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Abstract

Previously, we isolated two a-amylase isozymes, HdIAmy58 and HIAmy82, from
the digestive fluid of the Pacific abalone Haliotis discus hannai (Kumagai et al, 2013,
Comp. Biochem. Physiol., B 164, 80-88). These enzymes degraded starch producing
maltooligosaccharides but not glucose. However, the digestive fluid itself could produce
glucose from starch, indicating that the digestive fluid contains a-glucosidase-like
enzymes together with the a-amylases. Thus, in the present study, we isolated this
a-glucosidase-like enzyme from the digestive fluid and characterized it to some extent.
Isolation of this enzyme was carried out by ammonium sulfate fractionation followed by
conventional column chromatographies and FPLC. The purified enzyme showed an
apparent molecular mass of 97 kDa on SDS-PAGE, and optimal temperature and pH of
45°C and 3.8-5.5, respectively. This enzyme could degrade various sizes of
maltooligosaccharides into glucose and released glucose from starch producing no
appreciable intermediate oligosaccharides. We concluded that this enzyme is an
a-glucosidase (EC 3.2.1.20) exolitically acting on polymer substrate and named HdAgl.
HdAgl efficiently degraded maltose but hardly degraded p-nitrophenyl
o—D-glucopyranoside (a-pNPG) and isomaltose. This enzyme was regarded as a
maltase-like a-glucosidase that preferably degrades maltose but scarcely aryl glucosides.
When starch was used as a substrate, HdAgl converted approximately 40% (w/w) of the
starch to glucose. If an abalone a-amlylase HdAmy58 was added to the reaction
mixture, the glucose yield increased to 60% (w/w). These results suggested that both
HdAgl and HJAmy58 play important roles for the production of glucose from dietary
starch in the digestive fluid. The amino-acid sequence of 887 residues for HdAgl was
deduced by the cDNA method. This sequence showed 41-46% amino-acid identities to
those of mammalian and avian a-glucosidases belonging to

glycoside-hydrolase-family31.
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1. Introduction

Starch is a storage glucan comprising a-1,4-linked D-glucose main chains and
a-1,6-linked branched chains. This polysaccharide is used as carbon and energy sources
in various organisms including animals, plants and microorganisms. These organisms
degrade starch with starch-degrading enzymes, e.g., o-amylase (EC 3.2.1.1),
a-glucosidase (EC 3.2.1.20) and glucoamylase (EC 3.2.1.3) to obtain glucose (Thoma et
al., 1971). Generally, a-amylase hydrolyzes the internal o-1,4-glycoside linkages of
starch producing maltooligosaccharides. a-Glucosidase and glucoamylase degrade
maltooligosaccharides and starch producing glucose, i.e., the former enzyme produces
a-glucose and the latter produces p-glucose (Chiba, 1997). In mammals, dietary starch
is degraded to maltooligosaccharides and limited dextrin by salivary and pancreatic
o-amylases. Then, these degradation products are degraded by intestinal
maltase-glucoamylase and sucrase-isomaltase and converted to blood glucose (Gray,
1992). On the other hand, the starch metabolic mechanism has not been so well
understood in marine invertebrates that ingest seaweeds. Recently, herbivorous
gastropod such as abalone was shown to possess a-amylases which may play a role for
the degradation of algal starches (Nikapitiya et al., 2009). We also isolated two
a-amylase isozymes, HHJAmy58 and HdAmy82, from the digestive fluid of the Pacific
abalone Haliotis discus hannai (Kumagai et al., 2013). These enzymes degraded starch
producing maltooligosaccharide; however, they could not produce glucose. We recently

noticed that the digestive fluid of abalone showed high glucose-producing activity. This
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led us to consider that a-glucosidase-like enzyme was contained in the digestive fluid,
and engaged in the degradation of starch together with o-amylases. To date, an
a-glucosidase from marine mollusk was investigated with a sea hare Aplysia fasciata
(Andreotti et al., 2006); however, no information for abalone a-glucosidases is currently
available to the authors’ knowledge.

In the present study, we isolated the a-glucosidase-like enzyme form the digestive
fluid of H. discus hannai and characterized its basic properties and primary structure.
Accordingly, we identified this enzyme as a maltase-like a-glucosidase belonging to the

glycosid-hydrolase-family31.

2. Materials and methods

2.1. Materials

The Pacific abalone H. discus hannai was obtained from a local market in
Hakodate, Hokkaido Prefecture, Japan. Corn starch, oyster glycogen,
maltooligosaccharides (maltose—maltohexaose), and sucrose were purchased from Wako
Pure Chemicals Industries Ltd. (Osaka, Japan). p-Nitrophenyl a-D-glucopyranoside
(a-pNPG) and agarose were purchased from Seikagaku Kogyo (Tokyo, Japan) and
TaKaRa (Tokyo, Japan), respectively. Hydroxyapatite (Fast Flow Type) was purchased
from Wako Pure Chemicals Industries Ltd., TOYOPEARL Phenyl-650M and
TOYOPEARL CM-650M from TOSOH Co. (Tokyo, Japan), and Mono-S 5/50GL from
GE Healthcare UK Ltd. (Little Chalfont, Bucking Hamshire, England). Oligotex-dT(30),

TaKaRa Tag DNA polymerase, 5’-Full RACE and 3’-Full RACE Kits, and restriction
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endonucleases were purchased from TaKaRa. DynaExpress TA PCR Cloning Kit
(including pTAC-1 vector) was from BioDynamics Laboratory Inc. (Tokyo, Japan).
Other reagents were purchased from Wako Pure Chemicals Industries Ltd. o-Amylase
(HdAmy58) from H.discus hannai was prepared by the method as described previously

(Kumagai et al., 2013).

2.2. Assay for a-glucosidase activity

According to our preliminary experiments, the digestive fluid showed low activity
toward o-pNPG, but high glucose-producing activity toward starch and
maltooligosaccharides. Therefore, we examined the a-glucosidase-like enzyme activity
by assaying the glucose released from starch. A reaction mixture containing 0.2% (w/v)
starch and 10 mM sodium phosphate buffer (pH 6.0), where the starch had been
solubilized by heating at 100°C for 10 min, was pre-incubated at 30°C for 5 min, and
then 50 pL of enzyme solution (0.01-0.05 units) was added to 950 pL of the reaction
mixture, incubated at 30 °C for 30 min, and heated at 100°C for 3 min to terminate the
reaction. The glucose released by the reaction was determined with a Glucose CII test
kit WAKO (Wako Pure Chemicals Industries Ltd.). One unit (U) of enzyme activity was
defined as the amount of enzyme that released 1.0 umol glucose per min. Substrate
specificity of the enzyme was examined by the use of following substrates:
maltooligosaccharides (maltose—maltotriose; G2-G6), sucrose, isomaltose, trehalose,
starch, glycogen, and a-pNPG. Substrate concentration for oligosaccharides was 5
mg/ml, while the concentrations for glycogen and a-pNPG were 2 mg/ml and 2.5 mM,

respectively. Degradation of a-pNPG was detected by measuring absorbance at 410 nm
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after the reaction was terminated by the addition of 0.1 M sodium carbonate in a final
concentration of 0.067 M. p-Nitrophenol released was determined with the molar
extinction coefficient 1.81X10° M™*-cm™. One unit of pNPG-degrading activity was
defined as the amount of enzyme that released 1.0 umol p-nitrophenol per min.
Temperature dependence of a-glucosidase was assayed at 10-60°C using maltose
as a substrate. pH dependence of a-glucosidase was measured at 30°C with the reaction
mixtures with different pH values; pH 2.0-2.9 adjusted with 10 mM glycine-HCI buffer,
pH 2.9-6.0 adjusted with 10 mM sodium citrate buffer, and pH 6.0-8.0 adjusted with 10
mM sodium phosphate buffer. All assays were triplicated and the average data were

adopted as representatives.

2.3. Purification of a-glucosidase-like enzyme from abalone

The a-glucosidase-like enzyme, named HdAg!l in the present study, was purified
from the digestive fluid of abalone H. discus hannai as follows: 10 abalones (an average
shell size, 10 x 6 cm; an average weight, 80 g) were dissected with a scalpel and the
adductor muscles were removed. The digestive fluid was then collected from the
stomach lumen by aspiration using a Pasteur pipette. By this procedure, approximately
20 mL of the digestive fluid was obtained from the 10 abalones. The digestive fluid was
mixed with 40 mL of 10 mM sodium phosphate (pH 6.0) and centrifuged at 10,000 X g
for 10 min. The supernatant (crude enzyme) was then subjected to ammonium sulfate
fractionation and the fraction precipitated between 20 and 60% saturation of ammonium
sulfate was collected by centrifugation at 10,000 X g for 10 min. The precipitates were

dissolved in 10 mM sodium phosphate buffer (pH 6.0) containing 40%-saturated



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

ammonium sulfate and subjected to a TOYOPEARL Phenyl-650M column (2.5 19.0
cm) pre-equilibrated with the same buffer. The adsorbed proteins were eluted stepwisely
with 40%, 30%, 20%, 10%, and 0%-saturated ammonium sulfate in 10 mM sodium
phosphate buffer (pH 6.0) (Fig. 1A). a-Glucosidase activity was detected in the
fractions eluted with 20%-saturated ammonium sulfate. These fractions (fraction
numbers 59-65) were pooled and dialyzed against 10 mM sodium phosphate buffer (pH
6.0), and applied to a TOYOPEARL CM-650M column (2.5<23.3 cm) pre-equilibrated
with the same buffer. The adsorbed proteins were eluted with a linear gradient of 0-0.3
M NaCl (Fig. 1B). In this chromatography, a-glucosidase activity was detected in the
fractions eluted at around 0.15 M NaCl (fraction numbers 63-68). These fractions were
dialyzed against 10 mM sodium phosphate buffer (pH 6.0) and applied to a
hydroxyapatite column (1.2X16.5 cm) pre-equilibrated with the same buffer. The
adsorbed proteins were eluted with a linear gradient of 0.01-0.3 M sodium phosphate
buffer (pH 6.0) and a-glucosidase activity was detected in the fractions eluted at around
0.05 M sodium phosphate buffer (fraction numbers 58-66) (Fig. 1C). The active
fractions were pooled and dialyzed against 10 mM sodium phosphate buffer (pH 6.0)
and concentrated to approximately 5 mL by ultrafiltration with VIVASPIN 20 (Sartorius
AG, Goettingen, Germany). The concentrate was subjected to a Mono-S 5/50GL column
pre-equilibrated with 10 mM sodium phosphate buffer (pH 6.0) and the proteins
adsorbed to the column were eluted with a linear gradient of 0-0.15 M NaCl. In this
chromatography, an a-glucosidase-like enzyme (HdAgl) with the approximate
molecular mass of 97 kDa was eluted at around 0.05 M NaCl (Fig. 1D and 2). By the
above procedure, HdAgl was purified 35.4-fold from crude enzyme at a yield of 0.3%

with the specific activity 9.34 U/mg (Table 1).
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2.4. Protein concentration

Protein concentration was determined by the method of Lowry et al, (1951) using

bovine serum albumin fraction V as a standard protein.

2.5. SDS-PAGE

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was
carried out with 0.1% (w/v) SDS-10% (w/v) polyacrylamide gel according to the
method of Porzio and Pearson (1977). After the electrophoresis, the gel was stained with
0.1% (w/v) Coomassie Brilliant Blue R-250 in 50% (v/v) methanol-10% (v/v) acetic
acid, and destained with 5% (v/v) methanol-7% (v/v) acetic acid. Protein Marker, Broad
Range (New England BioLabs, Ipswich, MA, USA) was used as a molecular mass

marker.

2.6. Thin-layer chromatography

Degradation products of substrates produced by HdAgl were analyzed by
thin-layer chromatography (TLC). The products (approximately 10 ug) were spotted on
a TLC-60 plate (Merck, Darmstadt, Germany) and developed with a solvent of
n-butanol-acetic acid—water (2:1:1 (v:v:v)). The sugars developed on the plate were
stained by spraying 10% (v/v) sulfuric acid in ethanol followed by heating at 130°C for

10 min.
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2.7. Amino-acid sequence analysis

The N-terminal amino-acid sequence of a-glucosidase was determined with an
ABI Procise 492 sequencer (Applied Biosystems, Foster city, CA USA). The purified
protein was dialyzed against 20% acetonitrile—0.1% trifluoroacetic acid, adsorbed to
glass filter, and then subjected to the protein sequencer. For the determination of internal
amino-acid sequences, the enzyme was digested with 0.4% lysylendopeptidase at 37°C
for 20 min, subjected to SDS-PAGE, and electrically transferred to a polyvinylidene
difluoride membrane. Several fragments well separated on the membrane were

subjected to the sequencer.

2.8. cDNA cloning of HdAgl|

Total RNA was extracted from the hepatopancreas of abalone by the guanidinium
thiocyanate-phenol method (Chomczynski and Sacchi, 1987). mRNA was selected from
the total RNA with an Oligo-dT(30) kit (TaKaRa) according to the manufacturers’
protocol. cDNA was synthesized from the mRNA with a cDNA synthesis kit (TaKaRa)
using random oligonucleotide primers. Degenerated primers for amplification of HdAg|
cDNAs were synthesized on the basis of its partial amino-acid sequences determined by
protein sequencer. Besides these primers, a primer was synthesized on the basis of the
highly conserved signature sequence among glycosyl-hydrolase-family31 (GHF31)
a-glucosidases, maltase-glucoamylases and sucrase-isomaltases (Frandsen and

Svensson., 1998; Nichols et al., 1998), since partial amino-acid sequences of HdAgI



220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

indicated that this enzyme belongs to GHF31. For the PCR, a successive incubation at
95°C for 30 s, 50°C for 30 s, and 72°C for 90 s was repeated 30 cycles in 20 pL of
reaction mixture containing 50 mM KCI, 15 mM Tris-HCI (pH 8.1), 0.2 mM each of
dATP, dTTP, dGTP, and dCTP, 2.5 mM MgCl,, and 10 pmol primers, 20 ng
hepatopancreas cDNA, and 0.5 U of TaKaRa Taqg DNA polymerase. The amplified
cDNAs were cloned with a DynaExpress TA PCR Cloning kit and pTAC-1 vector
(BioDynamics Laboratory Inc.). cDNAs encoding 5’- and 3’-regions of the HdAglI
cDNA were amplified with 5°-Full RACE and 3’-Full RACE Kkits (TaKaRa). Homology
search for deduced amino-acid sequences was performed using the BLAST tool
provided by National Center for Biotechnology Information

(http://blast.ncbi.nim.nih.gov/Blast.cgi).

3. Results

3.1. Enzymatic properties of HdAgl

Optimal temperature and pH of HdAgl was observed at around 50°C and pH 3.8-5.5,
respectively (Fig. 3A and B). The temperature that caused a half inactivation of HdAg|
during 30 min incubation was found at around 48°C (Fig. 3C). HdAgl did not require
the presence of NaCl for the activity and showed practically no NaCl-concentration
dependence (Fig. 3D).

HdAgl released glucose from starch producing no intermediate oligosaccharides
(Fig. 4). When maltooligosaccharides were degraded, HdAgl produced glucose and

oligosaccharides that were one-glucose unit smaller than the substrates in the previous

10
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steps (Fig .4). These results indicated that HdAgl acted as exolytically toward the
substrates cleaving off the terminal glucose residues. According to our preliminary
experiments using p-nitrophenyl a-D-maltoside (a-pNPM) as a substrate, HdAgl was
considered to cleave the non-reducing terminal o-1,4-linkage since HdAgl produced
ao-pNPG and glucose from a-pNPM in the early stage of reaction (data not shown). It is
noteworthy that the oligosaccharides which were one glucose unit larger than the
original substrates were produced by HdAgl in 10-60 min reaction (Fig .4). These
suggest that HdAAgl possesses transglycosylation activity that is known as a
characteristic property for retaining enzymes (Chiba, 1997).

HdAQgI preferably degraded smaller substrates like maltose and maltotriose than
larger substrates (Table 2). Namely, the activities toward maltotetraose—maltohexaose
were approximately 75% of that for maltose (Table 2). HdAgl could degrade
polysaccharides such as starch and glycogen showing relative activities of 36.5% and
13.5%, respectively. On the other hand, HdAgl scarcely degraded aryl a-glucoside and
isomaltose (an a-1,6-linked disaccharide), i.e., it showed only 0.6% and 2.7% relative
activities, respectively. HdAgl could not degrade sucrose and trehalose. On the basis of

these results, we concluded that HdAgl is a maltase-like o-glucosidase.

3.2. Glucose release from starch in the coexistence of HdAgl and HdAmy58

We previously isolated two a-amylase isozymes, HHJAmy58 and HdAmy82, from
the digestive fluid of H. discus hannai (Kumagai et al., 2013). These enzymes were
considered to play roles in the degradation of starch from dietary algae in the digestive

fluid. Accordingly, HdAgl was also considered to contribute the starch degradation in

11
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the digestive fluid along with the a-amylases. Thus, we investigated the effects of
coexistence of HdJAgl and HIAmy58 on the degradation rate of starch. As shown in Fig.
5, when starch was degraded by HdAmy58 alone, glucose was hardly produced as
reported previously (Kumagai et al., 2013). Whereas, approximately 40% (w/w) of
starch was converted to glucose by HdAgl in an 8-h reaction. On the other hand, when
starch was degraded in the coexistence of two enzymes, the glucose yield increased to
60%. This improvement may be due to the increase in the number of substrate sites for
HdAgl by the endolytic action of HdAmy58. Although relative amount for
a-glucosidase and a-amylase in the digestive fluid has not been determined yet, above
results suggest that both HdAgl and HIAmy58 participate in the glucose production in

the digestive fluid.

3.3. Primary structure analysis for HdAgl

The N-terminal amino-acid sequence of HdAgl was determined by the protein
sequencer as DSSQXHLKGEHRSDXYPET- (Underlined residues showed week peak
signals in the sequencing, but later confirmed with cDNAs as they are; two Xs were not
identified, but later revealed as Cys with cDNASs). The N-terminal sequences of two
lysylendopeptidyl fragments of HdAgI were determined as
STNSVLFDASLAPLIFSDQM- (P1) and TADGSAPIVGEVWPGKTVFP- (P2). These
sequences showed 60% and 65% amino-acid identities to the 232nd-251st residues and
480th—499th residues of human maltase-glucoamylase (MGAM) that belongs to GHF31
(Nichols et al., 1998), respectively. On the basis of these partial amino-acid sequences,

we synthesized the degenerated forward primer Fw (from P1) and the reverse primers

12
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Rv (from P2) (Table 3). Besides these primer, a reverse primer CatR was also
synthesized on the basis of the conserved signature sequence of GHF31 enzymes, i.e.,
(L//M)WIDMNE (Frandsen and Svensson., 1998) since the partial amino-acid
sequences of HdAgl showed similarity to the sequences of GHF31 enzymes. cDNAS
encoding HdAgl were then amplified by the nested PCR using these primers from the
abalone hepatopancreas cDNA. As a result, a cDNA with approximately 0.75 kbp
(Agl-cDNA1) was successfully amplified. The Agl-cDNAL1 comprised 756 bp that
encoded an amino-acid sequence of 252 residues. Then, a series of specific primers for
3’-RACE and 5’-RACE were synthesized on the basis of the nucleotide sequence of
Agl-cDNAL (Table 3). By using these primers, Agl-3RACE-cDNA (1463 bp) covering
the 3’-terminal region and Agl-5SRACE-cDNA (643 bp) covering the 5’-terminal region
were amplified by 3’-RACE and 5’-RACE, respectively. By overlapping the nucleotide
sequences of Agl-5RACE-cDNA, Agl-cDNA1, and Agl-3RACE-cDNA in this order, a
nucleotide sequence of 2759 bp encoding the amino-acid sequence of 887 residues for
HdAgl was determined. The reliability of this sequence was confirmed with
AglFull-cDNA, which was newly amplified by PCR with a specific primer pair, FullFw
and FullRv (Table 3, Fig. 6). This nucleotide sequence and the following deduced
amino-acid sequence are available from DNA Data Bank of Japan with the accession
number AB820091.

The N-terminal amino-acid sequence of HdAgl, DSSQXHLKGEHRSDXYPET-
(Xs; not identified residues) determined by the protein sequencer, was shown in the
deduced sequence as DSSQCHLKGEHRSDCYPET. Thus, the N-terminus of mature
HdAgl protein was found to be the 43rd Asp and accordingly this enzyme was

concluded to comprise 845 residues with the calculated molecular mass of 94821 Da.

13
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The 24 residues following the initiation Met in the deduced sequence of HdAgl were
predicted as the signal peptide region for secretion by SignalP 4.0 software
(http://www.cbs.dtu.dk/services/SignalP/).  The  sequence of 17  residues,
FGVHGNGTGRVFVKRDQ, which locates between the signal peptide region and the
mature enzyme domain, was regarded as a propeptide-like region of this enzyme since
this region was absent in the native HdAg!.

The 43rd-887th amino-acid region of HdAgl showed 46% identity to the sequence
of quail acid a-glucosidase I (GAA ) (Kunita et al., 1998), 41-42% identities to those
of human lysosomal acid o-glucosidase (GAA) (Hoefsloot et al., 1988), and the
N-terminal domain of maltase-glucoamylase (MGAM) and sucrase-isomaltase (SIM)
(Chantret et al., 1992). These enzymes belong to GHF31. The sequence known as the
signature sequence regionl of GHF31 enzymes, i.e., WIDMNE, was completely
conserved in the 476th-481st residues of HdAgl, while the sequence
GVDICGFRGDSDEELCTRWLQLGAFYPFMRSHN of HdAgl (604th—636th residues)
showed 70 — 76 % identity with the signature sequence region 2 of the above GFH31
enzymes (Frandsen and Svensson., 1998; Nichols et al., 1998) (Fig. 6). The catalytic
nucleophile residue (Asp478) in the signature region 1 and the acid/base catalytic
residue (Asp576) were also conserved in HdAgl. Thus, HdAgl was regarded as a

member of GHF31.

4. Discussion

The Pacific abalone H. discus hannai possesses various kinds of seaweeds'

polysaccharide-degrading enzymes such as alginate lyase, mannanase, cellulase and

14
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laminarinase in the digestive fluid (Shimizu et al., 2003; Suzuki et al., 2003; Suzuki et
al., 2006; Ootsuka et al., 2006; Kumagai and Ojima 2009). In addition to these enzymes,
we recently isolated two o-amylase isozymes, HdAAmy82 and HdAmy58, from the
digestive fluid of abalone (Kumagai et al., 2013). These enzymes produced
maltose—maltotetraose from starch, but did not produce glucose. However, the digestive
fluid of abalone was capable of producing glucose from starch. This fact led us to
consider that the digestive fluid contains a-glucosidase-like enzyme(s) besides the
a-amylases. In the present study we isolated this enzyme, HdAgl, and characterized to

some extent.

4.1. Enzymatic properties of HdAgl

The molecular mass of HdAgl was estimated to be 97 kDa by SDS-PAGE. HdAgI
showed optimal temperature and pH at around 50°C and 3.8-5.5, respectively.

Since HdAgI directly released glucose from starch, this enzyme was considered to
be an a-glucosidase or a glucoamylase. However, HdAgl showed transglycosylation
activity which is a characteristic property in retaining-type enzymes like a-glucosidase.
While glucoamylase acts in an inverting manner and does not catalyze
transglycosylation. Therefore, we regarded HdAgl as an a-glucosidase.

HdAgl hardly degraded a-pNPG; however, it most efficiently degraded maltose
and maltotriose and showed 30% activity toward starch compared with that to maltose.
Accordingly, HdAgl was considered to be a maltase-like a-glucosidase that recognizes
the terminal maltoside structure of substrates and hydrolyzed a-1,4-glycoside linkage of

the maltose unit (Chiba, 1988). HdAgl appeared to act on the non-reducing terminus of

15
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substrates as reported in other a-glucosidases (Chiba et al., 1979) since this enzyme
produced a-pNPG and glucose from a-pNPM in the early stage of reaction (data not
shown).

These properties of HdAgl were appreciably different from those of the
a-glucosidase from Aplysia fasciata (Andreotti et al., 2006). HdAgl degraded starch and
glycogen, while the Aplysia enzyme did not. HdAgl hardly degraded a-pNPG, while the
Aplysia enzyme well degraded this substrate. The estimated molecular mass of HdAg|
was 97,000, while that of the Aplysia enzyme was 69,000. On the basis of these
differences, HdAgl was considered to be a different-type o-glucosidase from the

Aplysia enzyme.

4.2. Primary structure of HdAgl|

The amino-acid sequence of HdAgl was deduced by the cDNA method. The
sequence comprised 887 residues and the mature enzyme domain (845 residues) showed
approximately 40% amino-acid identities to those of mammalian and avian GHF31
enzymes such as lysosomal acid a-glucosidase (GAA), maltase-glucoamylase (MGAM)
and sucrase-isomaltase (SIM). These identities indicated that HdAgl was also classified
under GHF31. The 24 residues of the deduced sequence of HdAgl after the initiation
Met was predicted as the secretion signal peptide region of this enzyme (Fig. 7). This
type of signal peptide was also found in the deduced sequence of GAA, but not in those
of MGAM and SIM. The latter two enzymes possess a cytoplasm region and a
transmembrane region followed by an O-glycosylated stalk which is rich in threonine

and serine (Nichols et al., 1998). Thus, HdAgl was found to be similar to GAA rather
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than MGAM and SIM with respect to the signal peptide structure. Occurrence of the
secretion signal in the deduced sequence of HdAgl is consistent with the fact that

HdAgl has been secreted to the digestive fluid as a soluble enzyme.

4.3. Physiological roles of HdAgl for the digestion of algal starch

The glucose production by HdAgl was significantly improved by the coexistence
of a-amylase in the reaction mixture (Fig. 5). This improvement seemed to be caused
by the increase in the terminal sites of starch chain by the a-amylase action. This means
the increase in the number of substrates for HdAgl. Thus, the coexistence of two
enzymes was considered to be important for the digestion of dietary starch in the
digestive fluid. Indeed, our preliminary experiments revealed that HdAgl (0.03 U/ml)
alone produced glucose from the dried frond of Porphyra yezoensis (a red seaweed) in a
yield of 10 % (w/w of total glucan), while the yield increased to 30% by the coexistence
of HdIAmy58 (0.03 U/ml) (data not shown).

In the present study, we confirmed that the abalone digestive fluid contained
maltase-like a-glucosidase along with a-amylases. This strongly suggests that both of
these enzymes play important roles for glucose-production in the digestive fluid. On the
other hand, intestinal membrane-binding type oa-glucosidase such as MGAM plays
important roles to provide glucose in higher animals like human. To enrich information
about the variation in the starch-degrading systems among animal species, it seems
important to comparatively study the properties of various starch-degrading enzymes
from different species. In this context, we are now attempting to characterize the

membrane-binding type a-glucosidases of abalone.
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Figure legends

Fig. 1. Purification of a-glucosidase from the digestive fluid of the abalone. (A)
TOYOPEARL Phenyl-650M column chromatography of proteins precipitated between
20 and 60% saturation of ammonium sulfate. (B) TOYOPEARL CM-650M column
chromatography of the a-glucosidase obtained by TOYOPEARL Phenyl-650M
chromatography. (C) Hydroxyapatite column chromatography of the a-glucosidase
obtained by TOYOPEARL CM-650M chromatography. (D) Mono-S 5/50GL column
chromatography of the a-glucosidase obtained by Hydroxyapatite chromatography.
Protein elution and enzyme activity are indicated with open and closed circles,
respectively, in (A)—(C). Those are indicated with solid line and shaded boxes,

respectively, in (D).

Fig. 2. Monitoring of purification of a-glucosidase from the abalone by SDS-PAGE. M,
marker proteins; lanes A-D, active fractions obtained by TOYOPEARL Phenyl-650M
chromatography, TOYOPEARL CM-650M chromatography, Hydroxyapatite

chromatography, and Mono-S 5/50GL chromatography (HdAgl), respectively.

Fig. 3. Temperature dependence, thermostability, pH dependence, and NaCl dependence
of HdAgl. (A) Temperature dependence of HdAgl was examined at 10-60°C in a
reaction mixture containing 5mg/ml maltose and 10 mM sodium phosphate buffer (pH
6.0). (B) pH dependence of HdAgl was examined at 30°C in the following reaction
mixtures adjusted to pH 2.0-2.9 with 10 mM glycine-HCI buffer (A), pH 2.9-6.0 with

10 mM sodium citrate buffer (@), and pH 6.0-8.0 with 10 mM sodium phosphate
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531

buffer(O). (C) Thermostability of HdAgl was examined by measuring the remaining
activity after heat treatment at 10-60°C for 20 min. (D) NaCl dependence of HdAgl was
examined with reaction mixtures containing 5mg/ml maltose, 10 mM sodium phosphate

buffer (pH 6.0), and 0-500 mM NacCl.

Fig. 4. Thin-layer chromatography for the degradation products of starch and
maltooligosaccharides produced by HdAgl. Two mg/mL starch and 5 mg/mL
maltooligosaccharides in 10 mM sodium phosphate buffer (pH 6.0) were degraded with
0.01 U/mL HdAgl at 30°C. The reaction was terminated at appropriate times by heating
at 100°C for 3 min and 1 pL of the reaction mixture was applied to TLC plate. M,
oligosaccharide markers comprising G1 and G2-G6. G1, glucose; G2-G6, maltose to

maltohexaose.

Fig. 5. Improvement of degradation of starch by coexistence of HdAgl and HdAmy58.
Two mg/mL starch in 10 mM sodium phosphate buffer (pH 6.0) were degraded in the
presence of 0.028 U/mL HdAgl alone (O), 0.028 U/mL HdAmy58 alone (A\), and

coexistence of 0.028 U/ml HdAgl and HdAmy58 (@) at 30°C.

Fig. 6. Nucleotide and deduced amino-acid sequences of cDNA encoding HdAgl. The
translational initiation codon ATG, the termination codon TAG and the putative
polyadenylation signal AATAAA are boxed. The putative signal peptide for secretion is
indicated by a dotted underline. The amino-acid sequences determined with intact
HdAgl (N-terminus) and peptide fragments obtained by lysylendopeptidase digestion

are indicated by the underline and double underline. The catalytic amino acid residues
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532  in GHF31 are marked with bold letters and boxes. The signature sequences of GHF31
533  are shaded. The annealing sites of PCR primers (see Table 3) are indicated by arrows
534  over the nucleotide sequence.

535

536  Fig. 7. Differences in N-terminal regions of primary structures among HdAgl, Human
537  GAA, and Human MGAM.
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556  Table 1. Summary for the purification of HdAg!.

557 Total Specific Total Purification  Yield
558 Samples protein  activity activity  (fold) (%)
559 (mg) (U/mg) (V)

560  Crude® 913. 0.28 256 1 100
561  Phenyl® 59.3. 0.33 20 1.2 7.8
562 CM° 1.66 3.7 6.1. 13.3. 24
563  Hydroxy® 0.49 5.1 2.5 18.1 1.0
564 Mono-S' 0.08 9.3 0.76 35.4. 0.3

565  “Crude enzyme after the dialysis against 10 mM sodium phosphate buffer (pH 6.0).
566  ° Active fraction obtained by TOYOPEARL Phenyl-650M chromatography.
567  °Active fraction obtained by TOYOPEARL CM-650M chromatography.
568 9 Active fraction obtained by hydroxyapatite chromatography.

569  ° HdAg! purified by Mono-S chromatography.
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580  Table 2. Substrate specifity of HdAgI

581  Substrates Relative activity (%)
582  Maltose* 100
583  Maltotriose 99.9
584  Maltotetraose 75.6
585  Maltopentaose 74.1
586  Maltohexose 73.5
587  Isomaltose*? 2.7
588  a-pNPG 1.6
589  Trehalose*® 0
590  Sucrose 0
591  Starch 36.5
592  Glycogen 135

593 * One unit of a-glucosidase was defined as the amount of enzyme that released 2.0
594  umol glucose per min since one split of substrate would produce two glucose. Relative
595  activity 100% corresponded to 25.7 U/mg.
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604  Table 3. DNA primers used for the amplification of HIAgl cDNAs.

605  Names Sequences?

606 Fw 5>-CCNYTNATHTTYWSNGAYCA-3’
607 Rv 5’-GTYTTNCCNGGCCANACYTC-3’
608 CatR 5’>-TCRTTCATRTCDATCCANA-3’

609  3raceFl 5’-GTCCCGTGACAATTCGCTACC -3’
610  3raceF2 5’>-CATGGTCAATGAGATGGACTGG -3°
611  3raceF3 5’-GGATCTGCTCCTATAGTTGGGG -3°
612  5raceRT 5’>-GTAGAGCATTGCTG-3’

613  5SraceFl 5’-ACACGAATATGTACGGCAGC -3’
614  5SraceF2 5’-GGTCGGAATAGAACCAAACGG -3°
615  5raceR1 5’-CGTACAAGTTGGTAGTTGGC -3’
616  5raceR2 5’-CACTGAGATCTGTAGCATGTGG -3°
617  FullFw 5’-ACTCCAAGCAACTCCACACC -3’
618  FullRv 5’-CTACCAAGTCATAACGAACGGC-3’

619 °D,A/G/T, H,A/CIT, N,AIC/GIT; R,A/G; S,CIG, W,A/T, Y,C/T.
620
621
622
623
624
625
626

627

26



Fig. 1.
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Fig. 3.
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GGATCACTCCAAGCAACTCCACACCATGTGGCGGCCCCAGAGACTTGGCGTGCATGAA GGCAC AGGCC AC TT { ACGG
M W R P QR L GV HEA AV IAATLVULOA AWV VHTGT FGVHGNG

CACCGGGCGTGTTTTCGTAAAGCGTGACCAGGACTCATCCCAGTGTCATCTCARAGGCGAACAC TGT CCAGAGACAGGCGTCACAGAGGCTGCCTGTTTGTCACGTGG
T G RV FV KRUDIOQD S S Q CHUL K GEHRSDT CYU®PETGUVTEA AR AT CTLSTRG

TTGCTGCTGGCAGACTAGCAACGTGAA! 'GCCCCCTACTGTTTCTACCCGCCC TACTCTGTACAGAAAGTAATAAACAATGGCAGGTCCGTGCTGTTGACAAGAAGCCA
C CWQT SNV KGA APZYUCV FYUPUPGEUDZY SV QK KV INNG GRS SUVILILTIR RS Q

ACATACCCACTGGCCTAATGACGTCATGGACCTACAGGCTGACGTGGTCGAGGAGACAAGCAGCAGACTCCGATTTAAAATATACGACCCAAACAACAAGCGCTATGAAGTTCCTCTACC
H T HWPNDVMDIULOQADV VEZETSSRULRTFI KTITYDUPNNI KR RYEUVZPTLP

GCTCAACAAGGCATCCGGTTCTTCGCAACAAACTGATTACTCCTTCACCATCGACCACAACCCCTTCGGCCTCACCGTCACCAGGAAGTCAACAAATAGTGTTCTGTTTGACGCGAGTCT
L N KA S G S S QQTWD Y S F TIDHNUZPUFSGULTU VT RI K STNS VL F DA S L

Fw SraceR2 SraceR1
CGCT LLTCTGATCT"“‘WFPRPF!“W"MTAP AGATCTC 'GCCAACTACCAACTTGTACGGCATCGGAGAARACAGGAAGCCTTTCCGGATCCAACTGGAGAAGGGTCCTGG

A P L I F S D QMULOQTI SV GV PTTNIUILYSGTIGENRIEKZPTFIRTIU QTLEIZKTGU?P G

SraceF1 SraceF2
CTATTCCC! TC ATCCC AACACGA. GGCA&CACCCATTTGTGGTCGGMTAGAACCMAC&CGACGCATTTGGGATATTTCTCATTAA&
Y S L WA HUDTITIU®PETINTNMMYGSHZPTVFVV 6GIEZPNGDA ATFUG GTIT FTULTINS
SraceRT 3raceF1 >
CAATGCTCTACGTATCGACGTTATTCCAACCAGTCCCGTGACAATTCGCTACCGCGCCCT! TGGACTTCTACGTTTTCACTGGCCCTACGCCGGATGACGTCATCGATCA
N A LRTIDUVTIU®PTSUPUVTTIIRYWRALGS GTIULDTFYVFTSGU®PT?®PUDTDUVTITDQ

GTACTGGACTTTGAT AGCCACCACTTCCGCCATACTGGTCGC 'CATC 'GGCGGAACAAGC ACGCAACCATAC A
Y W TJL I G Q P P L P P Y WS LG Y HL S RWG Y 66 6T S GMNA ATTIU QI RMMRP RN
3raceF2

CAAACAGATGCCATTTGACACCATCTGGAACGACATCGACTACATGGTCAATGAGATGGACT! CCTACGACCACACGGTGTATGGTCAGCTGCCTGACCTTGTTAAGGATATACATAG
K QMP FDTTIWNDTIDYMVNEMMDWWTYDHTV YV YSG_GQULPDIULV KUDTIHS

3ra
TCATGGGGAGAAATACGTCATGATCTTGGATCCCGGCATCAGCAACACCCAGCCGAAGGGTCAGTATGCCCCGTATGACGACGGCATAACAGATGATATCTTCGTGAAGACTGCCGACGG
H G E K Y VM ITULUDU®PGTISNTI GQZPI KGO QYA AZPYUDUDSGITUDUDTIT FUVI KTATUDG

Rv
ceF3 g‘—-
ATCTGCTCC! C AGAC TCCC TTCACTCACCCTAAGGCTGAAGCATGGTGGCAGAAACACGCTCAGATCATGCACGCTCAACTTCCATT

S A P I V GE VWP GKTVFPDVFTHZPI KA BAEA AWWAOQI KU HAQTIMHEASQTLUZPTF

TGATGGCA! 'GGATTGACATGAACGAGCCCTCCAACTTCAAGGACGGGTCTGT GT AACAACTCTC AAACCCGCCCTATACACCACCCCTGAATGGGAGCAGCGT
DGIWIEHN!PSNFKDGSVTGCGNNSLENPP!TPPLNGSSV

CATACAGAAGACGTTGTGCATGTCATCCACGTCCTACGGAGGACTCCACTACAACCTGCATAATCTGTACGGCCACTTCGAGGGCAAAGCAACATACAATGTTCTAAAAAATATCATCGG
I Q K TLCMS S TS Y G G L HYNULU HNIULYGHT FETSGI KA AT YNUTVTLI KN NTITIG

AAAGAGGCCATTTGTTCTATCTCGCTCTACTTTCGCCGGAAGCGGAAATTACGTCGCACACTGGGAAGGAGACAACTTTGCTGACTGGTCAGACTTGTACTACTCTATACCAGAGGTTCT
KRPFVLSRSTFI\GSGNYVAHWEGENFADWSDLYYSIPEVL

CAGTTTCAACATGTTCGGCATCCCCTTCACCGGCGTGGAC 'TCAGAGGCGACTCAGACGAGGAACTCTGTACAAGATGGCTACAGCTGGGCGCCTTCTACCCTTTCATGAG
S FNMVFGIPTFTGVDTICGT FRTGDSDETETLTCTRUWIELGOQTILGA ATFZYPFMRBR

GTCTCACAACCAGAATGTGGCGCCGGACAAAGATCCCGCAGCGATGCGATTTAGTTCCGCTGCGCATGACCGGAACCGCGAAGCCCTGAGGCTCCGTTACCGCCTTCTCCCCTTCCTGTA
S HN Q NV A PDIKDUP-AAMTPBRTEFS S AAHD RNREABDTLAI RILRYI RTILILUPTFTILY

CTCTCTCATGTCC AGTGGCCAGGCCCCTCATCTTCCAGTACCCGACTGATTCCGCCGCCTACAGCATAGACAGACAGTTCCTGTGGGGAGACTCGCTGCTCATAAGTCC
S L M S R RRAV ARUPILTIUVFOQYPTD S AAY S IDIRUGOQTFLWGD S L L I S P

TGTGT ACAGAACAGTGAACGCC 'TTTCCTAAAGACAC GATTTCTTCAC! A CAAAACAGGGCA CAGT AGTGCACCGCT
VL DRGNUZRTVNA AYFUPI KUDTWY YDV FT FTGA AETUVS KTGQW S VI S APL

GGACAAGATCAATGTCCACCTCAGAGGAGGCAGCGTTGTCCCGACACAGGTGCCCGATGTGACCACAGAGAAGAGCCGACACAATGACTTCGGTCTGGTGGTGGCGTCGTCGGGCTCTAG
D K I NV HLURGG G SV VPTOQV PDVTTEI KT SU RUHNDTFGULVVAS S G S R

GACAGCGCAAGGCTTCC! T 'GACH CTTAGA' ACCGTTTAACAATATCCAATTCAATCTGGACGGGGAGCGTCTGACGTCCACTGTCAAGTCCAGCAACTACGC
T A Q G F L Y WDDGETTULUD APV FNNTIUGQFNILDTGEU RTLTSTVIEKS S NUYA

CACCACAATGACGT ATCAACGTGTAC ACCAGCGCCTTCAACTGTCAGAGTCAACGGTATGGGCGTCGCACACTTCTACGACCATCACACAAAGGCTCTTTCGGT
T TM T LG S I NV Y GV APAZPSTV VI RVYVNGMGV VA AHTFZYUDHUHTIZ KA ATLSV

GACGCGACTGAAGGTGGATCTCCTGM&CGTTCGTTAT&\CTTG@TGTTCTCT A CGTCA. TARATARAICAA TATTCAAAAAAAAAAAAA

T R L KV DULUL K P F VMT W *
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