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Abstract 

Physical processes such as the weather are usually modelled using 
nonlinear dynamical systems. Statistical methods are found to be 
difficult to draw the dynamical information from the observations of 
nonlinear dynamics. This thesis is focusing on combining statistical 
methods with dynamical insight to improve the nonlinear estimate of 
the initial states, parameters and future states. 

In the perfect model scenario (PMS), method based on the Indistin-
guishable States theory is introduced to produce initial conditions that 
are consistent with both observations and model dynamics. Our meth-
ods are demonstrated to outperform the variational method, Four-
dimensional Variational Assimilation, and the sequential method, En-
semble Kalman Filter. 

Problem of parameter estimation of deterministic nonlinear models is 
considered within the perfect model scenario where the mathematical 
structure of the model equations are correct, but the true parameter 
values are unknown. Traditional methods like least squares are known 
to be not optimal as it base on the wrong assumption that the distribu-
tion of forecast error is Gaussian IID. We introduce two approaches to 
address the shortcomings of traditional methods. The first approach 
forms the cost function based on probabilistic forecasting; the second 
approach focuses on the geometric properties of trajectories in short 
term while noting the global behaviour of the model in the long term. 
Both methods are tested on a variety of nonlinear models, the true 
parameter values are well identified. 

Outside perfect model scenario, to estimate the current state of the 
model one need to account the uncertainty from both observatiOnal 



noise and model inadequacy. Methods assuming the model is perfect 
are either inapplicable or unable to produce the optimal results. It is 
almost certain that no trajectory of the model is consistent with an 
infinite series of observations. There are pseudo-orbits, however, that 
are consistent with observations and these can be used to estimate 
the model states. Applying the Indistinguishable States Gradient De-
scent algorithm with certain stopping criteria is introduced to find rel-
evant pseudo-orbits. The difference between Weakly Constraint Four-
dimensional Variational Assimilation (WC4DVAR) method and Indis-
tinguishable States Gradient Descent method is discussed. By testing 
on two system-model pairs, our method is shown to produce more 
consistent results than the WC4DVAR method. Ensemble formed 
from the pseudo-orbit generated by Indistinguishable States Gradient 
Descent method is shown to outperform the Inverse Noise ensemble 
in estimating the current states. 

Outside perfect model scenario, we demonstrate that forecast with 
relevant adjustment can produce better forecast than ignoring the 
existence of model error and using the model directly to make fore-
casts. Measurement based on probabilistic forecast skill is suggested 
to measure the predictability outside PMS. 
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Chapter 1 

Introduction 

Nonlinear dynamical systems are frequently used to model physical processes such 

as the dynamics of breeding population, the electronic circuit and weather. The 

ultimate goal we have in mind is forecasting the future states of the system. Of 

course there are many operational details involved, but the mathematical prin-

ciple is simple, first estimate the state of the model of the dynamical system, 

then integrate this initial condition forward to obtain a forecast. When the equa-

tions of motion that describe the system are known, which is the perfect model 

scenario case, the key to the problem is the accurate estimation of state given 

observations. But given a perfect model of a chaotic system and a set of noisy 

observations of arbitrary duration, it is not possible to determine the state of 

this system precisely. Traditional approaches to statistical estimation are rarely 

optimal when applied to nonlinear models. Even in the perfect model class sce-

nario, likelihood methods have difficulty in estimating either the initial condition 

or the model parameters. The question is besides getting information from the 

observations, how much the information we can draw from the nonlinear system 

itself (that is, information implicit in the equations). Our aim is to enhance the 
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balance between the information contained in the dynamic equations and the in-

formation in the observations themselves. Outside perfect model scenario, things 

become more difficult. The uncertainty of the initial conditions comes from both 

observational noise and model inadequacy. To estimate the future states of the 

model by interacting the initial condition forward will eventually fail to shadow 

the observations no matter what initial condition is used. To produce more con-

sistent estimate of the current or future states, information from the model error 

need to be extracted. This chapter provides an overview of the thesis. Some 

terms undoubtly are new to the reader, all terms are defined in the later chapters 

when they are first used. 

Outline of the thesis: In Chapter 2. Some terminologies of dynamical 

system are introduced and general properties of nonlinear dynamical systems are 

illustrated. An overview of the systems and models used in the thesis is presented. 

Other than details on the system-model pairs, nothing new is presented in this 

chapter. 

In Chapter 3. we consider the nowcasting problem in the perfect model sce-

nario. We illustrate a new ensemble filter approach within the context of indis-

tinguishable states (48), using Gradient Descent to find a model trajectory from 

which an ensemble is formed. An introduction of traditional variational method, 

Four-dimensional Variational Assimilation (4DVAR), is presented. The differ-

ence between our method and 4DVAR is discussed. Results presented show that 

4DVAR is only applicable to short assimilation windows while our method does 

not have such shortcoming. The popular sequential method, Ensemble Kalman 

Filter, is also applied to solve the nowcasting problem. For the first time we 

demonstrate that the indistinguishable states approach systematically outper- 
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forms the Ensemble Kalman Filter in both low dimension Ikeda Map and higher 

dimension Lorenz96 system. 

In Chapter 4. we provide new results to solve the problem of parameter 

estimation of deterministic nonlinear models within the perfect model scenario 

where the mathematical structure of the model equations are correct, but the 

true parameter values are unknown. Traditional parameter estimation methods 

like least squares often base on the assumption that the forecast error is Gaussian 

distributed. Unlike linear models, when one put a Gaussian uncertainty through 

the nonlinear model, one will get non-Gaussian forecast error. Results show that 

the least squares estimates may even reject the true parameter value of the system 

in preference for incorrect parameter values (64). Two new approaches are in-

troduced to address the shortcomings of traditional methods. The first approach 

forms the cost function based on probabilistic forecasting; the second approach 

focuses on the geometric properties of trajectories in short term while noting the 

global behaviour of the model in the long term. Both methods are tested on a 

variety of nonlinear models, the true parameter values are well identified. 

In Chapter 5. we , consider the nowcasting problem outside the perfect model 

scenario. Outside perfect model scenario, to estimate the current state of the 

model one need to account the uncertainty from both observational noise and 

model inadequacy. Methods assuming the model is perfect are shown to be either 

inapplicable or unable to produce the optimal results. It is almost certain that 

no trajectory of the model is consistent with an infinite series of observations. 

There are pseudo-orbits (50), however, that are consistent with observations and 

these can be used to estimate the model states. Applying the Indistinguishable 

States Gradient Descent algorithm with a stopping criteria is found to be able 
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to produce more consistent pseudo-orbit and estimates of the model error than 

the Indistinguishable States approach introduced in the PMS and the approach 

introduced in Judd and Smith 2004. An introduction of Weak Constraint 4DVAR, 

is presented. Although the Weak Constraint 4DVAR method accounts the model 

inadequacy by introducing the model error term in the cost function, like 4DVAR 

method it still suffers from the increasing density of local minimums. Our new 

method is shown to produce more consistent results than the WC4DVAR method. 

Ensemble formed from the pseudo-orbit generated by Indistinguishable States 

Gradient Descent method is shown to outperform the Inverse Noise ensemble in 

estimating the current states. 

In Chapter 6. we consider the problem of estimating the future states outside 

the perfect model scenario. We demonstrate that forecast with relevant adjust-

ment can produce better forecast than ignoring the existence of model error and 

using the model directly to make forecasts. The adjustment can be obtained from 

the estimates of the model error using Indistinguishable States Gradient Descent 

with a stopping criteria. Methods of interpreting predictability are discussed. 

We suggest using the probability forecast skill to measure the predictability out-

side PMS. Traditional ways of evaluating the predictability of one model, e.g. 

Lyapunov exponents and doubling time, are discussed. Measurement based on 

probabilistic forecast skill is suggested to measure the predictability outside PMS. 

A bullet point list of new results is on Page 157. 
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Chapter 2 

Background 

In this chapter we will first introduce some terminology of dynamical system and 

the properties of nonlinear dynamical systems. Details of the systems used in this 

thesis are then provided. In the end, some relevant nonlinear dynamics modelling 

methods are described. 

2.1 Dynamical system 

A Dynamical system is a system that evolves in time. The set of rules that 

determine the evolution of the state of the system in time are called Dynamics. 

For example we write xt  = (x0 ) where F represents the dynamics, x represents 

the state of the system, x e S where 5 denotes the state space, which is the 

collection of all possible states (typically S = Rm) and t is the time evolution. 

The starting state x o  is called the initial condition. 

Mathematically dynamical system can be categorised into two types, deter-

ministic and stochastic. The evolution of a stochastic dynamical system is irre- 
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2.2 Flow and Map 

ducibly random. A deterministic dynamical system, on the other hand, is one 

for which the dynamics and initial condition define the future state unambigu-

ously. In this thesis, we will only study the case where the system is deterministic 

and especially nonlinear. The evolution of a nonlinear system involves nonlinear 

dynamics and the observed behaviour of system can be irregular. 

2.2 Flow and Map 

Dynamical systems may evolve either continuously or discretely in time. The 

continuous dynamical system, called flow, is usually represented as a set of first 

order ordinary differential equations of the form 

dx(t)  = F (x)  
dt 
	 (2.1) 

where the state x and the dynamics F are defined for all real values of time t E R 

and {xt }tT_o  forms an unbroken trajectory in the system state space. 

The evolution of a discrete dynamical system, called map, takes place at 

regular time intervals. The mathematical form of a map is defined by 

Xt+i = F(xt) 
	

(2.2) 

where time t E Z. 

For continuous dynamical systems, solving the ordinary differential equations 

analytically may prove difficult, or even impossible. One can, however, study the 

flow by numerical procedures. In this thesis, continuous dynamical systems are 

simulated by 4th-order Runge-Kutta approximation and we define the numerical 
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2.3 Chaos 

realization to be the system. 

2.3 Chaos 

Given the state space S of a deterministic dynamical system, A subset A C S is 

an invariant set 1  for the dynamics F if F t (x) E A for x E A and all t. A closed 

invariant set A C § is called an attracting set if there is some neighbourhood U 

of A such that Ft(x) E U for t > 0 when Ft(x) A as t oo, for all x E U 

(35). The attracting set, also called on attractor or invariant measure of the 

dynamical system, describe the long term behaviour of the dynamical system. 

The probability distribution of states in the set of invariant measure is called 

unconditional probability distribution, which can be treated as prior distribution 

of the states before any state information is available. The invariant measure 

is, however, rarely known analytically, but can be approximated by evolving the 

system forwards over a long period of time if the system dynamics are known. 

We define the observed invariant measure to be climatology. Without knowing 

the dynamics of the system, the distribution of all previously observed states, 

termed sample climatology, is usually treated as the estimate the unconditional 

probability distribution. 

Given a nonlinear system whose long term dynamics converges to the attract-

ing set A, chaos is often observed from the phenomena, sensitive dependence on 

initial conditions, where points that are initially close are separated on length 

scales commensurate with the range of the dynamics over relatively short lead 

times. Mathematically, for every initial condition x o  E A, and any lei > 0, there 

'We assume that A can not be decomposed into smaller invariant sets 
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2.4 Analytical systems 

exists S > 0 such that for some t > 0, II Ft(xo  €) — F t (xo) II> S. Another 

property of chaotic system is recurrent but not periodic. A system is recurrent if 

the state of the system returns to itself, i.e. for any initial condition xo E A, we 

require that xo  — Ft(x0 ) Il< e for any E > 0' (Note t could be very large). 

2.4 Analytical systems 

In order to demonstrate that our results is rather general than restricted in a 

particular system, methods will be applied to a variety of systems with different 

properties. In this section, we define those analytical systems that will be used to 

illustrate the questions to be addressed and discuss the difference among different 

methods. 

2.4.1 Logistic map 

The logistic map is a one dimensional map first introduced by Hutchinson (14) 

in order to investigate the role of explicit delays in ecological models. It is then 

applied in modelling the dynamics of breeding population to capture the effect 

that the growth rate of the population varies according to the size of the popu-

lation (GO). The mathematical form of the logistic map is defined by 

xi+i  = axi  (1 — xi ) , 	 (2.3) 

where xi  represents the population at year i. Logistic map is a non-invertible 

map as each state xn  has two preimages. The invariant measure of the logistic 

map strongly depends on the parameter value of a. Figure 2.1 shows how the 
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2.4 Analytical systems 

system behaviour changes corresponding to the value of a. For a=4, a change of 
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Figure 2.1: The bifurcation diagram of logistic map 

variables (substitute x with sin2 (7)) transforms the logistic map into the tent 

map, which is proven to be chaotic (69). 

The logistic map was also used as a computer random number generator by 

Ulam and Neumann (1947) who studied the logistic map in its equivalent form 
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= 1 — axn2 . 	 (2.4) 
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2.4 Analytical systems 

2.4.2 Henon map 

Henon Map was introduced by Henon (40) as a simplified model of Lorenz63 

model (61). The two dimensional Henon map is defined by 

	

Xn+i = 1 — aX,L2  + Yr, 	 (2.5) 

	

Yrt+ 1 = bXri . 	 (2.6) 

The parameter values used in Henon (1976) were a = 1.4 and b = 0.3 in order to 

produce chaotic behaviour. Figure 2.2 shows the attractor of Henon Map in the 

state space. 

Figure 2.2: The attractor of Henon Map 
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2.4 Analytical systems 

2.4.3 Ikeda map 

Ikeda Map was introduced by Ikeda (45) as a model of laser pulses in an optical 

cavity. With real variables it has the form 

	

Xri+i  •-y + u(Xn, cos 0 — Yri  sin 0) 	 (2.7) 

	

Yn+1 = u(Xn  sin 0 + Y„ cos 0), 	 (2.8) 

where 0 =13 — a/ (1 + 	Yn2 ). 

With the parameter a = 6, /3 = 0.4,7 = 1, u = 0.83, the system is believed 

to be chaotic. Figure 2.3 shows the attractor of Ikeda Map in the state space. 

An imperfect model of Ikeda Map is obtained by replacing the trigonometric 
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Figure 2.3: The attractor of Ikeda Map 
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functions in Equation 2.7 with truncated power series (50). The truncations used 
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2.4 Analytical systems 

in the experiments of the thesis are 

	

cos 0 = cos(co +701—> —co + 2/6 co 5 /120 	 (2.9) 

	

sin 0 = sin(w + 7r) 1—> —1 + w2/2 w4/24 	(2.10) 

where the change of variable to w was suggested by Judd and Smith (2004) since 

0 has the approximate range —1 to —5.5, and —7r is conveniently near the middle 

of this range. We call this model truncated Ikeda model. 

2.4.4 Moore-Spiegel system 

The Moore-Spiegel Flow was introduced by Moore and Spiegel (66) as a model 

of the nonlinear oscillator dynamics. The flow is defined by: 

	

dx I dy = y 	 (2.11) 

	

dy I dt = z 	 (2.12) 

	

dz/dt = —z — (T — R + Rx 2 )y — Tx. 	 (2.13) 

We use the forth order Runge-Kutta scheme to simulate the differential equations. 

The simulation time step is 0.01 time unit. Figure 2.4 shows an attractor of 

Moore-Spiegel system for T = 36 and R = 100 in the state space. 

2.4.5 Lorenz96 system 

A system of nonlinear ODEs was introduced by Lorenz (63) in 1995. The variables 

involved in the system are analogous to some atmospheric variables regionally 

distributed around the earth. For the system containing m variables x l , xn, 
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= 	 F, dt 
dxti  

(2.14) 

2.4 Analytical systems 

-20 
	 -2 

x 

Figure 2.4: The attractor of Moore-Spiegel system for T = 36 and R = 100. 

with cyclic boundary conditions (where xn,±1 = x 1 ), The equations are 

where following (83) and (67) the parameter F is set to be 10 in all of our exper-

iments. We call the ODEs of equation 2.14 as Lorenz96 Model I. As a simulation 

to the weather model, Lorenz (63) assume the time unit of the Lorenz96 Model 

I equal to 5 days as the doubling time of the Lorenz96 Model I is roughly equal 

that of the current state of the art weather model. In the thesis, we will use the 

same scaling in all the experiments related to Lorenz96 model. 

In addition to equation 2.14 Lorenz also introduced another set of ODEs. The 

second set of ODEs consists of m x n "fast" small scale variables in addition to 

the m "slow" variables. The time scale of those variables are shorter than the 
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2.5 Nonlinear dynamics modelling 

variable xi  in Model I. The equations of the two sets of ODEs are 

dpi 	 ii,fz 6 
1-= F 

dt 
j=1 

dyj .i 	 hoc 
dt— 
	— 	— 	-- 17:xi 

Let us call the ODEs of equation 2.15 and 2.16 to be Lorenz96 Model II. The 

small-scale variables yi ,i  have the cyclic boundary conditions as well (that is 

yn+i ,i  A set of n small-scale variables are coupled to every large scale 

variable. The constants b and c are set to be 10, in that case the dynamics, 

represented by the small scale variables, is 10 times as fast and 1/10 as large as 

that represented by the large scale variables. In the thesis the coupling coefficients 

hx  and hg  are set to be 1. The design of Lorenz96 Model I and II is to simulate 

the reality that the model is built on the m dimensional (slow dynamics) space 

while the underlying system is also contain m x n fast dynamics variables which 

one can not observe. In this thesis, both Lorenz96 Model I and II are simulated 

by the forth order Runge-Kutta scheme with simulation time step 0.001 time 

unit. 

2.5 Nonlinear dynamics modelling 

2.5.1 Delay reconstruction 

In reality, the state of the unknown dynamical system is observed in the obser- 

vation space 0. It is often the case that the observation space is not sufficient to 

express the dynamics of the system unambiguously, for example, only one com- 

i 	 (2.15) 

(2.16) 
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2.5 Nonlinear dynamics modelling 

ponent of the system state may be measured. Rather than model in observation 

space 0, it is therefore usual to reconstruct the dynamics of the system in a fur-

ther space: the model state space M. How can we construct a higher dimensional 

model state space given the observation is scalar? Takens' Theorem (89) tells 

us that we do not have to measure all the state space variables of the system. 

We can reconstruct an equivalent dynamical system using delays of the observed 

component, such method is called delay reconstruction (79; 81). Given a time 

series of scalar observations, s t , t = 1, ..., n, recorded with uniform sampling time, 

a trajectory of model state x t  can be reconstructed in M dimensions from the 

single observable s t , by delay reconstructions. This yields a series of vectors 

xt = (St St —Td 7 7 St— (Al —1)Td )1 

	 (2.17) 

where Td is called the delay time. To predict a fixed period in the future, we 

consider a third time scale, Tp, the prediction time. Each state x t  on the trajectory 

has a scalar image s t+,, and we wish to construct a predictor to determine this 

image for any x. 

2.5.2 Analogue models 

Analogue modelling is a popular and straightforward method which is effective 

to systems whose trajectories are recurrent in state space. Extracting the spatial 

information of the system dynamics requires sufficient historical data to form a 

learning set from which neighbours of the preimage of the state to be predicted 

are defined. In this thesis the nearest neighbour is determined by the distance 

between the current state and its neighbour. 
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2.5 Nonlinear dynamics modelling 

• Local analogue 

For local analogue, we firstly find the nearest neighbour in the model space. 

We then report the nearest neighbour's image as the prediction. 

• Local Random Analogue 

We are not always lucky enough to determine whether or not the data from a 

stochastic process or deterministic process. Paparella et al. (70) introduced 

a hybrid approach, Random Analogue Prediction(RAP), which exploits the 

deterministic nature of the process while incorporating variations in the 

local probability distribution function, thereby adhering to the stochastic 

nature of each observed trajectory. To produce the Local Random Analogue 

prediction we firstly define a local neighbourhood in the model state space, 

usually with a fixed radius or fixed number of k nearest neighbours. We 

then select a near neighbour randomly from the k nearest neighbours and 

report its image as the prediction. The probability of selecting a particular 

neighbour can be based on the distance between the preimage of the state 

to be predicted and that neighbour or treat the k neighbours equally. 

2.5.3 Radial Basis Functions 

Analogue models, when considered as a kind of local models, require constructing 

a new local predictor for each initial condition by searching the learning set. As 

a result, a large amount of computational resources are needed. Global models 

can cover the entire domain once the model is constructed. In this section we 

illustrate the Radial Basis Functions as an example of global model. 

The Radial Basis Functions are a global interpolation technique. They con- 
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2.5 Nonlinear dynamics modelling 

struct a predictor (map), F(x) : Ern 	R' which estimates the scalar observation 

s for any x based on rbe  centres, denoted as cj , j = 1, ..., rb, where cj  E Rm. The 

predictor F(x) is defined by 

nc 

F(x) = 	-0(11 x - 	ID, 	 (2.18) 
j=1 

where 0(•) are radial basis functions (14; 15; 79), II • II is the Euclidean norm. 

Typical choices of radial bases functions include 0(r) = r, r 3 , and e-r2 /a where 

the constant a reflects the average spacing of the centres c j . In the simplest case 

the centres are chosen to cover the region of state space. To determine the value 

of Aj , we assume 

F(x) 	si . 	 (2.19) 

The Aj  are then determined by solving a linear minimisation problem, i.e. 

b = AA. 	 (2.20) 

, where A = [Ai , ..., Anj, A is defined by Aij 	— cj  II) and b = [Si .••, sni ] 

where n1  is the size of the learning set based on which the model is constructed (14; 

15; 79). 

2.5.4 Summary 

In this chapter, some terminologies of dynamical system and its properties are 

defined; details of the systems used in this thesis are then provided and some 
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2.5 Nonlinear dynamics modelling 

relevant nonlinear dynamics modelling methods are described. Although nothing 

new is presented in this chapter, the content of this chapter provide the back-

ground knowledge of the thesis. 
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Chapter 3 

Nowcasting in PMS 

The quality of forecasts from dynamical nonlinear models depends both on the 

model and on the quality of the initial conditions. This chapter is concerned 

with the identification of the current state of a nonlinear chaotic system given 

both previous and current observations in the Perfect Model Scenario (PMS). 

It has been shown that even under the ideal conditions of a perfect model of 

a deterministic nonlinear system and infinite past observations, uncertainty in 

the observations makes identification of the exact state impossible (48). Such 

limitations mean that.a single "best guess" prediction is not an ideal solution to 

the problem of accurate estimation of the initial state. Instead an ensemble of 

initial conditions better accounts for uncertainty in the observations. Here we 

define the problem of state estimation of the current state conditioned on the 

past as a nowcasting problem. In the PMS, there are states that are consistent 

with model's dynamics and those states that are not. Those consistent states lie 

on the model's attractor. States off the model's attractor are pulled towards the 

attractor. For nonlinear chaotic systems, this collapse onto the attractor dom- 
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3.1 Perfect Model Scenario 

Mates the model's dynamics. Intuitively, it make sense in state estimation to 

identify those states that are not only consistent with observations but also con-

sistent with the model's dynamics. The perfect model scenario is firstly defined 

in Section 3.1. The theory of Indistinguishable States (IS) is then described in 

Section 3.2. In Section 3.3, we introduce our methodology to address the problem 

of nowcasting in PMS by first producing a reference trajectory by the method 

called Indistinguishable States Gradient Descent (ISGD) and then an ensemble of 

initial conditions being formed by Indistinguishable States Importance Sampler 

(ISIS). Other state estimation methods including Four-dimensional Variational 

Assimilation (4DVAR), Ensemble Kalman Filter (EnKF) and Perfect ensemble 

are described in Section 3.4, 3.5 and 3.6 respectively. Comparison are made in 

Section 3.7 i) between ISGD method and 4DVAR method relative to the reference 

trajectory (defined in Section 3.3) they produce; ii) between the initial condition 

ensemble generated by ISIS and that produced by EnKF; iii) between the initial 

condition ensemble generated by ISIS and that of a perfect ensemble. It is the first 

time that IS theory is applied to produce analysis and initial condition ensemble 

and contrast with 4DVAR method and Ensemble Kalman Filter method. 

3.1 Perfect Model Scenario 

Let Rt  EIn' to be the state of a deterministic dynamical system at time t E Z. 

The evolution of the system is given by .P(Rt , : Rth IR71/ and iit+i = F(xt, a), 

where F donates the system dynamics that evolves the state forward in time in 

the system space R' and the system's parameters are contained in the vector 

a E W.  
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3.1 Perfect Model Scenario 

Define xt  E IR"' to be the state of the deterministic dynamical model at time 

t E Z. The model is defined by F(x t , a) : —> JR and x t+1  = F(xt , a), where 

F donates the model dynamics that evolves state forward in time in the model 

space Rrn and a) E W donates the model parameters. 

We define the observation at time t to be s t  = h(Rt ) + r/t , where is the 

true state of the system. h(.) is the observation operator which projects the 

state in the model space into observational space. For simplicity, we take h(.) 

to be the identity. Unless otherwise stated, it is assumed that all components 

of sit  are observed, i.e. s t  E Ie. The nt  E Rth  represent observational noise 

(or measurement error); otherwise stated the rh are taken to be independent and 

identically distributed. 

In the Perfect Model Scenario(PMS), we assume i) the system state and model 

states evolve according to the same structure of the dynamics, i.e. F = F. Note 

that it does not require the system parameters a and the model parameters a 

having the same values. In this chapter, however, we focus on the case that not 

only the model class F but also the model parameters a are identical to those of 

the system. ii) the system state 5 -c and the model state x share the same state 

space, i.e. fit = m. iii) model state and system state correspond exactly and 

iv) the noise model is independent and identically-distributed and the statistical 

characteristics of the observational noise are known exactly. 

The problem of nowcasting in the PMS will be interpreted as how to form 

an ensemble to estimate the current state Ro  given the history of observations 

st , t = —N +1,..., 0, a perfect model class with perfect parameter values and the 

parameters of the observational noise model. 
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3.2 Indistinguishable States 

3.2 Indistinguishable States 

Given a perfect model, an ideal point forecast is possible if we initialise the 

model with the true state of the system. For periodical system, the state can 

be identified uniquely when t —co. For chaotic systems, noisy observations 

prevent us from identifying the true state of the system precisely, nonetheless 

one can find a set of states that are indistinguishable from the true state given 

the perfect model and the noise model (48). In this section we describe the 

background knowledge of Indistinguishable States Theory following the work of 

Judd and Smith in (48). Figure 3.1 (reproduced from Figure 1 in (48)) shows 

Figure 3.1: Following Judd and Smith (2001), Suppose xt  is the true state of 
the system and yt  some other state where x t  and yt  E R2 . The circles centred 
on xt  and yt  represent the bounded measurement error. When an observation 
falls in the overlap of the two circles (e.g., at a), then the states xt  and yt  are 
indistinguishable given this single observation. If the observation falls in the 
region about xt , but outside the overlap region (e.g., at /3), then on the basis 
of this observation one can reject y t  being the true state, i.e., x t  and yt  are 
distinguishable given the observation. 
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3.2 Indistinguishable States 

that based on one single observation s t  of state xt , there exist many states y t  each 

of which is indistinguishable from xt  because of the observational uncertainty if 

the overlap region in Figure 3.1 covers the observation s t . Notice that given the 

bounded noise model, xt  and yt  are indistinguishable as there exist the overlap 

region in Figure 3.1. However, a particular realization of observation, e.g. /3 in 

Figure 3.1, could distinguish xt  from yt . 

We describe the statistical background of Indistinguishable State Theory in 

the following. For the convenience of explanation, x t , yt  and st  are scalars. Let 

the probability density function of the observational noise be p(•), the joint prob-

ability density of xt  and yt  being indistinguishable is then defined by 

f P(st — xt)P(st — yt )dst . 	 (3.1) 

This joint density function depends only on the difference between xt and y t  and 

the distribution of the measurement error s t  — xt , since 

f gst — xt)P(st — Yt)dst = 	 P(st — xt)P(st xt + xt — Yt)d(st xt), (3.2) 

The indistinguishability of two states x t  and yt  can be quantified by the normalised 

density function 

f  p(st  — xt )p(st  — xt  + yt)d(st xt) q(xt  — yt ) — 
f p(st — xt)p(st — xt)d(st — xt) 

(3.3) 
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3.2 Indistinguishable States 

This function is called q density. The normalisation implies the constraint that 

when xt  = yt , the density function reaches its maximum value of 1: in no case 

that xt  is distinguishable from itself. If q(xt  — yt ) = 0, then the states xt  and yt 

 are distinguishable with probability one, any particular realization of observation 

will only be consistent with either xt  or yt  but not both. A value q(x t  — yt ) > 0 

indicates that x t  and yt  are indistinguishable given the noise model. One should 

notice that there might be some particular observations that can distinguish xt 

 from yt  for example, in the bounded noise case, if )3 in Figure 3.1 is observed 

xt  and yt  are distinguishable. Therefore particular realizations will give extra 

information to distinguish x t  and yt  besides the q density. 

Such q density can be generalised to a sequence of observations. Any system 

state xo  defines a trajectory (we will often drop the subscript for x 0  afterwards), 

that goes infinite past and terminates at x. Given a time series of observations 

st , t = 0, —1, —2, ..., it follows from the independence of the measurement error 

that by considering all the states on the trajectory, the indistinguishability of two 

state x and y is then given by the product 

Q(x, y) = fl q(xt - 
t<0 

(3.4) 

Similar to the single observation case, If Q(x, y) > 0, then the trajectory ending 

at x and the trajectory ending at y are not distinguishable, given the noise model. 

Therefore the set of indistinguishable states of x is defined as 

111(x) = {y E 	: Q(x,y) > 01. 	 (3.5) 
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3.3 Nowcasting using indistinguishable states 

As showed in (48), for three typical measurement error densities p(.) (Gaussian 

error density, Uniform error and non-uniform bounded error), IHI(x) is non-trivial 

and is a subset of the unstable set of x. In practice, only finite observations are 

available. The Q density used in the later application is calculated within a finite 

time interval. This requires a reference trajectory as discussed in Section 3.3.1. 

3.3 Nowcasting using indistinguishable states 

In this section we introduce a new methodology to address the problem of now-

casting in the perfect model scenario by applying the Indistinguishable States (IS) 

theory. An illustration of this methodology is depicted in the schematic flowchart 

of Figure 3.2. 

Given a sequence of observations, we firstly identify a trajectory of the model, 

here termed a reference trajectory' in order to apply the IS theory to form an 

ensemble of initial conditions: The reference trajectory is discussed in detail in 

Section 3.3.1. The Indistinguishable States Gradient Descent (ISGD) (48) method 

is suggested to find the reference trajectory. Based on the reference trajectory, 

we introduce a method called Indistinguishable States Importance Sampler (ISIS) 

to form an Nees member ensemble of initial conditions (details are discussed in 

Section 3.3.3). The ISIS method includes two procedures, i) draw Nees candidate 

trajectories from the set of indistinguishable states of the reference trajectory 

according to Q density; ii) use the end point of each candidate trajectories as the 

ensemble member of the estimation of current state and weight them according 

to the likelihood of the observations. 

'In practice particular model trajectory chosen to be the reference trajectory will depend 
on the details of algorithm. 
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A reference trajectory 
where I = —NI 2,...,0 

Q(z) 

N's  candidate trajectories 
• where j = 	Ar" 

3.3 Nowcasting using indistinguishable states 

A sequence of observations 
between t = —N+1 and t = 0 

ISGD 

Are''''s  member ensemble of 
initial conditions -1 1= 

Figure 3.2: Schematic flowchart of the IS nowcasting algorithm 
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3.3 Nowcasting using indistinguishable states 

3.3.1 Reference trajectory 

In our nowcasting methods, we define a reference trajectory to be the analysis 

about which an ensemble can be formed. Generally, any model trajectory might 

be a reference trajectory. The quality of the ensemble depends largely on how 

"good" the reference trajectory is 1 . 

In the PMS, as we discussed in Section 3.2, there is a set of indistinguishable 

states of the true state, i.e. H(ii). Let the reference trajectory end at x. One 

can form an ensemble of initial condition by drawing members from the set of 

indistinguishable states of the model state x, i.e. II-1[(x). It is desired that such set 

of indistinguishable states IHI(x) contains the true state x , which means Q(51, x) > 

0. And symmetrically the model state x is in the set of indistinguishable states 

of true state Elf(*) 2 . Therefore the desirable reference trajectory we are looking 

for acts as a proxy of the true state. 

We suggest using the Indistinguishable States Gradient Descent(ISGD) method (48) 

to find a reference trajectory which use the information both from model dy-

namics and the observations (details are discussed in the following section). In 

practice, the set of indistinguishable states of the reference trajectory we obtain 

by ISGD method, almost surely, does not contain the true state, nor would any 

other methods due to the fact that only finite sample is available. We are, how-

ever, interested in whether the reference trajectory we obtain provides a better 

ensemble of estimates of current states. 

'or "are". We might take more than one reference trajectory in future work 
2 1t does not mean that the set of indistinguishable states of the true state and that of the 

reference trajectory are identical but overlapped 
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3.3 Nowcasting using indistinguishable states 

3.3.2 Finding a reference trajectory via ISGD 

Given a sequence of observations and a perfect model, we apply Indistinguishable 

States Gradient Descent algorithm (48) to find a reference trajectory. Judd and 

Smith (2001) demonstrate that the states produced by the ISGD method reflect 

the set of indistinguishable states of the true state. Here we give a brief introduc-

tion of how to apply such method (see (18) for more details). Let the dimension 

of our model state space be m and the number of observations be n; the sequence 

space is an m x n dimensional space in which a single point can be thought of as a 

particular series of n states u i , i = —n+ 1, .., 0. Some points in sequence space are 

trajectories of the model, some are not. We define a pseudo-orbit to be a sequence 

of model states that at each step differ from trajectories of the model, that is, 

ui+1  F(u i )). Particularly the observations being points of interest which, with 

probability one, are not a trajectory but a pseudo-orbit. We define the mismatch 

to be: 

	

F(ui) 
	

(3.6) 

Model trajectories with probability 1 have e i  = 0. We apply a gradient 

descent (GD) algorithm (details of GD can be found in appendix), initialised at 

the observations, i.e. u i  = s t , and evolving the GD algorithm so as to minimise 

the sum of the squared mismatch errors. It has been proven (18) that the cost 

function 

	

C(u) = 	 (3.7) 
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3.3 Nowcasting using indistinguishable states 

has no local minima, while at points along every segment of trajectory the cost 

function has the value of zero. As the minimisation runs deeper and deeper, 

the pseudo-orbit u_n+1, ••-, uo is closer to be a trajectory of the model. In other 

words, the GD algorithm takes us from the observations towards a model tra-

jectory. In practice, the GD algorithm is run for a finite time and thus not a 

trajectory but a pseudo-orbit is obtained. We denote the pseudo-orbit obtained 

from finite GD runs as yi , i = —n + 1, ..., 0. In order to find our reference trajec-

tory close to the pseudo-orbit obtained from GD algorithm, we iterate the middle 

point y-7,12  1 forward to create a segment of model trajectory zi , i = —n/2, ..., 

(y—n/2 z_n/2 ). We treat such model trajectory to be the reference trajectory, 

in Meteorology this trajectory might be called "the analysis". It is important to 

notice that although the GD algorithm can be applied to any length of obser-

vation window, the reference trajectory will likely diverge from the pseudo-orbit 

when n is large due to the consequence of sensitivity to initial conditions. In the 

results shown in section 3.7, n is adjusted to provide the reference trajectory that 

is close to the pseudo-orbit yi . 

3.3.3 Form the ensemble via ISIS 

In a fully Bayesian treatment one could use the natural measure as a prior and 

then update given the observations and the inverse noise model. Inasmuch as 

natural measure cannot be phrased analytically, in general, this approach is com-

putationally intractable due to the cost of estimating the prior. The idea of ISIS 

is to select the ensemble members using the set of Indistinguishable States of the 

reference trajectory as an importance sampler (53). In order to do this, we firstly 

lif n is odd, we take 3, ( - 7.0_ 1)/2  
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3.3 Nowcasting using indistinguishable states 

generate a large number of model trajectories, called candidate trajectories, from 

Which ensemble members can be selected. Ensemble members are drawn from 

the candidate trajectories according to their Q density relative to the reference 

trajectory. There are many ways to produce candidate trajectories. Here we 

suggest two methods of producing candidate trajectories. i) Sample the local 

space around the reference trajectory. One can perturb the starting point of the 

reference trajectory and iterate the perturbed point forward to create candidate 

trajectories. ii) Perturb the whole segment of observations s i , i = —n+ 1, ..., 0 and 

apply the ISGD onto the perturbed orbit to produce the candidate trajectories, 

i.e. the same way that we produce the reference trajectory. Although method ii) 

may produce more informative candidates, it is obviously much more expensive 

than method i) since the ISGD involves a large number of model runs. The re-

sults shown in section 3.7 are produced by using method i) to generate candidate 

trajectories. 

Given Ncand  number of candidate trajectories, the Q density is then used to 

measure the indistinguishability between the candidate trajectories and reference 

trajectory. Since only a segment of reference trajectory is obtained, the Q density 

is calculated over the time interval (- 722:, 0). 

To form an Nens member ensemble estimate of current state, we randomly 

draw IV ens trajectories from Neared  candidate trajectories according to their Q 

density, i.e. the larger its Q density is, the more likely the candidate trajectory 

is chosen. And the end point of each selected candidate trajectory is treated as 

the ensemble member. As the Q density depends not on the observations but 

on the noise model, in order to take account of the information in the particular 

observations we have, we weight the ensemble members using the likelihood of 
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3.3 Nowcasting using indistinguishable states 

the observations over the time interval (- 12-1 , 0). The likelihood function is given 

by: 

1 0  

 

L(z3 ) = -9 	(z .7  - s yr-1.(zit  St ), t 	t (3.8) 
= — 2 

where j E {1, ..., Nens} 1r1 — 1. 1  is the inverse of the covariance matrix of the obser- 

vational noise, zi denotes the chosen candidate trajectory and zio  is then taken 

to be the j ih  member of the ensemble estimates of the current state. 

3.3.4 Summary 

In this section, a new state estimation method based on applying IS theory is in-

troduced in the perfect model scenario. A reference trajectory, which is expected 

to reflect the set of indistinguishable states of the true state, is identified by ISGD 

algorithm. Based on the reference trajectory (analysis), the ISIS method is then 

introduced to form ensemble members from model trajectories, therefore the en-

semble members reflect the nonlinearity of the dynamics. Our methodology is 

aiming to enhance balance between the extracting information from the dynamic 

equations and information in the observations. Two state-of-the-art methods, 

Four-dimensional Variational Assimilation and Ensemble Kalman Filter, are dis-

cussed in the following sections. Results shown in Section :3.7 demonstrate that 

our method outperforms those two methods. The Perfect Ensemble as the opti-

mal ensemble states is defined and discussed in Section 3.6. Comparison between 

the Perfect Ensemble and our method is provide in Section 3.7. 
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3.4 4DVAR 

3.4 4DVAR 

Four-dimensional Variational Assimilation (4DVAR) is a widely used method of 

noise reduction in data assimilation (18; 19; 90). The method provides an es-

timate of a system state by using the information in both model dynamics and 

observations. 4DVAR looks for initial conditions that are consistent with the sys-

tem trajectory by taking account the observational uncertainty of the sequence 

of system observations. It aims to select the initial condition which minimises 

a cost function which measures the misfit between the model states and obser-

vations. During the application of 4DVAR, the minimisation is carried out over 

short assimilation windows rather than across all available data (Increasing the 

window length will not only increase the CPU cost but also introduce problems 

due to local minima (65; 71)). 

3.4.1 Methodology 

Assume the observations recorded within a time interval t E (-n, 0) will be used. 

Let xt  = F(xt_ i ), the 4DVAR cost function is: 

Cldvar —
2
(x, — xb n )TB1( —n x n — xb

—n 
 ) (3.9) 

1 
2 	

(H(xt) — st)Tr -1 (1/(xt) — St), 
t=—n 

where x_„ is the model initial condition, xb , is the first guess, or background state 

of the model and 13.7„1  is a weighting matrix that is the inverse of the covariance 

matrix of xb. The first term in the cost function is usually called the background 
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3.4 4DVAR 

term. s t  is the observation at time t and P -1  is the inverse of the covariance 

matrix of the observational noise. Hence the second term in the cost function 

minimises the distance between the model trajectory and the observations. 

By locating a minimum of the cost function, one finds initial conditions which 

defines a model trajectory that has the minimum distance from the observations. 

Such model trajectory is expected to be found in the perfect model case and 

the longer window is looked at, the better the global minima is expected to. 

In practice, increasing the window length will also increase the density of local 

minima which makes it much harder to locate the global minima (65; 71). 

3.4.2 Differences between ISGD and 4DVAR 

The 4DVAR method aims to produce a model trajectory consistent with obser-

vations. The 4DVAR analysis, whatever it may be in practice, can also be used 

as a reference trajectory to form an initial condition ensemble by ISIS. Although 

both ISGD method and 4DVAR method use the information of both model dy-

namics and observations to produce the model trajectories, there are fundamental 

differences between them. 

• Both methods produce the model trajectories "close" to the observations 

but in a different way. The 4DVAR method tends to find a model trajec-

tory close to the observations as the cost function minimises the distance 

between the model trajectory and the observations. If one initialises the 

cost function with the true state of the system, the minimisation algorithm 

will with probability 1 move away from the trajectory in order to minimise 

the distance between observations and the model trajectory. Only if the 
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3.4 4DVAR 

window is infinite then this does not have to happen. In practice 4DVAR 

is applied to an assimilation window with finite length, the cost function 

forces the resulting model trajectory to be close to the observations, which 

may cause the estimate stay further away from the true state. 

In the ISGD algorithm, the cost function itself does not contain any con-

straints to force the result staying close to the observations. The GD min-

imisation is, however, initialised with the observations in practice 1 . The 

states one achieves is on the attracting manifold that is close to the observa-

tions (48; 52). Unlike 4DVAR method, ISGD method does not require the 

pseudo-orbit to stay close to the observations and actually ISGD method 

forces the pseudo-orbit, on average, to move away from the observations as 

the minimisation goes further and further. 

The results shown in section 3.7.1, indicate that 4DVAR method tends to 

produce the model trajectory closer to the observations than ISGD method. 

• The behaviour of the 4DVAR cost function strongly depends on the as-

similation window while ISGD does not. In practice, the number of local 

minima in the 4DVAR cost function increases with the length of the data 

assimilation window (71). The model trajectory defined by the local min-

ima stays father away from the observations than the one defined by the 

global minima of the cost function. The results trapped in the local minima 

are very likely inconsistent with the observations. Gauthier(1992), Stensrud 

and Bao (1992) and Miller et al. (1994) have performed the 4DVAR ex-

periments with Lorenz63 system (61). They all found that performance of 

l One may initialise the GD minimisation with better analysis if it is available 
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3.4 4DVAR 

assimilation varies significantly depending on the length of the assimilation 

window and difficulties arises with the extension of assimilation window due 

to the occurrence of multiple minima in the cost function. Applying the 

4DVAR algorithm, one faces the dilemma of either from the difficulties of 

locating the global minima with long assimilation window or from losing 

information of model dynamics and observations by using short window. 

The mismatch cost function in ISGD does not introduce such shortcomings. 

Although the cost function itself has more than one minima, each minima 

represents model trajectories where the mismatch cost function equals zero. 

Longer assimilation windows do not bring any trouble to the minimisation 

algorithm using GD. On the other hand, as longer assimilation window con-

tains more information of the model dynamics and observations, the results 

in Section 3.7 show that the states obtained by ISGD method stay closer to 

the true state when the window length increases. The minima of the cost 

function are only model trajectories. And by initialising the minimisation 

algorithm with the observations, a pseudo-orbit on the attracting manifold 

which close to the observations can be found. 

• The aim of 4DVAR is to locate a model trajectory through the available 

observations which minimises the distances between model states and ob-

servations, which is the second term of the cost function. The first term of 

the cost function, i.e. the background term, contains xb, the estimation of 

the state at the initial time of the assimilation window. In practice xb  can 

be obtained from the previous assimilation window. By having the back-

ground term in the cost function, it not only makes the minimisation faster 
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3.5 Ensemble Kalman Filter 

but most importantly tries to help the minimisation algorithm avoid being 

trapped from the local minima. In the presence of multiple minima, the 

result of the minimisation will depend on the starting point of the minimi-

sation (71). When the window length is very long, the second term of the 

cost function dominates the cost function. But when- the window length is 

short, the background term forces the final estimate to stay close to the ini-

tial estimate, which means the quality of the assimilation depends critically 

on the initial estimate. While the ISGD method does not have to use any 

other initial estimates except the observation itself as the minimisation is 

initialised with the entire window of observations. 

In the sense of forming the ensemble, we can also treat the model trajectory 

produced by 4DVAR as a reference trajectory and form the ensemble in the same 

way as ISIS method. Obviously the quality of the ensemble depends strongly on 

the quality of the reference trajectory. In section 3.7.1, we compare the quality 

of the model trajectory produced by 4DVAR and the one generated by ISGD in 

both low dimensional and higher dimensional case. The results show that the 

reference trajectory produced by ISGD is more consistent with the observations 

and closer to the true system trajectory than the 4DVAR results. 

3.5 Ensemble Kalman Filter 

Second well established class of algorithms has been defined for state estimation 

are sequential algorithms. In sequential algorithms, one integrates the model 

forward until the time that observations are available, the state at that time 

estimated by the model is usually called the first-guess, which is then corrected 
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with the new observations. The sequential algorithm, used in this chapter to 

compare with our methods, is based on the forms of Kalman filter (54). Although 

we only provide the comparison between ISIS method and a state of the art 

ensemble Kalman filter scheme (1; 2) later in the chapter, we first provide a brief 

overview of other versions of Kalman Filter methods including Kalman filter, 

Extended Kalman filter as background information on the ensemble Kalman filter 

being discussed later. 

3.5.1 Kalman Filter 

The Kalman filter (54) is a commonly used method of state estimation (86). It 

provides a sequential method to estimate the state of a system, with the aim of 

minimising the mean of the squared error of one step forecast. It gives the optimal 

estimate when the system dynamics are linear and the model is perfect (86). 

The Kalman filter addresses the general problem of trying to estimate the 

state of the system xt E Rin, where the dynamics of the system is F: 

xt = fr (Xt-1) 
	

(3.10) 

• Given a linear model F: 

F(xt ) = Axt, 	 (3.11) 

where the model F need not be a perfect representation of the system's 
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dynamics F. It is assumed that model space and system space are identical. 

Any discrepancy between the model and the system can be written as: 

P(xt ) = F(xt ) + wr t 	 (3.12) 

where 7XI is understood to reflect the model error. When defining the 

Kalman Filter it is also assumed that Tx; is IID normally distributed with 

zero mean and variance Q err 

• given observations s E Rmobs we have 

St = h(xt) + Et 	 (3.13) 

where ct  is the observational noise, assumed to be IID normally distributed 

with zero mean and variance F. The function h is the observation function, 

here assumed to be linear: h(xt ) = Hxt . The in,°b5  x m matrix H is 

a projection operator that gives the transformation from model space to 

observation space. 

We define xb E 	to be the background or prior estimate of the system state 

at time t, and 4 E Rm  to be the analysis or a posteriori estimate of the system 

state xt . The estimation error is then defined by 
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et  = xt  — xtb , 

ect' = xt  — 

and the error covariances are given by 

(3.14) 

(3.15) 

Pt b 	E (etbetbT) ,  (3.16) 

Pa 	E(eaetaT). (3.17) 

Pb and Pa are often called background-error covariance and analysis-error covari-

ance. The Kalman filter provides an estimate of the updated state 4 as a linear 

combination of the first guess estimate xt and a weighted difference between the 

actual observation and the prediction H4, i.e. 

xa 	+ Kt (s, — rixtt'), 	 (3.18) 

where the m x m°b5  matrix Kt , often called the Kalman gain, can be derived by 

minimising the posterior error covariance P. The Kalman gain is given by: 

Kt  = ppliT(Hp:HT +11) -1 . 	 (3.19) 

The application of the Kalman filter is as follows 
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xeb = F (4-1) (3.20) 

Pb 	Apta, 1  AT 	err (3.21) 

Kt = Pb  HT  (H Ptb  HT  + r) -1  (3.22) 

= x:+Kt (s t  — h(4)) (3.23) 

Pt = (1 	KtH)ptb (3.24) 

The equations above describe two phases, the first two equations are respon-

sible for projecting the current state and error covariance estimates forward in 

time to obtain the first guess estimates for the next time step. Equations (3.22-

3.24) are responsible for updating the estimates using the new observation. This 

results in the recursive nature of the Kalman filter. By doing so, the Kalman 

filter estimates the current state using the information of all past observations 

although not the same time. 

3.5.2 Extended Kalman Filter 

The Kalman filter addresses the state estimation problem of a process that is 

governed by a linear dynamics. But it is often the case that the process to be 

assimilated and (or) the observation operator is non-linear. A Kalman filter that 

linearises about the current mean and covariance is referred to as an extended 

Kalman filter (EKF) (29; 30; 47). 

In the extended Kalman filter, the state transition model F and observation 
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model h need not be linear functions of the state. It is, however, assumed that 

these functions are differentiable. 

The equations of EKF differs from KF in that H represents the mobs x m 

Jacobian matrix of h: H = ---°h  instead of the linear projection operator and A ox 

is the m x m Jacobian matrix of model F: A = a  often referred to as the x 

transition matrix. 

Similar to the Kalman filter, model errors are required to be uncorrelated 

with the growth of analysis errors through the model dynamics. This becomes 

a fundamental flaw of EKF as the distributions of the initial uncertainty are no 

longer normal after going through the nonlinear model. The linear assumption 

of error growth in EKF results in an overestimate of background error variance. 

Furthermore, estimating the model error covariance Q err may be particularly 

difficult while the accuracy of the assimilation strongly depends on Q"T  (37). 

3.5.3 Ensemble Kalman Filter 

The ensemble Kalman filter (EnKF) was first introduced by Evensen (23) as a 

method for avoiding the expensive calculation of the forecast error covariance 

matrix necessary for both KF and EKF in Numerical Weather Prediction. The 

mechanism of the EnKF's production of an analysis follows from the methods of 

the KF and EKF. It differs only in its method of using an ensemble to estimate 

the forecast error covariance matrix. No assumptions about linearity of error 

growth are made. 

There are two general classes of ensemble Kalman filter, stochastic (37; 41; 

42; 43) and deterministic (1; 7). Both filters propagate the ensemble of analyses 
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1 
P = 

Nens  
(3.26) 

3.5 Ensemble Kalman Filter 

with non-linear models, the primary difference is whether or not random noise is 

applied during the update step to simulate observational uncertainty (37). 

Let X = 	..., xre') be an /Yens member ensemble state estimation at time 

t. The ensemble mean X is defined as 

= 
N'ns 

1 r1 
(3.25) 

IVens 

 

  

i=1 

 

and the variance P of a finite ensemble is given: 

The EnKF uses the variance of nonlinear ensemble forecast P to estimate the 

background-error covariance P b  

• Stochastic update methodology 

The traditional ensemble Kalman filter (37; 41; 42; 43) involves a stochastic 

update method. This algorithm updates each member according to differ-

ent perturbed observations. As the perturbation involves randomness, the 

update is considered stochastic method. 

We define the perturbed observations "S i  = s + m where 7ji  N N(0, r). 

For each ensemble member x it  the update equations are: 
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3.5 Ensemble Kalman Filter 

	

+ k(si  — h(4)) 
	

(3.27) 

	

k = Pb HT (H Pb HT + F) -1 
	

(3.28) 

As we can see from the equation, the perturbed observations are used to 

update the ensemble states, similar to the Kalman gain K in EKF (10), but 

using the ensemble to estimate the background-error covariance matrix. 

If unperturbed observations are used in (15) without other modifications 

to the algorithm, the analysis error variance Pa will be underestimated, 

and observations will not be adequately weighted by the Kalman gain in 

subsequent assimilation cycles (37). Adding noise to the observations in 

the EnKF can, however, introduce spurious observation background error 

correlations that can bias the analysis-error covariances, especially when 

the ensemble size is small (92). Such shortage is overcome by deterministic 

update methodology. 

• Deterministic update methodology 

Deterministic algorithm like (1; 7) update in a way that generates the same 

analysis error covariance without adding stochastic noise. There are a num-

ber of different approaches, here in the case we are only going to talk about 

one. Here we briefly describe one of the methods called the ensemble square-

root filter(EnSRF) (92) which is mathematically equivalent to the Ensemble 

Adjustment Kalman filter (1). We use this method to produce ensemble 

results comparing with the results obtained from IS method in Section 3.7. 
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3.6 Perfect Ensemble 

Generally the EnSRF updates the ensemble mean and the deviation of each 

ensemble member from the the mean separately: 

Ra =Xb k(S — h(5Cb )) 

- 	= )4, - )cb - kh(x) 

(3.29) 

(3.30) 

(3.31) k= 
HPb.riT +r 

) 
(1+ 

Here k is the Kalman gain as in Eq.(16) and k is called the reduced gain 

and is used to update deviations from the ensemble mean. 

We can see that in order to obtain the correct analysis-error covariance 

with unperturbed observations, a modified Kalman gain, which is reduced 

relative to the traditional Kalman gain, has to be used to update the error 

covariance. Consequently, deviations from the mean are reduced less in 

the analysis using K than using K. In the stochastic EnKF, the excess 

variance reduction caused by using K to update deviations from the mean 

is compensated for by the introduction of noise to the observations (37). 

3.6 Perfect Ensemble 

Given a model F, there is a set of states consistent with the long term dynamics 

of the model, in the system with an attractor, this set will reflect the invariant 

measure on the attractor. The probability distribution of states in the set of 

invariant measure is called unconditional probability distribution. Generally a 
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perfect ensemble (SO), is an ensemble of initial conditions which are not only 

consistent with the observational noise, but also consistent with the long term 

dynamics (as in "on the attractor"). The ensemble members are drawn from 

the posterior probability distribution of the model states given the observations. 

If only one observation so is considered the posterior distribution of the current 

state xo  given the observation can be derived from 

p(xo I so) a p(so xo) 1 (xo), 	 (3.32) 

where p(s x) is the probability density function of the observational noise and 

41)(x) is the unconditional probability density function of x. Figure 3.3 shows 

an example using Ikeda Map. In Figure 3.3, states (black) on the attractor 

are consistent with the long term dynamics of the Ikeda Map and those black 

states that inside the bounded noise region are members of the perfect ensemble. 

If a segment of n observations s_ n+i , s_ 1 , so  is given, the perfect ensemble 

of current states are those states at t = 0 that are consistent with the long 

term dynamics and their trajectories backwards in time are consistent with the 

sequence of the observations. That is, the posterior distribution is then given by 

p (xo  S) oc 	 p (si  I xi  ) (I) (x0 ) , 	 (3.33) 

Figure 3.4 shows examples of a segment observations are considered in the Ikeda 

Map case. As more observations are considered, the set of perfect ensemble 

becomes more concentrated to the true state of the system and stay the same 

attracting manifold as the true sate. When n approaches to infinity, the perfect 
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3.6 Perfect Ensemble 

Figure 3.3: Example of perfect ensemble for the Ikeda Map when only one ob-
servation is considered. The observational noise is uniformly bounded. In panel 
a, the black dots indicate samples from the Ikeda Map attractor, the blue circle 
denotes the bounded noise region where the single observation is the centre of 
the circle. Panel b is the zoom-in plot of the bounded - noise region. The red cross 
denotes the true state of the system 

ensemble becomes actually "perfect" , that is the ensemble members are consistent 

with infinite past observations which is the best ensemble one can obtain from 

the past observations. One might conjecture that this perfect ensemble is the set 

of indistinguishable states of the true state. In order to avoid confusion, in our 

thesis we call the perfect ensemble that based on finite number of observations, 

dynamically consistent ensemble. 

(I)(x) can be known to be very complicated fractal without being known ex-

plicitly. In practice, to form the dynamically consistent ensemble, we simply 

integrate the system of interest and collect the states that are consistent with the 

observations considered (80). For bounded noise model, consistent means within 

the bounded region about the observations. For unbounded noise, one can, for 
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3.6 Perfect Ensemble 

Figure 3.4: Following Figure 3.3, examples of perfect ensemble are shown for the 
Ikeda Map when more than one observation is considered. The perfect ensem-
ble of different number observations are considered are plotted separately. Two 
observations are considered in panel (a), 4 in panel (b), 6 in panel (c) and 8 in 
panel (d). In all the panels, the green dots are indicates the members of perfect 
ensemble. 

example, define consistent to be within the sphere centered on the observation. 

The radius of the sphere should be chosen depending on the number of obser- 
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vations, to increase as the number of observations increases. In practice we use 

`within four standard deviations' (39) i.e. the states, treated to be consistent with 

observations, never farther than 4a from the observations. Although the dynam-

ically consistent ensemble produce a desirable ensemble state of the current state 

where the ensemble members are consistent with both model dynamics and the 

observations, it is extremely costly to construct such ensemble, when the model 

states are in the high dimensional state space. Even in low dimensional systems, 

it is prohibitively costly when a relative long observation window is considered. 

3.7 Results 

In this section we first compare the ISGD method with 4DVAR method by looking 

at the model trajectory each produces. We then compare the ISIS method with 

Ensemble Kalman Filter by comparing ensemble members in the state space and 

evaluating them using the new e-ball method defined in Section 3.7.2. Finally we 

compare our met hod with the perfect ensemble. 

3.7.1 IS GD vs 4DVAR 

Since the 4DVAR method produces a model trajectory, we can use such model 

trajectory as a reference trajectory to form the ensemble in the same way as ISIS 

method. Here instead of comparing the ensemble nowcasting results, we simply 

compare the trajectory produced by 4DVAR with the reference trajectory gener-

ated by ISGD. We apply both methods to Ikeda Map (Experiment A) and the 

18 dimensional Lorenz96 Model I (Experiment B). For each case three different 

length assimilation windows are tested. For Ikeda Map, the assimilation win- 
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dows are 4 steps, 6 steps and 8 steps. For Lorenz96, the assimilation windows 

are 8 hours (short window), 16 hours (median window) and 32 hours (long win-

dow). An hour indicates 0.01 Lorenz96 time unit (see Section 2.4). Details of the 

experiments are listed in Appendix B Table B.1 & B.2. 

We use the second term of the 4DVAR cost function, i.e. the distance between 

observations and model trajectory (equation 3.34), and the distance between true 

states and model trajectory (equation 3.35) as diagnostic tools to look at the 

quality the model trajectories generated by each method. 

(h(xti)— sti)Tril(h(xti) — sti), (3.34) 

— (3.35) 

From Table 3.1 and 3.2, we can see that when the assimilation window is 

short for both Ikeda and Lorenz96 experiments, both 4DVAR and ISGD tend to 

generate model trajectories that are closer to the true states than to the obser-

vations 1 . This is expected as both methods can be treated as noise reduction 

method. For ISGD method, the larger window length is considered, the better 

model trajectories are produced. We expect the ensemble formed based on the 

reference trajectory to produce better ensemble forecast when the reference tra-

jectory is closer to the true states of the system. For 4DVAR method, when the 

'Although the trajectories is slightly father away from the observations, they are still con-
sistent with the observational noise. 

2 closer to the true states of the system 
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Window length a) Distance from observations 
Average Lower Upper 

4DVAR ISGD 4DVAR ISGD 4DVAR ISGD 
4 steps 1.58 1.66 1.51 1.59 1.63 1.73 
6 steps 11.06 1.77 8.17 1.71 14.28 1.83 
8 steps 51.84 1.85 46.16 1.80 58.54 1.90 

Window length b) Distance from truth 
Average Lower Upper 

4DVAR ISGD 4DVAR ISGD 4DVAR ISGD 
4 steps 0.52 0.61 0.48 0.55 0.55 0.67 
6 steps 9.51 0.39 6.70 0.36 12.59 0.42 
8 steps 50.04 0.28 43.59 0.25 55.77 0.31 

Table 3.1: a) Distance between the observations and the model trajectory gen-
erated by 4DVAR and ISGD for Ikeda experiment, b) Distance between the true 
states and the model trajectory generated by 4DVAR and ISGD for Ikeda exper-
iment, Average: average distance, Lower and Upper are the 90 percent bootstrap 
re-sampling bounds, the noise model is N(0, 0.05) and the statistics are calculated 
based on 1024 assimilations and 512 bootstrap samples are used to calculate the 
error bars (Details of the experiment are listed in Appendix B Table B.1). 

window length is relatively long, it suffers from the multiple local minima and 

produces the model trajectory which is both inconsistent with observations and 

far away from the truth although we expect to obtain more information of both 

observation and model dynamics from the longer window of observations. As we 

discussed in Section 3.4, applying the 4DVAR algorithm, one faces the dilemma 

of either from the difficulties of locating the global minima with long assimila-

tion window or from losing information of model dynamics and observations by 

using short window. Without introducing such shortcomings, our ISGD method 

produces better model trajectories. 
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Window length a) Distance from observations 
Average Lower Upper 

4DVAR ISGD 4DVAR ISGD 4DVAR ISGD 
8 hours 16.0 16.6 15.9 16.4 16.1 16.8 
16 hours 16.8 17.0 16.7 16.9 16.9 17.2 
32 hours 28.3 17.2 27.6 17.1 28.9 17.3 

Window length b) Distance from truth 
Average Lower Upper 

4DVAR ISGD 4DVAR ISGD 4DVAR ISGD 
8 hours 2.73 0.93 2.68 0.89 2.78 0.96 
16 hours 1.35 0.41 1.33 0.40 1.37 0.42 
32 hours 11.76 0.19 11.17 0.18 12.46 0.20 

Table 3.2: a) Distance between the observations and the model trajectory gen-
erated by 4DVAR and ISGD for Lorenz96 experiment, b) Distance between the 
true states and the model trajectory generated by 4DVAR and ISGD for Lorenz96 
experiment, Average: average distance, Lower and Upper are the 90 percent 
bootstrap re-sampling bounds, the noise model is N(0, 0.4) and the statistics 
are calculated based on 1024 assimilations and 512 bootstrap samples are used 
to calculate the error bars (Details of the experiment are listed in Appendix B 
Table B.2). 

3.7.2 ISIS vs EnKF 

In this section we first explore the low dimensional case in order to provide easily 

visualised evidence. Then we evaluate the nowcasts using c-ball method defined 

on following. 

• Compare the results in the state space 

We applied both ISIS and EnKF in the 2 dimensional Ikeda Map (Experi-

ment C) and plot the ensemble results in the state space (The details of the 

experiments are given in Appendix B Table B.3). Four nowcast examples 

are plotted in Figure 3.5. In all panels of Figure 3.5, the ensemble, produced 

by ISIS method, not only stays closer to the true state but also reflects the 

structure of the model's attractor as the ensemble members lies along the 
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model attractor. The EnKF ensemble, however, has its own structure as 

the ensemble members do not lie along the model attractor. In the top two 

panels of Figure 3.5, the EnKF ensemble manage to cover the true state and 

tends to stay close to the model's attractor. While in bottom two panels of 

Figure 3.5, the ensemble members are systematically off the attractor and 

tend to stay close to the observations and not covering the true state. 

• Evaluate both methods via 6-ball 

Here we introduce a simple new probabilistic evaluation method, which 

evaluate the ensemble forecasts without transforming it into probability 

distribution. 

Given the verification corresponding to the forecast at time t, in this case 

the verification is the true state at t = 0. One can draw a hyper-sphere 

with radius E (hereafter 6-ball) around the verification. For any methods, 

one can record the probability mass that is inside different size of 6-ball. 

One can compare the result between two methods by simply counting the 

proportion of times one method beats the other. If the methods tie, both 

methods win. When the size of the 6-ball is very small, we expect neither of 

the methods to be able to have ensemble members inside the 6-ball. When 

the size of the 6-ball is big enough, we expect all the ensemble members 

will fall inside the c-ball. In both cases, both methods wins. When the size 

of the 6-ball is neither too large nor too small, we can investigate which 

method produces ensemble forecasts assigns more probability mass around 

the verification. The advantage of the 6-ball method is that it is simple 

and easy to implement. Note the weakness of this method is that it is not 
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3.7 Results 

x 

Figure 3.5: Ensemble results from both EnKF and ISIS for the Ikeda Map (Ex-
periment C). The true state of the system is centred in the picture located by the 
cross; the square is the corresponding observation; the background dots indicate 
samples from the Ikeda Map attractor. The EnKF ensemble is depicted by 512 
purple dots. Since the EnKF ensemble members are equally weighted, the same 
colour is given. The ISIS ensemble is depicted by 512 coloured dots. The colour-
ing indicates their relative likelihood weights. Each panel is an example of one 
nowcast. 

proper (12). We will discuss the weakness of the E-ball method and compare 

it with the proper Ignorance Score in Section 6.1.3. 

We compare our ISIS method with the EnKF method in both low dimen- 
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sional Ikeda Map (Experiment C) and higher dimensional Lorenz 96 model 

I (Experiment D). The details of the experiments are given in Appendix B 

Table l3.3 & B.I. In both cases we evaluate the nowcasting performance 

using E-ball. Figure 3.6 shows the comparison between EnKF and ISIS. 

From the figures, it appears that the ensemble generated by ISIS outper-

forms the one generated by EnKF for almost all different sizes of the epsilon 

balls in both higher dimensional Lorenz96 and low dimensional Ikeda Map 

experiments. 

3.7.3 ISIS vs Dynamically consistent ensemble 

In this section, we compare the nowcasting performance of ISIS ensemble with 

that of the dynamically consistent ensemble (DCEn). For the purpose of simplic-

ity and efficiency, in the following experiments only uniform bounded noise model 

is used to create the observations. Since finding the perfect ensemble members in 

the high dimensional case is extremely cost, we will only compare the results in 

the low dimensional Ikeda Map (Experiment E). Similar to the previous section, 

we first compare both methods by looking at the ensemble results in the state 

space and then we compare them by the c ball method. As we mentioned in 

section 3.6, the more observations are considered, the better DCEn member can 

be found. In Figure 3.7, 3.8, 3.9, 3.10, we compare the ISIS results (with fixed 

window length, i.e. each window contains 12 observations) with the results pro-

duced by DCEn where different number of observations are considered. Details 

'Note we expect both methods wins when the size of the 6-ball is very small or very large. 
In the Ikeda experiment, it happens when the size of the 6-ball less than 0.001 or larger than 1 
although it is not seen in panel a) of Figure 3.6. And in the Lorenz96 experiment it happens 
when the size of the 6-ball larger than 6 although it is not seen in panel b) of Figure 3.6. 
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3.7 Results 

Figure 3.6: Compare the EnKF and ISIS results via &ball, the blue line denotes 
the proportion of EnKF method wins and the red line denotes the proportion of 
ISIS method wins a) Ikeda experiment, Noise level 0.05 (Details of the experiment 
are listed in Appendix B Table B.3); b) Lorenz96 experiment, Noise level 0.5 
(Details of the experiment are listed in Appendix B Table B.4) 
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of the experiment are given in Appendix B Table B.5. It appears that when the 

DCEn is constructed by considering a small number of observations (e.g. 1 or 2), 

the ISIS ensemble built on 12 observations outperforms the DCEn as shown in 

Figure 3.7, 3.8. From the first four panels of Figure 3.7 and 3.8, we found that 

some of the DCEn members lie on the same model's attractor as the true state 

does, some are not while the ISIS ensemble seems to be lying on the right model's 

attractor. And by evaluating the nowcast ensemble using e-ball method, we found 

the ISIS ensemble assigns more probability mass around the true state than the 

DCEn for almost all different sizes of E ball. This is due to the fact that lim-

ited dynamical information are contained in such short window of observations. 

When more observations are considered the DCEn outperforms the ISIS ensem-

ble. Figure 3.9 shows that even using half window-size of the observations, the 

DCEn outperforms the ISIS ensemble. The DCEn seems to be more concentrated 

and closer to the true state than the ISIS ensemble and assign more probability 

mass around the true state. Using the same length of the observations, with no 

surprise the DCEn again wins. 

As we discussed in Section 3.6, the DCEn is the optimal ensemble estimates 

one may achieve. It is expected to outperform any other state estimation meth-

ods. Although our ISIS ensemble, with no doubt, underperforms the dynamically 

consistent ensemble, it seems to have similar structure as the dynamically con-

sistent ensemble does. Note the ISGD algorithm is run for finite time, with more 

ISGD iterations, we conjecture the ISIS ensemble will converges to the DCEn. 

In practice, DCEn is computationally inapplicable while our IS methods can be 

applied in both low dimensional and high dimensional systems (53). 
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Figure 3.7: Dynamically consistent ensemble built on 1 observation compared 
with ISIS ensemble built on 12 observations, the noise model is U(-0.025,0.025), 
each ensemble contains 64 ensemble members. The top four panels following 
Figure 3.5, plot the ensemble in the state space. The ISIS ensemble is depicted 
by green dots. The DCEn is depicted by purple dots. The bottom panel fol-
lowing Figure 3.6 compare the DCEn and ISIS results via &ball. (Details of the 
experiment are listed in Appendix B Table B.5) 
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Figure 3.8: Dynamically consistent ensemble built on 2 observations compared 
with ISIS ensemble built on 12 observations, the noise model is U(-0.025,0.025), 
each ensemble contains 64 ensemble members. The top four panels following 
Figure 3.5, plot the ensemble in the state space. The ISIS ensemble is depicted 
by green dots. The DCEn is depicted by purple dots. The bottom panel fol-
lowing Figure 3.6 compare the DCEn and ISIS results via c-ball. (Details of the 
experiment are listed in Appendix B Table B.5) 
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Figure 3.9: Dynamically consistent ensemble built on 6 observations compared 
with ISIS ensemble built on 12 observations, the noise model is U(-0.025,0.025), 
each ensemble contains 64 ensemble members. The top four panels following 
Figure 3.5, plot the ensemble in the state space. The ISIS ensemble is depicted 
by green dots. The DCEn is depicted by purple dots. The bottom panel fol-
lowing Figure 3.6 compare the DCEn and ISIS results via e-ball. (Details of the 
experiment are listed in Appendix B Table B.5) 
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3.7 Results 

Figure 3.10: Dynamically consistent ensemble built on 12 observations compared 
with ISIS ensemble built on 12 observations, the noise model is U(-0.025,0.025), 
each ensemble contains 64 ensemble members. The top four panels following 
Figure 3.5, plot the ensemble in the state space. The ISIS ensemble is depicted 
by green dots. The DCEn is depicted by purple dots. The bottom panel fol-
lowing Figure 3.6 compare the DCEn and ISIS results via &ball. (Details of the 
experiment are listed in Appendix B Table B.5) 
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3.8 Conclusions 

3.8 Conclusions 

In this chapter, we considered the problem of estimating the current states of 

the model in the perfect model scenario. Based on the Indistinguishable States 

Theory, reviewed in Section 3.2, a new methodology is introduced to address the 

nowcasting problem. Our methodology involves first applying the ISGD algorithm 

to identify a reference trajectory which reflects the set of indistinguishable states 

of the true state. The ISIS method is then introduced to form the ensemble by 

selecting the model trajectories from the set of indistinguishable states of the 

reference trajectory. 

The well established 4DVAR method is reviewed and the difference between 

4DVAR method and ISGD method is discussed. Applying both method to Ikeda 

Map and Lorenz96 Model I, we demonstrate that the ISGD method produces 

more consistent results than 4DVAR method. This result comes with no surprise 

due to the fundamental shortcoming of the 4DVAR method, i.e. one faces the 

dilemma of either from the difficulties of locating the global minima with long 

assimilation window or from losing information of model dynamics and obser-

vations by using short window. The widely used sequential method EnKF is 

reviewed and discussed. Comparisons between ISIS method and EnKF method 

have been made in low dimensional Ikeda map and higher dimensional Lorenz96 

model. By looking at the ensemble results in the state space, we find that the 

structure of the ensemble obtained by ISIS method is more consistent with the 

model dynamics than that of the ensemble produced by EnKF method. A new 

simple evaluation method, &ball, is introduced to evaluate the nowcasting results 

of both methods. We find that in both Ikeda Map and Lorenz96 model experi- 
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3.8 Conclusions 

ments, our method systematically assigns more probability mass around the true 

state than the EnKF method. 

The optimal ensemble, dynamically consistent ensemble (perfect ensemble), 

is described. Although the DCEn outperforms the ISIS ensemble, we found the 

ensembles they produce have similar structure as both methods produce the en-

sembles that reflect the dynamical information of the model. In practice, DCEn 

is computationally inapplicable while our IS methods can be applied in both low 

dimensional and high dimensional systems (53). 
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Chapter 4 

Parameter estimation 

In this chapter we consider the problem of parameter estimation of deterministic 

nonlinear models. The future evolution of the nonlinear dynamical models de-

pend strongly on the initial conditions and parameter specifications. As forecast 

errors of nonlinear models will not be Gaussian distributed even if the observation 

errors are drawn from Gaussian distribution, tradition methods like least squares 

are not optimal. Methods have been developed to address the shortcomings of 

traditional methods, for example estimating model parameters by incorporating 

the global behaviour of the model into the selection criteria (64). Two new alter-

native approaches are introduced in this chapter within the perfect model scenario 

(PMS) where the mathematical structure of the model equations are correct and 

the noise model is known, but the true parameter values are unknown. The first 

approach forms the cost function based on probabilistic forecasting, we call it 

Forecast Based Estimates. The second approach focuses on the geometric prop-

erties of trajectories in short term while noting the global behaviour of the model 

in the long term, we call this method Dynamical Coherent Estimates. Dynamical 
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4.1 Technical statement of the problem 

Coherent Estimates is also applicable to the case that only partial observations 

are available. We will first define the problem of parameter estimation in Sec-

tion 4.1. The traditional Least Squares estimates method is then described and 

discussed in section 4.2. Forecast Based Estimates and Dynamical Coherent Es-

timates are presented in section 4.3 and section 4.4 respectively. Our approaches 

are compared with Least Squares Estimates and the numerical results are shown 

on several nonlinear models. Fundamental challenges remain in estimating model 

parameters when the system is not a member of the model class. Discussions of 

applying both methods to the case that the model structure is imperfect and 

defining optimal parameter values are presented in section 4.5. 

4.1 Technical statement of the problem . 

Suppose the evolution of a system state xi  E le is governed by finite dimensional 

discrete deterministic nonlinear dynamics: 

= 	, 	 (4.1) 

where the system's parameters are contained in the vector a E R1 . In the Per-

fect Model Scenario (see section 3.1), the model state space and system state 

space are identical. F(x, a) of a model is known to match that of the system 

exactly, i.e. F = F. Suppose the value for the vector of model parameters a is 

unknown and must be estimated from observations s i  of the state variables 

Assuming additive measurement error m yields observations s i  = xi  + m, where 

m is IID distributed. Without measurement error, l + 1 sequential measure- 
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4.2 Least Squares estimates 

ments si , 	si+1 would, in general, be sufficient to identify the true param- 

eter a (64). In the presence of observational noise, the true state of the system 

3-4 can not be determined precisely even infinite observations are provided and 

the parameter values are known exactly (48). As we will see, this also makes the 

problem of parameter estimation much harder. 

In this chapter we focus on addressing the problem of parameter estimation 

in the perfect model scenario. Our aim is to extract the information from a finite 

series of observations given the exact noise model and the functional form of the 

dynamic model to determine the model parameter values. 

We never identify the true model parameter precisely of course; rather we 

introduce two methods for extracting significant information on parameter values, 

one via evaluating the probabilistic forecast performance that they produce; the 

other via the trajectories they admit. And how to report the parameter estimates 

based on our methods are discussed. 

4.2 Least Squares estimates 

The famous least squares method (8; 27; 56) estimates the parameter by testing 

the error in the forecast initialised at observations. The one-step least squares(LS) 

estimate gives the value of parameter which minimises the least squares cost 

function. 

N -1 

CLS (a) 
	

rri  , 	 (4.2) 
i=1 
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4.2 Least Squares estimates 

where ern = s i+i  — F(s i , a), the one-step prediction error. The LS cost function 

can be derived from Maximum Likelihood Estimate(MLE) (17). Assume the 

observational noise and the forecast error, i.e. s i+1  — F(s i , a), are IID Gaussian 

distributed with mean 0 and standard deviation a. Given the observations s t , t 

1, 	the likelihood function of parameter a is then given by 

1 	, 
L(a) = (27r0_2)N/2  expl —  st+i  — (4.3) 

By minimising the log likelihood function, i.e. log(L(a)), the Least Squares cost 

function is then derived. IVIcsharry and Smith (64) proved that even with an 

infinite amount of data the optimal least squares solution is biased when it applied 

to the 1-D Logistic Map. Figure 4.1 plots the least square estimates against 

different noise level 1  for both Logistic map and Ikeda map. Figure 4.2 plots 

the Least Squares cost function in the parameter space for both Moore-Spiegel 

System and Henon Map experiments, given the noise level fixed. We can see 

from both figures that Least Squares Estimates systematically rejects the correct 

parameter value and from Figure 4.1, the higher the noise level is, the more bias 

in the estimate (20). The LSE method fails simply because the assumption of 

Independent Normal Distributed (IND) forecast errors does not hold even if the 

noise is IND. 

1 The different noise levels in the plots are defined by the ratio between the standard devi-
ation of the observation noise and the standard deviation of the signal 
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4.3 Forecast based parameter estimation 

Figure 4.1: Parameter estimation using LS cost functions for different noise level, 
the black shading reflects the 95% limits and the red solid line is the mean, they 
are calculated from 1000 realizations and each cost function is calculated based on 
the observations with length 100, the blue flat line indicates the true parameter 
value (a) Logistic Map for a = 1.85 (b) Ikeda Map for u = 0.83 

4.3 Forecast based parameter estimation 

In this section we address the parameter estimation problem by looking at the 

forecast performance of different parameter values. Given the same initial con-

ditions, the forecast performance varies as different parameter values are used. 

An illustration of the procedure used to obtain the forecast skill score is depicted 

in the schematic flow chart of Figure 4.3 (Details of each step of the procedure 

are described in the following sections): An ensemble of initial conditions is first 

formed to account the initial uncertainty. The forecast ensemble at lead time N 

is obtained by iterating the initial condition ensemble N times forward through 

the model for given parameter values. The ensemble forecast is then interpreted 

as a continuous forecast distribution by standard kernel dressing. In order to 

evaluate the probabilistic forecast in a more robust way, we blend the forecast 

distribution with the sample climatology, i.e. the historical distribution of the 

data. In the end we evaluate the forecast distribution via a probabilistic forecast 
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4.3 Forecast based parameter estimation 

Figure 4.2: LS cost function in the parameter space, (a) Moore-Spiegel Flow 
with true parameter value R=100 (vertical line), Noise level=0.05; (b) Henon 
Map with true parameter values a=1.4 and b=0.3 (white plus), Noise level=0.05. 
In each case, LS cost function is calculated based on 2048 observations. 

skill score, Ignorance. Such forecast score is treated as a cost function to obtain 

the estimate of the unknown parameter. 

4.3.1 Ensemble forecast 

Even with perfect knowledge of the model class of the system and the observa-

tional noise model, it is not possible to disentangle uncertainty in the dynamics 

from uncertainty in a given set of observations. Any parameter values, except the 

true parameter values, being used will introduce extra uncertainty in the dynam-

ics. In order to partially account for those uncertainty in the initial condition, 

we suggest using ensemble forecast. An ensemble forecast is a forecast initialised 

with an ensemble of initial states. Methods, like ISIS, EnKF and Dynamically 

Consistent ensemble (introduced in Chapter 3) can be used to form an ensem- 
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An initial condition 
ensemble 
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Forecast ensemble 
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Figure 4.3: Schematic flowchart of obtaining forecast based cost function for 
parameter estimation 

ble of initial states. Here we adopt another simple method, called Inverse Noise 

(Defined in the following paragraph), to form the initial condition ensemble. 
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4.3 Forecast based parameter estimation 

Given a model of the observational noise, one can add random draws from 

the inverse of the observational noise model to the observation to define ensemble 

members. As each ensemble member is an independent draw from the inverse 

observational noise distribution, each ensemble member is equally weighted. This 

Inverse Noise method is an easy way to form the ensemble although the initial 

states are not guaranteed to 1  be consistent with the long term model dynamics 

i.e. the ensemble members are not on the attracting manifold of the model (if 

there is one). For purposes of illustration and simplicity, most results shown in 

section 4.3.4 are obtained by using Inverse Noise instead of other sophisticated 

state estimation methods (Discussed in chapter 3) to form the ensemble. 

4.3.2 Ensemble interpretation 

Ensemble members are often transformed into a distribution function which is 

easier to express the information contains in the ensemble members and it can 

be evaluated by forecast skill scores. Continuous forecast distributions can be 

produced from an ensemble by kernel dressing the ensemble forecast. In this 

section we give a brief introduction to standard kernel dressing which will be 

used to explain the problem in this section (see (13; 75) for more details). We 

define an Nens member ensemble at time t to be X t  ..., xr] and treat all 

ensemble members as exchangeable. In other words, the ensemble interpretation 

methods do not depend on the ordering of the ensemble members (13). 

A standard kernel dressing approach is to transform the ensemble members 

into a probability density function: 

'guaranteed not to, in the case of dispersive dynamics. 
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4.3 Forecast based parameter estimation 

(4.4) 

where 

1 	1 
K(() = TIT exP(- 2 5 2 ), (4.5) 

where y is a random variable corresponding to the density function p and KO is 

the kernel density function, for standard kernel dressing we use standard Gaussian 

density to be the kernel density function. 

In this case a standard kernel dressed ensemble is a sum of Gaussian kernels. 

Each ensemble member is replaced by a Gaussian kernel centred at x i . The 

width of each kernel, called the kernel width, is given by the standard deviation 

of the Gaussian kernel. The kernel width as one of the parameters of ensemble 

interpretation can be determined by optimising the expected performance, for 

example the ignorance score introduced in the next section, based on a training 

set of ensemble and its verification pairs. 

We are aware that the variance of the standard kernel dressed ensemble is 

always larger than the variance of the raw ensemble, no matter how the kernel 

width is actually determined (93). When the ensemble is over dispersive, or in 

other words, the ensemble members are further away from each other than from 

the verification, the standard kernel dressing may even under-performs the Gaus-

sian fit (93). In practice, ensembles tend to be under dispersive. Many advanced 

and complicated dressing methods exist, for example Brocker (13) introduced an 
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4.3 Forecast based parameter estimation 

improved kernel dressing, called "affine kernel dressing" that is more flexible and 

robust kernel dressing method. In this chapter we use standard kernel dressing 

to produce the results as it is straightforward to understand and implement. 

For any finite ensemble, there remains the chance that the verification lies out-

side the range of the ensemble. Even if the verification is selected from the same 

distribution as the ensemble itself, the probability of this happening is — 2 
Nens • 

Given the nonlinearity of the model, these points may be very far from the en-

semble, and appear as "outliers" or "bad busts". Those outliers will affect the 

kernel width significantly by making them wider in order to make the forecast 

distributions cover them which therefore degrades the performance of probabil-

ity forecast where the outliers do not appear. To overcome such problems, we 

combine the forecast distribution with the sample climatology. As we mentioned 

in Section 2.3, the sample climatology 1  is the distribution of the historical data 

which can also be treated as an estimate of observed invariant measure of the sys-

tem. The probability density function of climatology can be approximated from 

the historical data simply by kernel dressing the historical data. In this thesis we 

use standard kernel dressing to approximate the density function of climatology. 

The probabilistic forecast can be improved on average by blending model forecast 

distribution, which is obtained from the dressed ensemble, with the climatology. 

By blending with the climatology, defines the forecast distribution to be: 

PO = aPm• + ( 1  — cf)Pc(') 
	

(4.6) 

where pm  is the density function generated by dressing the ensemble and p c  is the 

1 We will often drop the word "sample" afterwards 
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4.3 Forecast based parameter estimation 

estimate of climatological density, the subscript m denotes the model and c the 

climatology. a E [0, 1], called blending parameter, denotes the weight assign to 

the model forecast distribution. 

Note that comparing forecast performance of different models may provide 

a misleading comparison without blending climatology. As it might be the case 

that, without blending climatology Model A outperforms Model B while with 

blending climatology this is not the case. 

4.3.3 Scoring probabilistic forecasts 

A probability forecast describes our expectation of how likely an event is on a 

particular occasion. One may wish to ask whether a probability forecast is right 

or wrong. Unlike point forecasts, however, single probability forecasts have no 

such clear sense of "right" and "wrong". One can only measure how good the 

probabilistic forecasts are by looking at a large set of forecasts. Conventional 

diagnostics for evaluating deterministic forecasts, measures such as "root-mean-

square error", are not useful with probabilistic forecasts (37). 

A probabilistic forecast skill score is a function S(p(y), Y), where Y is the ver-

ification and p(y) is a probability density. Following Good (1950), Roulston. and 

Smith (2001) introduced a measure of the quality of the forecasting scheme, which 

is called Ignorance. Ignorance is a logarithmic scoring rule that can be calculated 

for real forecasts and realizations. It is equivalent to the expected returns that 

would be obtained by placing bets proportional to the forecast probabilities (75). 

And Ignorance is the only proper local score for continuous variables (12; 75). 

The Ignorance Score is given by: 
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4.3 Forecast based parameter estimation 

S(P(Y), 	= —log(p(Y)) 
	

(4.7) 

The difference between the Ignorance scores of two forecast schemes, reflects the 

expected wealth doubling time under a Kelly Betting. 1  We employ the ignorance 

score to evaluate the probabilistic forecast in this thesis. In practice, we have to 

go to empirical since we have limited data. Given N forecast-verification pairs 

(Pt, Yt, t = 1,...,N) (forecast-verification pair are a forecast and what actually 

happened, for example a forecast probability distribution of the temperature in 

London Heathrow and the temperature actually observed), the empirical average 

Ignorance skill score is given by: 

SEmp(P(Y), Y) — log(P(Y)) (4.8) 

This empirical average Ignorance skill score is used as a cost function to estimate 

the parameter values of the model in the results shown in next section. In practice, 

we can get an idea how accurate of uncertainty in our empirical ignorance by 

bootstrapping. 

'In a Kelly betting contest (57), one bets all of one's wealth on every outcome in proportion 
to the forecast probability of that outcome. More precisely, a fraction wi of ones wealth, where 
co, is the forecast probability of event .E2, occurring, should be wagered on the ith outcome. 
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4.3 Forecast based parameter estimation 

4.3.4 Results 

In order to demonstrate the effectiveness of our method, parameter estimation 

by forecast performance is applied to both one and two dimensional systems and 

results are compared with Least Squares estimates. Figure 4.4a shows the cost 

function, i.e. Ignorance score, based on probabilistic forecast at lead time 4 for 

the logistic map, where initial condition ensemble is formed by Inverse Noise. 

Results of different noise levels are plotted separately. When the noise level is 

relative large for example 1/8, the information contained in the forecast is unable 

to tell the difference between the parameter values. When the noise level is small 

enough, estimates obtained by looking at the Ignorance score of the probabilistic 

forecast well identifies the parameter values as the minimum ignorance occurs 

at the vertical line that marks the true parameter value. Figure 4.4b plots the 

Ignorance cost function of forecast at lead time 4 in the parameter space for 

the Henon map, same observations are used as Figure 4.2b. The low ignorance 

region (black) captures the true parameter values. Comparing with LS estimates 

(Figure 4.2b), using Ignorance as a cost function produces more consistent results. 

The forecast based parameter estimate results shown in Figure 4.4a and Fig-

ure 4.4b are based on the probabilistic forecast at lead time 4. The particular 

lead time was chosen because the cost functions at such lead time produce more 

consistent results. Figure 4.5 shows the forecast based parameter estimates for 

different lead times. Note there is a bias at short lead time. Also note that 

although estimates at longer lead time provides more consistent results, the cost 

function becomes less sharp as lead time gets larger. Examining graphs of several 

lead times (Figure 4.5), it was found that those of lead time 4 were consistent for 
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4.3 Forecast based parameter estimation 

Figure 4.4: Parameter estimation based on ignorance score, 64-member initial 
condition ensemble is formed by inverse noise, the kernel parameter and blending 
parameter is trained based on 2048 forecasts and the empirical ignorance score is 
calculated base on another 2048 forecasts, the ignorance relative to climatology, 
i.e. 0 represents climatology, is plotted in the parameter space (a) Logistic Map 
with true parameter value a=1.85, results of different noise levels are plotted 
separately; (b) Henon Map with true parameter values a=1.4 and b=0.3, Noise 
level=0.05 

this particular example and so these are presented. 

The short lead time bias is due to the fact our initial condition ensemble 

does not contain the information of the model dynamics as explained in the 

following. The Logistic Map is a nonlinear chaotic map when a=1.85. A randomly 

observed state is expected to be on the attractor of the Logistic Map. It is almost 

always true that neither the observation itself (in the case that observational noise 

exists) nor the initial ensemble members formed by inverse noise lie on the model 

attractor. Using ensemble members not consistent with the long time dynamics 

cause the estimates to be biased. Figure 4.6 shows the dynamical consistent 

ensemble produces unbiased results at both short and long lead time. 

Producing dynamical consistent ensembles, however, can be extremely costly. 
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Figure 4.5: Following Figure 4.4a, Parameter estimation using ignorance for Lo-
gistic Map with alpha=1.85 (a) Lead time 1 forecast Ignorance(b) Lead time 2 
forecast Ignorance (c) Lead time 4 forecast Ignorance (d) Lead time 6 forecast 
Ignorance. 

There are other data assimilation methods which can form informative initial 

ensemble, for example Indistinguishable States methods introduced in Chapter 3. 

Using such methods may produce more skillful forecasts which may also help 

distinguish different parameter values. Nevertheless, when it is costly to run the 

model, as with weather or climate models, Inverse Noise provides a much faster 

and cheaper way to form the ensemble. It is presented here to illustrate the 

methodology for estimating parameter in a nonlinear deterministic model. 
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Figure 4.6: Follow Figure 4.5, Parameter estimation using forecast Ignorance 
Score for logistic map with a=1.85, initial condition ensemble formed by dynam-
ical consistent ensemble, a) based on lead time 1 forecast b) based on lead time 
4 forecast. Note scale change on y axis from Figure 4.4a and 4.5. 

4.4 Parameter estimation by exploiting dynam-

ical coherence 

In this section we introduce a second new parameter estimation method which 

aims to balance the information provided by the dynamic equations and that 

from the observations. We consider this method as a "geometric" approach as 

emphasis is placed on model trajectories and their distributions rather than on 

traditional summary test statistics using observations and forecasts at particular 

lead times. This study is made in cooperation with Milena C. Cuellar, Leonard A. 

Smith and Kevin Judd and some of the principal results are presented in (20; 85). 

For each parameter value, model trajectories and pseudo-orbits are firstly 

obtained by applying ISGD method upon the observations (see chapter 3), the 

parameter values are then evaluated upon how well the corresponding trajectories 

and pseudo-orbits mimic the observations. Instead of looking at only one statistic 

78 



4.4 Parameter estimation by exploiting dynamical coherence 

or measurement, we measure i) the consistency between model trajectories and 

observations by shadowing time; ii) how well model pseudo-orbits approximate 

relevant trajectories by the mismatch error and iii) the consistency between the 

implied noise distribution (corresponding to the model pseudo-orbits) and the 

noise model. 

Within the perfect model scenario, there exists a parameter set (for the dy-

namic model and the noise model) which admits the true trajectory which did, 

in fact, generate the observed data. Our method is aiming to identify such set by 

exploiting dynamical coherence. Outside PMS the preferred cost function will un-

doubtedly depend upon the application; parameters which admit long shadowing 

times seem a good choice for forecast models. 

4.4.1 Shadowing time 

Although superficially similar, the question of whether a model shadows a set 

of observations is a fundamentally different notion from the traditional ques-

tion of whether or not one mathematical system can shadow the trajectories of 

another (26; 31; 33; 58; 77; 83). Traditional shadowing (77) involves two well-

defined mathematical systems. Our ultimate interest here is between a set of 

observations and a proposed model. Given a segment of observations s o , ..., sN , 

we are interested whether there exists a model trajectory (for a given parameter 

value) x0 , ..., xN  that the residuals defined by the trajectory and the observa-

tions, i.e. si — x i , i = 0, ..., N, are consistent with the observational noise model. 

For an observation s o  at initial time t = 0, the corresponding shadowing time 

;0  is the largest K such that, there is some model state x 0 , the time series 
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4.4 Parameter estimation by exploiting dynamical coherence 

ri = si — F( ) (xo , a), i = 0, ...,K is consistent with the noise model. 

In order to calculate the shadowing time, one must evaluate the consistency 

between a series of residuals and the noise model in some way. For uniform 

bounded noise this is straightforward: A series of residuals r K  is consistent 

with the noise model when every residual is inside the bound. For unbounded 

noise model, for example Gaussian distribution, there are a variety of approaches 

to test whether a series points are drawn from the given distribution, for example 

Chi-Square test and Kolmogorov-Smirnov test. In our methodology we adopt 

a simple method based on threshold exceedance to do the test. Given that the 

noise model is unbounded, any observation is conceivable; we look for relevant (9) 

shadows within a certain probability bound. For purposes of illustration and sim-

plicity, we use the scalar to illustrate the procedure. We test the null hypothesis 

that the set of residuals (r i , i = 0, 1, 2, K) is consistent in distribution with in-

dependent draw from the noise distribution. The shadowing time is then defined 

to be the largest K that the null hypothesis is not rejected at the 99.9% signifi-

cant level. To accept the null hypothesis, we require both that the 90% isopleth 

of the residual distribution falls below the 99 th percentile of the distributions of 

90% isopleths given K draws from a Gaussian distribution, and that the median 

of the residual distribution falls below the corresponding 90 th  percentile for the 

median of the noise model (Note: The thresholds will vary with the size of the 

data set and the noise model). Together this implies that the chance rejection 

rate is 0.001, which will yield good results as long as the shadowing times we test 

are below 100 (as they are in the results presented in section 4.4.3). 

For a given observation time, we are most interested in the trajectory which 

shadows the longest and is consistent with the observation made at that time. 
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4.4 Parameter estimation by exploiting dynamical coherence 

In practice we consider only a finite set of candidate trajectory segments. Call 

these candidates 4, j = 1, ..., iv, where .AT, is the number of candidates (the 

subscript c denotes candidate). For each observation define the shadowing time 

Ts  = maxx  Ts  (xic ) where the maximum is taken over all candidates x e  values tested. 

Instead of random sampling around the observations, we derive more useful can-

didates from relative pseudo-orbits. Following section 3.3, given a sequence of 

observations, a pseudo-orbit of the model can be derived by ISGD method. Of 

course the quality of the pseudo-orbit strongly depends on the parameter values, 

which also links the quality of the parameter value to the candidates used to 

calculate shadowing time. Points along a pseudo-orbit can be used as candidate 

initial conditions of trajectory segments. In the results presented below in sec-

tion 4.4.3, only three candidates per observation were tested: the corresponding 

point on the pseudo-orbit, the image of the previous point on the pseudo-orbit, 

and the point midway between these two. 

As for each observation s t , it has its corresponding shadowing time, for a 

segment of observations we have a distribution of shadowing time. Our idea 

is using the shadowing time distribution to estimate the parameter values by 

identifying the interest area in the parameter space. The parameter estimation 

method introduced in section 4.3 quantifies how well the dynamics of the model 

mimic the observations at a fixed lead time. The shadowing time distribution is 

a different flavour of quality statistic, quantifying the time scales over which the 

dynamics of the system reflect those of the data. 
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4.4 Parameter estimation by exploiting dynamical coherence 

4.4.2 Further insight of Pseudo-orbits 

As the model pseudo-orbits obtained by the ISGD method strongly depend on 

the parameter values, the dynamical information contained in the pseudo-orbits 

can help highlight areas where the estimates can be considered as candidates for 

"good" estimations in the parameter space (20). In this section we extract such 

information by looking at the remaining mismatch error and the implied noise of 

the model pseudo-orbits. 

As the ISGD algorithm, introduced in Section 3.3, is iterated for a finite num-

ber of steps, the minimum of the mismatch cost function, i.e 0, is not reached 

and therefore a model pseudo-orbit is obtained instead of model trajectory. The 

remaining mismatch error after a fix number of iterations of the ISGD algo-

rithm indicates how well the model pseudo-orbit converges to a model trajectory. 

For each parameter value, the speed of convergence also indicates how easily a 

corresponding model trajectory can be found. Therefore the magnitude of the re-

maining mismatch as a quality of the model pseudo-orbit can be used to identify 

the interesting areas in the parameter space. 

As the model pseudo-orbit can be treated as the estimate of the true states 

in the model space, the quality of the pseudo-orbit can also be evaluated by the 

consistency of the corresponding implied noise (defined in section 3.3) distribu-

tion with the noise model. With finite ISGD iterations, it generally appears to be 

the case that the final pseudo-orbit obtained corresponding to the true parame-

ter values has an implied noise level no more than the true noise level, inasmuch 

as we initialise the ISGD algorithm with the observations and aim to explicitly 

minimise the mismatch cost function. The pseudo-orbit corresponding to the 
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4.4 Parameter estimation by exploiting dynamical coherence 

incorrect parameter values usually have an implied noise level larger than the 

true noise level as the implied noise has contributions from not only the observa-

tional uncertainty but also the inadequacy of the model dynamics caused by the 

incorrect parameter values. Figure 4.7 shows the standard deviation of implied 

noise changes as a function of number of ISGD iterations for Ikeda Map (the 

ISGD algorithm is applied 1024 observations). For the true parameter values, 

the implied noise level converges to the real noise level very fast. The implied 

noise level corresponding to the incorrect parameter values slowly converges to a 

relative larger noise level. 

u 0.83 
u=0.825 0.026 

0.025 

3.1 0.024 

-o 0.023 

g 0.022 
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Figure 4.7: The standard deviation of implied noise as a function of number 
of ISGD iterations for Ikeda Map with true parameter value u=0.83, the black 
horizontal line denotes the noise level. The statistics for tests using different 
parameter values are plotted separately. 

4.4.3 Results 

Panels in Figure 4.8 show the standard deviation of mismatch and implied noise 

and the isopleths of shadowing time in the parameter space for both Ikeda Map 

and Moore-Spiegel System, the true parameter value is denoted by a vertical 

line. These figures establish that our approach can be effective in 2-dimensional 

2000. 
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chaotic maps, 3-dimensional chaotic flows. Before discussing these individually, 

note that in each case the vicinity of the true parameter value is clearly indicated. 

The distribution of shadowing time for several isopleths are shown for both 

the Ikeda system (panel a) and the Moore-Spiegel third order ODE (panel d) 

in Figure 4.8. The median and 90% contour provide good parameter estimates, 

while the 99% contour suffers from sampling effects. The choice of isopleth is 

not critical, although sampling noise will, of course, become an issue for extreme 

values of the distribution. Thresholds will vary with the size of the data set 

and the noise model; a simple bootstrap re-sampling approach can identify how 

high an isopleth can be robustly estimated. In addition to shadowing time, the 

vicinity of the true parameter value also provide small mismatch error (panel 

(b) and (e)) and their implied noise level is consistent with the true noise model 

(panel (c) and (f)). Note in Figure 4.8e, the true parameter does not provide the 

smallest mismatch error. As we mentioned in Section 4.4.2, the mismatch error 

is obtained by fixed number of iterations for each parameter value. It indicates 

how easily a corresponding model trajectory can be found. It is possible that 

for some parameter values other than the truth, it is easier for the pseudo-orbit 

to converge to a model trajectory under Gradient Descent. However the model 

trajectory may not consistent with the observations which can be testified by 

looking at the shadowing time distribution and implied noise distribution. We 

suggest looking at the distribution of shadowing time, the mismatch error and 

the distribution of implied noise together instead of looking at only one of them. 

Comparing with results shown in Figure 4.1(b) and Figure 4.2(a), our method 

outperforms least squares estimate approach significantly. 

Figure 4.9 shows the results for simultaneous estimation of the two parameter 
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Figure 4.8: Parameter estimations for Ikeda Map with u=0.83 and noise 
level=0.02; Moore-Spiegel System with R=100 and noise level=0.05, the results 
are calculated base on 1024 observations, (a) and (d) The median (solid), 90% 
(dashed) and 99% (dash-dot) shadowing isopleths; (b) and (e) standard deviation 
of the mismatch; (c) and (1) standard deviation of the implied noise, the horizon-
tal line denotes the real noise model. The vertical line represents the location of 
the unknown true parameter. 
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values in the Henon Map, where the standard deviation of the mismatch and the 

implied noise level are shown in addition to the median of the shadowing time 

distribution and a cost-function based on the invariant measure (after (64)). The 

fine structure ("tongues") in panel (c) is due to sensitivity to the parameters, 

nevertheless its minima are in the relevant regions. Contrasting panels (c) and 

(d) of figure 4.9 reveals that shadowing times provide information complimentary 

to that obtained by estimating the invariant measure (the CML of (64)). The 

shadowing time distribution provide complimentary information quantifying the 

time scales on which the model dynamics reflects the observed behaviour. Com-

paring the results with Figure 4.2b, our method provides more consistent results. 

Statistics of the shadowing time distribution provide and unambiguous indication 

of the range of relevant parameter values. 

4.4.4 Application in partial observational case 

Here we consider the case of parameter estimation in higher dimensional systems 

where the state vector is not completely observed, i.e. some components of the 

system are unobserved. In such case, i) we firstly estimate the unobserved com-

ponents by simply random draw from the climatology of observed components. 

ii) We then initialise the ISGD algorithm with the observed components and 

the estimates of the unobserved components. A pseudo-orbit is obtained after 

a small number of ISGD iterations. iii) We then update the estimates of the 

unobserved components with the relative components of the pseudo-orbit. Re-

peating ii) and iii) several times in order to obtain an "good" estimates of the 

unobserved components. In the end we run a large number ISGD iterations to ob- 
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Figure 4.9: Information from a pseudo-orbit determined via gradient descent 
applied to a 1024 observations of the flexion map with a noise level of 0.05. (a) 
standard deviation of the mismatch, (b) the implied noise level, (c) a cost function 
based on the model's invariant measure (after Fig.4(b) of ref (1 ,  (d) median 
of shadowing time distribution. 
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taro the pseudo-orbit which is used to calculate the shadowing time distribution. 

In such cases the shadowing-time is determined without placing any constraints 

whatsoever on the value taken by the unobserved component(s). 

Figure 4.10: Shadowing time isopleths as in Figure 4.8 for 8-D Lorenz96 with 
parameter F=10 given only partial observations, a) the 8th component of the 
state vector is not observed; b) none of the 2nd, 5th or 8th variables are observed 
only the other five components; c) only 2nd, 5th or 8th variables are observed; d) 
all the components of the state vector are observed. In this experiment the noise 
level is 0.2. 

Figure 4.10 shows the result of the application in the 8-D Lorenz96 system. 

Panel (d) shows the isopleths for the 8 dimension Lorenz96 system with states 

fulled observed. It appears that our method provides good parameter estimates 
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in the higher dimensional model case. In panel (a) seven of the eight components 

of the state vector are observed, in panel (b) 5 of the eight components are 

observed and in panel (c) only 3 components are observed. In all cases, the 

correct parameter values are well indicated although the length of shadowing 

time decreases as less components are observed. 

4.5 Outside PMS 

Large forecast-verification archives and lower observational noise level contain 

more information and thus yield better parameter estimates when the model 

structure is perfect. When the model class does not admit on empirically adequate 

model, the notation of a "true" parameter value is lost. It is important to note 

that even if the true parameter values are unknown, they are well defined within 

PMS; the question of defining optimal parameter values when the model structure 

is imperfect is more complex. 

The experiment of forming probabilistic forecast to estimate parameter values 

is also useful at identifying "best" parameter in an imperfect model if a notation 

of best is defined as best forecast performance at certain lead time. 

The geometric approach using shadowing time and additional statistics of 

the pseudo-orbit is also useful to identify parameter values which can mimic 

the dynamics, quantify the time scales on which they can shadow and extract 

information for improving the model class itself. Even in systems as unwieldily 

as multi-million-dimensional operational climate models, variations in parameters 

over the relevant range of uncertainties yield demonstrably nonlinear effects (87) 

in the most basic summary statistics (i.e. climate sensitivity). The ISGD methods 
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have been used on models of this level of complication (51). Outside PMS there 

may be no single optimal parameters, of course, but even in this case shadowing 

times have the advantage of providing information on likely lead times at which 

a forecast will have utility. Timescales on which the dynamics of the model are 

consistent with the noise model and the observations can be of use in setting the 

window of observations to be used, and the effectiveness of, variational approaches 

to data assimilation (51). 

4.6 Conclusions 

In this chapter, we considered the problem of estimating the parameter values 

of the model in the perfect model scenario. Traditional linear method, Least 

Squares estimates, is unable to produce consistent results due to the fact that the 

assumption of Independent Normal Distributed(IND) forecast does not hold when 

the model is nonlinear. To address the shortcomings of traditional methods, two 

new alternative approaches, Forecast Based estimates and Dynamical Coherent 

estimates, are introduced in this chapter. 

For Forecast Based estimates, we estimate the parameter values based upon 

the probabilistic skill of the model as a function of parameter values. This 

straightforward procedure has been shown to yield good parameter estimation 

in several chaotic maps. Forecast based estimation using Inverse Noise ensembles 

is straightforward to implement and relatively computationally inexpensive. We 

have shown that it can suffer biases when the ensemble is not distributed consis-

tently with respect to the models long term dynamics (invariant measure). We 

have also shown that, for addition computational investment to sample a perfect 
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ensemble this bias can be removed. 

Dynamical Coherent estimates is presented which focuses on the geometry 

of trajectories of the model rather than the forecast performance at a given lead 

time. We estimate the parameter values based upon i) the ability of model trajec-

tories to shadow by looking the shadowing time distribution; ii) how well model 

pseudo-orbits approximate relevant trajectories by measuring the mismatch error 

of the pseudo-orbits; iii) the consistency of the distribution of implied-noise with 

the noise model. ISGD method is applied to obtain candidates with longer shad-

owing time and the model pseudo-orbit. The technique is illustrated for both 

flows and maps, applied in 1, 2, 3 and 18 dimensional dynamical systems, and 

shown to be effective in a case of incomplete observation where some components 

of the state are not observed at all. 

Outside PMS, although the optimal estimates of the parameter is not well 

defined, we suggest our approaches may still be able to produce robust results. 
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Chapter 5 

Nowcasting Outside PMS 

When forecasting real systems, for example the Earth's atmosphere as in weather 

forecasting, there is no reason to believe that a perfect model exists. Generally 

the model class from which the particular model equations are drawn does not 

contain a process that is able to generated the data. In this case we are in the 

Imperfect Model Scenario (IPMS), and it is crucial to distinguish the model(s) 

from the system which generated the data. 

In the Perfect Model Scenario, given the infinite CPU power, one may be able 

to form a perfect ensemble (80), whose members are drawn from the same distri-

bution as the system state. In the IPMS, however, such a perfect ensemble does 

not exist. Any ensemble data assimilation scheme is expected to result with an 

probabilistically unreliable state estimation. This chapter is concerned with how 

to forecast the current state using ensemble methods given the observations and 

imperfect model. In the IPMS, model state space and the system state are usually 

different. In this chapter we are aiming to estimate the initial states of the model 

for the purpose of forecasting. In this case not only the observational uncertainty 
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but also the model inadequacy need to be considered when an ensemble of initial 

conditions is constructed. 

In the Imperfect Model Scenario, methods assuming the model is perfect 

may be inapplicable and in any event they would seem unlikely to produce the 

optimal results. It is almost certain that no trajectory of the model is consistent 

with an infinite series of observations (50), thus there is no consistent way to 

estimate the model states using trajectories. There are pseudo-orbits, however, 

that are consistent with observations and these can be used to estimate the model 

state (50). In this chapter we applying the same ISGD algorithm as discussed in 

previous chapter, but with a new stopping criteria to find relevant pseudo-orbits 

outside PMS. 

The Imperfect Model Scenario is defined and two system-model pairs are set 

up in Section 5.1. Section 5.2 discusses various Indistinguishable States methods 

of finding a pseudo-orbit and demonstrates that our new methodology, i.e. apply-

ing the ISGD method with certain stopping criteria, can find better pseudo-orbits. 

Other method, such as Weakly Constraint 4DVAR, is discussed and compared 

with our method in Section 5.3. Results of comparing the pseudo-orbit produced 

by ISGD method and WC4DVAR method are presented in Section 5.5.1. This is 

the first time IS methods and the WC4DVAR method are compared in the IMPS. 

Methods of forming the ensemble based on the pseudo-orbits are introduced and 

discussed in Section 5.4 and the results of nowcasting is presented in Section 5.5.2. 
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5.1 Imperfect Model Scenario 

5.1 Imperfect Model Scenario 

Outside pure mathematics, the perfect model scenario is a fiction. Arguably, 

there is no perfect model for any physical dynamical system (50). 

In the Imperfect Model Scenario (IPMS), we define a nonlinear system with 

state space Wh, the evolution operator of the system is F, i.e. 5ct+i  = E(Rt) 

where ict  E Rth is the state of the system. An observation s t  of the system 

state "Xt  at time t is defined by s t  = h(Rt ) m where st E 0, m represents 

the observational noise, in this thesis we assume Tit  are IID distributed; h(.) is 

the observation operator, which projects the system state into the observation 

space 0. For simplicity, we take h(.) to be the identity. Consider a model, which 

represents the system approximately, with the form x t+1 = F(xt ), where xt E M, 

M is the model state space. Assume the system state x can also be projected into 

the model state space by a projection operator g(•), i.e. x = g(51). In general, 

we don't know the property of this projection operator, we don't know even if 

5"c exists. We are just going to assume that it maps the states of the system 

into somehow relevant states in the model. For the purposes of illustration and 

simplicity, unless otherwise stated, we assume g(.) is one-to-one identity. A better 

understanding of g(•) is beyond the scope of this thesis but it is an important 

point for additional work. Our aim is to estimate the current state of the model 

xo  given the previous and current observations s t , t = —n + 1, ..., 0. 

In the imperfect model scenario, the model is inadequate. Following Smith and 

Judd (2004), two types of model inadequacy are investigated. One is structurally 

incorrect model inadequacy, the other is ignored subspace model inadequacy. For 

each type of model inadequacy, an example is given, where both the true system 
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and a class of models are listed. These model-system pairs are used to construct 

and compare the state estimation methods in the following sections. 

• Structurally inadequacy 

This type of model inadequacy appears where the system dynamics are not 

known in detail and its mathematical structure is different from that of 

the model. Here we use the Ikeda Map and truncated Ikeda model as an 

example of this case (50). The Ikeda system is a two dimensional map (see 

section 2.4), P : W. The mathematical functions of the system are: 

	

xTh+1  = + u(x„, cos — y, sin 0) 	 (5.1) 

Yn+i = u(xr, sin 0 + 	cos 0), 	 (5.2) 

where 0 = 13 — a/(1 + xn2  + yTh2 ) and the parameter values used are a = 

6, 3 = 0.4, -y = 1, u = 0.83. The imperfect model F is obtained by using 

the truncated polynomial to replace the trigonometric function in F, i.e. 

cos 0 = cos(w + 7r) 	+ w3 /6 — 2/120 	(5.3) 

sin 0 = sin(w + 7r) 	w2/2 w4/24 	(5.4) 

where the change of variable to w was suggested by Judd and Smith (2004) 

since 0 has the approximate range —1 to —5.5, and -7V is conveniently near 

the middle of this range. In this case, the model state and the system state 

share the same state space. 

95 



5.1 Imperfect Model Scenario 

Generally, the truncated Ikeda model is a good approximation to the Ikeda 

system. The model error is relevantly small but space correlated. Figure 5.1 

(following Figure 1 of (51))) shows the one-step forecast error between the 

Ikeda system and the truncated Ikeda model. 
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Figure 5.1: The one-step prediction errors for the truncated Ikeda map. The lines 
show the prediction error for 512 points by linking the prediction to the target. 

• Ignored-subspace model inadequacy 

This type of model inadequacy appears where some component(s) of the 

system dynamics is(are) unknown, unobservable, or not included in the 

model. In this case, the system state space and model state space are 

different. 

Here we use the Lorenz96 flows (63) as an example of this case. We treat 
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5.1 Imperfect Model Scenario 

the Lorenz96 model II as the system that generates the data (details of 

Lorenz96 models can be found in section 2.4). The mathematical functions 

of the system are 

for i = 1, n. The system used in our experiments containing n = 18 

variables x 1 , ..., is  with cyclic boundary conditions (where xn±i  = x1 ). 

Like the large scale variables x i , the small-scale variables have the cyclic 

boundary conditions as well(that is ym+i,i  = yi, i+i ) (in our experiments 

m = 5). 

The Lorenz96 model I is treated as the imperfect model (details of Lorenz96 

models can be found in section 2.4). From the mathematical function 

dxi  
dt = —xi_2xi_1 + x i_ ixi+i  — x i  + F (5.7) 

one can see that the small dynamical variables y in the system equation ( 5.5 

& 5.6) are not included in the Lorenz96 model I. The magnitude of error 

made by the imperfect model depends on the coupling parameter /ix  ,hy  and 

in our experiments we set both fi x  and by  to be 1. In this system and model 

pair setting, the model state space and the system state space are different. 
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5.2 IS methods in IPMS 

5.2.1 Assuming the model is perfect when it is not 

What will happen if one ignores the model inadequacy and assumes that the 

model is perfect. Here we investigate whether this would degrade state estimation 

of the nonlinear system. And if so, how do the results from the perfect model 

scenario, as shown in chapter 3, change when applied to imperfect models? 

In the Perfect Model Scenario, there are a set of indistinguishable states H(i . ) 

that can not be distinguished from the system state 53 (48). In IPMS, however, it 

is not necessary that IHI(i.) contains states other than itself. Even for the state FC 

itself, the projection i of the system trajectory defined by x into the model space 

is not a trajectory of the model, which means no state of model is consistent 

with the observations. This situation can arise even when the model trajectory 

remains in proximity to (the observed part of) the system trajectory (50). 

If we ignore the model inadequacy and apply the ISGD algorithm to find a 

model trajectory, we will find that the minimisation converges very slowly to 

zero when the window length is very long, which implies no model trajectory is 

"close" to the observations. In the results shown in 5.2.5, the results of state 

estimation by applying ISGD algorithm to minimise the mismatch degrade after 

certain iterations of gradient descent. 

5.2.2 Model error 

In this chapter we will consider the point-wise model error to be Sc- ri+ i — F(in ). It 

might be reasonable to assume the observational noise is IID distributed. But it 

lassume the projection is one-to-one identity 
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is almost certain that the model error of a nonlinear model is not IID distributed. 

For example in Figure 5.1, the model error between the truncated Ikeda model 

and Ikeda system is spatially correlated; there are regions where the model error 

is small and regions where it is not. Understanding the distribution of the model 

error aids in model development. If systematic model errors are identified, one 

can improve the model by correcting some of the errors. In this chapter, we are 

less interested in improving the model than in how to obtain states of the model 

for initial conditions which, for insistence, serve the purpose of forecast given the 

imperfect model. Therefore, we assume that the model we use to approximate 

the system is the best model one can achieve and the model errors have been 

reduced to the minimum given the available information. In the later section, we 

will discuss how the information about the model error can also help to improve 

the quality of estimates of future states. 

In the IPMS, to estimate the current state of the model, one need to account 

the uncertainty from both observational noise and model inadequacy. Without 

the observational noise, the model error can be derived from the observations 

directly. In the presence of observational noise, compounding of model error 

and observational noise prevent us identifying either of them precisely. Such 

unsolvable problem also causes the state estimation more or less biased in the 

IPMS. 

5.2.3 Pseudo-orbit 

Since no state of the model has a trajectory consistent with an infinite sequence 

of observations of the system in the IPMS, any model trajectory must eventu- 
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ally be unable to maintain consistency between the observations and the model 

dynamics. There are pseudo-orbits, however, that are consistent with observa-

tions and these can be used to provide better estimates of the projection of the 

system state. Pseudo-orbits (50) are sequences of states of the model x t  that 

at each step differ from trajectories of the model, that is, x t+1  F(xt )• We 

define the imperfection error of the pseudo-orbit x t  to be co t  = xt+i — F(xt)• 

Note the imperfection error does not necessarily correspond to the model error, 

however the projection of a system trajectory 1  in the model state space forms 

a pseudo-orbit of the model where the imperfection error is exactly the model 

error in the model state space. Recall that in the PMS, there are a set of in-

distinguishable states Eff(x) of the system state x. Each indistinguishable state 

defines a system trajectory that consistent with both the observations and the 

system dynamics. In the IPMS, the system trajectories are pseudo-orbits of the 

model in the model space and these "true pseudo-orbits" are consistent with the 

observations and the model dynamics and most important the imperfection er-

ror reflects the model error exactly. Unfortunately, such desirable pseudo-orbits 

cannot be found in the Imperfect Model Scenario, because of the confounding 

between observational noise and model error. One can, however, find relevant 

(useful) pseudo-orbits of the model that are consistent with observational noise 

and the imperfection error of those pseudo-orbits can be treated as estimates 

of the model error or at least provide some information about the model error. 

Methods, adopted based on ISGD method, of finding relevant pseudo-orbits are 

introduced and discussed in the next two sections. 

'assume the system states are one-to-one identically projected onto the model space 
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5.2.4 Adjusted ISGD method in IPMS 

Judd and Smith (2004) introduced a method of finding relevant pseudo-orbits by 

adjusting the ISGD method to include the model imperfection. A brief description 

of this method is given here in order to introduce and compare with a new method 

introduced in the next section. 

Similar to the ISGD method introduced in section 3.3, Following Judd and 

Smith (2004), Gradient Descent algorithm is applied to minimise the adjusted 

mismatch error by including the model imperfection error term. For a finite 

sequence of observations, St , t = —N +1, ..., —1, 0, we define the adjust mismatch 

error for a sequence of pseudo-orbit zt  to be 

et  = zt+i — wt-F1 — F(zi) 	 (5.8) 

where cot  is the imperfection error. 

Define the implied noise, 5 to be the difference between the pseudo-orbit and 

the observations, i.e. 

St = st  — zt . 	 (5.9) 

Hence fore, the mismatch equation 5.8 can be written as 

et =1 st+i 	cot+1 	F(st — (50 • 	 (5.10) 
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Consider cost function CM((5, w), where 

0 

CM(6,w) = 	 et et, 
	 (5.11) 

t=-N 

is defined in order to find relevant pseudo-orbit by GD algorithm. 

Following Judd and Smith (2004), one can find a pseudo-orbit from the se-

quence of observations by applying Gradient Descent to minimise the cost func-

tion CM(o, w). It is necessarily that CM(6, w) attains a minimum of zero. To 

solve the minimisation by gradient descent, one need to solve the differential 

equations 

aL 
— 	 — ab- 	aw (5.12) 

to compute the asymptotic values of ((5, w) by initialising the cost function with 

both 8 and w equal to 0. The resulting values of S and w defines a certain 

pseudo-orbit. 

Ignoring the model inadequacy, one may attempt to minimise CM(o, 0), which 

equals to applying the ISGD method (see Section 3.3.2) to look for model trajec-

tory assuming that the model is perfect. Although the cost function CM(5, 0) 

always has the minimum of zero regardless the model is perfect or not, the model 

trajectory obtained when CM(6, 0) reaches 0, is expected to be far away from 

the true states and be inconsistent with the observations as long as N is large 

enough. 
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Recall that the relevant pseudo-orbits we are looking for are those consis-

tent with the observations and their corresponding imperfection errors contains 

information about the model error or somehow reflects the model error. The 

implied noise 6 provides an estimate of the observational noise and the imper-

fection error w provides an estimate of the model error. In order to improve the 

method and find better pseudo-orbits, we measure the quality of the pseudo-orbit 

by looking at the RMS distance between pseudo-orbit and the projection of the 

true trajectory of the system and testing the statistical consistency both between 

the implied noise and the observation noise and between the imperfection error 

and the model error. We are aware that when the system is nonlinear, linear 

measurement like RMS has systematic bias (64) (see Chapter 4). The distance 

between the pseudo-orbit and the true states may not reflect forecast skill in the 

Imperfect Model Scenario. We only use this measurement as a diagnostic tool to 

help explain how to construct a better method to locate relevant pseudo-orbit. 

We investigate the quality of the pseudo-orbits generated by minimising the 

cost function CM(5, 0) and CM(S, w) in both Ikeda and Lorenz96 system and 

model pairs experiments. 

Cost function No. of GD runs CM(O, •) std of (5t  std of cot  RMS distance 
C./14- (6, 0) 4096 0.025 0.051 0 0.0154 
CM(S, co) 128 0.0002 0.037 0.02 0.012 

Table 5.1: Statistics of the pseudo-orbits obtained by minimising the cost func-
tion CM(6, 0) and C114- (6, w) for the experiment of Ikeda system-model pair. 
Minimisations are applied upon 4096 observations, the noise level is 0.05 and the 
sample standard deviation of the model error is 0.018. 

From Table 5.1 and 5.2 one can see that firstly in both experiments, it is 

much more difficult to minimise CM(S, 0) than CM(S, w) and the cost function 
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Cost function No. of GD runs CM(5,-) std of 5t  std of wt  RMS distance 
CM(S, 0) 4096 0.11 1.69 0 1.38 
CM(6, w) 128 0.0006 0.63 0.46 0.52 

Table 5.2: Statistics of the pseudo-orbits obtained by minimising the cost function 
CM(c5, 0) and CM(S,co) for the experiment of Lorenz96 system and model pair. 
The length of the sequence of observations is 102.4 time unit and the sampling 
rate is 0.025 time unit. The noise level is 1 and the sample standard deviation of 
the model error is 0.25. 

CM(o, 0) does not appear to converge to zero. Secondly for both methods the 

standard deviations of the implied noise and the imperfection error are very dif-

ferent from that of the observational noise and the model error (We are aware 

that neither the model error nor the imperfection error is IID, there are infor-

mation of them beyond the second moment of their distribution. For simplicity 

we use the standard deviation, as a diagnostic tool, to test consistency between 

imperfection error and model error). The pseudo-orbit generated by minimising 

CM(S, 0) stays too far away from the observations as the standard deviation of 

implied noise is much larger than that of the observational noise, which indicates 

that the pseudo-orbit obtained by minimising CM(S, 0) is not consistent with 

observations. While the pseudo-orbit generated by CM(5, w) seems to stay too 

close to the observations according to the standard deviation of implied noise. 

The standard deviation of the imperfection error is larger than that of the model 

error between the system and the model which indicates that the model error 

is over-estimated by the imperfection error. From the RMS distance between 

pseudo-orbit and true states in table 5.1 & 5.2, minimising CM(o, w) produces 

pseudo-orbit closer to the truth. But apparently this method doesn't tackle the 

problem of confounding between observational error and model error very well 

as neither the implied noise is a good estimate of observational noise nor the 
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imperfection error is a good estimate of model error which may indicate that the 

estimates of the model states are highly biased. 

5.2.5 ISGD with stopping criteria 

The GD method introduced by Judd and Smith (2004) is unable to produce a 

desirable estimation of the projection of the system state as the implied noise 

and imperfection error of the relevant pseudo-orbit are not consistent with the 

observational noise and model error. Confounding between observational noise 

and model error makes it impossible to produce pseudo-orbits whose implied 

noise and imperfection error are consistent with observational noise and model 

error respectively. We found that applying the ISGD method with proper stop-

ping criteria can, however, reduce such inconsistency and obtain less bias state 

estimation results. 

As we mentioned in the previous section, applying the ISGD method is equiv-

alent to minimise CM(6, 0) cost function, i.e. the mismatch cost function defined 

in Section 3.12 and Equation 5.11 are the same. Examples shown in previous 

section demonstrate that the minimisation does not converge to zero easily and 

the pseudo-orbit produced eventually is not consistent with the observations and 

stays farther away from the true pseudo-orbit than even the observations. When 

the C./V/(6, 0) is greater than zero after finite iterations of GD, the mismatch error 

e t  is actually the imperfection error. In other words, minimising the CM(S, 0) is 

actually minimising the imperfection error. If the imperfection error goes to zero, 

the pseudo-orbit becomes a model trajectory. Since we treat the imperfection 

error as the estimate of the model error which is known to exist when the model 
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is imperfect. Our purpose is not minimising the imperfection error but produc-

ing better or more consistent estimate of the model error. Figure 5.2 shows the 

statistics of pseudo-orbit changes as a function of the number of iterations of 

Gradient Descent minimising mismatch cost function CM(S, 0) in both higher 

dimensional Lorenz96 system-model pair experiment and low dimensional Ikeda 

system-model pair experiment (Details of the experiments are list in Appendix B 

Table B.6. 

Figure 5.2 shows that as the Gradient Descent minimisation iterates further 

and further, the standard deviation of implied noise is getting larger and larger 

which indicates that the pseudo-orbit is moving farther away from the observa-

tions. By comparing the standard deviation of implied noise with that of the real 

noise model, we found that at the beginning of the minimisation, the observa-

tional noise is underestimated by the implied noise since the pseudo-orbit stays 

too close to the observations. This makes sense because the minimisation algo-

rithm is initialised at the observations. As the minimisation proceeds, the implied 

noise becomes more consistent with the observational noise and the pseudo-orbit 

gets closer to the true pseudo-orbit. After a certain number of iterations, how-

ever, the implied noise tends to overestimated of the observational noise and the 

distance between the pseudo-orbit and the projection of true system trajectory 

gets larger. This is due to the model inadequacy. The minimisation makes the 

imperfection error smaller. When the imperfection error of the pseudo-orbit be-

comes smaller than the actual model error, the implied noise has to compensate 

for the imperfection error to account for the uncertainty caused by the model in-

adequacy which makes implied noise too large and the pseudo-orbit inconsistent 

with the observations. 
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5.2 IS methods in IPMS 

Figure 5.2: Statistics of the pseudo-orbit as a function of the number of Gra-
dient Descent iterations for both higher dimension Lorenz96 system-model pair 
experiment (left) and low dimension Ikeda system-model pair experiment (right). 
(a) is the standard deviation of the implied noise (the flat line is the standard 
deviation of the noise model); (b) is standard deviation of the model imperfection 
error (the flat line is the sample standard deviation of the model error); (c) is the 
RMS distance between pseudo-orbit and the true pseudo-orbit. 
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Since the model error is neither IID nor Gaussian distributed, how well the 

imperfection error mimics the model error should not be judged only by the 

statistics of the second moment. Figure 5.1 shows that the model error is spatially 

correlated. As an estimation the model error, we expect the imperfection error has 

similar spatial correlations as the model error. Figure 5.3 plots the imperfection 

error in the state space with different GD iterations for the Ikeda Map. To 

make comparison easier, Figure 5.1 is re-ploted in the fourth panel. The pictures 

show that at the beginning of the minimisation, the imperfection error is larger 

than the model error in most places. The pattern of spatial correlation can only 

be seen around (0.5, —1.3), which suggests the imperfection error is not a good 

estimate of the model error. This is because at the beginning of the minimisation, 

the imperfection error contains both the observational error and model error. 

Similarly after too many iterations, the imperfection error is forced to be small 

and lose the spatial correlation it should have. One can see very little spatial. 

correlation of imperfection error in the third panel. With a intermediate number 

of iterations 1 , however, the imperfection error seems better estimate the model 

error, the pattern in the second panel and fourth panel are very similar. 

It might be asked whether the imperfection error estimates the model error 

precisely? Unfortunately, it does not. Confounding between model error and 

observational noise prevents us identifying either of them precisely (30). We 

also found that how well the model error can be estimated strongly depends on 

the signal magnitude between observational noise and model error. Figure 5.4 

plots the imperfection error in the state space with intermediate GD iterations at 

1 The number of iterations set up based on the statistics of imperfection error, generally we 
match the standard deviation of the imperfection error with that of the model error 
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Figure 5.3: Imperfection error during the Gradient Descent runs for Ikeda Map 
case is plotted in the state space. (a) after 10 GD iterations, (b) after 100 GD 
iterations, (c) after 400 GD iterations (d) the real model error in the state space 
for comparison. 

another two different noise levels. When the observational noise is much smaller 

than the model error, the model error can be well estimated by the imperfection 

error. When the observational noise is much bigger than the model error, the 

imperfection error looks very close to random. 
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Figure 5.4: Imperfection errors after intermediate Gradient Descent runs for Ikeda 
system-model pair are plotted in the state space. (a) Noise level=0.002, (b) Noise 
level=0.05. 

Generally we conclude from the above experiments that the ISGD minimisa-

tion with intermediate runs produces "better" pseudo-orbits than the minimisa-

tion with both short runs and long runs and the IS Adjusted method (50). When 

shall we stop the ISGD minimisation in order to obtain the relevant pseudo-orbit? 

Certain criteria need to be defined in advance to decide when to stop. Such cri-

teria have to be defined based on the meaning of "better" (pseudo-orbit). For 

example if "better" means the pseudo-orbit is more consistent with the obser-

vations, the stopping criteria can be built by testing the consistency between 

implied noise and the noise model; if "better" means the initial condition ensem-

ble, formed based on the pseudo-orbit, produces "better" forecast at certain lead 

time, the stopping criteria can be built by fitting the number of iterations with 

the forecast performance. We call the ISGD method with certain stopping crite-

ria to be ISCDc. In the experiments whose results shown in section 5.5, we stops 
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the ISGD iterations when the implied noise becomes larger than the standard 

deviation of the noise model. There are many potential criteria that can be used 

for stopping, here we use a simple one which no doubt could be improved upon. 

Most importantly, in this chapter we demonstrate that using certain stopping 

criteria can provide more consistent state estimation results. 

5.3 Weak constraint 4DVAR Method 

In the traditional 4DVAR method (see section 3.4), the model is assumed to be 

perfect and the model dynamics is treated as a strong constraint (90), i.e. only 

model trajectories are considered. In the Imperfect model scenario, in order to 

account for the model error, one should apply the model as a weak constraint, 

rather than as a strong constraint in the 4DVAR method (76). Recent research (4; 

5) shows that applying the model 'dynamics as a weak constraint in a 4DVAR 

data assimilation method outperforms the one with strong constraint. 

Here we give a brief introduction of Weak Constraint 4DVAR (WC4DVAR) 

method. Differences between WC4DVAR method and ISCDe method are dis-

cussed and comparisons are made in both low dimensional model and higher 

dimensional model experiments. 

5.3.1 Methodology 

The weak constraint 4DVAR method looks for pseudo-orbits instead of trajecto-

ries that are consistent with sequence of system observations. Following (Lorene 

1986), the weak constraint 4DVAR method can be derived as follow. Given a se-

quence of observations within a time interval (0, N), so , ..., sN  and a background 
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state x10,  at time t = 0, we want to produce the optimal estimate of the model 

states x0 , ..., xN. Assuming the observational noise and the model error are both 

IID Gaussian distributed. Follow the maximum likelihood principle, the prob-

ability of xo , xN  given xo and so , SN , i.e. p(xo, xN  I 4;  so , ..., S N ) is 

proportional to 

e- 2(xo -x8)TB(3 1 (x0 -4) x 	(H(xj)-si)TrTi (H(xj)-si) x 	(5.13) 

Z EN(xi -F(xi-i)) 7C2nxiF(xi-i)) .  

Matrices F, B and Q are observational, background and model error covariances. 

The weak constraint 4DVAR cost function is then derived by taking the logarithm 

of the above equation, i.e. 

C4dvar = 1, _ (xo xb 	—1 	b 
0/ -"0 1,X0 — X0 ) _ 

2 	 2 
(H(xi ) — si )Tri-l (H(xi ) — si )(5.14) 

i=0 

F(xi_1))TQT 1 (xi - 
i=1 

Note that although the expression of the first and the second term in the cost func-

tion is same as the original 4DVAR cost function (Equation 3.9), they are different 

in the sense that the estimate of the system states x 0 , ..., xN are components of a 

single trajectory of the model in the original 4DVAR case i.e. x i  — F(xi_ i ) = 0. 

While in the WC4DVAR case those estimates form a pseudo-orbit. And it is 

assumed that difference between x i  and F(xi_ i ) is IID Gaussian distributed with 

covariance matrix Q. In order to make difference from the real model error which 
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is ii — F(ii_i ) and to be consistent with the terminology in the previous sec-

tion, we call the difference between xi  and F(xi_i), the imperfection error of the 

pseudo-orbit x0 , xN  which is expected to be minimised by the third term of 

the cost function. Generally WC4DVAR looks for pseudo-orbit of the model by 

maintaining the balance that such pseudo-orbit stays close to the observation but 

with small imperfection error. Similar to the original 4DVAR, the application of 

WC4DVAR is carried out over short assimilation windows as increasing the win-

dow length will not only increase the CPU cost exponentially but also suffer from 

the increasing density of local minimums. 

5.3.2 Differences between ISCDc and WC4DVAR 

There is some similarity between the ISGDc method and WC4DVAR method. i) 

Both methods can be applied to an assimilation window to produce an estimate of 

model states (analysis); ii) The analysis produced by both methods is a pseudo-

orbit of the model with its corresponding sequence of imperfection error. There 

are, however, fundamental differences between them. 

® The WC4DVAR method forces the pseudo-orbit to stay close to the ob-

servations by the second term of its cost function. As the imperfection 

error brings extra freedom to the pseudo-orbit, the pseudo-orbit produced 

by WC4DVAR might be stay too close to the observations and the dis-

tribution of the difference between pseudo-orbit and the observations, the 

distribution of implied noise, might not be consistent with the observa-

tional noise model. In the ISGDc algorithm, the cost function itself does 

not contains any constraints to force the pseudo-orbit staying close to the 
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observations. The observations are only used to initialise the GD minimi-

sation. By setting up the relevant stopping criteria, the implied noise is 

found to be more consistent with the observational noise. 

• Both methods produce a sequence of imperfection error besides the pseudo-

orbit, such imperfection error could be treated as the estimation of the real 

model error. In this case, WC4DVAR can be shown not to be self consis-

tent (52). Within the process of deriving the WC4DVAR, the model error 

is assumed to be IID Gaussian distributed. Such assumption appears un-

likely to hold if the model is nonlinear (52) and can be tested after the fact. 

As we discussed in section 5.2.2, we expect this model error to be space 

correlated and not necessarily to be Gaussian distributed. Even were this 

assumption to hold, the covariance matrix Q has to be predetermined in 

order to initialise the WC4DVAR cost function. Without knowing the true 

states of the system, it is impossible to obtain the model error covariance 

matrix. Therefore an estimation has to be used. As the imperfection er-

ror is the estimation of the model error, we expect the imperfection error 

produced by WC4DVAR is IID Gaussian distributed with covariance Q. In 

the ISGD° algorithm, no assumption of the model error is made and the 

covariance matrix of model error is never needed, the imperfection error is 

the remaining mismatch after certain number of GD minimisation runs. 

• It is shown in section 5.5.1 that the performance of the WC4DVAR method 

degrades as the length of the assimilation window increases while ISCDc 

does not. In section 3.4, we discussed that the 4DVAR. method suffers 

from the problem of local minimums when it is applied to a long data 

114 



5.3 Weak constraint 4DVAR Method 

assimilation window of observations. Miller et al. (1994) also anticipated 

difficulties in finding global minima of the WC4DVAR cost function similar 

to those encountered in the 4DVAR case. For the WC4DVAR method, 

it appears to be difficult to demonstrate analytically whether the number 

of local minima of the cost function increases as the length of the data 

assimilation window increases. Results, shown in section 5.5.1, indicate that 

WC4DVAR method suffers from the local minima when the assimilation 

window increases. As the cost function tries to minimise the linear sum of 

the distance between the pseudo-orbit and the observations and the squared 

imperfection error, it might be the case that the local minima of the cost 

function defines the pseudo-orbit that is too far away from the observations 

in order to have small imperfection error. In other words, in such cases the 

WC4DVAR is trying to find a model trajectory (i e imperfection error is 

0) close to the observations while for the imperfect model of a nonlinear 

chaotic system, it is often the case that no model trajectory is close to 

the observations if large assimilation window is considered. Results, shown 

in section 5.5.1, suggest this might be the reason WC4DVAR performs 

badly when the assimilation window is large. The ISGDc method does 

not have this deficiency. Results, shown in section 5.5.1, demonstrate that 

a longer assimilation window does not cause problems; on the contrary 

better estimates are produced by ISGDe method. 

The analysis produced by ISCDc and WC4DVAR can be used to form an en-

semble of initial conditions. The quality of the ensemble depends on the quality 

of the analysis. In section 5.5.1, we compare the quality of pseudo-orbits pro-

duced by ISG.Dc and those produced by WC4DVAR. Our results demonstrate 
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that WC4DVAR still suffers from the local minimum when applying to longer 

assimilation window while our ISGDC method doesn't have such shortcoming 

and produces pseudo-orbits closer to the true pseudo-orbit. 

5.4 Methods of forming an ensemble in IPMS 

In this section, we introduce and discuss the methods of forming an ensemble of 

model states at t = 0 based on the pseudo-orbit, z i , i = —N, 0, which can be 

produced by methods like ISGDc and WC4DVAR. Such ensemble is treated to 

be the solution of nowcast. 

5.4.1 Gaussian perturbation 

An easy way to form the ensemble is perturbing the current estimate z 0  with 

Gaussian distribution. To form an Ne" member ensemble, one can draw Nens 

samples from N(0, cr. ') and add onto z 0 . The parameter o-  can be chosen to 

obtain the best nowcast skill or simply use the standard deviation of the noise 

model. The problem of this method is that it assumes the error of the analysis is 

Gaussian distributed, which is often not the case even in the perfect model case. 

It is, however, a simple straightforward method to form the ensemble to cover 

the error of the analysis. 

5.4.2 Perturbing with imperfection error 

In this section we introduce a method to form the ensemble by perturbing the 

image of second last component of the pseudo-orbit, i.e. F(z_ 1 ), using the histor- 

ical imperfection error. This method needs a large amount of historical data in 
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order to record a large set of imperfection error for future sampling. As we men-

tioned before, our state estimation method ISGDc produces a set of imperfection 

errors along with the pseudo-orbit. We apply the state estimation method to the 

historical data and record all the imperfection errors. To form an Nens member 

ensemble, we randomly draw Nens  samples from the historical set of imperfection 

errors and add them onto F(z_ 1 ). The advantage of this method is that the en-

semble members tend to cover the uncertainty of model error. The disadvantage 

are i) the imperfection error is usually not IID distributed, they usually have 

strong spatial correlations as shown in Figure 5.3. As simple random sample 

of imperfection errors may lose this useful information; ii) the results are also 

strongly depending on how good the second last component of the pseudo-orbit 

estimates the true state. 'We believe better methods can be found by extracting 

more information in the imperfection error. In this chapter we give an example 

to suggest that imperfection error might be useful to produce nowcast ensemble. 

5.4.3 Perturbing the pseudo-orbit and applying iSGDc 

Another way to form the initial condition ensemble is perturbing the pseudo- 

orbit and applying ISGDc. As we discussed in Section 5.2.5, given a sequence 

of observation, s_n) s-n+1) •• • SO) we can find a pseudo-orbit, z-n) Z-n-I-1) • ZOI 

by the ISGDc method. One may consider the last component of the pseudo-

orbit,zo, as a point estimation of the current state. To form an /V"' member 

ensemble, we perturb the pseudo-orbit with the distribution of the observational 

noise Nens times, apply the ISGDc method on the perturbed pseudo-orbits and 

finally record the last component of each pseudo-orbit produced by the ISGDe 
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method as one of the ensemble member. Each ensemble member can be treated 

equally or weighted according to the likelihood of its corresponding pseudo-orbit 

given the observations. The results presented in section 5.5.2, show that this 

method produces better nowcasting ensembles than the other two methods. It 

is, however, very costly to run the ISGDe method to generate each ensemble 

member. 

5.5 Results 

In this section we first compare the ISG.Dc method with WC4DVAR by looking at 

the pseudo-orbits they provide. Results are then shown the comparison among 

the ensemble formation methods. Finally we compare the ensemble nowcasts 

based on ISG.Dc with an Inverse Noise ensemble. 

5.5.1 ISG.De vs WC4DVAR 

Both the ISG.Dc and WC4DVAR produce a pseudo-orbit from which an ensemble 

of the current state estimates can be constructed. In this section instead of 

comparing ensemble nowcasting results, we compare the quality of the pseudo-

orbit each produces. We apply both methods in the higher dimensional Lorenz 96 

system-model pair experiment and the low dimensional Ikeda system-model pair 

experiment. And in each case, different lengths assimilation windows are tested. 

Firstly we measure the distance between observations and pseudo-orbit (equa-

tion 5.15), and the distance between true states and pseudo-orbit (equation 5.16) 

as diagnostic tools to look at the quality the model trajectories generated by each 

method. 
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Window 
length 

Distance from observations 
Average Lower Upper 

WC4DVAR ISGDe WC4DVAR ISGDe WC4DVAR ISGDe 
4 steps 1.52 1.19 1.45 1.13 1.60 1.24 
6 steps 2.89 1.29 2.27 1.24 3.60 1.34 
8 steps 4.61 1.34 3.80 1.30 5.52 1.37 

Window 
length 

Distance from true states 
Average Lower Upper 

WC4DVAR ISGDe WC4DVAR ISGDe WC4DVAR ISGDe 
4 steps 0.70 0.67 0,65 0.63 0.76 0.71. 
6 steps 2.07 0.55 1.43 0.52 2.81 0.58 
8 steps 4.01 0.50 3.19 0.47 4.88 0.52 

Table 5.3: Ikeda system-model pair experiment (Experiment G): a) Distance 
between the observations and the pseudo-orbits generated by WC4DVAR and 
ISGDe, b) Distance between the true states and the pseudo-orbits generated by 
WC4DVAR and ISGDe in Ikeda system-model pair experiment. Average: aver-
age distance, Lower and Upper are the 90 percent bootstrap re-sampling bounds, 
the statistics are calculated based on 1024 assimilations and 512 bootstrap sam-
ples are used to calculate the error bars. (Details of the experiment are listed in 
Appendix B Table B.7) 

( H 	- sti )TR71 (H(zti ) - SO, (5.15) 

- ROT  Ri (zt, - Rt,) (5.16) 

From Table 5.3 and 5.4 we can see that when the assimilation window is 

short, e.g. 4 steps, both WC4DVAR and ISGDe produce similar results that 

the pseudo-orbits are closer to the true states than the observations except the 

pseudo-orbit produced by ISGDe is slightly closer to the observation and the 
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Window 
length 

Distance from observations 
Average Lower Upper 

WC4DVAR ISCDc WC4DVAR ISCDc WC4DVAR ISG.Dc 
6 hours 16.42 14.00 16.24 13.85 16.59 14.14 
12 hours 20.60 14.40 20.41 14.30 20.78 14.50 
24 hours 81.11 14.52 78.17 14.45 84.17 14.59 
Window 
length 

Distance from true states 
Average Lower Upper 

WC4DVAR ISG.De WC4DVAR ISG.Dc WC4DVAR ISGDC 
6 hours 5.87 4.15 5.76 4.08 5.98 4.23 
12 hours 7.92 3.06 7.77 3.01 8.10 3.10 
24 hours 74.29 2.45 71.04 2.42 77.61 2.47 

Table 5.4: Lorenz96 system-model pair experiment (Experiment H): a) Distance 
between the observations and the pseudo-orbits generated by WC4DVAR and 
ISGDa, b) Distance between the true states and the pseudo-orbits generated 
by WC4DVAR and ISGDc. Average: average distance, Lower and Upper are 
the 90 percent bootstrap re-sampling bounds, the statistics are calculated based 
on 1024 assimilations and 512 bootstrap samples are used to calculate the error 
bars.(Details of the experiment are listed in Appendix B Table B.8) 

true states than that produced by WC4DVAR. As longer assimilation window 

being used, the pseudo-orbit generated by ISGD° become father away from the 

observations and closer to the true states while the pseudo-orbit generated by 

WC4DVAR become father away from the observations and the true states. This 

is important because we expect to obtain more information from the observations 

and model dynamics by using longer assimilation window. In the ISGIY case, 

the pseudo-orbit moves closer to the true states as we expected. The WC4DVAR 

method, however, fails to produce better pseudo-orbit when applying on longer 

assimilation windows. We suggest without proof that such failure is due to in-

crease of the density of local minima of the cost function, especially when the 

minimisation tends to obtain small imperfection error; as the WC4DVAR cost 

function depends on not only the initial state but also the imperfection errors, we 
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are unable to plot the cost function against the initial state to demonstrate the 

appearance of local minimums. To support our suggestion, however, we apply the 

WC4DVAR method on different realizations of observations of the true states. 

If the WC4DVAR cost function does not have multiple local minimums, we ex-

pect that the pseudo-orbit produced by WC4DVAR should not varies much for 

different realizations of observations. Table 5.5 and 5.6, shows the standard devi-

ation of both middle point and end point of the pseudo-orbits , The WC4DVAR 

method is compared with ISG.Dc method. It appears that for ISG.Dc method the 

standard deviation does not vary much for different length of assimilation win-

dows while for WC4DVAR method different realization of observations effect the 

results more when the assimilation window becomes larger, which also indicates 

that more local minimums appears. 

5.5.2 Evaluate ensemble nowcast 

In this section we compare nowcast performance of the three ensemble methods 

based on ISCDc with the Inverse Noise ensemble. For the purpose of illustration, 

we call the Inverse Noise ensemble Method I; the ensemble formed by dressing the 

end point of the pseudo-orbit with Gaussian distribution Method II; the ensemble 

formed by perturbing the image of the second last component with imperfection 

error Method III and the ensemble formed by perturbing the pseudo-orbit and 

applying IS'GDc Method IV. The three ensemble methods based on ISGDc are 

introduced and discussed in section 5.4. The Inverse Noise ensemble is formed by 

sampling the inverse noise distribution and adding onto the observations (details 

1We expect the middle point provides better estimate of the model state than the end point 
as the end point only has information from the past, the middle point has information of both 
past and future. 
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Window 
length 

STD of the middle point of the pseudo-orbit 
Median 10th percentile 90th percentile 

WC4DVAR ISG.Dc WC4DVAR ISCDc WC4DVAR ISGDc 
4 steps 0.0153 0.0155 0.0113 0.0105 0.0259 0.0274 
6 steps 0.0271 0.0126 0.0121 0.0087 0.0595 0.0264 
8 steps 0.0431 0.0126 0.0242 0.0086 0.0905 0.0262 

Window 
length 

STD of the end point of the pseudo-orbit 
Median 10th percentile 90th percentile 

WC4DVAR ISCIY WC4DVAR ISCDc WC4DVAR ISGDe 
4 steps 0.0260 0.0301 0.0124 0.0147 0.0417 0.0407 
6 steps 0.0369 0.0296 0.0228 0.0147 0.0841 0.0407 
8 steps 0.0590 0.0299 0.0363 0.0147 0.1294 0.0406 

Table 5.5: Ikeda system-model pair experiment, following Table 5.3: Statistics of 
the standard deviation of the pseudo-orbits' components for different lengths of 
assimilation window, for each assimilation window, pseudo-orbits are produced by 
WC4DVAR and ISGDc based on 512 realizations of observations. Median, 10th 
percentile and 90th percentile are calculated based on 512 assimilation windows. 
a) Standard deviation of the middle point of the pseudo-orbit, as the chosen 
window length contain even numbers of components we treat (Length/2) - 1 as 
the middle point; b) Standard deviation of the end point of the pseudo-orbit. 

can be found in section 4.3.1). We apply each method in the Ikeda system-model 

pair experiment with two different noise level. For each method, the ensemble 

estimate of the current states, i.e. nowcasting, contains 64 equally weighted 

ensemble members. We use both &ball method (Figure 5.5 and Figure 5.6) and 

ignorance skill score (Table 5.7) to evaluate the results. 

Figure 5.5, 5.6 and Table 5.7 shows the comparison among four ensemble 

nowcasting methods in both Ikeda system-model pair experiment and Lorenz96 

system-model pair experiment. In both cases, the c-ball method and ignorance 

score indicates Method IV and III performs better than Method II and Method 

II performances better than Method I. As Method I and Method II use the same 

Gaussian distribution to form the ensemble, the difference is that the ensemble 
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Window 
length 

STD of the middle point of the pseudo-orbit 
Median 10th percentile 90th percentile 

WC4DVAR ISCDc WC4DVAR I SG.Dc WC4DVAR ISGDc 
6 hours 0.0489 0.0402 0.0391 0.0295 0.0815 0.0697 
12 hours 0.0540 0.0314 0.0411 0.0236 0.1045 0.0674 
24 hours 0.2132 0.0309 0.1642 0.0227 0.3505 0.0662 
Window 
length 

STD of the end point of the pseudo-orbit 
Median 10th percentile 90th percentile 

WC4DVAR ISG_Dc WC4DVAR ISGDe WC4DVAR ISCDc 
6 hours 0.0563 0.0480 0.0429 0.0243 0.0934 0.0744 
12 hours 0.0743 0.0477 0.0573 0.0238 0.1332 0.0741 
24 hours 0.2444 0.0477 0.1859 0.0236 0.3949 0.0740 

Table 5.6: Lorenz96 system-model pair experiment, following Table 5.4: Statistics 
of the standard deviation of pseudo-orbits' components for different lengths of 
assimilation window, for each assimilation window, pseudo-orbits are produced by 
WC4DVAR and ISG.Dc based on 512 realizations of observations. Median, 10th 
percentile and 90th percentile are calculated based on 512 assimilation windows. 
a) Standard deviation of the middle point of the pseudo-orbit, as the chosen 
window length contain even numbers of components we treat (Length12)- 1 as 
the middle point; b) Standard deviation of the end point of the pseudo-orbit. 

formed by Method I is centred at the observation while the ensemble formed by 

Method I is centred at the end point of the pseudo -orbit. Whichever wins merely 

indicates which centre tend to be closer to the true state. Here the results in-

dicate that the end point of the pseudo-orbit obtained by ISCDc method falls 

closer to the true state than the observation. Therefore the ISG.Dc method can 

also be treated as a useful noise reduction method. Although Method IV did the 

best, it is much more costly. Method III seems to work better than Method I 

& II which indicates using the imperfection error to form the initial condition 

ensemble is useful. And we expect such ensemble works better in the case that 

the observational noise is relatively large. As we discussed in section 5.2.5, when 

the observational noise is relatively larger than the model error, the geometrical 
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Figure 5.5: Comparing nowcasting ensemble using &ball. Observations are gen-
erated by Ikeda Map with observational noise N(0, 0.05). The truncated Ikeda 
model is used to estimate the current state. We compare the nowcasting ensemble 
formed by Method I, Method II, Method III and Method IV. All the ensemble 
contains 64 ensemble members. 

information of the model error is hard to extract. In this case the estimation 

of model error, i.e. imperfection error, will more or less look like random noise. 

As we mentioned in section 5.4, the disadvantage of Method III is that it as- 
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Figure 5.6: Comparing nowcasting ensemble using f-ball. Observations are gen-
erated by Lorenz96 Model II with observational noise N(0, 0.1). The Lorenz96 
Model I is used to estimate the current state. We compare the nowcasting ensem-
ble formed by Method I, Method II, Method III and Method IV. All the ensemble 
contains 64 ensemble members. 

sume the imperfection error is IID distributed, the assumption become less of 

a disadvantage when the observational noise is relatively larger than the model 

error. 
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Ignorance skill score 
Ikeda system-model pair Lorenz96 system-model pair 
Average Lower Upper Average Lower Upper 

Method I -2.1863 -2.248 -2.1233 -4.4901 -4.5519 -4.4252 
Method II -2.5351 -2.5857 -2.4854 -4.6042 -4.6682 -4.5349 
Method III -2.9782 -3.0665 -2.891 -4.6345 -4.6886 -4.5966 
Method IV -3.0267 -3.0981 -2.9249 -4.9227 -4.9964 -4.8181 

Table 5.7: Following Figure 5.5 and 5.6 experiments setting, Ignorance skill score 
of the nowcasting results of each methods for both Ikeda system-model pair ex-
periment and Lorenz96 system-model pair experiment. Average: is the empirical 
ignorance score over 1024 nowcasts , Lower and Upper are the 90 percent boot-
strap re-sampling bounds, 512 bootstrap samples are used to calculate the error 
bars. 

5.6 Conclusions 

In this chapter, we considered the problem of estimating the current states of the 

model outside PMS. Methods assuming the model is perfect are shown to be un-

able to produce the optimal results outside PMS. The adjusted ISGD method (50) 

is also found unable to produce consistent results. Using the ISGD method but 

with certain stopping criteria is then introduced to address the problem of now-

casting. The ISCDc method produces pseudo-orbit that are consistent with the 

observations and imperfect error which well estimate the model error. 

The well established WC4DVAR method is reviewed and the differences be-

tween WC4DVAR method and ISGD method are discussed. Applying both meth-

ods to the Ikeda system-model pair and Lorenz96 system-model pair, we demon-

strate that the ISCDc method produces more consistent results than WC4DVAR 

method. By measuring the variation of the WC4DVAR estimates based on differ-

ent sizes of assimilation window, we demonstrate that similar to 4DVAR method, 

the WC4DVAR method also encounters the problem that the density of local 
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minima increases as the length of assimilation window increases. 

Three methods are introduced to form the initial condition ensemble based on 

the pseudo-orbit provided by ISGDc method. Using the information of imper-

fection error are found to be useful to produce better initial condition ensemble. 

Forming the ensemble by applying ISG.Dc on perturbed pseudo-orbit are found 

to produce the best initial condition ensemble among these three methods. 
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Chapter 6 

Forecast and predictability 

outside P S 

In this penultimate chapter we discuss how to produce better forecast based on 

the initial condition ensemble given the fact that our model is imperfect. By 

showing the results in the Ikeda system-model pair experiment, we demonstrate 

first that forecast with relevant adjustment, which could be obtained from the 

imperfection error (see section 5.2.3), can produce better forecast than ignoring 

the existence of model error. Secondly we discuss how to interpret predictability 

outside PMS. Traditional ways of evaluating the predictability of one model, 

Lyapunov exponents and doubling time for example, provide the information of 

error growth but they implicitly assume the model is perfect. Outside PMS these 

measurements would systematically overestimate the predictability. We suggest 

using the probability forecast skill to interpret the predictability. Such forecast 

skill not only depends on the system, and model, and observation method but 

also depends on the way that initial conditions are formed and forecasts are 
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determined from the ensemble. 

6.1 Forecasting using imperfect model 

6.1.1 Problem setting up 

We set up the forecast problem in the imperfect model scenario following (50). 

As in section 5.1, the trajectory of system states, Rt , t = —n, 0, ..., ml where 

Rt e Rth , where Rh is the state space of the system, is governed by the nonlinear 

evolution operator F , i.e. 5444 = P(5.ct). An observation s t  of the system state Rt 

at time t is defined by s t  = h(51t)4-ri t  where s t  e 0, Th represents the observational 

noise, which we assume is IID distributed, and h(.) is the observation operator, 

which projects the system state into the observation space 0. For simplicity, we 

take h(.) to be the identity. Let the model be x t+i  = F(xt ), where x t  E M, M 

is the model state space. Assume the system state k can also be projected into 

the model state space by a projection operator g(•), i.e. x = g(X). In general, 

we don't know the property of this projection operator, we don't know even if 

exists. We are just going to assume that it maps the states of the system 

into somehow relevant states in the model. For the purposes of illustration and 

simplicity, unless otherwise stated, we assume g(.) is one-to-one identity. Our 

aim is to forecast the future model states x t , t = 1, ..., n1  given the model and 

the previous and current observations s t , t = —n, 0. Chapter 3 and Chapter 

5 have discussed methods to estimate the current state using ensemble. In the 

following sections, we will treat the ensemble for the current states as the initial 

condition ensemble and use them to forecast the future states x t , t = 1, ..., nf. 
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The experimental results discussed in this section will based on the Ikeda 

system-model pair, i.e treat the Ikeda Map as the system and the truncated Ikeda 

Map as the model. Details of this system-model pair can be found in Section 5.1 

and 2.4. 

6.1.2 Ignoring the fact that the model is wrong . 

Given an initial condition ensemble, the simplest way to produce the forecast 

ensemble is to iterate the initial condition ensemble forward by•the model, we 

call this the direct forecast. Unfortunately no matter how good the initial con-

dition ensembles are, by simply iterating them forward the forecast ensembles 

are expected to move far away from the observations eventually. This failure 

of producing a relevant forecast results from ignoring the fact that the model is 

imperfect. Usually the invariant measure of the system in the model space and 

that of the model are rather different, and iterations of the initial condition un-

der the model will, however, only approach the model attractor (if there is one) 

eventually, which essentially cause the irrelevance of the forecast. 

6.1.3 Forecast with model error adjustment 

As discussed in section 5.2, a system trajectory provides a pseudo-orbit of the 

model instead of a model trajectory in the model space. The mismatch R t+i  — 

F(Rt ), i.e. the model error dh, distinguishes a system trajectory from being a 

model trajectory. Forecasting by iterating the initial condition ensemble forward 

by the model ignores the existence of model error. Given an initial condition 

ensemble at time 0, the ideal forecast at time 1 would be obtained by adjusting 
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the iteration of the initial condition ensemble with the corresponding model error. 

If one has a large sample of historical model errors -P j l, these could be used 

to improve the forecasting. One could, for example, adjust the iterations of initial 

condition ensemble with random draws from the set of relevant historical model 

errors (79). Let the initial condition ensemble be xio ,i = 1, ... Nens where Nens is 

the number of ensemble members. The forecast ensemble member at lead time 

t is then given by xit  = F(x1_ 1 ) Cit  where Cti  is random drawn from the set of 

historical model error. we call this the forecast with random adjustment. This 

method is equivalent to transferring the deterministic model F to a stochastic 

model by adding the dynamical noise term C t . And this method assumes that 

the model error is IID distributed when usually it is not the case. 

Model error is usually correlated, for example see Figure 5.1. Randomly 

drawing from the set of global historical model error discards the geometrical 

information about model error. Another approach by using historical model 

error that doesn't discard geometrical information is to employ a local analogue 

model to determine the adjustments fit. For each model error (Di , it corresponds 

to two sequential states x3  and 5cj+1  as c.:.7' ;  = — F(Ri ). To construct Ct , we 

can first find K nearest neighbours of xi from the historical set {ic; } and record 

their corresponding (.7.7j , we then randomly choose one model error from the K 

CZ) to be Cti . We call this method forecast with analogue adjustment. There are 

many other analogue models one can use (details of analogue models can be found 

in Section 2.5), our interest here is not finding a better analogue model but to 

demonstrate that by extracting information from the model errors the forecast 

performance can be improved. 

• For computational reasons, we illustrate both methods taking only one ad- 
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justment for each ensemble member xt. Note that in future work, one could 

sample more than one from the set of historical model error or from the K local 

model error (70). Taking large samples will be more useful, but will lead to ex-

ponentially growing ensemble size, which is interesting but beyond the scope of 

current thesis. 

The experiment results discussed below are based on two different initial con-

dition ensembles. One is inverse noise (see section 4.3.1), which is a computation-

ally cheap and easy way to form the initial condition ensemble but which ignores 

the information of the dynamics. The other is the dynamical consistent ensemble 

(see section 3.6), in our experiment the ensemble members are consistent with 

the system dynamics and a segment of observations, si, i = —5, —4, ..., O. In the 

imperfect model scenario, such initial condition ensemble is not achievable as the 

system dynamics is unknown. We use such "perfect" initial condition ensemble 

as an example of the best initial condition ensemble one might hope to achieve. 

Results shown below demonstrate that forecasting with the adjustment of model 

error improves the forecast performance in both cases. 

Figure 6.1 shows four examples of the one step forecast ensemble in the model 

state space when the initial condition ensemble is formed by inverse noise. In all 

the examples, forecasting with random adjustment produces ensemble members 

with too much spread. In panel (a), forecasting were made in a place where 

the model error is very small, which makes the difference between direct forecast 

and forecast with analogue adjustment very small. Panel (b) shows an example 

where the model error is small but not negligible, direct forecast ensemble fails 

to capture the true state to a slight extent. Panel (c) and (d) are cases that 

the model error is moderate and relatively large, in both cases direct forecast 
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6.1 Forecasting using imperfect model 

Figure 6.1: One step forecast ensemble in the state space. Observations are gen-
erated by Ikeda Map with IID uniform bounded noise U(0, 0.01). The truncated 
Ikeda model is used to make forecast. The initial condition ensemble is formed 
by inverse noise with 64 ensemble members. Four 1-step forecast examples are 
shown in four panels. In each panel, the background dots indicate samples from 
the Ikeda Map attractor, the red cross denotes the true state of the system, the 
blue square indicates the observation, the direct forecast ensemble is depicted 
by purple circles, the forecast with random adjustment ensemble is depicted by 
orange dots and the forecast with analogue adjustment ensemble is depicted by 
cyan stars. 

ensemble fails significantly to capture the true state, while the forecast with 

analogue adjustment ensemble is still able to capture the true state very well. 

The forecast with random adjustment sometimes produces ensemble members 

that stay closer to the true state than all the ensemble members produced by 
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direct forecast. 

Figure 6.2 shows the comparison between the three methods discussed above 

using the c-ball test at different lead times (Details of c-ball method can be found 

in Section 3.7). It appears that forecasts with analogue adjustment almost always 

outperform the direct forecasts for different lead times and different sizes of e-

b all . At lead time 1 and 2, direct forecasts outperform the forecasts with random 

adjustment no matter what the size of c-ball is. At lead time 4, the proportion 

of wins for these two methods are close when the diameter of c-ball is less than 

0.03, beyond 0.03 direct forecast wins. At lead time 8 and lead time 16, however, 

forecast with random adjustment outperforms the direct forecast. The reason of 

direct forecast winning at short lead time and losing at longer lead time is that 

at short lead time although the direct forecast may not capture the true state, 

the forecast ensemble members are still stay relatively close to the true state. For 

longer lead time, a direct forecast ensemble is not only unable to capture the true 

state but also further way from the true state. 

Following Figure 6.1, Figure 6.3 shows the same four examples of the one step 

forecast ensemble but based on the initial condition ensemble that is a dynamical 

consistent ensemble in the state space. Forecasts with random adjustment still 

produce ensemble members with too much spread. Although the initial conditions 

are consistent with both observations and system dynamics, the direct forecast 

fails to capture the true state with the appearance of model error. Forecast with 

analogue adjustment ensemble members not only cover the true state but also lie 

closer to the relevant system attractor. 

Following Figure 6.2, Figure 6.4 shows the c-ball test for the three forecasting 

methods at different lead time where the initial condition ensemble is formed by 
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6.1 Forecasting using imperfect model 

Figure 6.2: Following Figure 6.1 experiment setting, compare forecast ensemble 
using e-ball. Direct forecasts are compared with forecasts with random adjust-
ment (left) and forecasts with analogue adjustment (right). The initial condition 
ensemble is formed by inverse noise with 64 ensemble members. For each forecast 
method, 2048 forecasts are made. Each row shows the comparison for different 
lead time. First row denotes lead time 1, second lead time 2, third lead time 4, 
forth lead time 8 and fifth lead time 16. 
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6.1 Forecasting using imperfect model 

Figure 6.3: Following Figure 6.1 one step forecast ensemble in the state space. 
The initial condition ensemble is formed by dynamical consistent ensemble with 
64 ensemble members. 

a dynamical consistent ensemble. The results are almost the same as seen in 

Figure 6.2 did. Comparing with Figure 6.2, the advantage of using adjustment 

at longer lead time becomes more obvious as the dynamical consistent initial 

conditions are more concentrated than inverse noise ensemble which makes the 

forecast ensemble less likely to capture the true state using a direct forecast. 

Figure 6.1 and Figure 6.3 have compared the results of three forecasting meth-

ods in the state space at lead time 1. And Figure 6.2 and Figure 6.4 compare their 

forecast performance at different lead times by looking at the probability mass 
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6.1 Forecasting using imperfect model 

Figure 6.4: 6.4: Comparing forecast ensemble using e-ball. Observations are generated 
by Ikeda Map with IID uniform bounded noise U(0, 0.01). The truncated Ikeda 
model is used to make forecast. The initial condition ensemble is formed by 
dynamical consistent ensemble with 64 ensemble members. Each row of pictures 
shows the comparison for different lead time. First row denotes lead time 1, 
second lead time 2, third lead time 4, forth lead time 8 and fifth lead time 16. 
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around the true state. We now look at their forecast performance at different lead 

times using the ignorance score. Following section 4.3.2, we first transform the 

forecast ensemble into a probability distribution by standard kernel dressing, and 

we use the historical observations for a climatology which is blended with forecast 

distribution generated by forecast ensemble. we evaluate the final forecast proba-

bility distribution by the ignorance score. Figure 6.5 plots the ignorance score of 

three forecasting methods for different lead times. In panel (a) the forecasts are 

based on an inverse noise initial condition ensemble. In panel (b) the forecasts 

are based on a dynamical consistent initial condition ensemble. In both cases, 

the forecasts with random adjustment appears slightly better than direct fore-

cast, and forecasts with analogue adjustment outperforms the other two methods 

significantly. Panel (c) combines the panel (a) and panel (b) in order to compare 

the difference between different initial condition ensembles. From panel (c), it 

appears that using a dynamical consistent ensemble for the initial condition is 

only slightly better than using inverse noise ensemble for both direct forecast and 

forecasting with random adjustment, while for the forecast with analogue adjust-

ment a dynamical consistent ensemble initial condition can improve the forecast 

perform significantly which indicates that the information of the initial condition 

is well maintained. 

From Figure 6.2, 6.4 and 6.5, it seems that c-ball test and ignorance score 

do not indicate a single best approach in the case of comparing direct forecast 

and forecast with random adjustment, especially at short lead times. Comparing 

these two methods by 6-ball test, the proportion of wins of direct forecast is never 

smaller than that of forecast with random adjustment for any size of 6-ball at lead 

time 1 and 2. By comparing the ignorance score, however, forecasts with random 
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Figure 6.5: Following Figure 6.1 experiment setting, Ignorance score of three 
forecasting methods relative to climatology is plotted vs lead time. The error 
bars are 90% bootstrap re-sampling bars. In panel (a), the initial condition 
ensemble is formed by inverse noise with 64 ensemble members. In panel (b), the 
initial condition ensemble is formed by dynamical consistent ensemble with 64 
ensemble members. Panel (c) is the combination of panel (a) and (b). Ignorance 
is calculated based upon 2048 forecasts. 

139 



G.1 Forecasting using imperfect model 

adjustment have slightly lower ignorance than direct forecasts. The reason for 

such inconsistent results is that there are fundamental differences between these 

two evaluation methods, as now explained. The e-ball method measures the prob-

ability mass that stays inside different sizes of e-balls and counts the proportion 

of times one method beats the other (on a tie, both win). For each forecast, an 

&ball test only counts which method wins regardless of how significantly the win 

is, which means e-ball treats an overwhelming win and slight win the same. The 

empirical ignorance score discussed in section 4.3.3, on the other hand, averages 

the ignorance of each forecast, i.e how much one method wins in one forecast 

matters. In our experiments, although direct forecasts have a lager proportion 

of wins, it loses a lot when it loses to forecast with random adjustment. This 

can also be seen from Figure 6.1 and Figure 6.3, where the model error is large, 

direct forecast miss the target (true state) completely while forecast with random 

adjustment may produce some ensemble members are close to the true state; for 

this kind of forecast, ignorance score punishes direct forecast heavily. 

6.1.4 Forecast with imperfection error adjustment 

It is clear that forecasts with adjustment using the model error can improve the 

forecast performance compared to direct forecast. Unfortunately, identifying the 

actual model error is not achievable except the noise free case. With observational 

noise, model error cannot be precisely determined (see section :5.2.2). One can, 

however, estimate the model error and use the estimates to improve the forecast. 

The ISCDc method we introduced in section 5.2.5 is not only a state estimation 

method, it also provides estimates of model error, i.e. the imperfection error (see 
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6.1 Forecasting using imperfect model 

Section 5.2). In this section we consider using the imperfection error to adjust 

the forecast and compare with direct forecasts. The experiment results discussed 

below are based on initial condition ensemble obtained by inverse noise 1. . 

Figure 6.6 shows six examples of the one step forecast ensemble in the state 

space, the initial condition ensemble is formed by inverse noise. Instead of using 

the actual model error we use the model imperfection error obtained from the 

ISGDC method to adjust the forecast. In all examples, forecasts with random 

adjustment still produce ensemble members with too much spread. Similar to 

Figure 6.1, the first 4 panels present the four cases where the model error is very 

small, small, moderate and large. Forecasts with analogue adjustment outperform 

the direct forecast as long as the model error is not negligible. Panel (e) shows an 

example where the model error is small but the forecast with analogue adjustment 

ensemble is unable to capture the true state. This failure occurs because the 

model error in this case is overestimated by the imperfection error. Panel (f) 

shows an opposite example where forecasts with analogue adjustment did not 

capture the true state because the model error in this case is underestimated by 

the imperfection error. Figure 6.7 shows the comparison between three methods 

via &ball method (see section 3.7) at different lead time, the forecast adjustment 

is obtained from the imperfection error instead of model error. Similar to the 

adjustment using model error, the forecasts with analogue adjustment almost 

always outperform the direct forecast for different lead time and different sizes of 

c-ball. Direct forecasting outperforms the forecasts with random adjustment at 

short lead times while underperforms at longer lead times. As the result of using 

'dynamical consistent ensemble is not employed this time since if method can improve the 
forecast based on inverse noise it is expected to do so for other initial condition ensemble and 
it might be too costly to form an dynamical consistent ensemble in practice 
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Figure 6.6: Following Figure 6.1, six 1-step forecast examples are plotted in the 
state space. Here the adjustment is obtained from imperfection error instead of 
model error. 
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Figure 6.7: Following Figure 6.2, comparing three forecast ensemble results using 
&ball. Here the adjustment is obtained from imperfection error instead of model 
error. 

imperfection error, forecasts using analogue adjustment outperform the direct 

forecast less significantly than using the actual model error. Figure 6.8 plots the 

ignorance score of three forecasting methods for different lead time. Similar to 
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Figure 6.8: Following Figure 6.5a, Ignorance score of three forecasting methods 
relative to climatology is plotted vs lead time. Forecast adjustment is obtained 
from imperfection error. 

Figure 6.5 forecasts with random adjustment appear to be slightly better than 

direct forecasts, and forecasts with analogue adjustment outperform the other 

two methods significantly. Compared with Figure 6.5, by using imperfection 

error the forecast with analogue adjustment gives higher ignorance score than 

using the actual model error. 

As we mentioned in section 5.2.5, the quality of the estimates of the model 

error using imperfection error is strongly dependent on the observational noise 

level. When the model error is relatively larger than the observational noise, then 

the model error can be well estimated by the imperfection error. On the other 

hand, when the model error is relatively small corresponding to the observational 

noise, then the model error will be poorly estimated by the imperfection error. 

In general the smaller the observational noise is, the better the model error can 

be estimated. Figure 6.9 plots the ignorance score of forecast with adjustment 
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Figure 6.9: Ignorance score of forecast with adjustment where the adjustment is 
generated from the observations with different noise level. The initial condition 
ensemble is formed by inverse noise with fixed noise level U(0, 0.01) so that the 
observations with different noise level only affect the imperfection error. The 
error bars are 90% bootstrapped error bars. In panel a, the forecast is made by 
random adjustment; in panel b, the forecast is made by analogue adjustment 

where the imperfection error is produced of different noise levels. It appears 

that forecasts with random adjustment are not affected much by having higher 

observational noise. Doubling the observational noise, however, decreases the 

forecast performance of using analogue adjustment. 

Overall, we conclude that forecasting with adjustments can improve the fore-

cast performance from direct forecast as the adjustment is able to account the 

model inadequacy partially. The adjustments can be obtained from estimates 

of the model error. Such estimates can be obtained for example using ISGIY 

method. Forecasts with random adjustment ignores the geometric information 

of model error by assuming it is IID distributed. Forecast with analogue adjust-

ment extracts such information and as a result, outperforms forecast with random 

adjustment and direct forecast significantly. 
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6.2 Predictability outside PMS 

6.2 Predictability outside PMS 

If the dynamics of a deterministic system are completely understood and the ex-

act initial state is observed, then there is no limit to predictability and the future 

holds no surprises. When there is uncertainty in the initial condition, sensitive 

dependence on initial conditions restricts our ability to predict the future. The 

well known Lyapunov exponents (3; 22; 68) measures the predictability by cal-

culating the average exponential uncertainty growth rates. Lorenz (62) discussed 

using finite time Lyapunov exponents to measure the predictability of high di-

mensional atmospheric model. The weakness of using Lyapunov exponents is 

revealed by Smith et al (82) by comparing q-pling times which reflects the time 

of error growth directly. The q-pling times are used to measure the predictability 

by directly quantifying the time at which initial uncertainty increases by a factor 

of q. 

Outside PMS, there is not only uncertainty in the initial condition but also 

uncertainty in the dynamics. Measuring the predictability with the assumption 

that the model is perfect will simply overestimate the predictability. Without 

knowing the true state of the system, q-pling times can be used to estimate the 

uncertainty doubling (quadrupling, etc) time based on the sequence of observa-

tions. Knowing a particular q-pling time, however, from which the uncertainty 

growth rate can not be simply inferred, as discussed in Smith(1996), the rela-

tion re 27-g  may not hold. We suggest that outside PMS one could define 

predictability being lost when the forecast adds no new information to the cli-

matology (82). In practice, this is to say that the predictability is lost when the 

forecast skill score relative to climatology is arguably zero. Lyapunov Exponents 
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and q-pling time are discussed in Section 6.2.1 and 6.2.2. Applying forecast skill 

to measure the predictability is introduced and discussed in Section 6.2.3. 

6.2.1 Lyapunov Exponents 

Given an initial state on the attractor of the system xo, The evolution of an 

infinitesimal uncertainty around x o  over a finite time At is determined by the 

linear propagator M(x o , At) (81), i.e. 

c(to  + At) = M(xo , At)e(to ) 	 (6.1) 

For a flow, 

to-Ft 
M(xo , At) = exp(J(x(t))dt)), 

to 
(6.2) 

where J(x(t)) is the Jacobian along the trajectory. For discrete time maps, the 

linear propagator is simply the product of the Jacobians along the trajectory 

M(xo , k) = J(xk_1)J(xk-2)-3(xi)J(xo) 	 (6.3) 

For a given x and At, the finite-time Lyapunov exponents (62) are defined by 

(x, At) = 	log2 o-i , 	 (6.4) 

where o are the singular values (in rank order, i.e. with cr i  > uj  for i < j) of the 

linear propagator M(x, At). 

Since the singular values o-, are positive, the Lyapunov exponents tells us, on 
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6.2 Predictability outside PMS 

average, how fast the initial uncertainty grows exponentially over At. A 1 (x, At), 

called the maximum average exponential growth rate, reflects the error growth 

in the fastest growing direction. In the limit At co, A i  (x, At) approaches the 

global Lyapunov exponents, which are the same for almost all x with respect to 

an ergodic measure (25). 

It is proved (94) to be true that the largest finite time Lyapunov expo-

nent(average over the invariant measure) is large or equal to the largest global 

Lyapunov exponent. A positive global Lyapunov exponent is therefore often 

said to destroy any hope of "long-term" predictability. Actually both finite time 

Lyapunov exponents and global Lyapunov exponents reflect average rates, not 

average times (81). Smith (94) gives several examples of common chaotic sys-

tems to show that even the system has positive global Lyapunov exponent, there 

are some states on the system attractor about which every infinitesimal uncer-

tainty will shrink for certain finite time regardless of its orientation, which also 

indicates that the local dynamics of uncertainties about that initial condition are 

more relevant' (62; 82). 

6.2.2 q-pling time 

In stead of averaging the error growth rate, the uncertainty q-pling time (82) 

measures the average of minimum time required for an uncertainty reaching a 

certain threshold. Given an uncertainty co at x0, a q-pling time (82) rq (xo , co ) 

is defined by the smallest time for which the initial uncertainty c o  about x0  has 

increased by a factor q 

Tq (sio , co ) = mint>oft 111 A(56 + eo).— frt(Ro) 	q eo 
	(6.5) 
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6.2 Predictability outside PMS 

if single value is required, the average q-pling time, rq(ii c II), is then defined by 

averaging the q-pling time over all points x on the attractor. 

Although the q-pling time is often (81) defined based on E 11-4 0 in order to 

compare with Lyapunov exponents, the q-pling time can be calculated based on 

any initial uncertainty, which does not have to be infinitesimal. For Lyapunov 

exponents, the linearised dynamics, Equation 6.2, is based on the assumption 

that uncertainties remain effectively infinitesimal for the time scales of interest. 

Clearly, as long as an uncertainty is infinitesimal it can place no limit on pre-

dictability. Once the uncertainty becomes finite, the linearization, and hence 

Lyapunov exponents are, in general, irrelevant to error growth (82). 

It is usually impossible to derive the Lyapunov exponents and q-pling times 

analytically for a nonlinear system. In practice, to estimate the global measure 

of them one sample initial conditions uniformly with respect to the invariant 

measure of the system. For each initial condition x, the Lyapunov exponents, i.e. 

the uncertainty growth rates, can be estimated by iterating the initial uncertainty 

about x for a fixed lead time; the q-pling times is obtained by iterating the 

initial uncertainty about x until the uncertainty has increased by a factor of q. 

Outside PMS, calculating the Lyapunov exponents which have to assume the 

model is perfect tells us nothing about the real predictability. Arguably, model 

error may be more responsible for poor predictions of real nonlinear systems than 

"chaos" (82). If the observational noise is free, one observes the projection of 

the system states in the model state space precisely. In that case the q-pling is 

'assume the projection operator is one-to-one identity 

149 



6.2 Predictability outside PMS 

defined by 

Tq (Xo, co ) = m,int>oft HI Fi(x0 + co) — Xt 11 q II Eo 
	(6.6) 

where x is the projection of system state in the model state space. One can 

calculate the q-pling times of uncertainty about such model states based on the 

imperfect model F . When the observational noise is not free, it is reasonable to 

assume that the observational noise is relatively smaller than the growth of un-

certainty. In that case the q-pling time can be defined based on the observations: 

7,(so , ED ) = mint>o{t 	Ft (so  + co ) — st 1 1 q 11 Eo 111 . 	(6.7) 

Equation 6.7 uses random perturbation around the observation as the initial 

condition. 

Figure 6.10 shows the doubling time in both noise free and low observational 

noise case. It appears that the doubling time estimated by assuming the model 

is perfect is much longer than the doubling time estimated based on the states 

generated system and the imperfect model, which indicates treating the model 

to be perfect will essentially over-interpret the predictability of the model. 

6.2.3 Predictability measured by skill score 

As we mentioned above, Lyapunov exponents measure the predictability through 

globally average error growth rates in the limits of large time and small un- 

1  As we discussed in the previous section, forecast with adjustment could improve the forecast 
performance, which indicates that it can also increase the q-pling time. Since adjusting the 
forecast is essentially turn the original deterministic model into a stochastic model, here the 
imperfect model F can represent any model including deterministic and stochastic models 
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6.2 Predictability outside PMS 

Figure 6.10: Doubling time of Ikeda system-model pair. Panels a) and c) estimate 
the doubling time by assuming the model is perfect. Panels b) and d) estimate the 
doubling time based on the states generated Ikeda Map and using the Truncated 
Ikeda Map as the model. a) and b) are noise free cases while c) and d) have 
observational noise N (0,0.0001). Note that the scale of the color bar is different 
in each panel. 

certainty  (94),  they are of limited use in PMS and inapplicable outside PMS. 

q-pling time (82) measures the average of minimum time required for an un-

certainty reaching a certain threshold. Such measurement is well defined and 

applicable for both perfect model and imperfect model scenarios. As measure-

ment of the average minimum time that an uncertainty doubles can not be used to 

infer the average minimum time that an uncertainty reaches any other threshold, 
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6.2 Predictability outside PMS 

predictability being lost has to be defined, in advance, upon a certain threshold. 

In this section we suggest another way to measure the predictability by compar-

ing the model forecast performance with climatology, we call it forecast based 

measurement. 

As the average forecast performance degenerates with forecast lead time, it 

will, for sure, happens at certain lead time that the model forecast does not do 

better than the climatology. We define predictability being lost when this hap-

pens, it indicates that the model forecast does no better than random drawn 

from the historical observations. Such measurement can be applied to both per-

fect model and imperfect model scenarios and places no restriction on the initial 

condition uncertainty. Comparing with the q-pling time, the predictability being 

lost is better defined. Although the measurement itself places no restriction on 

the initial uncertainties and the model, the model forecast performance depends 

on how good the initial conditions and the model are. Similar to q-pling time, 

the forecast based measurement measures the predictability given the initial con-

ditions and the model, of course, better initial conditions or better model will 

have more predictability. 

To evaluate the forecast performance, we use the Ignorance score (see sec-

tion 4.3.3). Given an initial condition ensemble and the model (does not have 

to be perfect), the forecast ensemble at each lead can be produced by iterating 

the initial condition through the model 1 . To calculate the imperical ignorance 

score, a forecast ensemble is transformed into a forecast distribution by kernel 

lwe are aware that one may use different forecast scheme, e.g. direct forecast and forecast 
with adjustment defined in section 6.1. In this section we treat the model and forecast scheme 
as the forecast model, i.e. forecasting using a deterministic model with random adjustment is 
treated to be a stochastic model 
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6.2 Predictability outside PMS 

dressing (details of kernel dressing can be found in section 4.3.2). To simplify the 

comparison between model forecast and climatology, the forecast distribution is 

blended with climatology (details can be found in section 4.3.2). After blending 

with climatology, we expect the forecast will do no worse than the climatology. 

By looking at the Ignorance score relative to climatology, one can measure when 

the predictability is lost. As the lead time goes larger, one may expect the relative 

Ignorance go to zero asymptotically. When the model is perfect, given the sample 

climatology based finite number of historical observations, we expect the relative 

ignorance goes to the values that relevant to proportion between the size of the 

ensemble and the size of the historical observations as the ensemble members will 

eventually become random draws from the invariant measure of the model. When 

the model is imperfect, we expect the relative ignorance goes to 0 eventually as 

the invariant measure of the model is different from that of the system. 

We suggest using the forecast based measurement to measure the predictabil-

ity as outside PMS the predictability should depend on not only the system and 

model but also the way initial condition ensemble is constructed and the size of 

ensemble. Figure 6.11 shows the ignorance score (relative to climatology) as a 

function of forecast lead time in the Ikeda system-model pair experiment, fore-

cast based on two different initial condition ensembles with two different sizes are 

plotted separately. In all cases, the relative ignorance converges to 0 after certain 

lead time which indicates after that lead time the information in the initial condi-

tions is lost. Using the same initial condition ensemble but with larger ensemble 

size provides more predictability and delay the convergence. As the results shown 

in section 5.5.2, the initial condition ensemble formed by LSGDc produces better 

estimate of the current states than the Inverse Noise ensemble, the information 
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6.3 Conclusions 

Figure 6.11: Ignorance as a function of forecast lead time in the Ikeda system-
model pair experiment. The observations are generated by Ikeda Map with IID 
N(0, 0.05) observational noise, initial condition ensemble is built by using Inverse 
Noise and ISGLY ensemble. 

of the initial condition ensemble formed by ISGDc sustain longer than that of 

the Inverse Noise ensemble. 

6.3 Conclusions 

In this chapter, we firstly address the problem of estimating the future states of 

the model outside PMS. Directly iterating the initial condition ensemble forward 

is unable to provide good forecast ensemble as such method ignores the exis-

tence of model error. Two new methods, based on adjusting the forecast with 

imperfection error provided by ISGDC method, are introduced. The first method 
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adjust the forecast by adding random draws of the imperfection error onto the 

forecast. The other method selects the imperfection error using analogue models. 

Applying these methods to the Ikeda system-model pair, we demonstrate that 

forecast with random adjustment does not provide significantly better estimates 

than direct forecast as it discards the geometrical information of the imperfection 

error. Forecast with analogue adjustment is shown to outperforms both direct 

forecast and forecast with random adjustment. 

Secondly we address the question of how to interpret predictability outside 

PMS. Traditional ways of evaluating the predictability, Lyapunov exponents and 

doubling time are discussed. Lyapunov exponents measure the predictability 

through globally average error growth rates in the limits of large time and small 

uncertainty, they are of limited use in PMS and inapplicable outside PMS. q-

pling time (82), which measures the average of minimum time required for an 

uncertainty reaching a certain threshold, is applicable for both perfect model and 

imperfect model scenarios. A certain threshold is, however, required in advance in 

order to define when the predictability is lost. We suggest using the probabilistic 

forecast skill to interpret the predictability. In that case, the predictability being 

lost is well defined. In the IPMS, such forecast skill not only depends on the 

system, and model, and observation method but also depends on the way that 

initial conditions are formed and forecasts are determined from the ensemble. 
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Chapter 7 

Conclusions 

In this thesis, we addressed several nonlinear estimation problems by combining 

statistical methods with dynamical insight. 

Methods based on Indistinguishable States theory are introduced to estimate 

the current state of the model in the PMS. By enhancing the balance between 

the information contained in the dynamic equation and the information in the 

observations, the IS method produces a good ensemble estimates of the current 

state. Our methods are applied in Ikeda Map and Lorenz96 flow, and shown to 

outperform the variational method, Four-dimensional Variational Assimilation, 

and the sequential method, Ensemble Kalman Filter. 

To estimate the model parameter, we introduced two new approaches, Fore-

cast Based estimates and Dynamical Coherent estimates. Forecast Based esti-

mates method estimate the parameter values based on the probabilistic forecast-

ing at a given lead time. Dynamical Coherent estimates method focuses on the 

geometric properties of trajectories and the property of the pseudo-orbits pro-

vided by the ISGD method. Both methods are tested on a variety of nonlinear 

models, the true parameter values are well identified. 

Outside PMS, no model trajectories are consistent with infinite observations, 
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there are model pseudo-orbits that are consistent with the observations and their 

corresponding imperfection error reflects the model error. we find applying the 

ISGD method with a certain stopping criteria can produce such relevant pseudo-

orbits. Our methods are applied in Ikeda Map and Lorenz96 flow, and shown 

to outperform the Weak Constrain Four-dimensional Variational Assimilation 

method. 

Given the fact that the model is imperfect, to estimate the future states 

requires accounting the model inadequacy. We demonstrate that using the im-

perfection error produced by ISCDc method to adjust the forecast can improve 

the forecast performance. Forecast based measurement is suggested to measure 

the predictability outside PMS. 

Main new results 

• Chapter 3 

—A new ensemble filter approach within the context of indistinguishable 

states (48) is introduced to address the nowcasting problem in the 

perfect model scenario. 

—For the first time, IS method is compared with 4DVAR method when 

both applying to Ikeda Map and Lorenz96 system which demonstrates 

our method outperforms the 4DVAR method in state estimation. 

—For the first time, IS method is compared with Ensemble Kalman 

Filter method when both applying to Ikeda Map and Lorenz96 system 

which demonstrates our method outperforms the EnKF method in 

state estimation. 
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—A new probabilistic evaluation method, &ball, is introduced to evaluate 

the ensemble forecasts. 

• Chapter 4 

—A new parameter estimation approach based on probabilistic forecast 

is introduced. 

—Another new parameter estimation approach, which focuses on the 

geometric properties of trajectories, is introduced. 

— For the first time, IS method, as part of the second parameter estima-

tion approach, is successfully applied to partial observations. 

• Chapter 5 

—A new methodology, i.e. applying the IS method with stopping criteria, 

is introduced to address the nowcasting problem in the imperfect model 

scenario. 

—For the first time, our methodology is compared with WC4DVAR 

method when both applying to Ikeda Map and Lorenz96 system which 

demonstrates our method outperforms the WC4DVAR method in terms 

of nowcasting. 

—For the first time, we demonstrate that applying WC4DVAR method 

will face the problem of increasing density of local minimums. 

—For the first time, IS method is applied to form ensemble of initial 

condition in the Imperfect Model Scenario. 

• Chapter 6 
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— For the first time, we use the imperfection error obtained by apply-

ing IS method to adjust the forecast outside perfect model scenario. 

And by applying in the Ikeda system-model pair, we demonstrate that 

our method improves the forecast performance from direct forecast 

significantly. 

— Forecast based measurement is suggested to measure the predictability 

outside PMS. 
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Appendix A 

Gradient Descent Algorithm 

In this appendix, we review the details of applying Gradient Descent (GD) Al-

gorithm (48; 50) to find the minimum of the mismatch cost function 3/ given a 

sequence of observations s_N+1, ..•, so. 

The minimum of the mismatch cost function can be obtained by solving the 

ordinary differential equation 

du 
d = —V C (u) r  (A.1) 

where C(u) is the mismatch cost function. In practice, we initialise the min-

imisation with the observations, i.e. u° = s. After every iteration of the GD 

algorithm, the pseudo-orbit u will be updated (for instance, one obtain ul after j 

iterations). To iterate the algorithm, one need to differentiate the mismatch cost 
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function given by 

ac 	2 
au N +1 

— (ut+i — F(ut))dtF(ut) 	 t = —N + 1 

—(ut  — F(ut--1)) + (ut+1 — F(ut))d-tF(ut) —N +1 <t <0 

—(ut  — F(ut-1)) 	 t =0 

where dtF(ut ) is the Jacobian of the model F at ut . We solve the ordinary 

differential equation A.1 using the Euler approximation. 
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Appendix B 

Experiments Details 

The tables below define the standard experiments which are used throughout the 

thesis. 

System Ikeda Map 
Noise model N(0, 0.05) 

Number of assimilation 1024 
Number of bootstrap samples 512 

ISGD no. of GD iterations 4096 
GD iteration step 0.2 

4DVAR Initial GD iteration step 0.2 
GD stops when iteration step < 5 x 10-6  

Table B.1: Details of Experiment A, note for 4DVAR method we shrink the 
iteration step by 2 when cost function not decrease. 
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System Lorenz96 Model I 
Dimension of the system 18 

Noise model N(0, 0.5) 
Number of assimilation 1024 

Number of bootstrap samples 512 
ISGD no. of GD iterations 4096 

GD iteration step 1 
4DVAR Initial GD iteration step 1 

GD stops when iteration step < 10 -6  

Table B.2: Details of Experiment B, note for 4DVAR method we shrink the 
iteration step by 2 when cost function not decrease. 

System Ikeda Map 
Noise model N(0,0.05) 

number of nowcast made 2048 

ISIS 

assimilation window length 12 steps 
no. of GD iterations 4096 
perturbation of the middle points by N(0, 0.025) 
number of the perturbations 4096 
number of ensemble members 512 

EnKF number of ensemble members 512 

Table B.3: Details of Experiment C 

System Lorenz96 Model I 
Dimension of the system 18 

Noise model N(0, 0.5) 
number of nowcast made 2048 

ISIS 

assimilation window length 1.2 time units 
no. of GD iterations 4096 
perturbation of the middle points by N(0, 0.25) 
number of the perturbations 4096 
number of ensemble members 512 

EnKF number of ensemble members 512 

Table B.4: Details of Experiment D 
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System Ikeda 1Vlap 
Noise model U(-0.025,0.025) 

ISIS 

window length 12 steps 
no. of GD iterations 4096 
perturbation of the middle points by U(-0.01, 0.01) 
number of the perturbations 1024 
number of ensemble members 64 

DCEn number of ensemble members 64 

Table B.5: Details of Experiment E 

System Ikeda Map Lorenz96 Model II 
Model Truncated Ikeda Model Lorenz96 Model I 
Noise model N(0,0.01) N(0,0.4) 
number of observations 2048 102.4 time unit 
sample std of model error 0.018 0.0057 

Table B.6: Details of Experiment F 

System Ikeda Map 
Model Truncated Ikeda Model 

Noise model N(0, 0.05) 
Number of assimilation 1024 

Number of bootstrap samples 512 
ISGDc no. of GD iterations 75 

GD iteration step 0.2 
WC4DVAR Initial GD iteration step 0.2 

GD stops when iteration step < 5 x 10 -6  

Table B.7: Details of Experiment G, note for WC4DVAR method we shrink the 
iteration step by 2 when cost function not decrease. 
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System Lorenz96 Model II 
Model Lorenz96 Model I 

Dimension of the system 18 x 5 
Noise model N(0,0.1) 

Number of assimilation 1024 
Number of bootstrap samples 512 

ISCDc no. of GD iterations 4096 
GD iteration step 1 

WC4DVAR Initial GD iteration step 1 
GD stops when iteration step < 10-6  

Table B.8: Details of Experiment H, note for WC4DVAR method we shrink the 
iteration step by 2 when cost function not decrease. 
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Nomenclature 

Roman Symbols 

71 
	observational noise or measurement error 

5 	implied noise 

F 	covariance matrix of the observational noise 

co 	imperfection error 

C 	forecast adjustment 

A 	attractor or invariant measure 

11-11(x) the set of indistinguishable states of x 

M 	model space 

0 	observation space 

S 	state space 

I.(x) unconditional probability density function of x 

p(•) probability density function of the observation noise 
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a 	model parameter 

B 	covariance matrix of xb 

e 	mismatch error 

ui 	component of a pseudo-orbit 

x 	model state 

xa 	the posteriori estimate of system state 

xb 	first guess or background state of the model 

y 	pseudo-orbit obtained by ISGD method 

z 	reference trajectory 

a 	system parameter 

system state 

F 	system dynamics 

dimension of the system parameter space 

rrz 	dimension of the system space 

F 	model dynamics 

h(•) observation operator 

Kt  Kalman gain 

dimension of the model parameter space 
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m 	dimension of the model space 

n 	number of observations 

N"nd number of candidate trajectories 

Neils number of ensemble members 

pa 	analysis-error covariance 

Pb 	background-error covariance 

Q 	the density function measures the indistinguishability 

Y 	verification 
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ISGD iterations for Ikeda Map with true parameter value u=0.83, 

the black horizontal line denotes the noise level. The statistics for 

tests using different parameter values are plotted separately. . . . 83 

4.8 Parameter estimations for Ikeda Map with u=0.83 and noise level ,-----0.02; 

Moore-Spiegel System with R=100 and noise level=0.05, the re-

sults are calculated base on 1024 observations, (a) and (d) The 

median (solid), 90% (dashed) and 99% (dash-dot) shadowing iso-

pleths; (b) and (e) standard deviation of the mismatch; (c) and (f) 

standard deviation of the implied noise, the horizontal line denotes 

the real noise model. The vertical line represents the location of 

the unknown true parameter. 	 85  

4.9 Information from a pseudo-orbit determined via gradient descent 

applied to a 1024 observations of the Henon map with a noise level 

of 0.05. (a) standard deviation of the mismatch, (b) the implied 

noise level, (c) a cost function based on the model's invariant mea-

sure (after Fig.4(b) of ref (64)), (d) median of shadowing time 

distribution  87 

4.10 Shadowing time isopleths as in Figure 4.8 for 8-D Lorenz96 with 

parameter F=10 given only partial observations, a) the 8th com-

ponent of the state vector is not observed; b) none of the 2nd, 5th 

or 8th variables are observed only the other five components; c) 

only 2nd, 5th or 8th variables are observed; d) all the components 

of the state vector are observed. In this experiment the noise level 

is 0  2   88 
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5.1 The one-step prediction errors for the truncated Ikeda map. The 

lines show the prediction error for 512 points by linking the pre-

diction to the target.   96 

5.2 Statistics of the pseudo-orbit as a function of the number of Gradi-

ent Descent iterations for both higher dimension Lorenz96 system-

model pair experiment (left) and low dimension Ikeda system-

model pair experiment (right). (a) is the standard deviation of 

the implied noise (the flat line is the standard deviation of the 

noise model); (b) is standard deviation of the model imperfection 

error (the flat line is the sample standard deviation of the model 

error); (c) is the RMS distance between pseudo-orbit and the true 

pseudo-orbit.   107  

5.3 Imperfection error during the Gradient Descent runs for Ikeda Map 

case is plotted in the state space. (a) after 10 GD iterations, (b) 

after 100 GD iterations, (c) after 400 GD iterations (d) the real 

model error in the state space for comparison.   109 

5.4 Imperfection errors after intermediate Gradient Descent runs for 

Ikeda system-model pair are plotted in the state space. (a) Noise 

level=0.002, (b) Noise level=0.05  110  

5.5 Comparing nowcasting ensemble using &ball. Observations are 

generated by Ikeda Map with observational noise N(0, 0.05). The 

truncated Ikeda model is used to estimate the current state. We 

compare the nowcasting ensemble formed by Method I, Method II, 

Method III and Method IV. All the ensemble contains 64 ensemble 

members.   124 
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5.6 Comparing nowcasting ensemble using 6-ball. Observations are 

generated by Lorenz96 Model II with observational noise N(0, 0.1). 

The Lorenz96 Model I is used to estimate the current state. We 

compare the nowcasting ensemble formed by Method I, Method II, 

Method III and Method IV. All the ensemble contains 64 ensemble 

members.   125 

6.1 One step forecast ensemble in the state space. Observations are 

generated by Ikeda Map with IID uniform bounded noise U(0, 0.01). 

The truncated Ikeda model is used to make forecast. The initial 

condition ensemble is formed by inverse noise with 64 ensemble 

members. Four 1-step forecast examples are shown in four pan-

els. In each panel, the background dots indicate samples from the 

Ikeda Map attractor, the red cross denotes the true state of the sys-

tem, the blue square indicates the observation, the direct forecast 

ensemble is depicted by purple circles, the forecast with random 

adjustment ensemble is depicted by orange dots and the forecast 

with analogue adjustment ensemble is depicted by cyan stars. . . 133 
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6.2 Following Figure 6.1 experiment setting, compare forecast ensem-

ble using 6-ball. Direct forecasts are compared with forecasts with 

random adjustment (left) and forecasts with analogue adjustment 

(right). The initial condition ensemble is formed by inverse noise 

with 64 ensemble members. For each forecast method, 2048 fore-

casts are made. Each row shows the comparison for different lead 

time. First row denotes lead time 1, second lead time 2, third lead 

time 4, forth lead time 8 and fifth lead time 16. 135 

6.3 Following Figure 6.1 one step forecast ensemble in the state space. 

The initial condition ensemble is formed by dynamical consistent 

ensemble with 64 ensemble members.   :136 

6.4 Comparing forecast ensemble using 6-ball. Observations are gen-

erated by Ikeda Map with IID uniform bounded noise U(0, 0.01). 

The truncated Ikeda model is used to make forecast. The initial 

condition ensemble is formed by dynamical consistent ensemble 

with 64 ensemble members. Each row of pictures shows the com-

parison for different lead time. First row denotes lead time 1, 

second lead time 2, third lead time 4, forth lead time 8 and fifth 

lead time 16. 137 
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6.5 Following Figure 6.1 experiment setting, Ignorance score of three 

forecasting methods relative to climatology is plotted vs lead time. 

The error bars are 90% bootstrap re-sampling bars. In panel (a), 

the initial condition ensemble is formed by inverse noise with 64 

ensemble members. In panel (b), the initial condition ensemble is 

formed by dynamical consistent ensemble with 64 ensemble mem-

bers. Panel (c) is the combination of panel (a) and (b). Ignorance 

is calculated based upon 2048 forecasts.   139 

6.6 Following Figure 6.1, six 1-step forecast examples are plotted in 

the state space. Here the adjustment is obtained from imperfection 

error instead of model error 142 

6.7 Following Figure 6.2, comparing three forecast ensemble results 

using c-ball. Here the adjustment is obtained from imperfection 

error instead of model error 143 

6.8 Following Figure 6.5a, Ignorance score of three forecasting methods 

relative to climatology is plotted vs lead time. Forecast adjustment 

is obtained from imperfection error  144 

6.9 Ignorance score of forecast with adjustment where the adjustment 

is generated from the observations with different noise level. The 

initial condition ensemble is formed by inverse noise with fixed 

noise level U(0, 0.01) so that the observations with different noise 

level only affect the imperfection error. The error bars are 90% 

bootstrapped error bars. In panel a, the forecast is made by ran-

dom adjustment; in panel b, the forecast is made by analogue 

adjustment   :145 
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6.10 Doubling time of Ikeda system-model pair. Panels a) and c) esti-

mate the doubling time by assuming the model is perfect. Panels 

b) and d) estimate the doubling time based on the states generated 

Ikeda Map and using the Truncated Ikeda Map as the model. a) 

and b) are noise free cases while c) and d) have observational noise 

N(0, 0.0001). Note that the scale of the color bar is different in 

each panel. 151  

6.11 Ignorance as a function of forecast lead time in the Ikeda system-

model pair experiment. The observations are generated by Ikeda 

Map with IID N(0, 0.05) observational noise, initial condition en-

semble is built by using Inverse Noise and ISG.Dc ensemble. . . . 154 
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