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Abstract We aimed to detect the trajectories of forestifle@getation recovery in Ricea
mariana forest after wildfire. Since fire severity in lead forests is expected to increase
due to changes in climate, we investigated thectsffef ground-surface burned severity, a
surrogate to the overall fire severity, on the gmtation. We annually monitored
vegetation less than 1.3 m high in 80 1 m x 1 mdcata at Poker Flat Research Range
(65°12'N, 14746'W, 650 m a.s.l.) near Fairbanks, interior Alaskédere a large wildfire
occurred in the summer of 2004, from 2005 to 2008phagnum mosses were predominant
on the unburned ground surface. In total, 66% h&# ground surface was burned
completely by the wildfire. Total plant cover irased from 48% in 2005 to 83% in 2009.
The increase was derived mostly by the vegeta@peoduction of shrubs on the unburned
surface, and by the immigration of n§phagnum mosses and deciduous trees on the burned
surface. Deciduous trees, which had not been lettal before the wildfire, colonized
only on the burned surface and grew faster tRamariana. Although species richness
decreased with increasing slope gradient, theselutags trees established even on steep
slopes. The wildfire that completely burned theugd surface distorted the revegetation,
particularly, on steep slopes. Therefore, restmmatof the Sphagnum surface was
prerequisite when the severe wildfire occurred,abee Sophagnum cover seemed to be

difficult to return to predominance in the shorinte

Key words. Burned ground surface Deciduous trees Mosses: Revegetation Slope

gradient
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I ntroduction

Lightning-caused wildfire is a key to maintain ttegeneration of taiga dominated Bicea
mariana (P. Mill.) B.S.P. (black spruce) in boreal regiomgluding interior Alaska
(Engelmark 1999). Lightning has led to crown fivehich moderately burned the forest
floor providing safe sites foP. mariana seedlings (Greene et al. 2004; Jayen et al. 2006).
P. mariana produces a semi-serotinous cone that releasesahitstseeds after wildfire, and
the seedlings establish themselves steadily ormptately-burned ground surface (llisson
and Chen 2009). In recent years, however, wildfittave been increasing fuel
consumption above and below the ground surfackdarbbreal forest zones of the Northern
Hemisphere, because of dry lightning (Kashischlce&uretsky 2006, Johnstone et al. 2011).
Climate projections suggest that these extremerthiahces will increase during this century
(Flannigan et al. 2000; Anisimov et al. 2007).

Species recovering after wildfire are often dididato two types: seeders that recover
by sexual reproduction and sprouters that recoyeelgetative reproduction. Revegetation
patterns after wildfire differ with fire severitgue to changes in the contributions of seeders
and sprouters (Santana et al. 2012). When firerggvs low, i.e., the ground surface is
incompletely burned, sprouters contribute moreeteegetation, andice versa (Schimmel
and Granstrom 1996, Gurvich et al. 2005). Congseifyjeregetation recovery is delayed or
altered when disturbance exceeds the thresholtieofrdsilience of sprouters (Dale et al.
2001; Johnstone and Chapin 2006). Delayed recowelyces increase in active layer
depth in permafrost zones (Burn 1998; Tsuyuzakalet2009), and accelerates positive
feedback on global warming (Kaplan and New 200€evere wildfire burning of ground
surfaces may accelerate establishment of speaesdithnot exist pre-fire and reorganize the
flora.

Physical site characteristics, such as aspecta@® and slope gradient, affect
regeneration patterns after disturbances (Chapial.e2006). Permafrost distribution is

related with the presence Bfmariana-dominated forests in discontinuous permafrost gone
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(Davis 2001; Hollingsworth et al. 2006), and is ®&sed in post-fire vegetation due to
decreasing albedo and increasing soil temperatmtéd the vegetation recovers well
(Chambers et al. 2005; Tsuyuzaki et al. 2009). rdfoee, the paces and patterns of
revegetation are a key to sustain permafrost andotwserve the ecosystems. Since
large-scale disturbances, including burn-out wikdfidelay or alter the revegetation more
than small-scale ones such as crown fire (Dalel.eR@01; Rydgren et al. 2004), we
hypothesized that burned-out wildfire was assodiatéh shifts in species composition by
removing the ground-surface plant cover and by ispeonmigrating from the external
environments. We had a chance to obtain revegatpatterns after various-scale wildfires,
including both crown and burn-out fires, coded Bsundary Fire” that occurred in interior
Alaska in the summer of 2004, and reported the five years of monitoring of forest-floor

vegetation after the wildfire.

Materials and methods

Sudy area

The study site is located at Poker Flat Researamg&aapproximately 50 km north of
Fairbanks, Alaska. It is a scientific rocket lahimg facility owned by the University of
Alaska Fairbanks. The region is located in theahsinuous permafrost zone. Annual
precipitation averaged 297.4 mm at Fairbanks fr@vllto 2000, the maximum monthly
mean air temperature was 2Z0n June, and the minimum was -2&0n January (ACRC
2007). The Boundary Fire occurred in the regiariuding Poker Flat from mid-June to
late August in 2004, and burned ca 217,000 ha mefsts with various severities (Betts and
Jones 2009; Johnstone et al. 2011). Before thifivei] the tree layer was dominated By
mariana (Tsuyuzaki et al. 2009) and the ground surface wmagered with thick mosses
dominated bySphagnum spp. & capillifolium (Ehrh.) Hedw.,S. subsecundum Nees, and
others) and withHylocomium splendens (Hedw.) Schimp. Sincé&phagnum spp. often

establishes on wetter sites thiglocomium in pre-burned forests (Heijmans et al. 2004;
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Nichole and Yves 2006 Rhagnum was likely to remain more abundant thdylocomium

on the un-burned surface after the wildfire.

Sampling

Sixteen 10 m x 10 m plots were established on #ghnglope of different fire severity,
ranging from 0% to 100%, before leaf flushing beganthe spring of 2005, to detect
relationships between burned area and reveget@guyuzaki et al. 2009). Five 1 m x 1
m quadrats were randomly set up in each plot, &edpercentage of burned area was
estimated visually in each quadrat. Burned grosumdace was divided into two types in
each quadrat; complete burning that removed thenicglayer and exposed soil, and
incompletely burning that left blackened organidterasuch as peat. The measurements of
burned areas were conducted over the whole burmed, ancluding complete and
incomplete burning, and completely-burned area. nikdoing continued annually from
2005 to 2009.

Percent cover was recorded for each plant taxalayer less than 1.3 m high on each
guadrat every summer. The vascular plant specezs wentified by the first author, and
the vouchers have been stored in SAPS. The masees sampled, identified by M.
Higuchi, NMNS, and the vouchers have been keptNiS.T The lichens were sampled, and
the vouchers have been kept in GSES, HU. The daywre than 1.3 m high had few
vascular plants except mariana, the density of which averaged 24 stems per plot.

Photos were taken toward the canopy on each quatdta8 m above the ground surface
by a fish-eye lens in the summers of 2005 and 200®8e photos were used to evaluate
canopy openness, using a freeware Gap Light Analyee 2.0 (Frazer et al. 1999).
Longitude and latitude on each quadrat and on éméec of each plot were measured by
differential GPS receivers (StarBox SSII-51CPN-Mmtechs, Tokyo) with antenna
(GPS-701, NovAtel, Calgary). Location, aspect alape gradient on each quadrat were

measured by a laser level meter. Based on thessumaments, the elevation on each
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guadrat was calculated. Thermometers were edtadlisrom 2 cm to the surface of
permafrost of which maximum was 150 cm in threessin August 2007 at three sites of
which fire severities differed between none and mgletely burned. Thaw depth was

inspected by temperature profiles recorded at  imbervals.

Data analysis

Diversity and evenness in each quadrat were caémildy Shannon-Wiener indices.
Generalized linear mixed-effects models (GLMM) weused to detect significant
environmental factors on species richness, diwersitenness, and total plant cover. Four
response variables—total plant cover, species eghn diversity, and evenness—were
examined in the models. The distributions wereia&sl as Poisson for richness because
of discontinuous function, gamma distribution favedsity because of continuous function
without zero, and binomial for evenness and cowabse of the ratio. The examined
explanatory variables were burned ratio, canopyoess, elevation, slope, aspect, and years
after wildfire on each plot. Plot locations, i.ngitude and latitude, were used as random
effect, to reduce the effects of pseudo-replicatatpling designs.

Non-metric multi-dimensional scaling (NMDS) waspéed to investigate relationships
between environmental factors and plant cover ah species, using all taxa. NMDS is an
ordination technique well suited for data that aoanormal, or occur along arbitrary or
discontinuous scales and is considered the mosttef® ordination method for ecological
community data (McCune and Grace 2002). NMDS dmtsassume a unimodal model of
species responses to the environment, and allowshéo possibility that the community
variations are related to unmeasured environmevdailables. Therefore, community
patterns are retained, regardless of what envirataehevariables were measured. In
addition, multi-response permutation procedures PRRof 999 permutations were used to
examine significant differences between groupsaai@ing units (Reich et al. 2001).

Since the presence or abser§pshagnum mat greatly influence revegetation and/or
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carbon cycle on and in the ground after wildfiredooreal ecosystems (Greene et al. 2004,
Shetler et al. 2008; Whinam et al. 2010), two saniiy analyses were compared using
Jaccard similarity index to inspect the habitafgnences, in particular, t8phagnum mat, of
species that showed high cover and/or frequencyedffter, i.e., dominant species) in
relation to Sphagnum. In the first analysis, percentage similaritiestvween Sphagnum
fuscum (Schimp.) Klinggr. and each dominant species chd#eform were calculated. In
the second analysis, the similarities were caledldietween noSphagnum cover and the
species or lifeform to investigate the preferenmiespecies to ground surface not occupied
by Sphagnum. On the similarity betwee8phagnum mat and moss lifeformSohagnum
species were excluded from the lifeform. The Sphagnum surface was mostly created
by burning in the first year (i.e., 2005). ThemefononSphagnum cover was a surrogate
for the burned area in 2005. All statistical asaky were conducted with the statistical

program R (ver. 2.10.1) (R Development Core Teadd Q2

Results

Initial vegetation patterns and the environments

There were 29 vascular plant species (27 seedspdantt 2 ferns), and over 13 non-vascular
plant species, i.e., mosses and lichens, recomledei 80 quadrats. The two ferns were
Equisetum silvaticum L. and Lycopodium annotinum L. Of the mosses and lichersS,
fuscum, which occupied 29.3% of the unburned surface 52 The vascular plants
consisted of 13 herbs (forbs, grasses and fer@sghfubs, and 4 trees. Visual observation
confirmed that the shrubs survived throughout thi&fite and recovered mostly by
vegetative reproduction, i.e., sprouters. Of ther ftree taxaP. mariana was evergreen,
and the othersBgtula neoalaskana Sarg.,Populus tremuloides Michx., andSalix spp.) were
deciduous. P. mariana survived through the fire when they were rootedSumagnum.
Therefore, the cover was high in 2005 (0.6%) and warived mostly from surviving

saplings. In contrast, the most of all broad-lekivees were regenerated by seedlings.
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Canopy openness ranged from 57% to 94%. The Buarea averaged 66%, ranging
from 0% to 100%. Sphagnum cover decreased annually, probably due to theyddla
effects of burning, such as desiccation. Thaw hleptreased with increasing burned
surface on plot level from 50 cm to 330 cm in AUgR@07. The total number of species in
all the quadrats ranged from 39 to 41 for five geand did not differ largely, indicating that
the species composition was fixed soon after thiefwa. Plant cover was negatively
correlated to burned area (GLMM,< 0.01).

Slope gradient was negatively correlated to rissn@ < 0.01), showing that steep
slopes restricted species richness. Species divargd evenness ranged from 1.24 to 1.61
and from 0.56 to 0.68, respectively, and were ootetated to any examined environmental
variables. Canopy openness and elevation wergatated to these four parameters on

plant community structurd®(> 0.01).

Temporal changesin vegetation
Total plant cover increased from 60% + 50 (mearnwstandard deviation) in 2005 to 108%
+ 38 in 2009 (GLMM,P < 0.01). Similarly, species richness ranging fré:® to 11.3 was
negatively correlated to burned ar€@a< 0.01) and positively correlated to yeRr< 0.01).
A sedge,Carex bigelowii Torr., and a grassCalamagrostis canadensis (Michx.) Beauv.,
gradually increased their cover from 0.9-1.7% 1©-3.7% over the five years. A forb,
Epilobium angustifolium L., had a peak of cover (3.0% + 9.0) two yearsratthe wildfire
and then gradually decreased to 1.9% + 3.4. Reens infrequent in the quadrats. All of
the dominant shrub species gradually increased ttwrer from 0.3-4.3% in 2005 to
0.9-11.3% in 2009. Shrubs, such laslum groenlandicum L., Vaccinium vitis-idaea L.,
Vaccinium uliginosum L., Betula nana L., and Oxycoccus microcarpus Turcz., had high
cover even soon after the wildfire.

All of the trees gradually increased in cover asréime. The cover dP. mariana

increased slowly, and was 0.9% even in 2009. Intrest, B. necalaskana and P.
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tremuloides established from seeds, i.e., seeders, and tbuaittal cover was low (less than
0.1%). Increase in cover was, however, fastertlier two deciduous trees than fBr
mariana. In 2009, cover of. tremuloides and B. neoalaskana reached 1.0% and 0.7%,
respectively. Of the mosses and licheBsfuscum was dominant but decreased in cover
annually to 21.1%. Polytrichum commune Hedw. and Ceratodon purpureus Hedw.
increased in cover annually reaching 6% and 15%peively, in 2009. Ceratodon
purpureus was established in 80% of quadrats in 2009. Thwesanosses?. commune and

C. purpureus were uncommon on unburned surfaces.

Coefficients of determination on NMDS indicatedatthall examined variables
significantly explained the ordination patternss{tef random data permutatioris< 0.01).
As axis | explained 52% of variance, axis Il 26 axis 11l 14%, the first two axes were
examined. The stress was 0.191. Of these, firersg expressed by burned surface was
the prime factor determining vegetation structu(Esy. 1). Burned area and canopy
openness were both negatively correlated with Bxbowing that fire severity is a strong
factor in determining post-fire species compositioifhe other three site factors—elevation,
aspect and slope gradient—were related more tollysbowing that burn severity was not
greatly related to the site characteristics. Slgralient was related to axis Il more than
aspect and elevation. Year had the weakest effédtee examined variables on vegetation
structures, showing that revegetation pathways weteunique. MRPP also supported
these results, i.e., these examined variables i@gaasignificantly different between the
sampled groups, including continuous variable®, &t0.01 A ranging from 0.022 to 0.718,
0< 61.2 that were less than expecded 62.58, anah = 400).

Species scores on NMDS showed distinct patterhsees the four life forms—herbs,
shrubs, trees, and mosses (Fig. 1). Shrubs hdddugres on axis | close &phagnum
fuscum, while nonSphagnum mossesP. commune and C. purpureus, had low scores far
from S. fuscumon axis I. These patterns indicated that the shagtablished less with the

non-Yhagnum mosses. Deciduous trees scored low and clusteredch other on axis |
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and axis Il butP. mariana scored high on axis |, showing that the two decidutrees
established least witR mariana. The scores of two noghagnum mosses came close to
those of deciduous trees but were slightly higheraxis I, showing that the mosses
established primarily on burned surface but lesoosahe unburned surface. Although
species richness decreased with increasing slopeliegit, two deciduous treed (
tremuloides andB. neoalaskana) and a mossH commune) established more on steep slopes,
as shown by the low scores on axis Il correlatesidpe gradient.

High quadrat scores on axis | meant that quaevate burned less, anite versa (Fig.
2). The annual fluctuations of quadrat scores &ADI$ became larger on more burned
areas indicating that vegetation structures chamagédr on burned surfaces with increasing
fire severity. In addition, the scores on sevelalyned surfaces fluctuated along axis Il
rather than axis |, showing that the vegetationngka did not go toward less-burned
vegetation. The major causes of the fluctuatidiepas were derived from the colonization
of two deciduous tree®(tremuloides andB. neoalaskana, a herb E. angustifolium) and two

mosses . commune and C. purpureus), all of which established more on burned surfaces

(Fig. 1).

Habitat preferences
The patterns of yearly fluctuations on the two &nties were different between burned and
unburned surfaces (Fig. 3). The similarity of edidbform were stable on unburned
Sphagnum surface for the five years, as compared with ih@larity on burned surface.
These implied that the vegetation structures tealfyochanged more on burned surfaces
than on unburned surfaces. The similarity of trieeseased gradually on both unburned
and burned surfaces, indicating that the treeseasad their cover with time on both the
surfaces.

The patterns were not synchronized between tlee therbs (Fig. 3). The similarity of

E. angustifolium to Sphagnum cover was extremely low and to n8phagnum cover was
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high, showing thaE. angustifolium established least on the unburned surface. Itrasin
the similarity indicatedC. canadensis recovered rapidly not only a®hagnum surface but
also on norfphagnum surface. C. bigelowii established on th&hagnum surface more
than on the nophagnum surface, and the annual changes in the two sitresrwere
small.

For all the dominant shrubs, the similarities Sghagnum cover were high but to
non-Sphagnum cover were low, showing that shrubs establishetl wigh Sphagnum as
indicated by NMDS (Fig. 1).

P. mariana showed contrast patterns on the similarities oa $hagnum and
non-Yphagnum surfaces to the two deciduous species (Fig. B).mariana showed higher
similarity to theSphagnum mat than any other tree species, and did not sbavsimilarity
to the nonSphagnum mat. AlthoughP. mariana established more on unburned surfaces,
that did not mearP. mariana did not establish on burned surfaces. In contrgd
deciduous trees established least vi@hagnum and increased annually the similarities to

non-Sphagnum, showing that these species gradually in coveahemonSphagnum surface.

Discussion
\egetation patterns along gradients of fire severity
NMDS on gquadrats (Fig. 1) indicated that revegetapatterns on the floor differed greatly
between burned and unburned surfaces since thevergcan unburned surfaces was
dependent on regeneration and that on burned ssrfa@s on colonization. Species
producing wind-dispersed seeds contribute more eteegetation after severer wildfire
(Johnson and Miyanishi 2007). Fire severity deteesi community composition derived
from differences in regeneration strategy and depith among species (Hollingworth et al.
2013).

The similarities between ground-surface combustiad plants indicated as follows

(Fig. 3): P. mariana of the tree species produced semi-serotinous disigersed seeds, but
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established more on the unburned surface probadguse of a habitat preference that is
adapted to crown fire. Deciduous trees needed $aylerity sites where moSphagnum
carpets were removed for their establishments,efhiinariana trees colonized in both high
and low severity sites because they were either @bkurvive fire on thicl§hagnum and
germinated on burned and unburned surfaces. Whestifipe residual organic matter is
more than 2 cm in thickness, vegetation compostdioarges inP. mariana forest of eastern
Canada (Siegwart Collier and Mullik 2010).

Species producing wind-dispersed seeds or spatablished steadily when suitable
habitats were provided by burning tl8ehagnum surface; viz. all the deciduous trees
produced wind-dispersed seeds, and a perennial Bprlwbium angustifolium, did, too.
Mosses produced spores that should be dispersedniy Deciduous trees do not recruit
seedlings in thick organic mats but outcompete wihifers on mineral soils after wildfire
(Johnstone and Chapin 2006). There should be feostias for deciduous trees befdte

mariana forests were burned.

\egetation patterns along gradients of topography

Species richness decreased with increasing sl@ubegits.  In addition, NMDS on species
showed that revegetation on steep slopes was albgréhe establishment of deciduous trees
and nonSphagnum mosses (Fig. 2). Wind-dispersed seeds often adetenin rough
microtopography provided by live plants, litter acdarse-textured soil, all of which
function as seed traps (Koyama and Tsuyuzaki 201Dgciduous trees disperse numerous
seeds to treeless areas after wildfire (LandhaumseérWein 1993). The wind-dispersed
seeds of broad-leaf trees should be captured bge@ad/or concave ground surfaces, even
on steep slopes. Revegetation after wildfire iemeined not only by fire severity but also
pre-disturbance conditions, including topographyd as not interpreted by a vegetation

gradient related to time after disturbance (Rydgreal. 2004).
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Lifeforms in relation to seeders vs sprouters
All the deciduous trees were seeders at Pokerdfat the wildfire. In contrast, shrubs,
most of which were sprouters, increased in coverually, depending on the unburned
surface. The clonal shrubs (eXaccinium uliginosum andV. myrtilloides) rarely produced
seedlings on thephagnum mat (Eriksson 1989; Moola and Mallik 1998). Peiiah
grasses and sedges also reproduced vegetativaiptmirned surface. Sprouters, such as
perennial sedges, grasses, and shrubs are commen wikdfire is not severe in a
mixed-evergreen forest, Oregon (Donato et al. 200®evegetation is progressed by
species in soil bud-bank (sprouters) and seed-baitdr weak fire that consumes
relatively-shallow moss layer in a boreal Swedwites$t, while the revegetation is conducted
by seeders after deep-burning fire (Schimmel arah&rom 1996).

Such differences in regeneration strategies betvgpecies or lifeforms determine the
plant community structures and should be used fedipting successional sere with

different fire severities.

Temporal changes in vegetation with reference to habitat preferences

Sphagnum gradually decreased in cover for five years andndit re-colonize on the burned
surface, due probably to post-fire stresses suchyadesiccation. Albedo was reduced
when the plant cover burned and did not returinéopre-fire status until plant cover became
high (Tsuyuzaki et al. 2009). Low albedo leadshigh ground-surface temperature and
deep thaw depth (Jorgenson et al. 2001). Thes®eebanduce drought stresses for plants,
particularly Sophagnum mosses, which require more water than vasculantgplar the short
term. This is because they develop shallow belowg organs for water acquisition and
have no special organs for water transportatiom@®eenaars and Gosen 2007; Thompson
and Waddington 2008). Sophagnum is likely to recover slower than vascular plants,
particularly when ground surface is completely econed by wildfire.

The increase in moss cover was mostly derived tt@pioneer mosses, represented by
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Polytrichum strictum andCeratodon purpureus, on burned surfaces. Mineral soils exposed
after disturbances, including severe wildfires, aveovered with the pioneer mosses, and the
vegetation was totally dissimilar to the pre-firegetation (Bernhardt et al. 2011). The
aboveground biomass and productivity of non-vasquints are lower on drier sites after a
wildfire in interior Alaska, in particular, wher€eratodon and/or Polytrichum were
dominant (Mack et al. 2008). Deciduous trees distadd with P. commune and C.
purpureus on the burned surface. Since these two mosseblisked well on burned
surfaces, they should induce the alteration of tegeneration. The revegetation did not go
towardsP. mariana forest directly when wildfire burns out the grouswtface.

Forest revegetation seems to be delayed by sebare (Dale et al. 2001).
Furthermore, the complete removal of moss and ccgaatter promoted the colonization of
non-Yhagnum mosses and deciduous trees. In conclusion, seeddgresented by
broad-leaved trees have a great role on revegetafier severe wildfire ir’. mariana

forests that completely burns out not o8bhagnum mat but also organic layer.
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Fig. 1 NMDS ordination diagram on species scores in g08@drats (80 x 5 years)
surveyed from 2005 to 2009 after the 2004 wildfiréife forms: closed circles = herbs
and ferns (13 taxa), open circles = shrubs (1®sed triangles = trees (4), and open
triangles = mosses and lichens (13). Species cexiglained in the text: Car big =
Carex bigelowii, Cal can = Calamagrostis canadensis, Epi ang = Epilobium
angustifolium, Led gro =Ledum groenlandicum, Vac vit = Vaccinium vitis-idaea, Vac
uli = Vaccinium uliginosum, Bet nan =Betula nana, Oxy mic =Oxycoccus microcar pus,
Pic mar =Picea mariana, Bet neo =Betula neoalaskana, Pop tre =Populus tremul oides,
Pol for =Polytrichum commune, Sph fus =Sphagnum fuscum, and Cer pur €eratodon
purpureus. Environmental factors: Yr = years after wildfi8rn: burned area (%),
Cbn: completely burned area (%) where the soilsewexposed. Cnp = canopy
openness (%), Elv = elevation (m), Slp = slope igmatd’), and Asp = aspect)(



10

11

Tsuyuzaki et al. p. 21

1.5

1.0

0.5

0.0 H

Axis I

o
(62
|

-1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0
AXxis |
Fig. 2 NMDS ordination diagram on quadrat scores in 40@drats (80 x 5 years)
surveyed for five years after the 2004 wildfire.heTconnected lines show the same
quadrats surveyed from 2005 to 2009. NMDS scordkeafirst survey, i.e., in 2005,
are shown by solid circles, and the others are pgnocircles. The arrows of

environmental factors are not shown.
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Fig. 3 Percentage similarities betwe&phagnum fuscum surface and species or
lifeform (shown by solid lines with closed symbolgnd between nofshagnum
surface and species (by interrupted lines with apenbols). Gray symbols and lines
indicate the lifeforms. Herl®/o = Carex bigelowii, m/o = Calamagrostis canadensis,
A/A= Epilobium angustifolium, Shrub:e/o = Ledum groenlandicum, m/o = Vaccinium
vitis-idaea, a/aA= Vaccinium uliginosum, 4/ = Betula nana, v/v = Oxycoccus
microcarpus, Tree:e/o = Picea mariana, m/o = Betula neoalaskana, a/A = Populus
tremuloides, Moss: e/o = Polytrichum commune, m/o = Ceratodon purpureus. Note
that the scales of-axis are different between life forms and that simailarities of P.

mariana and tree on unburned surface are overlapped



