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A method for constructing an object support based on K-means clustering of the object-intensity distribution is
newly presented in diffractive imaging. This releases the adjustment of unknown parameters in the support con-
struction, and it is well incorporated with the Gerchberg and Saxton diagram. A simple numerical simulation
reveals that the proposed method is effective for dynamically constructing the support without an initial prior
support. © 2014 Optical Society of America
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1. INTRODUCTION
Diffractive imaging is used to obtain a target object image by
reconstructing the missing phase in a Fourier domain, while
the amplitude is observed. Two decades after Sayre’s com-
ments on the sampling theorem of Shannon [1], an iterative
algorithm using the Fourier transforms for phase retrieval
was presented by Gerchberg and Saxton [2]. The fundamental
reason why phases can be retrieved from the oversampled dif-
fraction intensities has been explained [3]. Diffractive imaging
is widely spread over the field, requiring the reconstruction of
the lost phase information using intensity measurements. Im-
aging using a soft x-ray diffraction pattern was first presented
by Miao et al. [4]. Later, many related experiments were con-
ducted using different sources, such as x rays [5–8], electron
microscopes [9–12], and tabletop light sources of lasers [13].
The diffractive imaging findings of these related works are
summarized in [14]. In addition, theoretical and empirical
analyses of phase retrieval have been performed in order
to clarify the uniqueness and convergence of the widely used
algorithms. The fundamental question of phase retrieval was
raised in the early days of diffractive imaging research [15],
and various theoretical, empirical, and experimental solutions
of this problem have been investigated [16–24].

The object support is indispensable to obtain a phase-
retrieved image under the Gerchberg and Saxton diagram.
The tight support not generally given is desired to obtain a
better result. The relationship between the convex properties
of a target object and the support has been investigated in
order to obtain a support by using the observed intensities
[25–28]. On the other hand, the dynamical support extracting
the object region in the phase-retrieval process has also been
studied. The shrinking support using a Gaussian with a settled
width was introduced [29], one of the advance settings of the
object-domain constraint was presented by Oszlanyi and Suto

[30], and their algorithm was alternately used with the hybrid
input–output (HIO) algorithm to yield a stable phase-retrieval
process [31].

However, an important difficulty remains in terms of the
dynamical object support. That is, there is no general rule
for determining the unknown parameters of the region inher-
ent to the shrinking and flipping method [29,30]. Providing an
object support is important to obtain a plausible phase-
retrieved object. Therefore, an appropriate method for provid-
ing an object support has been required in diffractive imaging.

In this paper, we present a novel method for determining an
object support using the data-clusteringmethod, K-means [32],
in order to release the nuisance adjustment of unknownparam-
eters in the support construction, and then the simultaneous
usage with ER and HIO in the framework of the Gerchberg
and Saxton diagram is established with a numerical example.

2. PHASE RETRIEVAL
The reconstruction of the Fourier phase using intensity
measurements is presented in the cyclic transform of the
Gerchberg–Saxton iterative algorithm [2] shown in Fig. 1.
The prior object ρ is transformed into F by the Fourier trans-
form, F is replaced by F 0 (the amplitude is given by the experi-
ment in the Fourier domain, and the phase of F 0 is the
same as that of F , where the replaced amplitude is the con-
straint in the Fourier domain), ρ0 is obtained by the inverse
Fourier transform of F 0, and ρ0 is replaced by the updated
object as the next ρ using the object-domain constraints.
The object domain X is defined as a discrete squared array,
and the Fourier domain K is also defined in the same way as
domain X with the discrete Fourier transform for practical
computation.

The error reduction algorithm is a method of updating from
the nth object ρn to the (n� 1)th object ρn�1 as
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ρn�1�r� �
�
ρ0n�r� r∉D
0 r ∈ D

; (1)

where D is the set of points at which ρ0n violates the object-
domain constraints. In the initial state of the phase-retrieval
process, a prior object is very far from the desired object func-
tion; hence the HIO algorithm is often used as an improved
version of the updating method with respect to the region
breaking the object-domain constraints [25]:

ρn�1�r� �
�
ρ0n�r� r∉D
ρn�r� − βρ0n�r� r ∈ D

; (2)

where β is a positive constant. The HIO yields a typical change
to the object ρ0n on the region that does not satisfy the object-
domain constraints. Both of these algorithms have been used
connectively. The object support needs to be appropriately
given as when using the HIO and ER. The autocorrelation of
a target object is presented by the inverse transform of the
Fourier intensity of the object. Fienup focused on this relation
in the case in which a target object has a convex support, and
presented some results concerning the object support gener-
ated by the Fourier intensity [25,28]. The usefulness of the
autocorrelation is followed for such limited objects, except
for the incompleteness of the Fourier intensity, including the
Poisson noise or data missing on the Fourier domain.

3. SUPPORT CONSTRUCTION AND
K-MEANS CLUSTERING
The object support is a delimited region where a target object
is located. The region of the phase-retrieved object and its
complement on the object domain should have nonzero inten-
sity and zero intensity, respectively. Such prior information is
given as the object-domain constraint. The tightness of the ob-
ject support improves the convergence in the phase-retrieval
process. The convergence of the retrieval process deterio-
rates according to the degree of looseness of the object
support. It is difficult to count on a strictly tight support for
the phase retrieval of the experimental diffraction patterns.

The object domain is divided into two kinds of regions; one
is the object support, and the other is its complement. When
ρ0�r� is an insufficiently phase-retrieved object in the Gerch-
berg and Saxton diagram, it is not clear whether each r is
the object support or not, and such ambiguity is unavoidable
without a tight object support. In order to confidently extract
an object support, a process for discriminating between the
zero intensity region and the nonzero intensity region must
be established. We focus on the distribution of jρ0j, and newly
introduce the K-means clustering [32,33] for dividing a set of
fjρ0�r1�j; � � � ; jρ0�rN �jg into two classes; one is the point of the
object support, and the other is in the region not belonging to
the support, where N is the total pixel number of the object
domain X .

Data clustering is a method used to divide a set of data into
two or more subsets with respect to a certain similarity mea-
sure on the data space. The K-means algorithm is a represen-
tative data-clustering algorithm using a metric between the
center point of a class and each data point [32–35]. Various
data-clustering algorithms based on the K-means have been
introduced and applied to data mining and analysis in the field
of information science and engineering [33].

Given point set S on a metric space, the K-means clustering
algorithm is presented as follows. As an initial setting, all
points are randomly divided into k subsets, C0; C1; � � � ; Ck−1,
where Cj ≠ ϕ for ∀j and S � ∪k−1

j�0Cj . Each subset is called
a “class,” and its index is called a “label” of the point of the
class. cj is the center by averaging all points of Cj for
j � 0; � � � ; k − 1; that is, cj �

P
p∈Cj

p∕J, where J is the cardi-
nality of Cj . Then a new label of point q is given by the index
of the center whose distance from the point is minimum; that
is,

New label of q � arg min
j�0;���;k−1

d�q; cj�; (3)

where d�·; ·� is a distance between two points. The new labels
of the point set are given by the nearest centers, and the class
assignment is updated with these labels. The updating of the
labels is iterated until these changes subside, and the data
clustering is then finished.

Fig. 1. Gerchberg and Saxton’s iterative diagram for phase retrieval.

Fig. 2. Example of K-means clustering is presented for labeling a
given data set with two classes, C0 and C1. The black “×” is a point
of the data set, and its label is presented above and below the axis in
green and red, respectively. An initial label for each data point is ran-
domly given in the top figure, and the center of each class is indicated
by averaging the points of the class. The iteration of the K-means clus-
tering algorithm is performed to update the label by the nearest center
from the point. The updating of the labels is iterated until these
changes subside, and the data clustering is finished.
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A simple schematic figure for K-means clustering of a one-
dimensional data set with two classes is presented in Fig. 2.
The data are shown in black on the horizontal axis of each
figure. Two classes of C0 and C1 are assigned at below and
above the axis, respectively. The points belonging to both
classes C0 and C1 are presented as red and green, respec-
tively. An initial label is randomly given, and the label of each
point is updated by the K-means iteration, i.e., Eq. (3).

The dynamical object support by the K-means clustering is
described as follows. Let N be the cardinality of the object
domain X , and ρ0 the object obtained through the Fourier-
domain constraints of the diagram in Fig. 1. We focus on
the nonnegative real set fjρ0�r1�j; � � � ; jρ0�rN �jg, and introduce
the K-means algorithm for classifying the set into two classes,
C0 and C1. The centers of the classes are obtained by averag-
ing all elements of each class. Let C1 be a class whose center
value is larger than that of another class. As a result, C1 cor-
responds to the object support.

This method for giving the object support is effectively in-
serted into the Gerchberg and Saxton diagram. Figure 3
presents the diagram including the dynamical object support
by the K-means clustering procedure. Our proposed method
for extracting the object support is algorithmically described
as follows.

Step 1: Obtain ρ0 by the inverse Fourier transform in the
Gerchberg–Saxton diagram.
Step 2: Give the initial labels for the point
set fjρ0�r1�j; � � � ; jρ0�rN�jg.
Step 3: Generate two classes for the point set by Eq. (3).
Step 4: Iterate Step 3 until changing is complete for
each point.
Step 5: Extract a class for whom the center is larger than
that for another class.
Step 6: Obtain an object support, and return to the object-
domain constraints in the Gerchberg–Saxton diagram.

The computational cost of the K-means clustering is a linear
order due to the object-domain size multiplied by the iteration
number for updating the labels, and it is less than the cost of
the fast Fourier transform.

4. NUMERICAL EXAMPLE AND
CONCLUSION
The following is an example of our numerical simulations to
present the validity of the K-means clustering for dynamical
object support in diffractive imaging. We choose a two-
dimensional figure ρorg as the original object on the discrete
square array domain X (256 × 256) shown as Fig. 4(a). Forg

is the Fourier intensity of ρorg shown as Fig. 4(b). Figure 4(c)

is the Fourier intensity contaminated by Poisson noise using a
randomsample from thePoisson distributionwith the intensity
Iorg � jForgj2 as the expectation.

The Poisson-noise-contaminated intensity for each element
k in theFourier domainK is obtainedby the following equation:

PoissonfcIorg�k�g ∼ Inoise�k�; (4)

where c is a coefficient based on c � �total count�∕P
k∈KIorg�k� and the total count is settled by 105, and “∼”means

that the right part of the equation is a random sample from the
probability distribution of the left part [24]. The common set-
ting of the simulation is as follows. The HIO (10 iterations) and
ER (10 iterations) are reciprocally used. The real positive con-
dition for the target object is used. The left and right figures of
Fig. 4(d) are a loose support (the oversampling ratio is 3.62)
and a phase-retrieved object using the support, respectively.
The left and right figures of Fig. 4(e) are the strictly tight
support and a phase-retrieved object using the support, respec-
tively. The left and right figures of Fig. 4(f) are the perfect
support and a phase-retrieved object using the support,
respectively.

Figure 4(g) is a phase-retrieved object obtained using the
dynamical support by the shrinking method [29]. Every 20
iterations, the HIO (10 iterations) and ER (10 iterations),

Fig. 3. K-means clustering is inserted into the Gerchberg and Saxton
iterative diagram for the dynamical construction of object support.

Fig. 4. (a) Original image. (b) Fourier intensity of (a). (c) Fourier
intensity of (a) contaminated by Poisson noise with a total count
of 105. (d) Retrieved image (right) using a loose-object support whose
oversampling ratio is 3.62 (left). (e) Retrieved image (right) using a
strictly tight support (left). (f) Retrieved image (right) using the per-
fect support (left). (g) Image obtained by the shrink-wrap algorithm
(right), and the obtained object support (left). (h) Image obtained by
our algorithm periodically using K-means clustering (right), and the
obtained object support (left). The upper right of each figure is a mag-
nification of the area indicated by the white broken line.
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we convolve the reconstructed image with a Gaussian of
width σ to find the new support mask. The mask is obtained
by applying a threshold at 20% of the maximum-absolute value
in the image. The width σ is set to 3 pixels in the first iteration,
and is reduced by 1% every 20 iterations. The left panel of
Fig. 4(g) is the object support obtained by the shrinking
method. All the reconstructed objects are obtained by a
sufficient number of iterations on the Gerchberg–Saxton
diagram.

Next, we consider a case using the dynamical object
support by the K-means clustering method. The iteration
numbers of the HIO and ER are the same as in the cases of
the loose, tight, andperfect supports, and theshrinkingmethod.
Figure 4(h) is an image obtained by periodically using K-means
clustering for determining the object support for every 20 iter-
ations of the Gerchberg–Saxton diagram. A randomly assigned
label is used as an initial label at the start of each K-means
clustering process. The left panel of Fig. 4(h) is the object
supportobtainedby theK-meansclusteringmethod.Asaresult,
our method gives a successful case for determining the object
supportasacomparisonoftheshrinkingmethod,andprovidesa
plausible image in the sameway as the case giving a tight object
support. Theobtained support is alsoplausible as a comparison
of the perfect support. Figure 5 presents the changes of the
R-factors, retrieved images, andcorrespondingobject supports
obtained by the K-means clustering.

The object support is one of the object-domain constraints,
and the degree of looseness influences the plausibility of the
phase-retrieved results. In this paper, K-means clustering for
extracting the object support is first introduced, to the best of
our knowledge. This releases the adjustment of the parame-
ters of the object-support construction, and harmonizes the
confidential framework of the Gerchberg and Saxton diagram.
The method is used for extracting the object support of
various objects, and should help to improve the spatial reso-
lution in diffractive imaging.
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