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Abstract

MIDACO is a general-purpose software for solving mathematical optimization problems. The
software implements an extended ant colony optimization algorithm, which is a heuristic
method that stochastically approximates a solution to the mathematical problem. MIDACO
can be applied on purely continuous (NLP), purely combinatorial (IP) or mixed integer
(MINLP) optimization problems. Problems may be restricted to nonlinear equality and/or
inequality constraints. The objective and constraint functions are treated as black box by MI-
DACO. This user guide provides essential information on understanding the MIDACO screen
and solution �le output, how to adopt a problem to the MIDACO format and how to solve it
with MIDACO (including parameter tuning and parallelization options).
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1 Introduction

MIDACO is a heuristic solver for mixed integer nonlinear programming (MINLP) problems. The
mathematical formulation of a general MINLP is stated below in (1), where f(x, y) denotes the
objective function to be minimized and gi(x, y) represents the vector of equality and inequality
constraints. The components of the vector x are the continuous decision variables and the com-
ponents of the vector y are the discrete decision variables. Furthermore, some box constraints as
lower bounds xl , yl and upper bounds xu , yu on the decision variables x and y are stated in (1).
MIDACO considers the function f(x, y) and g(x, y) as black box and does not require them to
hold any particular property (like convexity, smoothness or di�erentiability).

Minimize f(x, y) (x ∈ Rncon , y ∈ Znint , ncon, nint ∈ N)

subject to: gi(x, y) = 0, i = 1, ...,me ∈ N
gi(x, y) ≥ 0, i = me + 1, ...,m ∈ N
xl ≤ x ≤ xu (xl, xu ∈ Rncon)

yl ≤ y ≤ yu (yl, yu ∈ Nnint)

(1)

Note that in the MIDACO software the distinction between continuous variables and discrete vari-
ables is not indicated by the name (x or y). In the MIDACO software only one vector of decision
variables is considered and called X. The �rst entries of this vector represent the continuous vari-
ables, while the last entries represent the discrete (also called integer or combinatorial) variables.
See Section 3 Figure 4 for an example on the distinction between variable types in X.

The MIDACO algorithm is based on an evolutionary metaheuristic called Ant Colony Optimization
(ACO), which was extended to the mixed integer search domain in [7]. The ACO algorithm in
MIDACO is based on a so called multi-kernel gaussian probability density functions (PDF), which
generate samples of iterates (called Ants). For integer decision variables, a discretized version of
the PDF is applied. Figure 1 illustrates a Gauss PDF with three individual kernel PDF's.

Figure 1: Continuous (left) and discretized (right) multi-kernel Gauss PDF
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Constraints are handled within MIDACO by the recently introduced Oracle Penalty Method. This
is an advanced method that was developed especially for heuristic search algorithms (like ACO,
GA or PSO). This method aims on �nding the global optimal solution by using a parameter called
Oracle (or Omega in [9]), which corresponds directly with the objective function value f(x, y). The
method is self-adaptive and therefore MIDACO can also be classi�ed as a self-adaptive algorithm.
Figure 2 illustrates the shape of the extended oracle penalty function depending on the objective
function value f(x, y) and the residual value res(x, y), which represents the constraint violation of
g(x, y).

Figure 2: Shape of the extended oracle penalty function

The scope of this user guide is to provide practical information on how to solve an optimization
problem with the MIDACO software. Readers who have a deeper interest in the theoretic details
of the ACO algorithm within MIDACO can �nd more information in several publications (e.g.
[7] or [8]), whereas [11] provides the most comprehensive and detailed explanation (including a
simple step by step example). Detailed information on the development and properties of the
oracle penalty method can be found in [9].
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As the class of MINLP problems cover purely continuous (NLP) and purely integer (IP) problems,
MIDACO can be applied on a wide range of optimization problems. Successful applications of the
MIDACO algorithm have been conducted for example on interplanetary space mission planning
[12], [3], design and control of launch vehicles [12], satellite constellations [14], chemical plant layout
[8], waste water treatment [8], optimal camera placement in robotics [4], distance-to-default models
in �nance [1], power allocation in wireless networks [2], structural optimization of submarines [15]
or parameter optimization in Bio-Technology [5].

MIDACO implements several heuristics to allow the search algorithm to escape from local optima
and explore the entire search space in order to �nd the global optimum. However, like all heuristic
algorithms, MIDACO can not provide an absolute guarantee for reaching the global optimal solu-
tion. The main motivation behind MIDACO is to provide a robust software tool that can optimize
complex real world applications in a reasonable time to a reasonable good solution. Extensive
numerical test show (see [10] or [9]), that MIDACO is able to obtain global optimal solutions
for easy to medium di�cult MINLP benchmark problems mostly within Seconds or Minutes. A
collection of general global optimization problems (including well known NLP benchmarks like
Rosenbrock or Rastringin) that can be solved by MIDACO are available at the MIDACO bench-
mark website. Please note that the MIDACO runtimes and capabilities (e.g. number of variables
or number of constraints) considered at the MIDACO benchmark website are at the state of the
art for evolutionary computing.

For problems that are cpu-time expensive (this means, the evaluation of the objective and/or con-
straint functions requires a signi�cant amount of time), MIDACO o�ers an e�cient parallelization
strategy: MIDACO allows to evaluate the problem functions for several solution candidates in
parallel. This strategy can signi�cantly reduce the overall optimization time. The parallelization
strategy in MIDACO is implemented by reverse communication which is a very robust and portable
concept. Due to this portability, MIDACO can o�er its parallelization strategy in several program-
ming languages for several architectures, including C/C++ (openMP, openMPI, GPGPU), Matlab
(parfor) and Python (multiprocessing, openMPI). Examples of MIDACO running in parallel mode
can be found on the MIDACO parallelization website.

This user guide is structured as follows: In Section 2 all elements of the MIDACO output are
explained and information on the PRINTEVAL parameter are given. In Section 3 the problem
format as it is assumed by MIDACO is explained in detail. In Section 4 the di�erent available
stopping criteria for MIDACO are described. In Section 5 the available parameters to tune the
MIDACO performance are discussed. In Section 6 some remarks on the parallelization options for
MIDACO are given. In Section 7 a complete list of ILFAG messages is displayed.

This user guide assumes that the reader has already successfully downloaded and executed one
of the small example problems that are distributed together with the limited MIDACO version,
available here. Running these examples should be straight forward. However, if you experienced a
problem nevertheless, please consult the MIDACO troubleshooting website or contact the authors
directly. Answers to speci�c questions can also be found on the MIDACO FAQ website.
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2 MIDACO Screen and Solution File

MIDACO produces two output �les:

MIDACO_SCREEN.TXT and MIDACO_SOLUTION.TXT

Figure 3: MIDACO Screen and Solution File

Abbreviations used in the MIDACO screen and solution �le are explained in Table 1.

The MIDACO screen �le is identical to the output displayed on the console/comand window. The
MIDACO screen and solution �le layout is identical in all programming languages.

5



Table 1: Abbreviations used in the MIDACO screen and solution output �les (Figure 3)
N Number of variables in total
NI Number of integer variables 0 ≤ NI ≤ N
M Number of constraints in total
ME Number of equality constraints 0 ≤ ME ≤ M
MAXEVAL Maximum number of function evaluation (stopping criteria, see Section 4)
MAXTIME Maximum cpu-time budget for execution (stopping criteria, see Section 4)
PRINTEVAL Print frequency of the current best solution
SAVE2FILE Create text-�le output [ 0=No, 1=Yes ]
PARAM Parameter for MIDACO tuning (default = 0, see Section 5)
EVAL Number of performed function evaluation
TIME Number of performed cpu-time Seconds
F(X) Current best objective function value, found after EVAL function evaluation
VIO Violation of constraints: measured as L1-Norm (Wikipedia) over vector G
IFLAG Information �ag used by MIDACO to indicate �nal status, warnings or errors
G(i) Numerical value for individual constraint Gi

X(i) Numerical value for individual solution variable Xi

The BOUNDS-PROFIL is a graphical (ASCII) illustration of the relative position of X(i) regarding
its lower (XL(i)) and upper (XU(i)) bound. If X(i) is closer than 0.1% to the lower or upper bound,
the BOUNDS-PROFIL entry will display an upper-case 'XL' or 'XU' respectively, otherwise a
lower-case 'x' is displayed.

The solution �le contains the numerical values of the solution X for every iteration line printed on
the screen. This means, the solution �le is constantly updated after every PRINTEVAL function
evaluation. Additionally, the very �rst solution (also called starting point, EVAL=1) and the
�nal solution are displayed. The solutions are stored one after another. The BOUNDS-PROFIL
is displayed for every solution stored in the solution �le. Furthermore, all constraints G(i) are
displayed individually. If a constraint is infeasible, it is highlighted by 'INFEASIBLE (G<0)' (for
inequality constraints) or 'INFEASIBLE (G NOT=0)' (for equality constraints).

Note that X in the solution �le is not updated, if X has not improved between two printing
iterations. This is done to avoid unnecessary storage waste and to keep the �le compact.

PRINTEVAL is the critical parameter to control how often the current best solution is printed on
the screen. Note that this parameter does not correspond with any algorithmic iteration within
MIDACO. Therefore the user can freely set PRINTEVAL in such a way, that the output frequency
is convenient for him/her. Small values (e.g. 10, 100, 500) for PRINTEVAL will result in a faster
output frequency. Large values (e.g. 10000, 100000) will result in a slower output frequency. The
fastest possible output frequency is given by PRINTEVAL = 1, which means that after every
evaluation the current best solution found by MIDACO is displayed. This option is only useful
for very time intensive problems, or for debugging purposes. In general it is recommended, to set
large values for PRINTEVAL (see the screenshot on the MIDACO benchmark website). This way
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the user gets a better overview on the optimization progress and MIDACO runs a little bit faster
(because the printing commands are less often executed).

The creation of the output �les is optional. If SAVE2FILE is set to zero, no output �le will be
generated. If no output at all is desired (for example if MIDACO should be silently embedded
within another software), all visual output can be suppressed by setting PRINTEVAL to zero.

3 The MIDACO problem format

This section explains how an optimization problem must be presented to MIDACO. In case of
mixed integer problems, where continuous and discrete variables are simultaneously present, the
continuous variables are stored �rst, the discrete ones last in the solution vector X. The distinction
between equality and inequality constraints is handled the same way: The equality constraints
are stored �rst, the inequality constraints are stored last in the constraints vector G. As example,
considere a constrained mixed integer problem with the following dimensions:

N = 10 M = 5
NI = 4 ME = 3

The distinction between continuous and integer variables is illustrated in Figure 4.

Figure 4: Continuous and integer decision variables stored in X

The distinction between equality and inequality constraints is illustrated in Figure 5.

Figure 5: Equality and inequality constraints stored in G

Some lower and upper bounds (XL and XU) for the decision variables X must be provided for
any problem. A starting point X (also called initial solution or initial point) must be provided as
well, however this can be any point (vector of decision variables X) that lies in between XL and
XU. By default, the lower bounds are assumed as starting point in all example problem displayed
on the MIDACO website. In general it is recommended, to keep the search space (de�ned by
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XL and XU) as small as possible, as MIDACO will explore the entire search space (Hint: Use
the BOUNDS-PROFIL to identify, where a reduction of the search space might be possible). In
contrast to this, the starting point is normally not a critical issue for MIDACO.

3.1 Problem Function Call

The user needs to provide a function call to the problem equations (or some black-box library)
which evaluates the objective function F and the constraints G for a solution candidate X. In
the example problems distributed on the MIDACO website, those problem function calls are given
(depending on the language) as:

Matlab : [ f, g ] = problem_function( x )
Python : problem_function(x) (return f, g)
C/C++ : problem_function(double *f, double *g, double *x)
Fortran : PROBLEM_FUNCTION(F,G,X)

Figure 6 illustrates the problem function call of the example_MINLPc in Matlab/Octave.

Figure 6: Problem dimensions and function call in Matlab/Octave
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Note that the vector indexes for X(i) and G(i) start with i=1 in Matlab and Fortran, while they
start with i=0 in C/C++ and Python.

It is possible (and relatively easy) to change the name of the problem function call, e.g.

[ f, g ] = UserFunctionName( x )

It is also possible to pass additional input/output arguments to the problem function call, e.g.

[ f, g, UserOutputData ] = UserFunctionName( x, UserInputData )

Please visit the MIDACO FAQ website on how to implement those issues in particular.

3.2 Verifying a problem implementation

If MIDACO (or any other optimizer) should be used to solve a speci�c problem, it is crucial that
the problem is implemented correctly (otherwise a GIGO scenario might occur). In order to verify
a problem implementation, it is recommended that the user executes a single evaluation of the
problem (for some starting point X) and manually checks the output (objective and constraint
function values) to be reasonable. In Section 4.5 an example of a MIDACO setup for only one
single function evaluation is given.

4 The MIDACO Stopping Criteria

MIDACO does provide four di�erent stopping criteria: MAXTIME, MAXEVAL, AUTOSTOP
and FSTOP. MAXTIME speci�es a maximum cpu-time budget (e.g. 60 Seconds) during which
MIDACO is allowed to performs its search process. Analogue to MAXTIME, the MAXEVAL
criteria speci�es a maximum number of function evaluation (e.g. 1000 or 1000000). If AUTOSTOP
is active (see Section 5.4), MIDACO will stop automatically by itself. FSTOP de�nes a speci�c
value for the objective function F(X) to be reached. If FSTOP is active and MIDACO succeeds in
�nding a (feasible) solution with an objective value lower or equal to FSTOP, MIDACO will stop.
Note that those four stopping criteria can be freely combined with each other.

In general, the recommended stopping criteria is to use MAXTIME in combination with AU-
TOSTOP. The stopping criteria by MAXEVAL and FSTOP are of rather academic interest only.
Obviously it depends on the user, how much time can be spent for an optimization run. Neverthe-
less, in Table 2 some example scenarios for possible stopping criteria setups are illustrated. The
�rst three scenarios are considered as general reasonable choices for practitioners, while the last
three scenarios exemplify rather speci�c setups for MIDACO's stopping criteria. The individual
scenarios are explained below in subsections.
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Note: The MAXEVAL stopping criteria disables itself if a value greater or equal to 100 Million is
set. This is done to avoid numerical problems (integer �ip) for very long runs on cpu-time cheap
problem functions.

Table 2: Example scenarios for stopping criteria settings

Scenario 1 Scenario 2 Scenario 3
MAXTIME 60 MAXTIME 60*60 MAXTIME 60*60*24
MAXEVAL 999999999 MAXEVAL 999999999 MAXEVAL 999999999
AUTOSTOP 0 (inactive) AUTOSTOP 50 AUTOSTOP 500
FSTOP 0 (inactive) FSTOP 0 (inactive) FSTOP 0 (inactive)

Scenario 4 Scenario 5 Scenario 6
MAXTIME 999999999 MAXTIME 999999999 MAXTIME 999999999
MAXEVAL 1000000 MAXEVAL 1 MAXEVAL 999999999
AUTOSTOP 0 (inactive) AUTOSTOP 0 (inactive) AUTOSTOP 5000
FSTOP 1.23456789 FSTOP 0 (inactive) FSTOP 0 (inactive)

4.1 Scenario 1

In this scenario MIDACO will stop after exactly 60 Seconds. MAXEVAL, AUTOSTOP and
FSTOP are inactive. This scenario is recommended for a �rst test run. Based on the outcome of
such �rst run, the user can then assign shorter or longer runtimes for a second run.

4.2 Scenario 2

In this scenario, MAXTIME is used in combination with AUTOSTOP. MAXEVAL and FSTOP
are inactive. MIDACO will run for a maximal time limit of 1 Hour (60*60 Seconds), but will
(most probably) stop much earlier by itself due to the AUTOSTOP (50) criteria. This scenarios
is probably a good choice for users with medium di�cult problems.

4.3 Scenario 3

In this scenario, MAXTIME is used in combination with AUTOSTOP. MAXEVAL and FSTOP
are inactive. MIDACO will run for a maximal time limit of 1 Day (60*60*24 Seconds), but will
(most probably) stop much earlier by itself due to the AUTOSTOP (500) criteria. This scenario
is probably a good choice for users with hard problems or for users, who want to gain further
con�dence that the global optimal solution is reached.

4.4 Scenario 4

In this scenario, MAXEVAL is used in combination with FSTOP. MAXTIME and AUTOSTOP
are (practically) inactive. This scenario is of purely academic interest. MIDACO will perform up

10



to 1000000 function evaluation, but will eventually stop earlier, if a (feasible) solution with F(X)
≤ 1.23456789 is reached.

4.5 Scenario 5

In this scenario, no optimization at all is performed, because only a single evaluation is allowed by
setting MAXEVAL=1. This means only the starting point is evaluated once and MIDACO stops
immediately. This scenario is useful to verify (check), if the implementation of a problem works
bug-free and returns the expected values for the starting point.

4.6 Scenario 6

In this scenario, only AUTOSTOP (5000) is the active stopping criteria. MIDACO will stop only,
if 5000 internal algorithmic restarts did not succeed in improving the current best solution. This
scenario is for users how have no time restriction and want to make as sure as possible to reach
the global optimal solution. (Note that "example_MINLPc.cpp" will stop in less than 1 Minute
when executed with this scenario on a regular PC)

5 MIDACO Parameter

MIDACO o�ers nine parameters to customize the optimization performance. The individual pa-
rameters are explained in the following subsections. The default value for all parameter is zero.

5.1 PARAM(1): ACCURACY

This parameter de�nes the accuracy tolerance for the constraints G(X). An equality constraint
is considered feasible by MIDACO, if |G(X)| ≤ PARAM(1). An inequality is considered feasi-
ble by MIDACO, if G(X) ≥ -PARAM(1). If the user sets PARAM(1) = 0, MIDACO uses a
default accuracy of 0.001. This parameter has strong in�uence on the MIDACO performance
on constraint problems. For problems with di�cult constraints, it is recommended to start with
some test runs using a less precise accuracy (e.g. PARAM(1)=0.05 or even PARAM(1)=0.1) and
to apply some re�nement runs with a higher precision afterwards (e.g. PARAM(1)=0.0001 or
PARAM(1)=0.0000001).

Note that the displayed "VIOLATION OF G(X)" (see MIDACO screen) expresses the L1-Norm
over the vector G in respect to PARAM(1). In case all constraints are feasible to to accuracy
de�ned by PARAM(1), the "VIOLATION OF G(X)" is displayed as zero.

5.2 PARAM(2): RANDOM SEED

This parameter de�nes the initial seed for MIDACO's internal pseudo random number generator.
The seed determines the sequence of pseudo random numbers sampled by the generator. Therefore
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changing this value will lead to di�erent results by MIDACO. The seed must be an integer greater
or equal to zero (e.g. PARAM(2) = 0,1,2,3,...1000).

Note that MIDACO runs are 100% reproducible, if performed with the same seed (and executed on
the same computer with identical compiler settings). The advantage of a user speci�ed random seed
is, that promising runs can easily be reproduced. This is in esp. useful, if a run was unintentionally
interrupted (e.g. power outage) and should be restarted again.

For di�cult problems it can be useful to execute several runs of MIDACO with di�erent random
seed, rather than performing only one very long run.

5.3 PARAM(3): FSTOP

This parameter enables a stopping criteria for MIDACO. If PARAM(3) is not equal to zero,
MIDACO will stop if a (feasible) solution is found with F(X) ≤ FSTOP. If PARAM(3) is equal
to zero, this stopping criteria is inactive. In case the user wishes to use zero as FSTOP value, a
dummy value (e.g. PARAM(3)=0.00000001) should be used.

Note that MIDACO does not apply any tolerance on the FSTOP value. For problems where the
precision of F(X) is a critical issue, the user might want to add some tolerance to FSTOP (e.g.
PARAM(3) = 1.0 + 0.0001, where 0.0001 is a tolerance).

5.4 PARAM(4): AUTOSTOP

This parameter enables a stopping criteria for MIDACO. If PARAM(4) is an integer greater than
zero, MIDACO will activate its automatic stopping criteria. The automatic stopping criteria is
based on the number of internal algorithmic restarts by MIDACO, which did not succeed in further
improving the current best solution. For example: If PARAM(4) = 1, MIDACO will stop if any
internal algorithmic restart of MIDACO did not improve the current best solution. If PARAM(4)
= 50, MIDACO will stop if 50 (successive) internal restarts did not further improve the current
best solution. Small values of PARAM(4) will cause MIDACO to stop earlier, but will lower
MIDACO's chance of reaching the global optimal solution. Larger values of PARAM(4) will imply
longer runtimes, but will give MIDACO a higher chance of reaching the global optimum. Tabel 3
illustrates some examples of AUTOSTOP values. Note that these examples are intended only as
very rough illustration of the possible impact of the AUTOSTOP parameter.
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Table 3: Examples of AUTOSTOP values and their possible impact on MIDACO
AUTOSTOP Impact on MIDACO runtime and chance of global optimality
1 Fastest runtime but very low chance of global optimality
5 Fast runtime but low chance of global optimality
50 Medium long runtime and medium chance of global optimality
500 Long runtime but high chance of global optimality
5000 Very long runtime but also very high chance of global optimality

5.5 PARAM(5): ORACLE

This parameter speci�es a user given oracle parameter to the penalty function within MIDACO.
This parameter is only relevant for constrained problems. If PARAM(5) is not equal to zero,
MIDACO will use PARAM(5) as initial oracle (otherwise MIDACO will use 109 as initial oracle).
This option can be especially useful for constrained problems where some background knowledge
on the problem exists. For example: It is known that a given application has a feasible solution X
corresponding to F(X)=1000 (e.g. plant operating cost in Dollar). It might be therefore reasonable
to submit an oracle value of 800 or 600 to MIDACO, as this cost region might hold a new feasible
solution (to operate the plant at this cost value). Whereas an oracle value of more than 1000 would
be uninteresting to the user, while a too low value (e.g. 200) would be unreasonable. Extensive
information on the oracle penalty method can be found in [9].

5.6 PARAM(6): FOCUS

This parameter forces MIDACO to focus its search process around the current best solution. This
parameter is probably the most powerful and widely applicable one. For many problems, tuning
this parameter is useful and will result in a faster convergence speed (in esp. for convex and
semi-convex problems). This parameter is also in especially useful for re�ning solutions (e.g. to
improve the precision of their objective function value or constraint violation). If PARAM(6) is
not equal zero, MIDACO will apply an upper bound for the standard deviation of its Gauss PDF's
(see Section 1, Figure 1). The upper bound for the standard deviation for continuous variables is
given by (XU(i)-XL(i))/FOCUS, whereas he upper bound for the standard deviation for integer
variables is given by MAX((XU(i)-XL(i))/FOCUS,1/SQRT(FOCUS)).

In other words: The larger the value of FOCUS, the closer MIDACO will concentrate its search
around its current best solution.

The value for PARAM(6) must be an integer. Smaller values for FOCUS (e.g. 10 or 100) are
recommend for �rst test runs (without a speci�c starting point). Larger values for FOCUS (e.g.
10000 or 100000) are normally only useful for re�nement runs (where a speci�c solution is used as
starting point).

Furthermore it is possible to submit negative values for FOCUS (e.g. -1000 or -10000). In such
case, the minus ("-") is not treated numerically; instead, MIDACO will interpret the minus ("-") as
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an information �ag. While for positive FOCUS values MIDACO will also explore other regions of
the search space by independent restarts, a negative FOCUS value disable the independent restart
option within MIDACO. In other words: For a negative FOCUS value MIDACO is focused entirely
on the starting point. Therefore negative FOCUS values should be used only for re�nement runs,
where the user has high con�dence in the quality of the speci�c solution used as starting point.

5.7 PARAM(7): ANTS

This parameter allows the user to �x the number of ants (iterates) which MIDACO generates
within one generation (major iteration of the evolutionary ACO algorithm). This parameter must
be used in combination with PARAM(8). Using the ANTS and KERNEL parameters can be
promising for some problems (in esp. large scale problems or cpu-time intensive applications).
However, tuning these parameters might also signi�cantly reduce the MIDACO performance. If
PARAM(7) is equal to zero, MIDACO will dynamically change the number of ants per generation.
See PARAM(8) for more information on handling this parameter.

5.8 PARAM(8): KERNEL

This parameter allows the user to �x the number of kernels within MIDACO's multi-kernel Gauss
PDF's (see Section 1, Figure 1). The kernel size corresponds also to the number of solutions
stored in MIDACO's solution archive. On rather convex problems it can be observed, that a lower
kernel number will result in faster convergence while a larger kernel number will result in lower
convergence. On the contrary, a lower kernel number will increase the risk of MIDACO getting
stuck in a local optimum, while a larger kernel number increases the chance of reaching the global
optimum. The kernel parameter must be used in combination with the ants parameter. In Table
4 some examples of possible ants/kernel settings are given and explained below.

Table 4: Example settings for ANTS/KERNEL combinations

Setting 1 Setting 2 Setting 3 Setting 4
ANTS 2 ANTS 30 ANTS 500 ANTS 100
KERNEL 2 KERNEL 5 KERNEL 10 KERNEL 50

The 1st setting is the smallest possible one. This setting might be useful for very cpu-time expensive
problems where only some hundreds of function evaluation are possible or for problems with a
speci�c structure (e.g. convexity). The 2nd setting might also be used for cpu-time expensive
problems, as a relatively low number of ANTS is considered. The 3rd and 4th setting would
only be promising for problems, with a fast evaluation time. As tuning the the ants and kernel
parameters is highly problem depended, the user needs to experiment with those values.

Note that the maximum kernel number for MIDACO is �xed to 100.
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5.9 PARAM(9) = CHARACTER

This character allows to activate MIDACO internal parameter settings, which can be customized
to a speci�c user problem. Using this parameter is currently only available as a service from the
authors upon request.

6 Running MIDACO in Parallel Mode

For problems with cpu-time expensive objective and/or constraint functions, MIDACO o�ers an
e�ective parallelization strategy. MIDACO allows the parallel execution of the problem function
evaluation calls. This way signi�cant speed ups can be gained, if problems are time expensive and
su�cient parallelization threads (cores) are available.

Running MIDACO in parallel is recommended, if a single function evaluation takes more than a
speci�c time. The speci�c time depends on the programming language (due to the e�ciency of the
parallelization overhead in each language). Below is a language depended list of minimal cpu-time
cost, for which running MIDACO in parallel mode is recommended:

Language Minimal cost for which parallelization is promising
Matlab 0.1 Second
Python 0.01 Second
C/C++ 0.001 Second
Fortran 0.001 Second

The parallelization option for MIDACO is available for a wide range of platforms and approaches
and is very easy to use. The user only needs to specify the parallelization factor (called "P"
or "option.parallel" in Matlab/Octave), which speci�es the number of parallel executed problem
function calls. Normally the parallelization factor is equal to the number of cores (or threads)
available on a machine. For a duo-core CPU, P would be 2. For a quad-core CPU, P would be 4.

MIDACO examples running in parallel mode are freely available at the MIDACO parallelization
website and can be executed with the limited version of MIDACO.

A real-world application, where running MIDACO in parallel mode are the ESA/ACT GTOP
benchmark problems displayed at the MIDACO benchmark website. Those problems are even
cheaper than 0.001 Second (C/C++), but running MIDACO in parallel does already give a speed
up of about 4 times compared to the serial execution. Another example of a real-world application
solved by MIDACO in parallel mode can be found in [13].

Note: If the cpu-time evaluation cost of a problem is signi�cantly cheaper than those reported in
list above, running MIDACO in parallel mode is not recommended due to the algorithmic overhead.
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7 Warning and Error Messages

MIDACO returns speci�c warning and error messages via an information �ag value called IFLAG.
In case of warnings, the IFLAG value is printed on the screen and MIDACO will proceed with
the optimization nevertheless. In case of errors, MIDACO will stop immediately, displaying the
IFLAG value on the screen. In the regular case (no warning or error) MIDACO will provide a �nal
IFLAG message along with the solution, indicating the stopping criteria and the feasibility.

Table 5: MIDACO solution messages indicated by IFLAG
IFLAG
1 Feasible solution found, MIDACO was stopped by MAXEVAL or MAXTIME
2 Infeasible solution found, MIDACO was stopped by MAXEVAL or MAXTIME
3 Feasible solution, MIDACO stopped automatically by AUTOSTOP
4 Infeasible solution, MIDACO stopped automatically by AUTOSTOP
5 Feasible solution, MIDACO stopped automatically by FSTOP

Table 6: MIDACO warning messages indicated by IFLAG
IFLAG
51 Some X(i) is greater/lower than +/- 108 (try to avoid huge values!)
52 Some XL(i) is greater/lower than +/- 108 (try to avoid huge values!)
53 Some XU(i) is greater/lower than +/- 108 (try to avoid huge values!)
61 Some X(i) should be discrete (e.g. 1.0), but is continuous (e.g. 1.234)
62 Some XL(i) should be discrete (e.g. 1.0), but is continuous (e.g. 1.234)
63 Some XU(i) should be discrete (e.g. 1.0), but is continuous (e.g. 1.234)
71 Some XL(i) = XU(i) (�xed variable)
81 F(X) has value NaN for starting point X
82 Some G(X) has value NaN for starting point X
91 FSTOP is greater/lower than +/- 108

92 ORACLE is greater/lower than +/- 108
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Table 7: MIDACO error messages indicated by IFLAG
IFLAG
101 P <= 0 or P > 106

102 N <= 0 or N > 106

103 NI < 0
104 NI > N
105 M < 0 or M > 106

106 ME < 0
107 ME > M
201 Some X(i) has type NaN
202 Some XL(i) has type NaN
203 Some XU(i) has type NaN
204 Some X(i) < XL(i)
205 Some X(i) > XU(i)
206 Some XL(i) > XU(i)
301 PARAM(1) < 0 or PARAM(1) > 106

302 PARAM(2) < 0 or PARAM(2) > 1012

303 PARAM(3) greater/lower than +/- 1012

304 PARAM(4) < 0 or PARAM(4) > 106

305 PARAM(5) greater/lower than +/- 1012

306 |PARAM(6)| < 1 or PARAM(6) > 1012

307 PARAM(7) < 0 or PARAM(7) > 108

308 PARAM(8) < 0 or PARAM(8) > 100
309 PARAM(7) < PARAM(8)
310 PARAM(7) > 0 but PARAM(8) = 0
311 PARAM(8) > 0 but PARAM(7) = 0
312 PARAM(9) < 0 or PARAM(9) > 1000
313 Some PARAM(i) has type NaN
401 ISTOP < 0 or ISTOP > 1
501 Double precision work space size LRW is too small.

RW must be at least of size LRW = 200*N+2*M+1000
601 Integer work space size LIW is too small.

IW must be at least of size LIW = 2*N+P+1000
701 Input check failed! MIDACO must be called initially with IFLAG = 0
801 P > PMAX (user must increase PMAX in the MIDACO source code)
802 P*M+1 > PXM (user must increase PXM in the MIDACO source code)
900 Invalid or corrupted LICENSE-KEY
999 N > 4. The free test version is limited up to 4 variables.
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