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Abstract

A large number of nucleotide sequences of various pathogens are available in public databases. The growth of the datasets
has resulted in an enormous increase in computational costs. Moreover, due to differences in surveillance activities, the
number of sequences found in databases varies from one country to another and from year to year. Therefore, it is
important to study resampling methods to reduce the sampling bias. A novel algorithm–called the closest-neighbor
trimming method–that resamples a given number of sequences from a large nucleotide sequence dataset was proposed.
The performance of the proposed algorithm was compared with other algorithms by using the nucleotide sequences of
human H3N2 influenza viruses. We compared the closest-neighbor trimming method with the naive hierarchical clustering
algorithm and k-medoids clustering algorithm. Genetic information accumulated in public databases contains sampling
bias. The closest-neighbor trimming method can thin out densely sampled sequences from a given dataset. Since
nucleotide sequences are among the most widely used materials for life sciences, we anticipate that our algorithm to
various datasets will result in reducing sampling bias.
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Introduction

When investigating the transmission of an infectious disease,

researchers utilize the similarity among nucleotide sequences of its

causative agent. Remarkable efforts have been made at both the

national and international levels to collect genetic information on

important pathogens. As a result, a large number of pathogen-

related sequences have been accumulated in public databases.

There exist more than 170000 nucleotide sequences of influenza

viruses in the NCBI Influenza Virus Resources [1] and more than

410000 sequences of human immunodeficiency viruses in the HIV

sequence database [2].

The rapid growth in the number of nucleotide sequences poses

two critical problems. One is an enormous increase in computa-

tional costs. Sequence data analyses–including the multiple

sequence alignment, phylogenetic analysis, and similarity searches

of nucleotide sequences–involve time-consuming computations.

Multiple sequence alignment is an NP-complete problem [3].

Phylogenetic analysis using the neighbor-joining method takes

O(n3) time, where n denotes the number of sequences [4]. The

similarity searches using BLAST take O(wn log n) time, where w

and n denote the length of the subsequence of queries and the

number of sequences, respectively [5].

The other problem is sampling bias in public databases, which

occurs when sequences are not sampled randomly. One factor is

the difference in surveillance activities among countries. Devel-

oped countries having high surveillance activities submit more

sequences than other countries. Another factor is the advance in

sequencing technologies in the last two decades. The databases

tends to contain more sequences from recent strains than from old

strains. Therefore it is important to study resampling methods to

reduce sampling bias.

There are several methods that might be used for resampling

tasks. Zaslavsky et al. proposed a resampling method that was used

to display large phylogenetic trees in a limited screen area [6].

Some clustering algorithms, including naive hierarchical clustering

(cf. [7]) and k-medoids clustering [8], select certain data points as

representatives of clusters. These clustering algorithms can be used

for resampling large datasets. One simple idea to reduce sampling

bias is to remove more sequences from densely sampled ones than

from sparsely sampled ones.

In this paper we propose a novel algorithm–called the closest-

neighbor trimming method–that resamples a given number of

sequences from a large nucleotide sequence dataset. The method

first constructs a phylogenetic tree with the whole sequence

dataset. It finds the pair of neighbors having the shortest distance

among all pairs of neighbors, and trims one leaf away. By
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repeating this procedure, the algorithm thins out densely sampled

sequences in the dataset. We compare the performance of the

closest-neighbor trimming method with those of other methods

with respect to the average maximum similarities of discarded

sequences to the resampled sequences, nucleotide diversities of the

resampled sequences, and standard deviations for the number of

resampled sequences in a year.

Materials and Methods

The Resampling Problem
Before describing the algorithms, we define the resampling

problem. Given a set of n sequences S, resampling is a task to

select a subset of k sequences R5S. We assume that all the

sequences in S are of the same length or already aligned. S might

not be randomly sampled from the population. The characteristics

of sequences in the population are often unknown except for some

features. The goal of resampling is to find R, which reflects

original characteristics of sequences in the population.

The Closest-neighbor Trimming (CNT) Method
We propose a resampling algorithm–called the closest-neighbor

trimming (CNT) method–that removes densely sampled sequenc-

es. First, CNT constructs a phylogenetic tree from all the

sequences in the dataset. CNT does not assume a particular tree

construction method. If the phylogenetic tree is not binary, CNT

arbitrarily arranges the tree so that it is binary. We denote a binary

phylogenetic tree by G~(V ,E), where V and E represent a set of

nodes and a set of edges, respectively. Given G, CNT repeats the

following procedures until the number of remaining sequences

reaches k. First CNT finds the pair of neighbors with the shortest

distance among all pairs of neighbors. Then it removes one of the

neighbors. After that it removes the parent and connects the upper

branches of the remaining leaf so that the resulting tree

G’~(V ’,E ’) is binary. Whether the CNT removes one of the

neighbors further from their parent or one closer to it can be

specified. In this paper, we call it the CNT-closer algorithm when

it trims the neighbor further from the parent, that is, it leaves the

closer one. We call it the CNT-further algorithm when it leaves

the further neighbor. In the case that it randomly chooses one of

the neighbors to be trimmed, it is called the CNT-random

algorithm. However, for simplicity we treat only the CNT-further

algorithm (CNT for short) in the main paper and all types of CNT

algorithms are dealt with in Supporting Information S1. The

pseudocode and a schematic image of the CNT-further method

are shown in Figure 1.

Comparison of the CNT Method with Other Methods
The method proposed by Zaslavsky et al. (ZAS05). We

denote the algorithm proposed by Zaslavsky et al. [6] as ZAS05.

Given a phylogenetic tree G, ZAS05 first selects two sequences.

One is the closest to the root and the other is the furthest from the

root. After that, it selects a sequence at each step until the number

of selected sequences reaches k as follows: Suppose R is the set of

already selected sequences. For sequence s, the distance between

R and s is defined as the minimum distance between s and the one

belonging to R. Their algorithm finds the sequence that has the

maximum distance to R.

The naive hierarchical clustering (NHC) algorithm. The

naive hierarchical clustering (NHC) or UPGMA (cf. [7]) selects

some data points as representatives of clusters. By removing the

data points other than selected representatives, this algorithm can

be used for resampling. Giving an n|n dissimilarity matrix M,

NHC finds the pair having the shortest distance among all the

pairs of sequences. Then NHC discards the one having longer

distance to all the other sequences. NHC repeats this procedure

until the number of remaining sequences reaches k. When there is

more than one pair with the shortest distance, NHC selects the

pair that contains the sequence appearing earliest in the dataset

among all the pairs with the shortest distance.

The k-medoids clustering (kMC) algorithm. We also

apply the k-medoids clustering (kMC) method [8] for resampling

sequences. Given an n|n distance matrix M, first kMC randomly

selects k sequences as medoids. Then kMC repeats the following

procedures. It assigns each sequence to the closest medoid. For

each cluster it updates the medoid so that the total distance from

the medoid to other members becomes the smallest. kMC repeats

these procedures until no medoids change or the number of

repetitions reaches a given threshold (1000 times in this paper).

The dataset and the construction of phylogenetic

trees. Nucleotide sequences of the hemagglutinin (HA) gene of

human H3N2 influenza viruses were downloaded from the NCBI

Influenza Virus Resource [1]. The sequences of the HA1 domain

were aligned using the MAFFT program [9]. The original dataset

included sequences with the ambiguous nucleotide N, making it

impossible to calculate the distance matrix of the dataset. Thus the

sequences having ambiguous symbols N were removed. After that,

we obtained 4655 sequences of 984 nucleotides. The dataset is as

the same as that used in [10].

CNT and ZAS05 do not assume a particular method to

construct phylogenetic trees. In our analysis the neighbor-joining

method [4] was used. PHYLIP [11] was employed for constructing

the phylogenetic trees. Here, the Jukes-Cantor model [12] was

applied for constructing distance matrices. The resulting phyloge-

netic tree is shown in Figure 9A. Like this one, phylogenetic trees

constructed with nucleotide sequences of influenza A viruses tend

to have a very high fraction of sequences having other very similar

ones and a characteristically unbalanced distribution of ancestral

nodes.

Evaluation of the Performances of the Resampling
Algorithms

Average maximum similarities of discarded sequences to

the resampled sequences. We need to evaluate the perfor-

mances of resampling algorithms with respect to preservation the

nature of the original dataset and reduction of sampling bias.

Regardless how the trimmed sequence data are used, they should

cover the original dataset. For this task, we introduced two

measurements. The first measure was the average identity from

the (n{m) discarded sequences to the m resampled sequences.

We denote the number of different nucleotides between sequences

s1 and s2 by diff(s1,s2). The identity between two sequences s1

and s2, I(s1,s2), is defined as the ratio of the same nucleotides in

the two sequences, that is, I(s1,s2)~1{diff(s1,s2)=length(s1).
We define the identity from the discarded sequences D to the

resampled sequences R as follows:

I(D; R)~
1

DDD

X

s
0 [D

max
s[R

I(s,s
0
):

Nucleotide diversities of resampled sequences. We

introduced nucleotide diversity proposed by Nei and Li [13] for

verifying whether the resampled sequences had enough variety.

Resampled sequences with low nucleotide diversity may lead to

different results from the original sequences. Let pij be the number

of nucleotide differences per nucleotide site between the ith and

The Closest-Neighbor Trimming Method
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jth sequences and n be the total number of nucleotide sequences.

Then the nucleotide diversity p is defined as follows:

p~
X

ij

pij=n(n{1):

Standard deviations for the number of resampled

sequences in a year. We utilize the distribution of years when

the viruses in the dataset were isolated. In the ideal dataset the

number of nucleotide sequences of an organism should be

proportional to the number of individuals. In this paper we use

a simplified assumption that the dataset should contain equal

numbers of sequences. Although the numbers of patients and

infection isolates vary extremely from year to year [14], the

fluctuation in the number of sequences registered to the databases

each year does not seem to be relative to the fluctuation of the

number of patients or infection isolates. Thus we use the standard

deviation of the number of sequences to evaluate the resampling

algorithms with respect to reduction of sampling bias.

Results

Distribution of the Sequence Dataset
The dataset contained nucleotide sequences of human H3N2

influenza viruses isolated during the period from 1968 to 2011.

Sequences from 1968 to 1991 accounted for about 7% of the

dataset and about 93% were sequences from 1992 to 2011

(Figure 2A). This skewed distribution could be attributed to

sampling bias due to the rapid development of sequencing

technology around 1992 [15]. Additionally, more than 30% were

sequences of influenza viruses isolated from the USA (Figure 2B).

This large percentage would be associated with sampling bias due

to the high surveillance activity in the United States [16].

Moreover, from Figure 2C, it can be seen that there is a large

gap between the numbers of the nucleotide sequences isolated

before 1991 and after 1992. This is not because the number of

Figure 1. Description of the CNT algorithm. (A) the pseudocode and (B) a schematic image.
doi:10.1371/journal.pone.0057684.g001

The Closest-Neighbor Trimming Method
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infections drastically increased after 1992 but because the use of

the PCR technique became widespread around 1992. Thus the

number of sequences is not associated with the number of

infections by these viruses.

Figure 3 shows the changes of distributions of isolation years as

CNT, NHC, and kMC proceed with trimming. This figure

demonstrates that all of them flatten the distributions of isolation

years. In the following section we will present more precise

analyses.

Evaluation of Resampled Sequences
In the following analyses, we executed the algorithms with

randomization, namely kMC, 100 times each and calculated the

average maximum similarities, nucleotide diversities, and standard

deviations for the number of resampled sequences in a year.

Average maximum similarities of discarded sequences to

the resampled sequences. First we investigated the average

sequence identity of discarded sequences against resampled

sequences. Let D and R be the sets of the discarded and the

remaining sequences, respectively. If a resampling algorithm

discards one of the densely sampled sequences, I(D; R), the

average maximum identity from the discarded sequences to the

remaining ones, is expected to remain closer to 100%. Since the

lowest identity among all pairs of nucleotide sequences was larger

than 82.3%, no pair of sequences had an identity lower than

82.3%. Thus the average of maximum identity of the discarded

sequences to the resampled sequences, I(D; R), never becomes

smaller than 82.3%. Figure 4 shows the values of I(D; R) against

the numbers of the discarded sequences. I(D; R) of the CNT,

NHC, and kMC algorithms remained near 100% until 90% of the

sequences were discarded. On the other hand, I(D; R) of ZAS05

Figure 2. Statistics of the sequences of HA of human H3N2
influenza virus. (A) distribution of isolation years and (B)
distribution of isolation countries. More than 92% were sequences
isolated after 1992 and more than 30% were sequences of influenza
viruses isolated from the USA. Moreover, there is a large gap on the
number of nucleotide sequences of HA of human H3N2 influenza virus
isolated before 1991 and after 1992, when the PCR technique had been
in widespread use.
doi:10.1371/journal.pone.0057684.g002

Figure 3. Changes of the distribution of the isolation years by
means of (A) CNT, (B) NHC, and (C) kMC.
doi:10.1371/journal.pone.0057684.g003

Figure 4. Relationship between average sequence identity
between D and R sequences and the fraction of discarded
sequences. The horizontal axis represents the percentage of
discarded sequences and the vertical axis represents identity I(D; R).
It can be seen that the performance of ZAS05 is worse than those of the
other three algorithms.
doi:10.1371/journal.pone.0057684.g004

The Closest-Neighbor Trimming Method
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fell more quickly than with the other three resampling algorithms.

Therefore, in the following analysis, we excluded ZAS05.

Nucleotide diversities of resampled sequences. Figure 5

shows the relationship between p and the fraction of discarded

sequences. As trimming proceeded, the diversity of the sequences

resampled by CNT or NHC increased. On the other hand, the

diversity of the sequences resampled by kMC remained similar to

the original value. We consider that the reason for this discrepancy

is that the kMC algorithm does not always select medoids from

densely sampled sequences, and this would be a disadvantage of

the kMC algorithm. The NHC algorithm shows good perfor-

mance with respect to p but it fluctuates. A possible reason is the

fact that there are many possible pairs of sequences that have the

same Hamming distances. The diversity p increases or decreases,

depending on the sequence diversity around the removed

sequences. When NHC is processing a pair in densely sampled

clusters, the sequence diversity increases. But when it processes a

pair in sparsely sampled ones, the sequence diversity decreases

even if the pair has the smallest Hamming distance. Our

implementation of NHC processes the first pair found in the

dataset when there is more than one pair of sequences that have

same Hamming distance. This is the cause of the fluctuation seen

in the result for the NHC algorithm.

Standard deviations for the number of resampled

sequences in a year. We focus on the statistics of resampled

sequences from 1968 to 2011. In the original dataset, the average

number of sequences for one year was about 106, with a standard

deviation of around 142. As described in the background section,

the database had more recent sequences. This large standard

deviation is due to sampling bias, because most of the sequences in

the dataset were derived from viruses isolated after 1992, as the

dataset contained fewer sequences before 1991. The standard

deviation of the number of sequences decreases almost linearly as

more sequences are discarded by all of the resampling algorithms

(Figure 6). For example, when the CNT trimmed 80% of the

sequences, the average number of sequences for one year was

about 21, with a standard deviation of around 23. This result

indicated that the kMC algorithm had the worst performance in

removing densely sampled sequences from the dataset.

Evaluation of Execution Time
To evaluate the computational cost of the CNT algorithm, we

measured the total execution times of the CNT, NHC, kMC, and

ZAS05 algorithms (Table 1). The CNT and ZAS05 methods need

to construct a phylogenetic tree from the given sequence dataset

before resampling. The execution time was measured using a

resampling task that selected 1000 of the 4655 sequences in the

dataset. The phylogenetic trees constructed from the resulting

1000 sequences showed similar shapes and topologies (Figure S2).

As can be seen in Table 1, the kMC algorithm was the fastest

among the four algorithms. The CNT and ZAS05 algorithms take

longer to process because they need to construct a phylogenetic

tree before resampling.

Discussion

Due to the large amount of genetic information accumulated in

public databases, researchers have to wait a long time, when

conducting analyses using whole datasets. Compact subsets of

nucleotide sequences can be obtained by resampling algorithms,

and the subsets could reduce the computational time needed for

the analyses. Sampling bias may affect the results of computational

analyses using a large number of nucleotide sequences. If we can

remove the sampling bias contained in datasets, more correct

analyses could be achieved than those using the original datasets.

Thus we believe that the capability for reducing sampling bias is

more important than execution time for resampling algorithms.

Figure 5. Relationship between nucleotide diversity p and the
fraction of discarded sequences.
doi:10.1371/journal.pone.0057684.g005

Figure 6. Standard deviations for the number of resampled
sequences in a year. In each figures, the horizontal axis represents
the ratio of discarded sequences. The vertical axis represents standard
deviation for the number of resampled sequences in a year.
doi:10.1371/journal.pone.0057684.g006

Table 1. Execution time of the four resampling algorithms
against the nucleotide sequences of human H3N2 influenza
virus with 1000 sequences.

algorithm

CNT ZAS05 NHC kMC

Constructing a
distance matrix

183 183 183 183

Constructing a tree 1072 1072 0 0

Resampling 54 2011 198 1

Reconstructing
a tree

16 16 16 16

The time units are seconds.
doi:10.1371/journal.pone.0057684.t001

The Closest-Neighbor Trimming Method
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In this paper, we proposed a novel resampling algorithm–called

the closest-neighbor trimming (CNT) method–that removes

densely sampled sequences from a given dataset. We discussed

the performance of our algorithm, comparing it with three other

algorithms. With respect to the average maximum similarities of

discarded sequences to the resampled sequences (see Figure 4),

ZAS05 seems less useful for resampling from a large number of

nucleotide sequences than CNT, NHC, and kMC. From the

experiment on the nucleotide diversity p (see Figure 5), kMC looks

less powerful than CNT and NHC. Measuring standard deviations

for the number of resampled sequences in a year shows that CNT

is more useful for reduction of sampling bias than NHC. In fact,

Figure 3A shows that the nucleotide sequences resampled by CNT

have more balanced distribution than the original ones. Therefore,

we conclude that the CNT algorithm can be used for resampling

nucleotide sequences in large datasets.

The dataset we used consisted of 4655 sequences of 984

nucleotides. Our method is applicable to any kind of nucleotide

sequence dataset as long as the dataset can produce a reasonable

phylogenetic tree.

We consider that the main reason for its superior performance is

that the CNT algorithm tends to remove densely sampled new

sequences and to conserve sparsely sampled old sequences.

Because of the sparseness of sequences, there are more short pairs

of neighbors of densely sampled new sequences than of sparsely

sampled old sequences. Therefore the CNT method tends to trim

newer sequences in the early steps.

It is difficult to select which of the closest neighbors to be

trimmed with the CNT algorithm. In the case that no outlier

sequence is included in the dataset, CNT should trim the closest

neighbor with the shorter length to the parent. Moreover, CNT-

further preserves the overall length of the phylogenetic tree

whereas CNT-closer may shrink the tree. However, CNT-further

resamples outlier sequences. This might harm the performance of

the CNT-further.

One may wonder how many sequences should be discarded

when analyzing a dataset. However, we have no clear answer

for this question because the proper number of sequences to be

discarded depends on what the user wants to do in the

subsequent analyses. It might be proper to set the threshold

where the nucleotide diversity p of the trimmed data is the

highest.

In this paper, a dataset consisting of nucleotide sequences of

human H3N2 influenza viruses was used to evaluate resampling

algorithms. Through the resampling tests, we found an interesting

phenomenon. When we resampled 1000 of 4655 sequences with

CNT, the ratios of sequences of influenza viruses isolated from

Hong Kong and China increased and those of viruses from the

USA and Japan decreased (Figure 7). These results lead to two

hypotheses. One is that USA and Japan had higher surveillance

activities than other countries and that the sequences from these

two countries were sampled more densely than for other countries.

The other is that China has a large variation of influenza A

viruses.

Conclusion
In this paper, we proposed a novel algorithm. The proposed

method, called the closest-neighbor trimming method, thins out

nucleotide sequences by trimming a phylogenetic tree. The

performance of our algorithm was compared with other

algorithms by using the nucleotide sequences of human H3N2

influenza viruses. We have demonstrated that the CNT algorithm

can be used to remove densely sampled sequences from a given

dataset, together with removing sampling bias. Since nucleotide

sequences are among the most widely used material for life

science, the application of our algorithm to various datasets is

expected to be useful for reducing sampling bias.

Supporting Information

Figure S1 Performances of the resampling results
including the CNT-shorter and the CNT-random meth-
ods, (A) identities I(D; R), (B) nucleotide diversities p,
and (C) standard deviations for the number of resam-
pled sequences in a year. In (C), the median values are

indicated by the center lines. The top and bottom edges of each

box mark indicates the first and the third quatile, respectively. The

whiskers extending from the box indicate the highest and lowest

values.

(PPT)

Figure S2 Phylogenetic trees with (A) the original
dataset with 4655 sequences and the resampling results
of (B) CNT, (C) ZAS05, (D) NHC, and (E) kMC, with 1000
sequences. All trees were drawn using Dendroscope [17].

(PPT)
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