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Abstract 

Materials and structures for water vapor barrier sealing are now actively studied, as the 

commercialization of organic electronic devices has become a reality.  In this paper, we focus on 

the edge sealing barriers, in which diffusion plays an essential role.  In the past, the diffusion-

limited gas barrier properties were analyzed in the steady-state approximation, which is never 

reached within the device lifetime in the application for organic electronics.  We analyze them 

using a simple analytical model.  The diffusion before reaching the steady state is a strongly non-

linear process, as is well known, and the length scale of approximately 1 - 10 mm is very important 

when a practical polymer resin is used for the edge seal.  
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1. Introduction 

Water vapor sealing is very important for organic electronics, since most of the cathode materials 

and n-type organic semiconductors are vulnerable to water molecules.  Efforts to make materials 

and structures with high gas barrier properties are essential for flexible electronics using organic 

materials.  Gas barrier sealing is currently pursued in two directions.  One is the front and 

substrate seal, or blocking at the surface [Fig.1 (a)].  The other is the edge seal with adhesive 

functions [Fig. 1(b)].  Since the front seal is technically more difficult and essential in flexible 

electronics, most of the past research was focused on it.  The water vapor transmission rate 

(WVTR) is a standard value for the characterization of the front barrier coating, and indicates the 

water mass transmitted through the barrier in a certain time.  This definition assumes steady-state 

permeation of water molecules.  The fact that WVTR is an experimentally well-defined value for 

characterizing the front seal
1,2

 indicates that the permeation through the front seal is a steady-state 

phenomenon.  This is probably because the front barrier coating is thin (usually < 1 m) but 

strongly water-blocking because of the deposited inorganic materials, and the pore size of pinholes 

in the coating is the limiting factor in the permeation.  With this assumption, it is understood that 

the diffusion process thourough the coating is not the rate determining factor, and thus the steady 

state, which is observable within 1-7 days if a sensitive detector is used, is reached during the 

measurement
 2
. 

  However, the gas barrier behavior through the edge seal [Fig.1 (b)] might be different from the 

steady state, because permeation distance is much greater (usually > 1 mm) and the sealant contains 

less-water-blocking polymer resin to allow adhesion.  An example of the micrograph of the edge 

seal material, which is composed of clay mineral flakes embedded in UV-curable epoxy resin, 

developed by one of the authors (MORESCO) is shown in Fig. 2.  The diffusion of gas molecules 

through the polymer is blocked by the clay mineral flakes and "the meander effect" or "tortured 

diffusion" is expected. 

    In this study, we analyze vapor transmission through a thick layer by diffusion, which models 

the edge seal.  The diffusion equation is solved analytically and numerically, and the asymptotic 
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behavior is discussed in detail.  Gas permeation through polymer composites has been studied for 

long time 
3-13

, but its analysis has been based on the assumption of the steady state.  Since the 

steady state is not reached within the device lifetime during the normal operation of gas barrier edge 

seals for organic electronics, as discussed in the following, the present results significantly differ 

from those of previous studies and various implications can be discussed.  Thus, we consider this 

work is worth reporting as a reference for industry sectors, even though the mathematical analysis is 

very simple and well known. 

 

2. Mathematical modeling 

First we consider a simple model of one-dimensional diffusion from the outside of the seal to the 

device side (Fig. 3).  The concentration of the permeating gas molecules (c) is a function of time (t) 

and position (x) [c(x,t)].  The outside is in an environment with a certain constant concentration of 

the permeating gas.  Thus, the concentration of the gas molecule at the outer surface (x=0) is 

constant (c(0, t)=c0).  It should be noted that c0 is proportional to the solubility of the gas into the 

sealing barrier material.  The concentration of the gas on the device side is zero at the beginning 

[c(d, 0)=0].  Since the concentration inside the device region should be uniform, c(x,t)=c(d,t) for x 

> d.  This condition is satisfied if 𝜕𝑐(𝑑, 𝑡)/𝜕𝑡 = 0.  The gas concentration on the device side at a 

given time [c(d, t)], which increases as the water vapor diffuses through the barrier, is the value that 

should be considered.  c(x, t) obeys the diffusion equation: 

  
𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
,        (1) 

where D is the diffusion constant of the gas in the sealing material.  With the initial and boundary 

conditions mentioned above, the solution of the diffusion equation can be approximated 

        (2) 

where "erfc" denotes the error function,  

),
2
(/),( 0

Dt

d
erfcctxc 



  

4 

 

     


y
s dseyerfc

0

22
1)(


.     (3) 

Equation (2) is valid if 𝜕𝑐(𝑑, 𝑡)/𝜕𝑡 resulting from it is negligibly small. 

The overall behavior of the concentration on the device side, determined by numerical calculation, 

which is exact within the line width of the curve, is plotted in Fig. 4.  We assumed D = 1 and d = 1 

for simplicity.  It should be noted that c(d,t) first increases very slowly (t < 0.2), reaches a nearly 

steady state (t ~ 2), and saturates (t > 5).  The previous studies dealt with the steady state assuming 

constant concentrations on each side, which approximately corresponds to t ~2 in Fig. 4.  The 

implication concerning the gas barrier properties will be discussed in the next section. 

 

3. Discussion 

Recent requirements for gas barrier sealing are very demanding.  In the case of ultrahigh barrier 

sealing for organic light emitting diodes (OLEDs), the allowed WVTR value is 10
-6

 g /m
2
/day.  

Considering the experimental finding that the best protecting polymers with 1 mm thickness show 

the WVTR value of 10
0
~10

-2
 g /m

2
/day, it is understood that the required WVTR value is far from 

that of steady-state permeation.  The initial slow permeation region shown in the inset of Fig. 4 

should be used for OLED applications.  In this region, t is small in Eq.(2), corresponding to a large 

value of the argument y of erfc [Eq.(3)]. 

  The asymptotic form of erfc is given as follows
14
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which leads to the following: 
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  The approximation by Eq. (5) is valid when c(d,t)/c0 << 1.  

Using the reported diffusion constant value of water molecules on epoxy resin (D = 10
-8

 cm
2
/s) 

15
, 

c(d,t)/c0 for small t was calculated from eq. (4) and plotted in Figs. 5(a)- 5(c).  If the length of the 
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sealing region (d) is 2 cm, water vapor will not be detected for ten days [Fig. 5(a): c/c0=10
-100

].  If d 

= 0.2 cm, water vapor will diffuse into the device region considerably (c/c0 =10
-2

) within two or 

three days.  If d = 0.02 cm, the diffusion is almost complete (c/c0 ~1) in 1h.  In Figs. 5(b) and 5(c), 

where the numerical results of erfc were available, they were plotted to show the error in 

approximation of Eq.(5).  These estimations of barrier properties are in reasonably agreement with 

our finding that edge sealing for OLED requires a substantial length of much more than 1 mm.  

This analysis indicates that it is very important to measure WVTR as the function of time and length 

(and thickness) of the sealant, and to derive the diffusion constant D from the fitting to enable a 

rationalized design of the edge seal dimensions. 

  Next we discuss the implication of the present analysis on the composite material shown in Fig. 2.  

The composite barrier resin gives an OLED device lifetime more than 2 times longer than other 

commercial edge sealants prepared using similar polymers but different inorganic fillers, which 

indicates that the effect of inorganic filler is important to the barrier property.  Suppose that 

inorganic flakes having the aspect ratio  (height / width, < 1) are mixed in the polymer to a volume 

fraction of f.  Then the diffusion must proceed while avoiding the flakes; this is called the "meander 

effect" or "tortured diffusion effect".  The effective diffusion length d' is given by the geometrical 

consideration 
8,16

 

 d' ~ 


 f d,       (6) 

where d is the actual length of the edge seal.  Assuming  is 0.01 and f is 50%, d' becomes 50 d.  

The enhancement factor for the diffusion-limited barrier is more than single power of d, as indicated 

in Fig. 5, and the resulting improvement of the sealing properties can be very large. 

  The gas permeation rate in the inorganic-organic composite has been analyzed assuming the 

steady state
3-4

.  The permeation rate was proportional to the diffusion constant in that case, which is 

different from the present analysis.  The apparent diffusion constant in the composite is modified to 

the value D' , which is given by a geometrical consideration of the meander effect as follows
3-4

: 

  𝐷′ = 𝐷𝛼2(1 − 𝑓)𝑓−2 ,      (7) 

where D is the diffusion constant of the gas molecule in the polymer, and 𝛼 and f have the same 
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meanings as above.  Assuming 𝛼 =0.01 and f = 50% will reduce the permeation by 5000.  

Although this value is large enough to account for the experimental results
3-5

, the effect of inorganic 

flakes can be much greater in the sub-steady-state diffusion discussed above.  Further drastic 

reduction in the length of the edge seal may be achieved, if the materials and structures are properly 

designed. 

 

4. Conclusions 

   We have presented a mathematical analysis of the gas barrier when diffusion is the limiting factor, 

which is important for the edge seal of organic devices.  In the region of ultrahigh barriers used for 

OLED applications, diffusion never reaches the steady state and it should be analyzed carefully.  

We found that the concentration of the permeated gas on the device side is strongly dependent on the 

diffusion distance.  This behavior reveals the dominant contribution to be the effect of inorganic 

flake filler blended in the polymer adhesive, which should be considered in the design of the edge 

seal. 
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Figure captions 

Fig. 1:  Front seal and edge seal of organic electronic devices. 

 

Fig.2: SEM image of epoxy resin containing high concentration of layered clay flakes in 

gas barrier edge seal. 

 

Fig.3: Model of gas barrier edge seal. A: Outside atmosphere. B: Edge seal (thickness 

d). C: Device region. 

 

Fig. 4: Overall behavior of solution c(d,t) of diffusion equation when D = 1 and d = 1.  

Inset is shows enlargement of the small t region. 

 

Fig. 5: Estimation of gas permeation in the initial stage of diffusion-limited edge seal.  

Solid lines: numerical solutions. Dotted lines: approximation by Eq. (5). It was assumed 

that  D = 10-8 cm2/s. 
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Fig. 1:  Front seal and edge seal of organic electronic devices. 
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Fig.2: SEM image of epoxy resin containing high concentration of layered clay flakes in 

gas barrier edge seal. 
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Fig.3: Model of gas barrier edge seal. A: Outside atmosphere. B: Edge seal (thickness 

d). C: Device region. 
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Fig. 4: Overall behavior of solution c(d,t) of diffusion equation when D = 1 and d = 1.  

Inset is shows enlargement of the small t region. 
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Fig. 5: Estimation of gas permeation in the initial stage of diffusion-limited edge seal.  

Solid lines: numerical solutions. Dotted lines: approximation by Eq. (5). It was assumed 

that  D = 10-8 cm2/s. 

 


