
 

Instructions for use

Title Excessive Cytokine Response to Rapid Proliferation of Highly Pathogenic Avian Influenza Viruses Leads to Fatal
Systemic Capillary Leakage in Chickens

Author(s)
Kuribayashi, Saya; Sakoda, Yoshihiro; Kawasaki, Takeshi; Tanaka, Tomohisa; Yamamoto, Naoki; Okamatsu,
Masatoshi; Isoda, Norikazu; Tsuda, Yoshimi; Sunden, Yuji; Umemura, Takashi; Nakajima, Noriko; Hasegawa, Hideki;
Kida, Hiroshi

Citation PLoS ONE, 8(7), e68375
https://doi.org/10.1371/journal.pone.0068375

Issue Date 2013-07-09

Doc URL http://hdl.handle.net/2115/53284

Rights(URL) http://creativecommons.org/licenses/by/3.0/

Type article

File Information journal.pone.0068375.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp
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Systemic Capillary Leakage in Chickens
Saya Kuribayashi1, Yoshihiro Sakoda1, Takeshi Kawasaki2, Tomohisa Tanaka3¤a, Naoki Yamamoto1¤b,
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Abstract

Highly pathogenic avian influenza viruses (HPAIVs) cause lethal infection in chickens. Severe cases of HPAIV
infections have been also reported in mammals, including humans. In both mammals and birds, the relationship
between host cytokine response to the infection with HPAIVs and lethal outcome has not been well understood. In
the present study, the highly pathogenic avian influenza viruses A/turkey/Italy/4580/1999 (H7N1) (Ty/Italy) and A/
chicken/Netherlands/2586/2003 (H7N7) (Ck/NL) and the low pathogenic avian influenza virus (LPAIV) A/chicken/
Ibaraki/1/2005 (H5N2) (Ck/Ibaraki) were intranasally inoculated into chickens. Ty/Italy replicated more extensively
than Ck/NL in systemic tissues of the chickens, especially in the brain, and induced excessive mRNA expression of
inflammatory and antiviral cytokines (IFN-γ, IL-1β, IL-6, and IFN-α) in proportion to its proliferation. Using in situ
hybridization, IL-6 mRNA was detected mainly in microglial nodules in the brain of the chickens infected with Ty/Italy.
Capillary leakage assessed by Evans blue staining was observed in multiple organs, especially in the brains of the
chickens infected with Ty/Italy, and was not observed in those infected with Ck/NL. In contrast, LPAIV caused only
local infection in the chickens, with neither apparent cytokine expression nor capillary leakage in any tissue of the
chickens. The present results indicate that an excessive cytokine response is induced by rapid and extensive
proliferation of HPAIV and causes fatal multiple organ failure in chickens.
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Introduction

Influenza A virus infections are found in a variety of birds and
mammals, including humans. These viruses are classified into
subtypes on the basis of the antigenic specificity of the surface
glycoproteins hemagglutinin (HA) and neuraminidase (NA). To
date, viruses of 16 HA subtypes (H1-H16) and 9 NA subtypes

(N1-N9) have been isolated from avian species [1–3]. Avian
influenza viruses causing 75% or greater mortality in chickens
within 10 days after intravenous inoculation are categorized as
highly pathogenic avian influenza viruses (HPAIVs) [4]. The
clinical course of HPAIV infection in chickens varies between
virus strains. Chickens infected with HPAIVs generally show
ruffled feathers, depression, and edema of the face, comb, and

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68375



wattles; they develop subcutaneous hemorrhages in
unfeathered skin and die within a few days [5]. In some acute
cases of the disease, chickens infected with HPAIV suddenly
die while sleeping, without showing apparent clinical signs or
gross lesions [6,7].

Cleavage activation of the HA by host proteases is required
for influenza A virus replication. Among HPAIVs, the HAs have
multiple basic amino acid residues at their cleavage sites,
which permit cleavage activation by ubiquitous proteases such
as furin and PC6, leading to systemic infection in chickens
[8,9]. On the other hand, the HAs of low pathogenic avian
influenza viruses (LPAIVs) are cleaved only by trypsin-like
proteases expressed in the respiratory and intestinal tracts,
leading to local infection in chickens. Although cleavage
activation of the HA is sine qua non for the pathogenicity of
HPAIV, host factors involved in the pathogenesis of HPAIV
infection have not been identified.

Cytokines are regulators of the host response to infection,
inflammation, trauma and immunity. In the course of infection,
the balance of inflammatory and anti-inflammatory cytokines is
important for induction of a proper immune response,
clearance of pathogen, and healing. In particular, inflammatory
cytokines such as IL-1β, IL-6, and IFN-γ mediate rubor, fever,
pain, vascular permeability, and cellular infiltration [10].
Excessive cytokine responses to various pathogens are
harmful to the host and have also been found in cases of lethal
infection with HPAIV in humans, mice, ferrets, and monkeys
[11–13]. Extensive viral proliferation and high levels of
cytokines and chemokines, including IP-10, MCP-1, IL-8, IL-6,
TNF-α, and IL-10, were found in the sera and lungs of humans
and experimental animals infected with H5N1 influenza virus
[14–16]. Although this aberrant cytokine response is assumed
to cause acute respiratory distress syndrome and death in
mammals, H5 HPAIV infection was also lethal to mice lacking
TNF and IL-1 receptors, and immunosuppressive treatment
was not always an effective therapy for H5 HPAIV infection in
mice [17,18]. High expression of cytokines such as IL-6, IL-12,

Figure 1.  Survival rates of the chickens inoculated with
Ty/Italy or Ck/NL.  Chickens were intranasally inoculated with
106.0 EID50 of Ty/Italy or Ck/NL and were observed for 12 days.
doi: 10.1371/journal.pone.0068375.g001

and IL-18 was observed in the lungs and spleen of the
chickens infected with H5 HPAIV, and a large amount of type I
IFN was also detected in tissues and plasma of the chickens
infected with H5 HPAIV [19–22]. However, in per-acute cases
of infection with another H5 HPAIV, cytokine mRNA expression
was not significantly increased in the lungs of chickens until
death [22]. In both mammals and birds, the relationship
between pathogenesis of influenza virus infections and host
responses are not well understood.

In the present study, to assess the role of host cytokines in
the pathogenesis of avian influenza, two H7 HPAIVs and an
LPAIV were intranasally inoculated into chickens and viral
proliferation, mRNA expression of cytokines, and capillary
permeability were analyzed during the early stages of infection.
Our findings demonstrate that systemic vascular disorder
induced by excessive cytokine response to HPAIV proliferation
is critical for the pathogenesis of highly pathogenic avian
influenza in chickens.

Materials and Methods

Viruses
The 2 HPAIVs A/turkey/Italy/4580/1999 (H7N1) (Ty/Italy) [23]

and A/chicken/Netherlands/2586/2003 (H7N7) (Ck/NL) [24]
were kindly provided by Dr. I. Capua of Instituto Zooprofilattico
Sperimentale delle Venezie (Legnaro, Padova, Italy). The
intravenous pathogenicity index (IVPI) and the 50% chicken
lethal dose of Ty/Italy after intranasal inoculation were 3.00 and
102.0 [50% egg infectious dose (EID50)], whereas those of
Ck/NL were 2.68 and 105.8 EID50, respectively. The LPAIV A/
chicken/Ibaraki/1/2005 (H5N2) (Ck/Ibaraki) [25] was kindly
provided by Dr. S. Yamaguchi, National Institute of Animal
Health (Tsukuba, Ibaraki, Japan), and the IVPI was 0.00 [26].
Viruses were propagated in 10-day-old embryonated chicken
eggs at 35°C for 40–48 h.

Experimental infection of chickens with influenza
viruses

In brief, 106.0 EID50 of Ty/Italy or Ck/NL were intranasally
inoculated into eight 4-week-old chickens (Boris brown,
Hokuren, Hokkaido, Japan). The chickens were observed
every day until 12 days post inoculation (dpi). Sera from the
surviving chickens were examined using a hemagglutination-
inhibition (HI) test [27] at 12 dpi.

To examine the proliferation of each virus and the host
cytokine response during the early stages of infection, 106.0

EID50 of Ty/Italy, Ck/NL, or Ck/Ibaraki were each intranasally
inoculated into groups of twelve 4-week-old chickens (Boris
brown and Juria, Hokkaido Chuo Shukeijo Corporation,
Hokkaido, Japan). Three chickens per group were euthanized,
and the brains, lungs, and spleens were collected at 24, 48, 72,
and 96 hours post inoculation (hpi). At 48 and 96 hpi, the tissue
specimens were soaked in 10% formalin for histopathological
analysis. To determine virus infectivity titers, the tissues were
homogenized using a Multi-Beads Shocker (Yasui Kikai,
Osaka, Japan) and were suspended in minimum essential
medium (Nissui, Tokyo, Japan) containing 100,000 U/ml
penicillin (Meiji Seika, Tokyo, Japan), 10 mg/ml streptomycin
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(Meiji Seika), 0.3 mg/ml gentamicin (Schering-Plough, Osaka,
Japan), 0.2% nystatin (Shigma-Aldrich, Missouri, U.S.A.), and
0.5% bovine serum albumin fraction V (Roche Diagnostics,
Mannheim, Germany). These suspensions and peripheral
blood were serially diluted with PBS, inoculated into 10-day-old
embryonated chicken eggs, and incubated at 35°C for 48 h.
Virus titers were determined according to the Reed and Munch
method [28] and were expressed as EID50 per gram of tissue or
milliliter of blood. For quantitative real-time PCR analysis of the
mRNA expression of cytokines, a portion of each tissue was
soaked in RNAlater (Ambion, Texas, U.S.A.) and stored at
−20°C.

All animals were housed in self-contained units (Tokiwa
Kagaku, Tokyo, Japan) at the BSL-3 facility of the Graduate
School of Veterinary Medicine, Hokkaido University, Japan.
The institutional animal care and use committee of the
Graduate School of Veterinary Medicine approved these
animal experiments (approval numbers: 1051, 1112), and all
experiments were performed under the guidance of the
Institute for Laboratory Animal Research (ILAR).

RNA isolation and quantitative real-time PCR
Total RNA was extracted from each tissue using the RNeasy

Mini Kit (QIAGEN, Maryland, U.S.A.) according to the
manufacturer’s instructions. To remove genomic DNA, total
RNA was treated with DNase I (QIAGEN). One microgram of
total RNA per sample was reverse-transcribed with Oligo (dT)15

primers, RNase inhibitor (Invitrogen, California, U.S.A.), and M-
MLV reverse transcriptase (Invitrogen). The reaction mixtures
comprised 2 µl of cDNA, 10 µl of Light Cycler 480 SYBR Green
I master mix (Roche Diagnostic) or KAPA SYBR Fast qPCR
master mix (KAPA, Boston, U.S.A.), 2 µl of forward and reverse
primer (10 µM), and 4 µl of pure water. Reactions were carried
out on a Light Cycler 480 System II (Roche Diagnostic). The
primers were as follows: β-actin (forward: 5′-CTG TTC GCC
TTT CAG ACC TAC A-3′, reverse: 5′-CAT GGT GAT TTT CTC
TAT CCA GTC C-3′) (Accession number: NM_205518), IFN-α
[29], TNF-α [30], IFN-γ, IL-1β, and IL-6 [31]. The copy number
of cytokine mRNA was normalized to that of β-actin, and the
data was shown as mean fold change compared with that of
uninfected control birds.

Immunohistochemistry and in situ hybridization
Tissues were fixed with 10% formalin and embedded in

paraffin and sectioned at 3–4 µm. For light microscopy, the
sections were subjected to hematoxylin–eosin staining. To
detect viral antigens, the sections were stained using the
streptavidin–biotin–immunoperoxidase complex method with
the Histofine SAB-PO (M) kit (Nichirei Biosciences, Tokyo,
Japan) according to the manufacturer’s instructions. The
sections were deparaffinized and digested with 0.1% trypsin at
37°C for 30 min, and endogenous peroxidase activity was
quenched with 3% H2O2 in methanol. After blocking of
nonspecific reactions with normal goat serum, the sections
were incubated with mouse anti-NP monoclonal antibody
(produced in our laboratory; 1: 1,000) at 4°C for 12 h. The
chromomeric reaction was carried out by incubating the
sections in 0.05 M Tris-HCl buffer containing 0.02% 3,3′-

diaminobenzidinetetrahydrochloride (Dojindo Laboratories,
Kumamoto, Japan), 0.005% H2O2, and 0.01 M imidazol
(Sigma), and the sections were counterstained with Mayer’s
hematoxylin.

To detect IL-6 mRNA, in situ hybridization was performed
using a QuantiGene viewRNA Tissue Assay (Affymetrix,
California, U.S.A.). The viewRNA probe set consisted of 18
probes designed to cover 1,142 base pairs of avian IL-6 mRNA
sequence (Accession number: MN_204628). In brief, after
deparaffinization, brain sections from infected and uninfected
chickens were treated with a target retrieval solution (DAKO,
California, U.S.A.) at 95°C for 40 min, and with 0.1 µg/ml of
proteinase K (DAKO) at 37°C for 15 min, as described
previously [32]. They were subsequently incubated with a
viewRNA probe at 40°C for 2 h. After washing 3 times in wash
buffer, hybridization with PreAmplifier Mix QT (Affymetrix),
Amplifier Mix QT (Affymetrix), and Label Probe 1 conjugated
with alkaline phosphatase (Affymetrix) was performed
according to the manufacturer’s instructions. After incubation of
FastRed substrate (Warp Red Chromogen Kit, Biocare
Medical, California, U.S.A.), the slides were counterstained
with Gill’s hematoxylin.

Evaluation of the integrity of blood tissue barriers
Capillary permeability was evaluated by extravasation with

Evans blue (EB; Wako), as described previously [33]. The
infected chickens and normal chickens (n = 5) were
intravenously injected with 25 mg/kg of 2% EB dye in sterile
saline at 4 days after infection with Ty/Italy (n = 6), Ck/NL (n =
5), or Ck/Ibaraki (n = 5). After 3 h, the chickens were
exsanguinated and brains, lungs, hearts, spleens, kidneys, and
colons were collected. Portions of the tissues were soaked in
500 µl of formamide at 38°C for 24 h. The amount of EB in
supernatants was measured against a standard of 90%
formamide in saline at 630 nm using a Model 680 Microplate
Reader (Bio-Rad Laboratories, California, U.S.A.), and EB
levels (ng/g) were calculated for each tissue using a standard
curve.

Statistical analysis
Statistical analyses of results were made using unpaired,

parametric or non-parametric Student’s t-test. Differences were
considered statistically significant when P < 0.05.

Results

Pathogenicity of H7 HPAIVs in chickens
To compare the pathogenicity of Ty/Italy and CK/NL in

chickens, 106.0 EID50 of each virus was inoculated intranasally
into chickens. All the chickens inoculated with Ty/Italy showed
lethargy, inner hemorrhage of the unfeathered skin, edema of
the face and legs, and red conjunctiva from 2–3 dpi. These
symptoms worsened rapidly, and all chickens died by 4 dpi
(Figure 1). On the other hand, in the chickens infected with
Ck/NL, symptoms appeared at 3–4 dpi and half of the chickens
died at 6–7 dpi; and the others survived for the 12 observation
days. HI antibodies against homologous virus antigens were
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detected in the sera of the surviving chickens at titers of 512–
1,024.

Proliferation of HPAIVs and LPAIV in chickens
To compare the proliferation of Ty/Italy, Ck/NL, and Ck/

Ibaraki in the chickens, infectivity titers in the peripheral blood,
brains, lungs, and spleens of the chickens inoculated with each
of the 3 viruses were determined at 24, 48, 72, and 96 hpi
(Figure 2A–D). The Ty/Italy strain rapidly and extensively
replicated in all tissues examined, and the highest infectivity
titers were 107.0 to 108.0 EID50/g in the brain at 72–96 hpi. In
contrast, Ck/NL replicated more slowly than Ty/Italy in all the
chicken tissues, with infectivity titers 102-104 times lower than
those of Ty/Italy. Infectious viruses in the tissues of the
chickens inoculated with Ck/NL gradually decreased at 120
and 144 hpi (data not shown). Disease signs appeared in the
chickens inoculated with Ty/Italy at 48 hpi, and 1 bird died at 3
dpi and another at 4 dpi. The chickens inoculated with Ck/NL
showed mild disease signs after 72 hpi. On the other hand, no
chicken inoculated with Ck/Ibaraki showed any disease signs,
and only a small amount of viruses were occasionally

recovered from their lungs (Figure 2C) and spleens (Figure 2D)
at 48 and 96 hpi (≦101.8 to 103.7 EID50). At 120 and 144 hpi,
viruses were not recovered from the chickens inoculated with
Ck/Ibaraki (data not shown). These 3 avian influenza viruses
showed different patterns of virulence, and severe disease
signs were accompanied by rapid viral proliferation in the
chickens.

Expression of cytokine mRNA in the tissues of
chickens inoculated with HPAIVs or LPAIV

To examine cytokine responses to infection with each virus,
the mRNA expression of the inflammatory cytokines IFN-γ,
IL-1β, IL-6, and TNF-α and the antiviral cytokine IFN-α was
determined in the brains, lungs, and spleens of the chickens
inoculated with Ty/Italy, Ck/NL, or Ck/Ibaraki, respectively
(Figure 3A–C). Strong or moderate expression of cytokines
was observed in the tissues of the chickens infected with Ty/
Italy or Ck/NL, respectively. In particular, cytokine expression
was markedly elevated in brains (Figure 3A). The highest
cytokine expression was found at 48 hpi in the brains of the
chickens inoculated with Ty/Italy, with increase in IFN-γ, IL-1β,

Figure 2.  Comparison of HPAIVs and LPAIV proliferation.  After 106.0 EID50 of Ty/Italy, Ck/NL, or Ck/Ibaraki was intranasally
inoculated into chickens, peripheral blood (A), brains (B), lungs (C), and spleens (D) were collected every 24 h, and infectivity titers
were determined by inoculation of 10-day-old embryonated eggs. The mean values with corresponding standard errors from 3
chickens are shown. * p<0.05 between Ty/Italy and Ck/NL, ** p<0.05 between Ty/Italy and Ck/Ibaraki, + p<0.05 between Ck/NL and
Ck/Ibaraki.
doi: 10.1371/journal.pone.0068375.g002
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IL-6, TNF-α, and IFN-α levels by 21-, 286-, 1,179-, 7.0-, and
1,032-fold, respectively, compared to those of uninfected
chickens. Cytokines were also strongly expressed in the brain
at 96 hpi with Ty/Italy. In the brains of the chickens inoculated
with Ck/NL, IL-1β, IL-6, and IFN-α levels were increased by
28-, 49-, and 25-fold, respectively, at 72–96 hpi. The levels of
IFN-γ and TNF-α were not significantly changed after infection
with Ck/NL. In the lungs (Figure 3B) and spleens (Figure 3C),
the expression patterns of cytokines were similar to those in
the brain. The largest increase in mRNA expression was
observed in the lungs of the chickens inoculated with Ty/Italy or
Ck/NL, with 6.6- or 3.5-fold, 38- or 5.6-fold, and 16- or 6.3-fold
increase in IFN-γ, IL-6, and IFN-α, respectively. In the spleens
of the chickens infected with Ty/Italy or Ck/NL, IFN-γ, IL-6, and
IFN-α levels were increased by 132- or 58-fold, 276- or 103-
fold, and 98- or 15-fold, respectively. The increases of IL-1β
and TNF-α levels were not apparent in the lungs and spleens
of the chickens infected with Ty/Italy nor Ck/NL. It is noteworthy
that mRNA expression of IL-6 was most apparent among the 4
cytokines in each tissue of the chickens infected with HPAIVs.
In contrast, the level of cytokine expression was not
significantly high in each tissue of the chickens infected with
Ck/Ibaraki (≦3.5-fold). Thus, excessive cytokine responses
were observed in the chickens infected with HPAIVs.

Distribution of virus antigen in the brain
To investigate the distribution of virus antigen in the brains of

the virus-infected chickens, immunohistochemistry was
performed on brain sections at 48 and 96 hpi. The large
amount of antigen was detected throughout the cerebrum of
Ty/Italy-infected chickens at 96 hpi (Figure 4a). Antigen-
positive cells included neurons, ependymal cells, astrocytes,
oligodendrocytes, microglial, endothelial, and necrotic cells
(Figure 4b–d). In Ty/Italy-infected chickens, antigen was
detected on the brain section at 48 hpi. In contrast, viral
antigen-positive cells were not detected in the brains of the
chickens infected with Ck/NL nor Ck/Ibaraki at 48 and 96 hpi
(Figure 4e and f).

Distribution of IL-6 mRNA in the brain
Based on real-time PCR analyses, the IL-6 response was

most significant in the brains of the Ty/Italy-infected chickens.
Subsequent in situ hybridization identified microglial cells as
the main IL-6-producing brain cells, forming nodules or
scattering in the parenchyma. Consistent with PCR data, these
signals with nodules were frequently found in the sections from
the Ty/Italy-infected chickens obtained at 48 hpi (Figure 5a),
and were rarely found in these tissues at 96 hpi (Figure 5c). On
the brain section of Ck/NL-infected chickens, microglial nodules
were found at 96 hpi lacking IL-6 mRNA signals (Figure 5g). No
finding of microglial nodules or IL-6 mRNA positive cells was

Figure 3.  Comparison of cytokine mRNA expression.  Tissues were collected from 3 chickens per group every 24 h after
inoculation with 106.0 EID50 of HPAIVs or LPAIV, and cytokine mRNA expression in the brain (A), lungs (B), and spleen (C) was
analyzed using real-time PCR. Data are expressed as mean fold changes with standard errors relative to β-actin mRNA. Data of
dead chickens was eliminated from the results. * p<0.05 between Ty/Italy and Ck/NL, ** p<0.05 between Ty/Italy and Ck/Ibaraki, +
p<0.05 between Ck/NL and Ck/Ibaraki.
doi: 10.1371/journal.pone.0068375.g003
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observed in the brain of the Ck/Ibaraki-infected chickens
(Figure 5i and k).

Extravasation of EB in tissues of the chickens
inoculated with HPAIVs or LPAIV

To assess vascular permeability, EB dye was intravenously
injected into the chickens at 4 dpi with Ty/Italy, Ck/NL, or Ck/
Ibaraki. The brains (Figure 6A and B) and hearts (Figure 6D) of
the chickens infected with Ty/Italy turned blue, while those of
the chickens infected with Ck/NL remained normal color. Blue
spotted regions were particularly prevalent in 3 of the birds
infected with Ty/Italy (Figure 6A and B). The EB-stained hearts
were found in 2 of the 6 chickens infected with Ty/Italy (Figure
6D), while no staining was detected in the chickens inoculated
with Ck/NL. EB concentrations in the brains, hearts, spleens,
kidneys, and colons of the chickens infected with Ty/Italy were
significantly higher than those in the chickens infected with
Ck/NL (P < 0.05; Figure 7). Based on anatomical form, the
spotted region in chickens infected with Ty/Italy was identified
as the choroid plexus. Of note, focal necrosis of neuronal cells,
necrosis and cellular filtration into ependymal cell layers,
swollen choroid plexus, thrombus formation, and hemorrhage
were observed. For comparison, no extravasation of EB dye
was found in the Ck/Ibaraki infected or normal chickens (Figure
6C, 6E, and Figure 7).

Discussion

Rapid and extensive proliferation of viruses was
accompanied by rapid inflammatory and antiviral cytokine
responses in tissues of the chickens inoculated with Ty/Italy,
with severe capillary leakage in multiple organs during the
acute phase of infection. Only moderate viral proliferation and
cytokine responses were observed in the chickens inoculated
with Ck/NL, and no capillary leakage was observed in any
organ. Local and asymptomatic infection with the LPAIV Ck/
Ibaraki did not cause significant cytokine expression or
capillary leakage. These results indicate that differences in the
pathogenicity of Ty/Italy, Ck/NL, and Ck/Ibaraki depend on the
extent of the cytokine response, which appears proportional to
the proliferation of each virus in chickens. Other reports also
demonstrated the relationship between the pathogenicity of
HPAIVs and cytokine responses in chickens [20–22].

Gross lesions implying vascular damage, such as
hemorrhage of unfeathered skin and organ mucosa as well as
edema of the face and legs, has been found in chickens
infected with HPAIV [5]. In the present study, it was found that
severe EB extravasation in multiple organs, thrombus
formation, and hemorrhage in the brains of the chickens
infected with Ty/Italy, resulting in cardiovascular abnormality
and consequent multiple organ failure. Excessive cytokine
responses in chickens infected with HPAIV may be a critical
cause of systemic and local vascular damage. Inflammatory
cytokines cause a decrease in tight junction proteins between
endothelial cells, leading to hyper vascular permeability [34,35].
In addition, inflammatory cytokines such as IL-1β, IL-6, and

Figure 4.  Immunohistochemical analysis of viral antigens in the brain.  Viral antigen (brown signals) was detected in the Ty/
Italy-infected chickens at 96 hpi (a). Antigen-positive cells included neuronal cells (asterisks in b), endothelial cells (asterisks in c),
and ependymal cells (asterisks in d). Virus antigen-positive cells were not detected in the brains of the Ck/NL- (e) nor Ck/Ibaraki-
infected chickens (f) at 96 hpi. Original magnification, ×100: a, e, f; ×400: b, c, d.
doi: 10.1371/journal.pone.0068375.g004
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Figure 5.  IL-6 mRNA in the brain detected using in situ hybridization.  IL-6 mRNA expressing cells in the brains of the chickens
infected with Ty/Italy was determined by in situ hybridization. IL-6 signals, represented as red color, were mainly localized to the
microglial nodules on the section at 48 (a) and 96 hpi (c). The IL-6 mRNA was not detected in the brains of the Ck/NL-infected
chickens (e and g), nor in those of the Ck/Ibaraki-infected chickens (i and k). The consecutive sections of HE staining (b, d, f, h, j, l)
were examined by in situ hybridization (a, c, e, g, i, k), respectively. Original magnification, ×400.
doi: 10.1371/journal.pone.0068375.g005
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TNF-α activate coagulation systems in infection, trauma,
inflammation, and cancer [36]. Muramoto et al. [37]
demonstrated that H5N1 HPAIV infection caused activation of
tissue factor (TF) and coagulopathy in chickens. TF is
constitutively expressed in vascular smooth muscle cells and
fibroblasts, and it is produced in macrophages and endothelial
cells following stimulation with inflammatory cytokines [38].
Therefore, it is strongly suggested that edema of multiple
organs and coagulopathy in chickens infected with Ty/Italy
should be attributed to an excessive cytokine response.

However, the association of virus proliferation and cytokine
response in vivo has not been fully clarified. Microbial
components including genomes and proteins stimulate innate
immune system through pattern recognition receptors and
induce various inflammatory cytokines, which affects host
survival positively and negatively [39–43]. More significant
cytokine response and EB extravasations were found in the
brains and spleens than the lungs of the chickens infected with
Ty/Italy. The difference in the cytokine mRNA expression
among 3 tissues may be due to the nature of cells composing
each tissue. Indeed, spleen is a secondary lymphoid organ to
play a major role eliciting the immune responses, and brain
cells have high capacity of producing cytokines [44,45]. The
correlation of the extent of cytokine response and EB
extravasation in the tissues of the chickens infected with
HPAIV indicates that strong cytokine response affected host
negatively rather than positively in this chicken model. It has
been shown that inflammatory cytokines promote production of
intracellular proteases such as matrix metalloproteinases and
ectopic trypsins, which potentiate influenza virus proliferation
by efficient cleavage activation of the HA [46,47].

Avian immune system has not been fully understood. Birds
have a smaller repertoire of immune genes than mammals [48].
In this study, TNF-α response, which seems to be important
factor for severe influenza in mammals, was less significant
compared with the other cytokines in the chickens infected with

Figure 6.  Extravasation of EB dye in the tissues of the
chickens.  Four days after infection, EB dye was intravenously
injected into the chickens, and tissues were collected 3 h later.
Photographs show brains of the chickens inoculated with Ty/
Italy (A and B) or Ck/Ibaraki (C) and hearts of the chickens
inoculated with Ty/Italy (D) or Ck/Ibaraki (E).
doi: 10.1371/journal.pone.0068375.g006

Ty/Italy [14–16]. Further study will be needed to analyze the
role of chicken TNF-α in the HPAIV infection since there are
few papers dealing with TNF response in chickens on the
infection with avian influenza virus [30].

Among the cytokines examined in this study, IL-6 showed
most significant mRNA expression in the chickens infected with
HPAIVs. This strong IL-6 response was also found in the livers
and kidneys of the chickens infected with HPAIVs (data not
shown). Marked IL-6 responses have been found in cases of
severe HPAIV infection in humans and mice and in cases of
influenza virus infection-associated encephalopathy
[12,13,15,49,50]. IL-6 is produced by various types of cells and
regulates various biological activities, including immune
responses, acute and chronic inflammation, hemopoiesis, and
neurotrophy [51]. An IL-6-positive feedback loop, known as the
IL-6 amplifier, has been demonstrated and is characterized by
the activation of NF-κB and STAT3 in type I collagen+

nonimmune cells. This process causes chronic inflammatory
disease and transplant rejection, by leading to excessive
production of IL-6 and various chemokines [52,53]. In support
of these observations, IL-6 deficiency suppressed the
development of autoimmune diseases in mice, and treatments
with anti-IL-6 or anti-IL-6 receptor antibodies have cured these
disorders in some cases [54–60]. These findings imply that IL-6
may play a pivotal role in amplifying the excessive cytokine
response to influenza virus infection. Further investigations of
therapeutic efficacy of IL-6 suppression during HPAIV infection
in chickens are ongoing.

Although the mechanisms of influenza virus infection differ
between birds and mammals, excessive cytokine responses
and multiple organ failure followed by death are common to
many host species [11–13,20,22]. In the present study, a
strong cytokine response, especially IL-6, was accompanied by
marked accumulation of antigen in the brain of the chickens
infected with Ty/Italy, and microglial cells appeared to be the
dominant producer of IL-6. Microglial cells are bone-marrow-
derived macrophages and serve as the first defenders against
infectious agents or injury-related products in the central
nervous system [61]. Immunohistochemical analyses indicate
that microglial cells are stimulated by virus antigen to release
cytokines, including IL-6, and play a key role in driving the
excessive cytokine response in chickens infected with HPAIV.
Systemically, cells of the macrophage lineage are known as
dominant producers of cytokines. In addition, nonimmune cells
contribute to the amplification of cytokine responses in
chickens infected with HPAIV, although the mechanisms of
cytokine amplification have not been characterized in this
model. Hence, identification of cells that trigger abnormal
cytokine responses is critical to clarify the mechanisms behind
excessive cytokine production and to control severe influenza.
In mice, combined administration of antiviral drugs and
immunomodulators has been shown to have superior efficacy
than monotherapies for treatment of HPAIV infection [62].
These observations and the present findings suggest that the
balance of viral proliferation and cytokine responses is
important for the outcome of influenza virus infection. In this
study, we have elucidated mechanisms for the severity of
highly pathogenic avian influenza in chickens. These results,
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thus, should contribute to the development of therapeutic
measures for severe cases of influenza in humans.
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