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Abstract 18 

Increasing threats posed by overfishing and dams to wild migratory fish make understanding their 19 

migration patterns essential. Telemetry is a useful technique for elucidating salmon behaviour, but the recovery 20 

periods before fish can be safely released after the attachment of telemetry devices have not yet been 21 

established. Reported recovery times vary widely, from 2 h to 13 d. We examined how anaesthesia and surgery 22 

to attach external electromyogram (EMG) transmitters affected chum salmon (Oncorhynchus keta) recovery 23 

based on three physiological parameters. Fish subjected to anaesthesia plus EMG transmitter attachment 24 

(EMG group), anaesthesia only (AO group), and no handling (control) were placed in a swim tunnel. Critical 25 

swimming speed (Ucrit), oxygen consumption (MO2), and muscle activity (EMG values) were assessed 0, 1, 6, 26 

12, 24, and 30 h after treatment. The MO2 in the EMG and AO groups was higher than in the control group 1 27 

h after treatment, but the Ucrit and EMG values were not significantly different from the control group at any 28 

other sampling time. We concluded that chum salmon had fully recovered their swimming ability by 1 h after 29 

treatment and could be safely released into the natural environment. 30 

 31 
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Introduction 33 

Understanding the migratory patterns of fish is critically important because of increasing threats posed by 34 

human activities, such as overfishing and dam construction. Telemetry is a useful technique for elucidating 35 

fish behaviour in the wild (McKinley and Power 1992; Økland et al. 1997; Hinch and Rand 1998; Cooke et al. 36 

2004). Telemetry research on fish involves anaesthesia, surgery, and recovery, followed by either release into 37 

the field for behavioural tracking or laboratory experiments (Weatherley et al. 1982; Økland et al. 1997; 38 

Hinch and Bratty 2000). Following anaesthesia and surgery, all adult Pacific salmon, including sockeye 39 

(Oncorhynchus nerka (Walbaum 1792)), masu (O. masou (Brevoort 1856)), pink (O. gorbuscha (Walbaum 40 

1792)), and chum (O. keta (Walbaum 1792)), initially exhibit abnormal behaviour (i.e., wide gill flapping) 41 

and require more than ten minutes to regain normal orientation in the water (i.e., dorsal fins positioned 42 

vertically) after regaining consciousness. However, longer holding periods stress fish and result in both higher 43 

mortality rates (Donaldson et al. 2011) and a greater risk of damage to or detachment of telemetry equipment 44 

(Bridger and Booth 2003). Therefore, pre-spawning fish should be released as soon as possible after telemetry 45 

equipment attachment. 46 

Reported recovery periods after transmitter attachment range from 2 h to 13 d before release into the field 47 

(Beddow and McKinley 1999; Akita et al. 2006; Enders et al. 2007; Scruton et al. 2007; Makiguchi et al. 48 

2008; Pon et al. 2009; Clark et al. 2010; Cocherell et al. 2011), although some studies relied only on visual 49 

observations of fish behaviour. Although there have been many reports on the physiological effects of 50 

anaesthesia (Keene et al. 1998; Woody et al. 2002; Perdikaris et al. 2010), the time required for fish recovery 51 

following the attachment of telemetry devices remains unresolved. 52 

Transmitters can be attached externally, inserted intragastrically, or implanted into the abdominal cavity 53 

of fish (Bridger and Booth 2003). External attachment causes the most hindrance to swimming (McCleave 54 

and Stred 1975; Adams et al. 1998; Makiguchi and Ueda 2009), impairs swimming stability (Bridger and 55 

Booth 2003), and increases oxygen consumption (Steinhausen et al. 2006). Moreover, externally-attached 56 

transmitters may cause serious damage to the muscles and scales of fish (Mellas and Haynes 1985; Bridger 57 

and Booth 2003). Therefore, recovery following surgery to attach an external transmitter would be expected 58 

to take longer than surgery to implant other types of transmitter and can establish an upper limit on safe 59 
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recovery times. 60 

We assumed that full recovery of fish after the attachment of telemetry devices is indicated by 61 

physiologically-normal swimming activity. Therefore, this study evaluated the time required for chum salmon 62 

to recover swimming ability after anaesthesia and EMG transmitter attachment; chum salmon are the most 63 

popular target for fish telemetry studies in Japan (Kitahashi et al. 2000; Tanaka et al. 2005; Akita et al. 2006; 64 

Makiguchi et al. 2011). The fish were physiologically assessed based on critical swimming speed (Ucrit), 65 

oxygen consumption (MO2), and muscle activity in a swim tunnel. Our methods provide baseline data on 66 

physiological recovery time in salmon after anaesthesia/surgery. 67 

 68 

Materials and methods 69 

Fish capture, handling, and experimental conditions 70 

Twenty-six adult chum salmon (mean ± SE; fork length: 62.3 ± 4.1 cm; body weight: 2.66 ± 0.61 kg) of 71 

both sexes were captured using a waterwheel located about 70 km from the mouth of the Chitose River of 72 

western Hokkaido, Japan, during their upstream spawning migration. Experiments were conducted at the 73 

Chitose Salmon Aquarium in September and December 2010. Fish were individually transferred to compact 74 

fish cages (L × W × H = 1.8 × 0.9 × 0.6 m) in an artificially-flowing stream. Fresh Chitose River water was 75 

used in all experiments. 76 

Fish were subjected to one of three treatments, each with an equal number of males and females: control 77 

(n = 12; fork length: 61.6 ± 4.8 cm; body weight: 2.55 ± 0.64 kg), anaesthesia only (AO group; total n = 6; 78 

fork length: 64.2 ± 4.3 cm; body weight: 3.08 ± 0.74 kg), and anaesthesia with EMG transmitter attachment 79 

(EMG group; n = 8; fork length: 62.0 ± 2.5 cm; body weight: 2.50 ± 0.30 kg). Control fish were exposed to 80 

air for a few seconds during transfer to the swim tunnel. The EMG group was anaesthetized with 0.5 ml L-1 81 

FA100 (eugenol; Tanabe Seiyaku, Osaka, Japan) for about 8 min, then EMG transmitters were attached 82 

externally using a standard procedure developed by Makiguchi et al. (2011). Briefly, EMG transmitters 83 

(CEMG-R11, Lotek Engineering, Newmarket, Ontario, Canada: 18.0 g, 16.0 mm diam., 53.0 mm long) were 84 

pushed through the dorsal muscle using nylon ties, and Teflon-coated electrodes with brass muscle-anchoring 85 

tips (dimension 5 × 1 mm) were inserted subcutaneously using a hypodermic needle at approximately 0.7× 86 
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the body length on the left side of the fish. Paired electrode tips were positioned approximately 10 mm apart 87 

and secured in the lateral red muscle toward the rear of the fish. The surgery took about 7 min, during which 88 

the fish were exposed to air and their gills were irrigated. The AO group was anaesthetized as described above 89 

then held in air with gill irrigation for 7 min to control for the exposure time of surgery. The anaesthetic fluid 90 

was rinsed off with water, and fish were evaluated immediately after anaesthesia/surgery.  91 

Determination of critical swimming speeds (Ucrit) 92 

A swim tunnel (West Japan Fluid Engineering Laboratory Co. Ltd, Nagasaki, Japan) was used to 93 

measure Ucrit, MO2, and muscle activity (Fig. 1). The swim tunnel was sealed with an acrylic board to prevent 94 

gas exchange, and fresh river water was pumped into it before each trial. The water temperature during all 95 

experiments ranged from 12.1 to 14.7ºC. Within any one experiment, water temperature varied by ≤ 1ºC. 96 

The Ucrit quantifies the sub-maximum and largely aerobic swimming ability of fish and is approximately 97 

the speed at which fish become fatigued during incremental velocity trials (Brett 1964, 1967; Hammer 1995). 98 

Experimental fish were individually assessed for Ucrit as a gauge of recovery. In each Ucrit trial, the initial flow 99 

velocity (V) of 0.350 body lengths (BL) s-1 was increased by 0.175 BL s-1 every 15 min until the fish were 100 

fatigued and became lodged at the end of the swimming section of the tunnel. Flow velocity and the point of 101 

fatigue within the terminal 15-min period were used to calculate Ucrit, normalized for BL, as described by 102 

Brett (1964):  103 

Ucrit = U + [(T Ti-1) Ui]  (1) 104 

where U is the flow velocity, corrected to account for the solid blocking effects (Gehrke et al. 1990) described 105 

by Bell and Terhune (1970), at which the fish last swam for the full 15-min period; Ui is the velocity 106 

increment (0.175 BL s-1); T is the length of time in minutes that fish were able to swim at the terminal flow 107 

velocity that produced fatigue, and Ti is the time between velocity increments (900 s).  108 

In total, six trials were conducted, at 0, 1, 6, 12, 24, and 30 h after anaesthesia/surgery. Because each 109 

Ucrit measurement took more than an hour, the fish used in the first trial were not used again. The same 110 

individuals were used in each of the second to sixth trials. In the first trial, the fish were immediately 111 

measured for Ucrit, with no acclimatization period. Before the second trial, the fish were allowed to acclimate 112 

to a current velocity of V = 0.175 m s-1 for 1 h before the trial began. Fish were allowed to rest for ~2–3 h 113 
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between trials. Wagner et al. (2005) reported that fish that rested for 45 min between Ucrit trials had similar 114 

oxygen consumption values in both trials. Thus, we assumed that a resting period of 2–3 h between trials was 115 

sufficient for independent measurements of Ucrit and MO2. 116 

Measurement of oxygen consumption (MO2) 117 

To measure MO2 of fish during the trials, oxygen concentration in the swim tunnel was measured at 118 

1-min intervals using a U-50 Multiparameter Water Quality Meter (Horiba Ltd., Kyoto, Japan) housed in a 119 

flow-through outside the swim tunnel (Fig. 1d, e). Before the fish were introduced, the swim tunnel was 120 

operated to remove air bubbles, and oxygen levels in the tunnel were replenished with fresh river water 121 

between trials. Oxygen consumption per 15-min period for each fish was calculated as the difference in 122 

oxygen concentration between the start and end of the period. The MO2 (mg O2 kg-1
 h

-1) for individual fish 123 

during a velocity increment was calculated as MO2 = [O2] v m-1, where the change in oxygen concentration 124 

[O2] is measured in mg·O2 per l–1 h–1, v is the water volume of the swim tunnel (L), and m is the body mass of 125 

the fish (kg). 126 

Measurement of EMG values 127 

Muscle activity in the EMG group was monitored with EMG transmitters. The EMG voltage was 128 

calibrated and sampled at 2-s intervals. At the end of each 2-s interval, the average value was assigned a 129 

unitless activity level (EMG signal) ranging from 0 to 50 and then transmitted to a radio receiver (model 130 

SRX_600, Lotek Engineering Inc., Newmarket, Ontario, Canada). The mean EMG value was calculated for 131 

each swimming velocity and mean and coefficient of variation (CV) were calculated for each trial and for the 132 

acclimatization period. 133 

Data analysis and statistics 134 

Data are presented as the mean ± the standard error (SE). One-factor ANOVAs were performed to assess 135 

differences in Ucrit, MO2, and EMG value among trials (using flow velocity as the factor) and among 136 

treatments (using treatment as the factor). Control fish did not have EMG transmitters, so EMG values were 137 

lacking for this group. The MO2 data for three treatments in trials 2–6 were subsequently analysed by the 138 

Tukey-Kramer test. The EMG CV was analysed using one-factor ANOVA with trial as the single factor. 139 

Statistical significance was set at P < 0.05. Statistical analysis was performed using Excel 2007 (Microsoft, 140 
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Redmond, WA, USA) with the add-in Statcal3 (Yanai 2011). 141 

 142 

Results 143 

There were no significant differences (Ucrit: P > 0.05) between the sexes in any experiment, so male and 144 

female datasets were combined for each treatment.  145 

Critical swimming speed (Ucrit) 146 

The Ucrit values for each trial are shown in Fig. 2. In the first trial, the fish in the AO and EMG groups 147 

were not able to wake and swim forward for several minutes (fish remained upside down or slanted, AO 148 

group: 5.13 min ± 4.20; EMG group: 10.39 min ± 7.08). To recover normal orientation, the fish required a 149 

further 20 min after being placed in the swim tunnel. Therefore, Ucrit could not be measured in these fish in 150 

trial 1. For the control group, there were no significant differences in average Ucrit between the first and 151 

subsequent trials (P > 0.34 in all comparisons). No significant differences in average Ucrit were found among 152 

treatment groups in any of the subsequent trials (P > 0.37 in all comparisons). Thus, after anaesthesia/surgery, 153 

fish regained normal swimming ability within 1 h.  154 

Oxygen consumption (MO2) 155 

For the control group, there were no significant differences in average MO2 between the first and 156 

subsequent trials (P > 0.17 in all comparisons). Significant differences were found in MO2 among all 157 

treatments in trial 2 (Fig. 3; P < 0.01 or 0.05), but no significant differences were found in MO2 among any 158 

treatment groups in the other trials (P > 0.09 in all comparisons). For both AO and EMG groups, MO2 in the 159 

first trial (Fig. 3b) differed from subsequent trials (Fig. 3c–f), in which MO2 increased with swimming speed, 160 

although there were minor variations. In the AO and EMG groups, MO2 levels were higher immediately after 161 

acclimatization (at V = 0.175 BL s-1) than at Ucrit (Fig. 3b). Oxygen consumption in the first trial of the EMG 162 

group declined over the first 1.25 h of the trial (until V = 1.05 BL s-1), but stabilized thereafter. In the AO 163 

group, MO2 decreased over the first 30 min of the first trial (until V = 0.525 BL s-1), then began to slowly 164 

increase, as in the control. In all post-anaesthesia/surgery trials, maximum MO2 at Ucrit was approximately 6-7 165 

mg O2 kg-1 h-1. 166 

EMG values 167 
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Muscle activity (EMG values) in the EMG group increased with flow velocity in all trials (Fig. 4), and 168 

there were no significant differences among trials (P > 0.99 in all comparisons). The CV of the EMG values 169 

varied during the acclimatization phase more than in other phases, but no significant differences were 170 

observed (P > 0.77 in all comparisons) in the subsequent trials (Fig. 5). 171 

 172 

Discussion 173 

We evaluated the time needed for chum salmon to regain full physiological swimming ability (as 174 

measured by Ucrit, MO2, and EMG values) after anaesthesia and surgery for EMG transmitter attachment. 175 

Mean Ucrit values were approximately 1.5 BL s-1, comparable to the 1.6 BL s-1 reported for adult chum salmon 176 

by Makiguchi et al. (2008) and for coho salmon (O. kisutch (Walbaum 1792)) by Lee et al. (2003). We found 177 

no significant differences in mean Ucrit values between the EMG group and either the control or AO groups in 178 

any of the five trials conducted between 1–30 h after anaesthesia/surgery. We conducted similar research 179 

using adult rainbow trout (O. mykiss (Walbaum 1792), total n = 28, 14 males, 14 females; mean ± SE; fork 180 

length: 52.0 ± 4.1 cm; body weight: 1.53 ± 0.36 kg) and found that swimming ability was also regained within 181 

1 h after anaesthesia/surgery (unpublished data). Our fish required 5–10 min to recover normal orientation 182 

after anaesthesia/surgery. In comparison, Lacroix et al. (2004) reported that juvenile Atlantic salmon began to 183 

recover from anaesthesia about 2–3 min after being returned to fresh water and fully regained equilibrium and 184 

darting behaviour within 60 min. Meka et al. (2003) reported that adult rainbow trout could be released 185 

~20–30 min after the start of anaesthesia/surgery, which took ~5–6 min. Obviously, the recovery period must 186 

be determined for each species and life stage prior to release. 187 

The MO2 of the EMG and AO groups were substantially higher than the control 1 h after 188 

anaesthesia/surgery. The fact that both groups had elevated MO2 levels indicated that the 7 min of exposure to 189 

air affected the fish. Because the decline in MO2 stopped 1.5 h into the trial (when V = 1.05 BL s-1; MO2: 6.0), 190 

we can assume that the effects of surgery had receded by this time. The MO2 values were no longer 191 

significantly different from the control at V=0.700 BL s-1 (P > 0.09). As fish swim faster, their active 192 

metabolic rate increases (Brett 1964; Wagner et al. 2006), and MO2 should increase as well. In all subsequent 193 

trials, MO2 tended to increase with flow velocity and did not differ significantly among the control, AO, and 194 
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EMG treatments, indicating that the fish had fully recovered from anaesthesia/surgery. 195 

Maximum oxygen uptake is generally accepted to occur at Ucrit (Farrell and Steffensen 1987), when 196 

maximum aerobic capacity can be estimated (Hammer 1995). In none of our trials did the MO2 values at Ucrit 197 

differ among treatments. Moreover, the increase in MO2 appeared to slow or even reverse immediately before 198 

Ucrit was reached, similar to findings in chinook salmon (Geist et al. 2003). In all cases, the EMG group 199 

consumed substantially more oxygen 1 h after anaesthesia/surgery than in subsequent trials, but because 200 

neither Ucrit nor MO2 at Ucrit differed from the control in the first trial, we concluded that the elevated MO2 201 

value did not affect swimming activity. 202 

In all post-surgery trials, EMG values in the EMG group increased with flow velocity, in agreement with 203 

the report of Makiguchi et al. (2011) demonstrating that EMG values in chum salmon increased with 204 

swimming speed. There were no significant differences in average EMG values among trials. These results 205 

indicate that muscular activity in fish attached with EMG transmitters had recovered to normal levels within 1 206 

h of anaesthesia/surgery. In addition, no significant differences in the EMG value CV were found among 207 

trials. During the acclimatization period (0–1 h) when the fish were waking, there was substantial variation in 208 

EMG values. 209 

This study provided clear evidence that chum salmon that migrated to the Chitose River to spawn 210 

recovered within 1 h from both anaesthesia and surgery to attach external EMG transmitters, as indicated by 211 

three physiological measures, normal swimming behaviour, Ucrit, MO2, and EMG values. Their swimming 212 

ability remained stable thereafter. Thus, we concluded that chum salmon can be used for telemetry 213 

experiments 1 h after the attachment of an external transmitter without significant physiological disability. 214 

Our findings are likely to apply to intragastric and abdominally-implanted transmitters as well, because 215 

external transmitters are more likely to affect swimming ability (McCleave and Stred 1975; Adams et al. 216 

1998; Makiguchi and Ueda 2009). Thorstad et al. (2000) reported no differences in swimming endurance of 217 

adult Atlantic salmon among control fish, those with small or large external dummy transmitters, or fish with 218 

surgical implants.  219 

The importance of telemetry in understanding fish migration ensures that the number of telemetry studies 220 

will continue to increase as the devices become more compact and affordable. A variety of anaesthetics and 221 
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equipment will be used on different species in different conditions, including water temperature, and fish age 222 

class (e.g., young, adult, spawning), and behavioural phase (e.g., downstream versus upstream migration), that 223 

might affect recovery time. Pike, for example, recovered quickly when anesthetized at 12°C, but required 224 

several hours to fully recover when anaesthetized at temperatures of <2°C (Jepsen et al. 2001). Our method 225 

should prove practical in evaluating a range of species under many different conditions. We are convinced 226 

that proper use of telemetry, including reasonable recovery and release times, will yield high quality data that 227 

will help to resolve various problems for migrating salmon, including fishways (Roscoe et al. 2011), dams 228 

(Cocherell et al. 2011), and global climate change (Hasler et al. 2012). 229 

In summary, the current research showed that chum salmon had fully recovered from surgery to attach 230 

external telemetry equipment within 1 h. This study was the first to attempt to understand the physiological 231 

effects of anaesthesia/surgery on the recovery of chum salmon. The results provided baseline information on 232 

appropriate release times for chum salmon after the attachment of telemetry devices. Furthermore, our 233 

methods should be widely applicable to other species, types of telemetry device, and environmental 234 

conditions. 235 
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Figure Legends 366 

Fig. 1 Swim tunnel used in the swimming trials (length: 1.5 m; diam.: 0.3 m). Water flow was generated 367 

using a voltage-controlled motor and propeller, with the voltage calibrated against flow velocity. (a) 368 

Anticlockwise water flow with a water volume of 450 L. (b) Swimming area (L = 1.5 m). (c) Water 369 

quality sensor. (d) Water quality indicator/data logger. (e) Flow velocity controller. (f) Voltage-controlled 370 

motor and propeller. (g) Cooler. The water temperature was set at 12°C 371 

 372 

Fig. 2. Relationship between the trials after anaesthesia/surgery and Ucrit in chum salmon (N = 6–12 per 373 

treatment). Immediately after anaesthesia/surgery, fish in the anaesthesia only (AO) and EMG transmitter 374 

attachment (EMG) groups could not swim, so their Ucrit could not be measured in the first trial at 0 h. 375 

Subsequent trials were begun 1, 6, 12, 24, and 30 h after anaesthesia/surgery. None of the measured Ucrit 376 

values were significantly different from any other (P > 0.05). 377 

 378 

Fig. 3. Relationship between flow velocity and oxygen consumption (N = 6–12 per treatment). Immediately 379 

after anaesthesia/surgery, fish in the anaesthesia only (AO) and EMG transmitter attachment (EMG) 380 

groups could not swim, so their MO2 could not be measured in the first trial at 0 h. Subsequent trials were 381 

begun 1, 6, 12, 24, and 30 h after anaesthesia/surgery. Except in trial 2 (begun 1 h after 382 

anaesthesia/surgery), oxygen consumption increased with flow velocity. For trial 2, significant 383 

differences were found until V = 0.525 BL s-1 (*P < 0.05, **P < 0.01 by one-factor ANOVA followed by 384 

the Tukey-Kramer test). 385 

 386 

Fig. 4. Relationship between flow velocity and muscle activity (EMG value) in fish with externally-attached 387 

EMG transmitters (N = 8). Trials were begun 1, 6, 12, 24, and 30 h after anaesthesia/surgery. For each 388 

flow velocity in each trial, five EMG values were averaged. Muscle activity increased with flow velocity 389 

in all trials, and no significant differences were observed among trials at each flow velocity (P > 0.05).  390 

 391 

Fig. 5. Relationship between the trials after anaesthesia/surgery and the mean coefficient of variation (CV) of 392 
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the EMG value. Although substantial variation in the EMG CV occurred during the acclimatization 393 

period (~0–1 h) after anaesthesia/surgery, no significant differences were observed in EMG CV (P > 394 

0.05). 395 

396 
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Fig. 2 407 
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Fig. 3 419 
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Fig. 4 440 
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Fig. 5 452 
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