
 

Instructions for use

Title Assessment of early changes in H-3-fluorothymidine uptake after treatment with gefitinib in human tumor xenograft in
comparison with Ki-67 and phospho-EGFR expression

Author(s) Zhao, Songji; Kuge, Yuji; Zhao, Yan; Takeuchi, Satoshi; Hirata, Kenji; Takei, Toshiki; Shiga, Tohru; Dosaka-Akita,
Hirotoshi; Tamaki, Nagara

Citation BMC cancer, 13, 525
https://doi.org/10.1186/1471-2407-13-525

Issue Date 2013-11-06

Doc URL http://hdl.handle.net/2115/54550

Rights(URL) http://creativecommons.org/licenses/by/3.0/

Type article

File Information BMC Cancer_13_525.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


RESEARCH ARTICLE Open Access

Assessment of early changes in 3H-fluorothymidine
uptake after treatment with gefitinib in human
tumor xenograft in comparison with Ki-67
and phospho-EGFR expression
Songji Zhao1, Yuji Kuge2*, Yan Zhao1, Satoshi Takeuchi3, Kenji Hirata4, Toshiki Takei4, Tohru Shiga4,
Hirotoshi Dosaka-Akita3 and Nagara Tamaki4

Abstract

Background: The purpose of this study was to evaluate whether early changes in 3′-deoxy-3′-3H-fluorothymidine
(3H-FLT) uptake can reflect the antiproliferative effect of gefitinib in a human tumor xenograft, in comparison with
the histopathological markers, Ki-67 and phosphorylated EGFR (phospho-EGFR).

Methods: An EGFR-dependent human tumor xenograft model (A431) was established in female BALB/c athymic mice,
which were divided into three groups: one control group and two treatment groups. Mice in the treatment groups were
orally administered a partial regression dose (100 mg/kg/day) or the maximum tolerated dose of gefitinib (200 mg/kg/day),
once daily for 2 days. Mice in the control group were administered the vehicle (0.1% Tween 80). Tumor size was measured
before and 3 days after the start of treatment. Biodistribution of 3H-FLT and 18F-FDG (%ID/g/kg) was examined 3 days after
the start of the treatment. Tumor cell proliferative activity with Ki-67 was determined. Immunohistochemical staining of
EGFR and measurement of phospho-EGFR were also performed.

Results: High expression levels of EGFR and Ki-67 were observed in the A431 tumor. After the treatment with 100 and
200 mg/kg gefitinib, the uptake levels of 3H-FLT in the tumor were significantly reduced to 67% and 61% of the control
value, respectively (0.39 ± 0.09, 0.36 ± 0.06, 0.59 ± 0.11%ID/g/kg for 100 mg/kg, 200 mg/kg, and control groups, respectively;
p< 0.01 vs. control), but those of 18F-FDG were not. After the treatment with 100 and 200 mg/kg gefitinib, the expression
levels of Ki-67 in the tumor were markedly decreased (4.6 ± 2.4%, 6.2 ± 1.8%, and 10.4 ± 5.7% for 100 mg/kg, 200 mg/kg,
and control groups, respectively, p< 0.01 vs. control). The expression levels of the phospho-EGFR protein also significantly
decreased (29% and 21% of the control value for 100, and 200 mg/kg, respectively p< 0.01 vs. control). There was no
statistically significant difference in tumor size between pre- and post-treatments in each group.

Conclusion: In our animal model, 3H-FLT uptake levels significantly decreased after the treatment with two different
doses of gefitinib before a significant change in tumor size was observed. These results were confirmed by the
immunohistochemical staining of Ki-67 and phospho-EGFR protein immunoassay. Thus, it was indicated that early changes
in 3H-FLT uptake may reflect the antiproliferative effect of gefitinib in a mouse model of a human
epidermoid cancer.
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Background
The epidermal growth factor receptor (EGFR) is a recep-
tor tyrosine kinase that plays a crucial role in the signal
transduction pathway, regulating key cellular functions
such as proliferation, angiogenesis, metastasis, and eva-
sion of apoptosis [1,2]. EGFR is highly overexpressed in
numerous types of human cancers, including lung,
stomach, and head and neck cancers, and is a strong
prognostic factor [3-6].
Gefitinib, a selective small-molecule EGFR tyrosine

kinase inhibitor, is widely used as a second- or third-line
therapy for the treatment of patients with advanced
non-small cell lung cancer (NSCLC) who failed to re-
spond to standard chemotherapy [7]. Very recently, the
European Medicine Agency has granted marketing
authorization for gefitinib in patients with locally ad-
vanced or metastatic NSCLC with activating mutations
of EGFR in all lines of therapy [8]. First-line gefitinib
was approved in Korea for the treatment of patients with
NSCLC who harbor the EGFR mutation [9]. However,
gefitinib-induced interstitial lung disease (ILD) has been
reported as a serious adverse effect [10,11], in addition
to the common adverse effects of gefitinib including skin
rash and diarrhea. To avoid the adverse effects and to ef-
fectively use the molecular targeted drug, it is necessary
to accurately evaluate the tumor response early after the
start of treatment. Such an evaluation method enables
us to identify patients responsive to gefitinib and deter-
mine the treatment strategy: continuation or discontinu-
ation of gefitinib therapy, or even a reduction in gefitinib
dose. Indeed, re-administration at a reduced dose is a
potential treatment strategy for patients who have once
responded to, but later discontinued gefitinib treatment
owing to severe adverse effects including ILD. The early
and accurate assessment of treatment effects is particularly
necessary in these patients. Recently, EGFR mutation,
EGFR copy number, and EGFR protein expression are the
three EGFR-related biomarkers that have been reported to
be associated with the therapeutic benefit of gefitinib [12].
However, the therapeutic effect of gefitinib is not confined
to patients whose tumors harbor EGFR mutation and other
predictors of efficacy of this agent. In general, about 80% of
NSCLCs with EGFR mutation respond to EGFR-TKIs,
whereas 10% of tumors without EGFR mutations do so
[13]. Although this observation provides highly valuable in-
sights into the molecular mechanisms underlying sensitiv-
ity to EGFR-TKIs, none of the known clinical or molecular
tumor characteristics allows the accurate prediction of
tumor response at an early phase of treatment with gefi-
tinib in an individual patient. Therefore, there is a clear
need for new approaches to identify patients who will
benefit from treatment with EGFR-TKIs. In this respect,
imaging techniques that can be used to predict treatment
outcome in an early phase of treatment are warranted.

X-ray computed tomography (CT) and magnetic reson-
ance imaging (MRI) have commonly been used to evaluate
the anti-tumor effect of cytotoxic and molecular targeted
drugs by measuring tumor size. However, these anatom-
ical imaging techniques have limited value because a rela-
tively long time is required to obtain sufficient tumor size
shrinkage with successful drug therapies. Thus, patients
may have to endure adverse effects [14] and high medical
costs [15] during the periods of desperate treatment.
These limitations could be overcome using functional im-
aging techniques such as positron emission tomography
(PET), because metabolic and physiologic changes in the
tumor are likely to precede changes in size [16]. The
quantitative nature of PET also contributes to the accurate
determination of functional changes. In fact, PET imaging
using 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) is in-
creasingly used to assess early tumor response after
chemotherapy [17]. On the other hand, the thymidine
analog 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) was
also developed as a PET tracer for imaging tumor prolifer-
ation in vivo [18]. 18F-FLT uptake has been shown to re-
flect the activity of thymidine kinase-1 (TK1), an enzyme
expressed during the DNA synthesis phase of the cell
cycle. Owing to the phosphorylation of 18F-FLT by TK1,
negatively charged 18F-FLT monophosphate is formed,
resulting in intracellular trapping and accumulation of
radioactivity [19]. Thus, this tracer is retained in proliferat-
ing cells through the activity of thymidine kinase. Accord-
ingly, 18F-FLT PET could more appropriately evaluate the
effects of signal transduction inhibitors whose main action
mechanism is the inhibition of tumor cell proliferation, as
compared with 18F-FDG PET [20]. Measurement of tumor
proliferative activity by 18F-FLT PET may enable early and
accurate assessment of the response to therapy with mo-
lecular targeted drugs [21].
Taken together, we aim to apply 18F-FLT PET for moni-

toring the antiproliferative effect of gefitinib. Several studies
have shown that 18F-FLT PET is useful for the early evalu-
ation of tumor response to anti-EGFR targeted therapy
such as erlotinib and cetuximab [22-24]. However, there
have been no studies on the usefulness of 18F-FLT PET for
monitoring the antiproliferative effect of gefitinib, except
for two reports [25,26]. Sohn et al. demonstrated that 18F-
FLT PET can predict early responses to gefitinib treatment
in patients with advanced pulmonary adenocarcinoma [25].
The effect of gefitinib on 3H-FLT uptake in vitro was stud-
ied previously by Su et al. [26]. Although several studies
have indicated the ability of 18F-FLT or 3H-FLT to detect
the effect of gefitinib [25,26], whether changes in 18F-FLT
uptake can reflect the effect of gefitinib by comparing the
level of 18F-FLT uptake with those of other proliferation or
predictive markers, such as Ki-67 or phosphorylated EGFR,
in an early phase of treatment has not been fully validated
under a pathological condition.
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Thus, in the present study, to determine whether early
changes in 3H-FLT uptake can reflect the antiprolifera-
tive effect of gefitinib, we determined the changes in
3HFLT uptake level after the start of treatment at differ-
ent doses of gefitinib in comparison with those in 18F-
FDG uptake, Ki-67 expression, and phospho-EGFR levels
in a human tumor xenograft (EGFR-dependent human
tumor xenograft model, A431).

Methods
Radiopharmaceutical
[Methyl-3H (N)]-3′-fluoro 3′-deoxythymidine (3H-FLT)
(specific activity, 74–370 GBq/mmol) was purchased from
Moravek Biochemicals Inc. 18F-FDG was obtained from
the Hokkaido University Hospital Cyclotron Facility,
which produces the tracer for clinical use.

Animal studies
All experimental protocols were approved by the La-
boratory Animal Care and Use Committee of Hokkaido
University. Nine-week-old female BALB/c athymic nude
mice (supplied by Japan SLC, Inc., Hamamatsu, Japan)
were used in all experiments. Room temperature was
maintained between 23 and 25°C, and relative humidity
was maintained between 45 and 60%. The institutional
laboratory housing the cages provided a 12-hour light
cycle and met all the criteria of the Association for As-
sessment and Accreditation of Laboratory Animal Care
(AAALAC) International. The EGFR-dependent human
tumor xenograft model was established in mice using
the human epidermoid cancer cell line A431 (European
Collection of Cell Cultures). A431 is a human cell line
established from an epidermoid carcinoma of the vulva
of an 85-year-old female patient, which has gene amplifi-
cation and an unusually high number of EGF receptors
[27]. A431 cells (5 × 106 cells/0.1 ml) were inoculated
subcutaneously into the right flank of the mice [28].
A431 xenograft is a recognized model for the testing of
the biological effects on EGFR signaling [29]. When the
tumors reached 5–8 mm in diameter, the mice were
randomly divided into three groups, one control group
(n = 8) and two treatment groups (n = 14). Mice in one
treatment group were orally administered a partial regres-
sion gefitinib dose (100 mg/kg/day, n = 7) and those in the
other treatment group the maximum tolerated gefitinib
dose (200 mg/kg/day, n = 7), once daily for 2 days. Mice in
the control group were given the vehicle (0.1% Tween 80).
Gefitinib was purchased from Chugai Pharmaceutical Co.,
Ltd. (Tokyo, Japan). The doses of gefitinib have been widely
used to evaluate its effects on human tumor xenografts
[29-31]. Tumor size and body weight were measured
before and 3 days after the start of treatment. Tumor
volume was calculated using the formula: π/6 × larger
diameter × (smaller diameter)2.

After overnight fasting, mice in the control and treat-
ment groups were intravenously injected with a mixture
of 18F-FDG (7.4 MBq) and 3H-FLT (0.185 MBq) 24 hours
after the second treatment under light anesthesia. Sixty
minutes after the injection, the mice were sacrificed, and
tumor tissues and other organs were excised. Tumor tis-
sues were cut into three pieces for radioactivity meas-
urement, immunohistochemical staining and phospho-
EGFR, respectively. The tissue and blood samples were
weighed, and 18F-radioactivity was determined using a
gamma-counter (1480 WIZARD 3"; Wallac Co., Ltd.).
The samples were then solubilized with Soluene 350
(Packard Bioscience B.V.), and 3H-radioactivity was mea-
sured using a liquid scintillation counter (LSC-5100;
Aloka Co., Ltd.) following the decay of 18F. Radioactivity
uptake in the tissues was expressed as the percentage of
injected dose per gram of tissue after being normalized to
the animal’s weight (%ID/g) × kg. The tumor-to-muscle
(T/M) ratios was calculated as (%ID/g) × kg. For the sub-
sequent immunohistologic staining, tumor samples were
formalin-fixed and paraffin-embedded. The remaining
tumor samples were immediately frozen using liquid ni-
trogen for the subsequent phosphor-EGFR assay.

Pathological studies
Formalin-fixed, paraffin-embedded, 3-μm-thick sections
of tumor tissue were used for immunohistochemical
staining. Immunohistochemical stainings of EGFR and
Ki-67 (a tumor cell proliferation marker) was carried out
using adjacent sections, in accordance with a standard
procedure [32]. EGFR was stained using a monoclonal
antibody (mAb) (mouse IgG1, Clone 31G7, Zymed,
South San Francisco, CA) that recognizes the 170 kDa
extracellular EGF binding domain. A mouse monoclonal
antibody, clone MIB-1 (Dako, Carpinteria, CA) was used
as a primary antibody for the staining of the nuclear
antigen Ki-67. The Ki-67 labeling index was defined as
the percentage of the number of positively stained cells
with respect to the total number of cells in the entire
field of the specimens.

Phospho-EGFR assay
Phospho-EGFR (Tyr) was determined by a sandwich im-
munoassay method using a Bio-Plex phospho-EGFR
(Tyr) assay kit (Bio-Plex phosphoprotein assay, Bio-Rad
Laboratories, Inc.) in accordance with the manufac-
turer’s instructions. Briefly, the frozen tumor samples
(3x3 mm) were homogenized in a lysing solution (Bio-
Plex Cell Lysis Kit). The lysate was centrifuged to re-
move insoluble materials, and the aliquot (50 μl) was
incubated with 50 μl of anti- phospho-EGFR (Tyr)-anti-
body-coupled beads in a 96-well plate for 18 hours at
20°C. After washing the beads, 50 μl of and EGFR spe-
cific biotinylated detection antibody was added and
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incubated with the beads for 30 minutes at room
temperature. After washing three times streptavidin conju-
gated to a fluorescent protein, streptavidin-phycoerythrin
(PE) (Bio-Plex phosphoprotein detection reagent kit, Bio-
Rad Laboratories, Inc.) was added and incubated with the
beads for 10 minutes at room temperature. Finally, after
washing off unbound Streptavidin-PE, the beads were sus-
pended in Bio-Rad assay buffer and analyzed on a Bio-Rad
96-well plate reader using the Bio-Plex 200 Array System
(Bio-Rad Laboratories, Inc.). The median fluorescence in-
tensity (MFI) was calculated from a standard curve using
Bio-Plex Manager software (Bio-Rad Laboratories, Inc.)
[33] and considered to be proportional to analyte concen-
tration. The protein content in the lysates was determined
by Bio-Rad DC protein assay (Bio-Rad Laboratories, Inc.).

Statistical analyses
All values are expressed as means ± SD (standard devi-
ation). One-way ANOVA was used to assess the signifi-
cance of differences among the three groups. Bonferroni
correction was implemented for post-hoc comparison.
Paired Student’s t-test was performed to evaluate the sig-
nificance of difference in tumor volume between pro-
and post-treatments in each group. A value of p < 0.05
was considered significant. The statistical program Stat
View 5.0 was used for data assessment.

Results
Studies of 3H-FLT and 18F-FDG biodistribution
Table 1 and 2 show the biodistribution and the tumor-
to-muscle (T/M) ratios of 3H-FLT (Table 1) and 18F-
FDG (Table 2). In the control group, the radioactivity
derived from 3H-FLT was higher in the tumor than in

other organs (Table 1). The 18F-FDG uptake level was
higher in the tumor than in the blood and muscle, with
relatively high 18F-FDG uptake levels in the heart, brown
fat, and kidneys in the control mice (Table 2).
Three days after the start of treatment with 100 and

200 mg/kg of gefitinib, the uptake levels of 3H-FLT in
the tumor were significantly reduced to 67% and 61% of
the control value, respectively. The T/M ratios of
3H-FLT uptake were also significantly decreased to 72%
and 60% of the control value, respectively (Table 1). The
uptake levels of 18F-FDG were not reduced significantly
by the treatment (87% and 86% of the control value for
100 and 200 mg/kg gefitinib, respectively. The T/M
ratios of 18F-FDG were not reduced significantly (102%
and 97% of the control value for 100 and 200 mg/kg
gefitinib, respectively) (Table 2). No significant differ-
ences were observed in mouse body weight among the
three groups before and 3 days after the start of treat-
ment. Mouse body weights were 19.6 ± 1.1 g for the con-
trol group and 18.8 ± 1.5 g and 19.0 ± 0.9 g for the 100
and 200 mg/kg gefitinib groups, and 18.6 ± 1.3 g for the
control group and 17.3 ± 0.9 g and 17.7 ± 0.8 g for the
100 and 200 mg/kg gefitinib groups before and 3 days
after the start of treatment, respectively.

Pathological study
Typical microscopy images of EGFR and Ki-67 immuno-
staining in the tumor are shown in Figure 1. A high ex-
pression level of EGFR was observed in the tumor cell
membranes of control mice (Figure 1A). A high expres-
sion level of Ki-67 was also observed in the tumor cell
nucleus of control mice (Figure 1D). After the treatment
with 100 and 200 mg/kg gefitinib, the expression level of

Table 1 Biodistribution of 3H-FLT in mice bearing A431
tumors

Tissue 3H-FLT uptake level ((%ID/g)×kg)

Control Gefitinib 100 Gefitinib 200

n = 8 n = 7 n = 7

Blood 0.088 ± 0.009 0.080 ± 0.017 0.091 ± 0.012

Tumor 0.589 ± 0.112 0.393 ± 0.093* 0.360 ± 0.059*

Muscle 0.093 ± 0.008 0.088 ± 0.013 0.094 ± 0.008

Heart 0.094 ± 0.012 0.085 ± 0.012 0.092 ± 0.008

Brown fat 0.082 ± 0.010 0.076 ± 0.006 0.083 ± 0.009

Lung 0.091 ± 0.012 0.085 ± 0.011 0.094 ± 0.007

Brain 0.016 ± 0.001 0.015 ± 0.001 0.015 ± 0.001

Spleen 0.115 ± 0.026 0.113 ± 0.025 0.122 ± 0.033

Liver 0.103 ± 0.014 0.100 ± 0.017 0.105 ± 0.012

Kidney 0.147 ± 0.016 0.132 ± 0.020 0.138 ± 0.014

Skin 0.089 ± 0.019 0.094 ± 0.009 0.092 ± 0.010

Tumor/muscle ratio 6.3 ± 1.3 4.6 ± 1.4* 3.8 ± 0.6*

*p < 0.01 vs. Control.

Table 2 Biodistribution of 18F-FDG in mice bearing A431
tumors

Tissue 18F-FDG uptake level ((%ID/g)×kg)

Control Gefitinib 100 Gefitinib 200

n = 8 n = 7 n = 7

Blood 0.046 ± 0.027 0.032 ± 0.019 0.037 ± 0.015

Tumor 0.129 ± 0.045 0.112 ± 0.023 0.111 ± 0.023

Muscle 0.022 ± 0.005 0.020 ± 0.007 0.020 ± 0.005

Heart 0.648 ± 0.587 0.709 ± 0.467 0.526 ± 0.587

Brown fat 0.372 ± 0.182 0.241 ± 0.090 0.290 ± 0.187

Lung 0.108 ± 0.017 0.100 ± 0.010 0.100 ± 0.010

Brain 0.171 ± 0.028 0.156 ± 0.020 0.172 ± 0.033

Spleen 0.115 ± 0.014 0.103 ± 0.013 0.113 ± 0.015

Liver 0.071 ± 0.033 0.055 ± 0.026 0.058 ± 0.018

Kidney 0.168 ± 0.029 0.122 ± 0.050 0.124 ± 0.036

Skin 0.162 ± 0.030 0.136 ± 0.042 0.149 ± 0.024

Tumor/muscle ratio 5.8 ± 1.4 5.9 ± 1.5 5.6 ± 1.1
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Ki-67 in the tumor markedly decreased (Figure 1E and F),
whereas there was no significant change in the expression
level of EGFR (Figure 1B and C).
Results of quantitative analysis of Ki-67 positive cells

(index) in the tumor are summarized in Figure 2. As com-
pared with the control, the Ki-67 index in the tumor tis-
sues was significantly decreased after the gefitinib
treatment (Ki-67 index: 4.6 ± 2.4% for 100 mg/kg; 6.2 ±
1.8% for 200 mg/kg; 10.4 ± 5.7% for control group; p < 0.01
for both treated groups vs. control group). Results of
quantitative analysis of phospho-EGFR (Tyr) protein in
the tumor are summarized in Figure 3. The median fluror-
escence intensity (MFI) of the phospho-EGFR (Tyr) pro-
tein in the tumor also significantly decreased after
gefitinib treatment: 301.1 ± 131.4 MFI for 100 mg/kg (29%

of control); 220.0 ± 70.8 MFI for 200 mg/kg (21% of con-
trol); 1052.0 ± 106.2 MFI for control group; p < 0.01 for
both treated groups vs. control group. There was no statis-
tically significant difference in tumor size between before
and 3 days after the treatment in each group (Figure 4).

Discussion
After the treatment with two different doses of gefitinib, the
3H-FLT uptake levels in the tumor were significantly de-
creased at an early time point (Table 1). These early changes
in tumor proliferation activity were confirmed by our patho-
logical studies that including immunohistochemical staining
of the Ki-67 (Figure 2) and phospho-EGFR assay (Figure 3).
There was no statistically significant difference in tumor size

Figure 1 Microscopy images of immunohistochemically stained EGFR (A-C) and Ki-67 (D-F) in tumor. Control, Gefitinib 100, and Gefitinib
200 indicate the control group, group treated with 100 mg/kg gefitinib, and group treated with 200 mg/kg gefitinib, respectively. Values given
are mean ± SD.

Figure 2 Quantitative analysis of Ki-67 index in tumor. Control,
Gefitinib 100, and Gefitinib 200 indicate the control group, group
treated with 100 mg/kg gefitinib, and group treated with 200 mg/kg
gefitinib, respectively. Values given are mean ± SD.

Figure 3 Quantitative analysis of phospho-EGFR protein expres-
sion level in tumor. Control, Gefitinib 100, and Gefitinib 200
indicate the control group, group treated with 100 mg/kg gefitinib,
and group treated with 200 mg/kg gefitinib, respectively. Values
given are mean ± SD.
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between pre- and post-treatments in each group. Thus, the
measurement of tumor proliferative activity using 3H-FLT
may enable early accurate assessmentof the response to
therapy with a molecular targeted drug, gefitinib, in human
tumor xenografts.
Kawano et al. reported that the phospho-EGFR expres-

sion level significantly correlates with the response to
gefitinib treatment [34]. They showed that a high level
of basal EGFR activation (phospho-EGFR) is an import-
ant indicator of sensitivity to gefitinib. When ligands
bind to the receptor, the molecule is phosphorylated
(phospho-EGFR) by constitutive tyrosine kinases, acti-
vating downstream pathways [35]. Gefitinib blocks EGFR
tyrosine kinases and prevents epidermal growth factor-
induced proliferation of cultured cells. It inhibits growth
and causes regression in human tumor xenografts over-
expressing EGFR [29]. In our study, these effects of gefi-
tinib were confirmed by the phospho-EGFR assay and
analysis of 3H-FLT uptake in the tumor. Namely,
phosphor-EGFR expression level was markedly de-
creased after the gefitinib treatment, which was accom-
panied by the reduction in 3H-FLT uptake level. Shen,
et al. [36] also reported that the expression level of
phospho-EGFR in lung cancer cells treated with gefitinib
for 2 days was lower than that in non-treated cells. Su
et al. [26] reported that the growth inhibitory effect of
gefitinib was parallel to the inhibition of EFGR phos-
phorylation in a gefitinib-sensitive cell line (NSCLC
H3255). These data strongly support our results in con-
firming the proof of the mechanism of the EGFR inhibi-
tor gefitinib. Thus, our findings suggest that 3H-FLT can
reflect EGFR activation and can be a predictor of the
tumor response to gefitinib in human tumor xenograft.
Several clinical trials have demonstrated that 18F-FLT

can be used for imaging a various tumor types and that

there is strong correlation between 18F-FLT uptake level
and proliferation index (Ki-67) in individual tumors
[37-40]. Although TK1 is not a specific proliferation
marker, TK1 is regulated within the cell cycle [41], and
the 18F-FLT uptake level within tumors usually reflects
the fraction of tumor cells in the S-phase, in which the
TK1 expression level is the highest. The TK1 activity is
high in proliferating cells and low in dormant cells. In
our study, the antiproliferative effect of gefitinib was
confirmed by the Ki-67 and 3H-FLT uptake in the
tumor. Namely, the expression level of Ki-67 was mark-
edly decreased after the gefitinib treatment, which was
accompanied by a reduction in 3H-FLT uptake level.
Because 18F-FLT PET findings reflect the proliferation

of tumor cells, this method is more suitable for detecting
the early therapeutic effect than conventional modalities
such as CT and MRI, which are based on sequential
measurements of tumor size. Recently, several investiga-
tors used 18F-FLT PET to evaluate treatment respon-
ses in animal models or humans following molecular
targeted therapy [22,42]. However, the potentials of
18F-FLT PET for monitoring the antiproliferative effect
of gefitinib have not been clarified. Our present findings
suggest that 3H-FLT can predict the therapeutic effect of
gefitinib at a very early time point (2-days after the start
of gefitinib treatment) during which changes in tumor
size cannot be detected yet. Su et al. [26] also showed
that a marked decrease (~ 90%) in 3H-FLT uptake in
NSCLC H3255 cells was observed 2 days after exposure
to two different doses of gefitinib. The in vitro data sup-
ported our results in confirming the proof of the mech-
anism of the EGFR inhibitor gefitinib. Because
molecular targeted drugs are used for patients with ad-
vanced stage cancer, it is very important to determine
their therapeutic effects as early as possible. If the thera-
peutic effects can be predicted at a very early time point,
it will be possible to select the clinically optimal treat-
ment and reduce medical costs in advance. In the
present study, 3H-FLT uptake level significantly de-
creased in a dose-dependent manner after the treatment
with gefitinib. If the therapeutic effects can be predicted
quantitatively and dose-dependently, 18F-FLT PET can also
be applied to evaluate the therapeutic effect of gefitinib re-
administration with dose reduction in patients who have
once responded to but later discontinued this treatment
owing to severe adverse events including ILD. As the pre-
cise management of a gefitinib responder having severe
adverse events remains to be established, 18F-FLT PET
may provide a potential means for the management of ge-
fitinib responders having severe adverse events.
It is very important to compare the level of 3H-FLT

uptake with that of 18F-FDG uptake, as 18F-FDG is the
most widely used tracer for tumor imaging by PET. In
our study, however, the 18F-FDG uptake level in the

Figure 4 Comparison of tumor size between pre- and post-
treatments in each group. Control, Gefitinib 100, and Gefitinib 200
indicate the control group, group treated with 100 mg/kg gefitinib,
and group treated with 200 mg/kg gefitinib, respectively. Pre- and
post-treatment indicate before and 3 days after the start of treat-
ment with gefitinib; Values given are mean ± SD.
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tumor was not significantly reduced by the treatment
with gefitinib. In addition, the 18F-FDG uptake level in
the tumor was lower than those in most of the other or-
gans including the heart, brown fat, and kidneys.
Mamede et al. reported that the level of 18F-FDG uptake
by the tumors in immunodeficient (athymic nu/nu) mice
was significantly lower than that in immunocompetent
mice [43]. Therefore, our mouse model, BALB/c athymic
nude mice bearing human epidermoid cancer (A431),
dose not seem to be suitable for evaluating the potentials
of 18F-FDG. Further studies, including comparisons be-
tween 18F-FLT and 18F-FDG uptake levels in mouse or
rat allograft tumor models and in patients, are necessary
to compare the potentials of 18F-FLT PET and 18F-FDG
PET and to demonstrate the advantages of 18F-FLT PET
for the early and accurate detection of the antiprolifera-
tive effect of gefitinib.
It seems better to measure the mice tumors in 3 di-

mensions (3.14/6 × (length × width × depth)) rather than
using the smallest diameter for both the width and the
depth (3.14/6 × longest diameter × (smallest diameter)2).
Thus, to measure accurate tumor volumes, in vivo studies
are necessary. Other limitations of our study were that
3H-FLT was used instead of 18F-FLT and only one tumor
model (A431) was used to compare the uptake of
3H-fluorothymidine with the uptake of 18F-FDG, Ki67 and
phospho-EGFR after the treatment with two different
doses of gefitinib. 18F-FLT and other tumor models should
be used to confirm our present results.

Conclusions
In our animal model, the 3H-FLT uptake level signifi-
cantly decreased after the treatment with two different
doses of gefitinib before a significant change in tumor
size was observed. These findings were confirmed by the
immunohistochemical staining of Ki-67 and phospho-
EGFR assay. Thus, it was indicated that early changes in
3H-FLT uptake may reflect the antiproliferative effect of
gefitinib in a mouse model of human epidermoid cancer.
18F-FLT PET could be applied for early clarification of
the therapeutic effect of gefitinib for selecting the clinic-
ally optimum treatment strategy and minimizing the
fatal adverse effects.
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