widely 234 

reported (e.g., Allendorf and Leary 1988; Dunham et al. 2002). Because nonnative 235 

salmonids are ecologically very similar to native salmonids, there is a strong potential 236 

for common resource requirements (i.e., niche overlap) and for interspecific competition. 237 

Interspecific competition is the most widely recognized mechanism of displacement of 238 

native cutthroat trout by nonnative brook trout in western North America (Griffith 1988; 239 

Dunham et al. 2002). Furthermore, interspecific hybrids between native white-spotted 240 

charr and nonnative brook trout were detected, as we had predicted. However, such 241 

hybrids were not caught on all co-occur sites. Therefore, ecological factors such as high 242 

density, relatively narrow spawning space or time, may play a role in determining the 243 

occurrence of interspecific hybridization. Further studies are necessary to examine the 244 

relative importance of each effect of competition, predation, pathogen transmission, and 245 

hybridization, which may vary in time and space (Taylor et al. 1984). 246 

The genetic analyses of three microsatellite loci and ND1 region RFLPs of 247 

mtDNA clearly showed interspecific hybridization between white-spotted charr and 248 

brook trout, although possibilities of misidentifying individual fish to each criterion 249 

were still remained to some extent based on a limited number of genetic marker (e.g., 250 

Allendorf et al. 2001). The hybrids were comprised of abundant F1, with the near 251 

absence of F2, when we confined to data with reliable identification. This composition 252 

may imply that the hybridization is not introgression. Similar interspecific hybridization 253 

has been documented between bull trout and introduced brook trout in North America 254 

which produce nearly sterile progeny (Leary et al. 1993, 1995; Kanda et al. 2002). This 255 

idea would be supported by the experimental data that survival rates of hybrid progenies 256 

between brook trout and white-spotted charr decreased with increased generation of 257 



11 
 

backcrosses (Suzuki and Fukuda 1974). More diagnostic nuclear loci may help with 258 

resolution for this hybridization.  259 

 Directional hybridization has been implicated in the population decline of 260 

endangered species (Leary et al. 1993). Because eggs are generally a crucially limited 261 

resource for population growth of a species than sperms, it is possible that the 262 

population of white-spotted charr suffers more detrimental effects from hybridization 263 

due to reduced egg availability. According to the maternally inherited mtDNA analysis, 264 

most F1 hybrids had white-spotted charr mtDNA. This indicates that the detected 265 

hybridization between native white-spotted charr and introduced brook trout is 266 

unidirectional, with brook trout males mating with female white-spotted charr in the 267 

study streams. Directional  hybridization can be caused by various pre- and post-mating 268 

factors (Taylor 2004). For post-mating factor of salmonid species, it is often observed 269 

that progeny of one direction of hybridization displays higher survival than the 270 

reciprocal cross (Suzuki and Fukuda 1974). However, since the rates of survival and 271 

growth of F1 hybrids differ little irrespective of parent combination between brook trout 272 

and white-spotted charr (Suzuki and Fukuda 1971), post-mating factors would be less 273 

important for hybridization between white-spotted charr and brook trout. Pre-mating 274 

factors, such as differences in mating tactics, competitive ability, and/or reproductive 275 

timing between parental species, may be the strongest determinants of directional 276 

hybridization (Wirtz 1999; Taylor 2004). In cases where there are differences in size at 277 

maturity between species, sneaking tactics employed by smaller species have been 278 

proposed as an explanation for directional hybridization (Baxter et al. 1997; Taylor 279 

2004). However, size range of adult fish was quite similar for white-spotted charr and 280 

brook trout in the study area, which also indicates that they have similar competitive 281 

potential for mate acquisition. The observed directional hybridization may be due to the 282 

asynchronous spawning patterns of these species. In a stream in Honshu, white-spotted 283 

charr spawn from late October to early November, whereas brook trout spawn from 284 
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November to December (Uehara and Yoshida 1984). The reproductively active period 285 

of males generally begins earlier than that of females in stream charr (e.g., Kitano 1996). 286 

The spawning period of brook trout males is more likely to overlap with white-spotted 287 

female charr than vice versa. Such hybridization processes have also been suggested in 288 

other species of salmonids (e.g., Rosenfield et al. 2000; Kitano et al. 2009). 289 

 Our results indicate the occurrence of hybridization between native 290 

white-spotted charr and nonnative brook trout, which may play a role in the 291 

displacement of native charr by nonnative trout in Hokkaido streams. Further ecological 292 

studies should attempt to reveal mechanisms and impacts of nonnative trout invasion so 293 

that managers can develop effective conservation strategies of native endangered 294 

species. 295 

 296 
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Figure Captions 447 

 448 

Fig. 1 Study area location in the Sorachi River with relative percent composition of 449 

salmonid species (pie chart). Site and species codes correspond to Table 1 450 

 451 

Fig. 2 Appearances of Salvelinus fontinalis (top: 18.4 cm SL), a putative hybrid 452 

(middle: 25.3 cm SL), and Salvelinus leucomaenis (bottom: 15.3 cm SL)  453 

 454 

Fig. 3 Size-frequency distribution of salmonid fishes. OM Oncorhynchus mykiss, HB 455 

putative hybrids between Salvelinus leucomaenis and Salvelinus fontinalis, SF 456 

Salvelinus fontinalis, SM Salvelinus malma, SL Salvelinus leucomaenis 457 



Table 1 Habitat variables and fish data of each sampling site in Furebetsu stream (F1–5), Nunobe Shimonosawa stream (N1–5), Nunobe main stream (N6-12), and 

Nishitappu stream (T1–5)  

Sites Elevation Gradient Width Depth Substrate WT Salmonids densitya  Fish species 

 (m) (%) (m) (cm)  (°C） (N･100m-2)  SM SL SF OM HB CA BT CN LR 

F1 185 0.8  5.0  80 Boulder/Sand 11.9  0.5    2  2  1 48  1 

F2 260 0.8  4.0  50 Pebble/Sand 11.3  1.3    14  1   8   

F3 270 1.5  3.0  60 Boulder/Pebble 11.7  4.5    8     12   

F4 290 4.0  3.0  40 Pebble/Sand － 0.0    4     1   

F5 320 1.5  2.5  50 Boulder/Pebble 11.5  29.6     22 4   11   19     

N1 260 0.7  3.5  80 Boulder/Sand 11.5  6.9    2  10   15   

N2 290 1.3  3.0  50 Pebble 9.9  2.0     6 2   1 28 1 

N3 300 1.0  1.5  40 Pebble/Sand 10.1  3.3     7 1    16  

N4 310 2.0  2.0  40 Pebble/Sand 10.1  6.9     12     12  

N5 300 2.9  1.0  40 Pebble/Sand 11.5  0.0                 23   

N6 310 2.0  4.0  40 Boulder/Pebble 10.3  0.5    1      8  

N7 310 1.7  5.0  80 Bedrock/Pebble 12.2  1.3    4   1     

N8 310 1.5  2.0  50 Bedrock/Boulder 18.3  5.0    1 1   11 1 2  

N9 315 1.5  2.0  60 Pebble/Sand － 2.7    1 1     1  

N10 350 4.0  2.0  20 Pebble 8.5  2.5     5     1  

N11 320 1.5  5.0  80 Boulder/Pebble 15.5  0.4     2    29   

N12 670 6.7  8.0  150 Bedrock/Boulder 11.0  0.1   1                 

T1 330 2.2  4.0  40 Bedrock/Pebble 14.3  0.8    2 1    12 3 1 

T2 310 7.5  1.0  30 Boulder/Pebble 11.1  0.0         14 2  

T3 330 1.3  2.0  30 Pebble/Sand 10.8  4.2    5     10 6 1 

T4 340 1.0  2.5  50 Pebble/Sand 11.1  12.0    9  9   6 13 4 

T5 360 1.5  7.0  120 Boulder 9.3  0.0                 7   

SM Salvelinus malma, SL Salvelinus leucomaenis, SF Salvelinus fontinalis, OM Oncorhyncus mykiss, HB putative hybrids between SL and SF, CA Carassius 

auratus langsdorfii, BT Noemacheilus barbatulus toni, CN Cottus nozawae, LR Lethenteron reissneri 

a An underestimate, because based on number of salmonids (SL > 6 cm) caught by one pass electrofishing  



 

 

 

 

 

Table 2 Results of hybrid analyses of two salmonid fish (SL Salvelinus leucomaenis, SF Salvelinus fontinalis) implemented by NewHybrids (Anderson and 

Thompson 2002), with associated species identification based on appearance  

Appearance Range of microsatellite loci (bp)  No of individuals assigned by NewHybrids  No of individuals with each mtDNA 

 SFO-12 SSA-197 MST-85  Pure SL Pure SF F1 hybrid  SL SF 

SL 199–235 114–120 138–150  22 0 0  22 0 

SF 269–273 146–160 174–190  0 29 0  0 29 

Putative hybrids* 199–273 114–158 138–176  1 0 7  8 0 

* Four individuals with low posterior probabilities (P < 0.90) were not included in this Table 

 

 

 



 

 

 

Table 3 Individual posterior probabilities output by NewHybrids which was not able to be assigned to a 

particular class with P ≥ 0.90 and mtDNA type 

Individual Output by NewHybrids  mtDNA 

#119 BSF = 0.53; F1 = 0.25; F2 = 0.20  SL 

#120 PSF = 0.72; BSF = 0.22  SF 

#121 BSF = 0.46; PSF = 0.22; F1 = 0.18; F2 = 0.14  SF 

#127 F1 = 0.66; BSF = 0.22  SF 

PSF parental S. fontinalis, BSF  backcross F1 × S. fontinalis, F1 first generation hybrid, F2 second 

generation hybrid 
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