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[1] A three-stage inversion technique for surface wave tomography is applied to the
Australian region. The inversion procedure consists of three independent processes. In the
first stage, path-specific one-dimensional (1-D) shear velocity profiles are derived from
multimode waveform inversion to provide dispersion information. The information from
all paths is then combined to produce multimode phase speed maps as a function of
frequency. The first version of these phase speed maps is derived from linearized inversion
based on the assumption of surface wave propagation along great circle paths.
Subsequently, the 2-D phase speed maps are updated by including ray tracing and finite
frequency effects through the influence zone around the surface wave paths over which the
phase is coherent. Finally, in the third stage the 3-D shear wave speed distribution is
reconstructed from the set of updated multimode phase speed maps. This three-stage
inversion of surface waves has significant benefits because it is possible to incorporate
multimode dispersion, off-great circle propagation, and finite frequency effects for surface
waves in a common framework. The final 3-D model, which includes the effects of ray
bending and finite frequency, shows improvement in the definition of the model in regions
with high gradients in shear velocity, such as near tectonic boundaries, especially in
eastern Australia. Despite the natural smoothing imposed by considering the influence
zone around the surface wave paths, the final models still require rapid change in shear
wave properties in the neighborhood of the edge of the craton. INDEX TERMS: 7218

Seismology: Lithosphere and upper mantle; 7255 Seismology: Surface waves and free oscillations; 8120

Tectonophysics: Dynamics of lithosphere and mantle—general; 8180 Tectonophysics: Tomography; 7260

Seismology: Theory and modeling; KEYWORDS: surface waves, tomography, upper mantle
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1. Introduction

[2] Most existing methods for surface wave tomography
are based on multistage processes using either the mea-
surement of fundamental mode dispersion [e.g., Ekström et
al., 1997; Ritzwoller and Levshin, 1998] or multimode
waveform inversion for a path-specific one-dimensional
(1-D) model [e.g., Cara and Lévêque, 1987; Nolet, 1990].
The derivation of 3-D shear wave speeds from global
surface wave studies has mostly employed the intermedi-
ary of phase speed dispersion maps for the fundamental
mode [e.g., Nataf et al., 1986; Montagner and Tanimoto,
1990, 1991; Trampert and Woodhouse, 1995, 1996; Laske
and Masters, 1996; Zhang and Lay, 1996; Ekström et al.,
1997] and, to a lesser extent, higher modes [Stutzmann

and Montagner, 1993; van Heijst and Woodhouse, 1997,
1999].
[3] In contrast, regional surface wave tomography has

been dominated by a two-stage approach in which path-
specific 1-D models are derived by nonlinear inversion of
the waveforms of surface waves [Nolet et al., 1986; Cara
and Lévêque, 1987], and this path information is employed
to construct a 3-D shear wave speed model [e.g., Zielhuis
and Nolet, 1994; van der Lee and Nolet, 1997; Simons et
al., 1999; Debayle and Kennett, 2000a, 2000b]. In this
partitioned waveform approach the 1-D models are inter-
preted as path averages of the 3-D structure, and a linear
inversion is carried out to find a 3-D wave speed model
compatible with the various averages.
[4] Improvements in such tomography models have been

sought by enlarging the number of paths, so that more
detailed structure can be recovered with dense path cover-
age. Simons et al. [1999] and Debayle and Kennett [2000a]
have used around 2000 paths for the Australian region in
inversions using Rayleigh waves. With such path densities it
is possible to extend the linearized inversion in the second
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stage to try to extract azimuthal anisotropy [Debayle and
Kennett, 2000a].
[5] The next level of complexity is to include scattering

concepts with surface wave tomography. There are only a
few studies working with dispersion maps [e.g., Yomogida
and Aki, 1987; Alsina et al., 1996]. Recently, Ritzwoller et
al. [2002] used simplified sensitivity kernels, which are
equivalent to the Born/Rytov kernels based on the defini-
tion of Spetzler et al. [2001], to obtain global tomography
model using group dispersion of fundamental mode Love
and Rayleigh waves. Their sensitivity kernels have a
width very close to, but slightly narrower than, the first
Fresnel zone.
[6] The levels of heterogeneity and heterogeneity gra-

dient in recent tomographic studies of the upper mantle
are probably too large for the path-average approximation
to be applied directly to 1-D models for surface waves
under the assumption of propagation along the great circle
between source and receiver. However, for the frequency
range in which modal coupling can be neglected, the
path-average assumption can be used for the phase of
individual mode contributions. The 1-D model is then to
be interpreted as a representation of the character of
multimode dispersion along the source-receiver path.
Recently, Yoshizawa and Kennett [2002a] investigated
fully nonlinear inversion for surface wave trains and
demonstrated the possibility of extracting different styles
of 1-D models with a comparable fit to data. Although
these models differ significantly, the dispersion of the first
few modes over the relevant frequency range cannot be
distinguished.
[7] The existence of large velocity perturbations in

recent tomography models (e.g., the short-period phase
speed models (<40 s) of Ekström et al. [1997] and the
upper 200 km of the model of Debayle and Kennett
[2000a]) also warns us of the need to rethink the great
circle approximation for surface wave paths [Spetzler et
al., 2001]. In addition, we should take account of finite
frequency effects on surface wave propagation, rather than
assuming sensitivity just on the ray path. Yoshizawa and
Kennett [2002b] have studied the approximate zone of
influence around surface wave paths with careful investi-
gation of a stationary phase field around a path. By
examining the coherence of the phase behavior we have
shown that the approximate influence zone can be repre-
sented as roughly one third of the width of the first Fresnel
zone. The idea of the influence zone leads us to an
alternative viewpoint with area-average phase speeds rather
than the conventional path average. Such an approach
allows us to incorporate the finite frequency effects of wave
propagation as well as off-great circle propagation in
tomographic inversion. The influence zone is somewhat
smaller than that employed by Ritzwoller et al. [2002]
because attention is concentrated on the coherent portion
around the propagation path where the relative time shift is
less than one-eighteenth of the period. At the limits of the
zone employed by Ritzwoller et al. [2002] the time shifts
approach half the period, and if such an enlarged zone is to
be used, a higher level of approximation may be needed as
in the work of Friederich [2003].
[8] Utilizing these new concepts for surface wave analy-

sis, Kennett and Yoshizawa [2002] reformulated the process

of surface wave tomography, especially at the regional
scale, into a three-stage process working with multimode
dispersion. The stages consist of (1) the extraction of path-
specific information by waveform fitting, (2) construction
of multimode phase-speed maps as a function of frequency,
and (3) a final inversion for local shear wave speed
properties.
[9] Such an approach has been exploited in earlier

studies [e.g., Nataf et al., 1986] based on observations
of fundamental mode surface waves. However, our new
scheme, which we call a three-stage inversion, offers the
advantage of allowing the incorporation of various styles
of information such as multimode dispersion, off-great
circle propagation, and finite frequency effects within a
single formulation. By working directly with phase speed
we can readily incorporate the deviation of paths from the
great circle using ray tracing for individual modes and
taking account of the extended influence zone around each
ray path. This approach can be applied not only to
regional studies but also to global studies and therefore
will be useful for reconciling surface wave tomography at
different scales.
[10] In this paper, we apply the three-stage inversion

scheme of Kennett and Yoshizawa [2002], for the first time,
to the Australian region. The major objective of this paper is
to present practical formulations for the three independent
stages, that is, the method of extracting multimode disper-
sion for each path (the first stage), the iterative linearized
inversion for multimode phase speed maps incorporating
the effects of finite frequency and off-great circle propaga-
tion (the second stage), and the construction of the 3-D
shear wave speed model combining improved multimode
phase speed maps (the third stage). The method is then
applied to extract a new Australian upper mantle model to
illustrate the utility of the three-stage approach.
[11] In this first application of the three-stage approach

we use a set of Rayleigh wave phase speeds for the
fundamental and the first three higher modes for particular
frequency ranges to obtain an isotropic shear wave speed
model. No influence of anisotropy is considered in the
present work; this topic is left to future studies on the
development of the three-stage method.

2. Data Set

[12] The first step of the three-stage inversion is to
measure multimode dispersion from observations. At this
stage, we can employ any convenient method for estimat-
ing surface wave dispersion [Kennett and Yoshizawa,
2002]. Here we use 2000 path-specific 1-D shear wave
speed profiles from Debayle and Kennett [2003], which
have been derived from waveform inversion for the
frequency range between 50 and 160 s using secondary
observables based on the cross correlograms calculated
from observed and synthetic seismograms [Cara and
Lévêque, 1987], an approach similar to the isolation filter
technique of Gee and Jordan [1992]. This data set
employs paths solely within the Australian Plate to avoid
possible complex effects from major structural boundaries
in the Philippine Sea region and so provides a good basis
from which to investigate the upper mantle structure
beneath the Australian continent.

B02310 YOSHIZAWA AND KENNETT: THREE-STAGE SURFACE WAVE TOMOGRAPHY

2 of 19

B02310



[13] The 1-D models are derived from the vertical
component of Rayleigh waves recorded at the IRIS and
GEOSCOPE stations as well as at portable broadband
seismic stations of the SKIPPY and KIMBA experiments
undertaken by the seismology group at the Australian
National University from 1993 to 1998 (Figure 1a). We
have corrected for the crustal structure encountered along

each path using the 3SMACmodel [Nataf and Ricard, 1996]
to improve the calculation of phase speeds at shorter period.
We have estimated phase speeds for the fundamental mode
and three higher modes from the path-specific 1-D models
for the period ranges shown in Table 1. With the crustal
corrections we can estimate multimode phase speeds to
periods of 40 s. The longest period used for the phase speed
measurements depends on the particular Rayleigh mode
(Table 1). Phase speed models are obtained over these period
ranges with an increment of 10 s period.
[14] It should be noted that in the three-stage approach we

assume that each surface wave mode propagates indepen-
dently, without any effects of coupling between mode
branches during the propagation. For periods much shorter
than used in this study we would not be able to ignore the
effects of mode conversion caused by strong heterogeneity
in the crust and uppermost mantle [Kennett and Nolet, 1990],
and thus the assumption of the independent mode propaga-
tion would be violated.
[15] The waveform inversion procedure used by Debayle

and Kennett [2000a] used the Cara and Lévêque [1987]
approach for the first four modes. We have retained this
four-mode treatment since we can then be confident of
independent mode propagation. We can achieve good res-
olution of the continental lithosphere beneath Australia
since most of the surface wave energy in the frequency
band that we have used is confined to the first four modes.
Some implementations of partitioned waveform inversion
[e.g., Lebedev, 2000] utilize much higher modes up to 20–
30, which in principal enables resolution of structure in the
transition zone, but mode coupling induced by heterogene-
ity gradients is likely to be a problem for the highest modes.
[16] Some examples of the 1-D models and estimated

phase dispersion curves of the fundamental and the first three
modes for different paths to the NWAO station in the
southwest Australia are shown in Figure 2. These 1-D
models are smoothed over the 400- and 670-km disconti-
nuities. A path passing through the Indian Ocean (Figure 2a)
shows a clear slower shear wave speed anomaly around
150 km depth, whereas a continental path (Figure 2b)
passing mainly through the Proterozoic and Archaean blocks
in the central and western Australia (Figure 1c) shows
noticeably higher wave speed anomalies in the top 200 km.
Another example in Figure 2c shows a path which traverses
both oceanic and continental regions. The corresponding
path-average 1-D model shows the average features of the
oceanic and continental structures with no remarkable
anomalies in the upper mantle.
[17] The use of the sets of 1-D models of Debayle and

Kennett [2003] enables us to assess the model from the
three-stage approach compared with that derived previously
from the two-stage approach. The number of higher modes,
which can be reliably extracted from the observations,

Figure 1. (a) Distribution of global permanent stations
(triangles), portable stations (diamonds), and events (cir-
cles), (b) 2000 Rayleigh wave paths of Debayle and Kennett
[2003], and (c) major geological blocks at the surface of the
Australian region.

Table 1. Minimum and Maximum Period Rangea

Mode Branch

0 1 2 3

Minimum period, s 40 40 40 40
Maximum period, s 150 140 100 60

aRayleigh wave phase speeds are estimated from the 1-D shear wave
speed profiles of Debayle and Kennett [2003].
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depends strongly on the excitation of the modes at the
source. Some of the 1-D models are primarily constrained
by the fundamental mode for shallow events. For testing the
development of our three-stage method we have used the
1-D models to generate higher-mode dispersion, even where
the model is almost entirely constrained by the fundamental
mode. Thus for very shallow sources, the higher-mode
dispersion will not represent independent information.
[18] The reliability of the measured phase speeds from

such 1-D models can be taken into account by using a
posteriori errors [e.g., Nataf et al., 1986] in the 1-D shear
wave speed profiles, which represent how well the model is
constrained via waveform fitting [Debayle and Kennett,
2000a]. Thus for 1-D models that have been constrained
only by the fundamental mode the estimated errors in shear
wave speed become large at depth where there is little
sensitivity. We use this information to estimate the errors in
the estimated phase speeds, which are subsequently used as
weights on the phase speed data in inversions for phase
speed maps, as a function of frequency, in the second stage.

3. Inversion for Multimode Phase Speed Maps

3.1. Formulation of Inversion

[19] In the second step of the three-stage inversion the
ensembles of path-average phase speeds for each mode are
inverted to produce mode-dependent phase speed maps as a
function of frequency. The linear relationship between
perturbation of phase of seismograms, dy, and phase speeds

for the jth mode, dc j, can be represented as [e.g.,Woodhouse
and Wong, 1986]

dyj wð Þ ’ �kj wð Þ
Z
rayj

ds
dc j s;wð Þ
c
j
0 wð Þ

; ð1Þ

where kj is the wave number (= w/c0
j) for a reference model.

Hereafter we omit the dependency on frequency w and
mode number j. The contribution to the phase of the
observed seismogram for each mode is thus represented by
the average phase speed perturbation along either the great
circle path or the ray path to the station with propagation
distance �:

dyobs ’ �k
dch i
c0

obs

�;
dch i
c0

obs

¼ ch iobs�c0

c0
; ð2Þ

where hciobs is the average phase speed along the path.
3.1.1. Linear Relation for Geometrical Rays
[20] The path-average phase speeds can be represented

through the linear relationship derived from equations (1)
and (2):

dch i
c0

obs

¼ 1

�

Z
path

ds
dc sð Þ
c0

; ð3Þ

where the integration is taken along either the great circle
path or the actual ray path between the source and receiver.
Using relationship (3), frequency- and mode-dependent
phase speed maps are obtained on the basis of geometrical
ray theory.

Figure 2. Examples of the path-average 1-D profiles of Debayle and Kennett [2003] and multimode
phase dispersion curves estimated from these 1-D models. The three paths are chosen so that they sample
(a) mainly the oceanic region, (b) mainly the continental region, and (c) both the oceanic and continental
regions.
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[21] The observed phase speed hciobs is usually measured
along the great circle path. However, the actual ray path will
be longer than the epicentral distance �gc along the geode-
sic great circle. When we take account of off-great circle
propagation in constructing phase speed, we need to make a
correction to the observed phase speed so that it represents
an average along the actual ray path. Since the phase
contribution to a seismogram does not depend on the ray
path (Figure 3a), the average phase speeds hciray along the
ray path with length, �ray =

R
rayds, can thus be represented

by using hcigc along the great circle: hciray = hcigc�ray/�gc.
This corrected average phase speed is used when we invert
for phase speed maps employing ray tracing in a heteroge-
neous reference model.
3.1.2. Linear Relation for Finite Width Paths
[22] Phase speed maps can be improved not only via ray

tracing but also by including the influence zone around the
surface wave paths due to finite frequency effects. With
careful investigation of a stationary-phase field, Yoshizawa
and Kennett [2002b] have identified that the influence zone
of surface waves is nearly one third of the width of the first
Fresnel zone. Since the influence zone has been defined as
the finite area over which surface waves are coherent in
phase, we can regard the observed phase speeds as an
average within the influence zone rather than just as an
average along the path.
[23] Using the ray centered coordinate system (s, n) used

by Yoshizawa and Kennett [2002b], we first consider the
average phase speed variation perpendicular to the ray at a
particular point s on the path:

dc sð Þh i
c0

¼ 1

2N sð Þ

Z
width

dn
dc s; nð Þ

c0
; ð4Þ

where N (s) =
R
0
N sð Þdn is the half width of the influence

zone at a point s on the ray path (Figure 3b). Equation (4)
can then be integrated along a path to give the average
phase speed variations within the influence zone:

dch i
c0

¼ 1

�

Z
path

ds
1

2N sð Þ

Z
width

dn
dc s; nð Þ

c0
: ð5Þ

The path integration can be calculated along either the great
circle path or the actual ray path. If we take into account the
influence zone around the source and receiver locations as

discussed by Yoshizawa and Kennett [2002b, appendix], the
integration along the path should be undertaken between
the two edges of the influence zone on the ray trajectory
(Figure 3b), so that the total zone should be slightly longer
than the ray path length (	l/6, where l is the wavelength).
[24] When we integrate the phase speed perturbation

across the zone in equation (4), we apply a weight function
to smooth the edges of the influence zone where the
assumption of the phase coherency tends to be violated
[Yoshizawa and Kennett, 2002b]. Equation (5) is then
modified to

dch i
c0

¼ 1

�

Z
path

ds
1

2N w sð Þ

Z
width

dnW s; nð Þ dc s; nð Þ
c0

; ð6Þ

where N w (s) =
R

dnW(s, n). Since the variations in the
phase contributions within the influence zone are very
small, we adopt a cosine taper as the weight function, rather
than a Gaussian:

W s; nð Þ ¼ cos
p
2

n

N sð Þ

� �2
" #

: ð7Þ

[25] The process of double integration in equation (5) or
(6) allows us to provide an expression of the two-dimen-
sional distribution of sensitivity to surface wave phase:

dy ¼
Z
path

ds

Z
width

dn Ky s; nð Þ dc s; nð Þ
c0

; ð8Þ

where Ky is the 2-D sensitivity kernel for phase speed
structures. Examples of the weighted sensitivity kernels are
displayed in Figure 4. The influence zone becomes wider at
longer periods because the absolute phase speed is faster. It
is apparent that the weighted surface wave sensitivity to
phase speed structure varies along the path but is nearly
constant over the width of the influence zone. The highest
sensitivity is concentrated near the source and receiver, as
expected from the sensitivity kernels evaluated with first-
order scattering theory [e.g., Yomogida, 1992; Marquering
et al., 1998, 1999; Dahlen et al., 2000; Hung et al., 2000;
Zhao et al., 2000]. Vasco et al. [1995] have shown that the
use of such kernels provides very similar results to the use
of more rigorous sensitivity kernels derived from wave
theory.

Figure 3. (a) Illustration of a great circle with epicentral distance �gc and the actual ray path with
length �ray. Since the phase of an observed seismogram is constant, the average phase speeds hcigc
measured along the great circle and hciray along the ray have slight differences associated with the
differences in the distance traveled. (b) Schematic illustration of the influence zone in a ray-centered
coordinate system (s, n). After Yoshizawa and Kennett [2002b].

B02310 YOSHIZAWA AND KENNETT: THREE-STAGE SURFACE WAVE TOMOGRAPHY

5 of 19

B02310



[26] To take account of the wider effects of scattering
outside the influence zone, we can envisage the use of the
Born approximation with more rigorous calculations of the
sensitivity kernels, as have been used in previous studies
[e.g., Yomogida and Aki, 1987;Meier et al., 1997; Dahlen et
al., 2000]. Tackling these more complicated problems is
beyond the present scope; such forms of sensitivity kernels
will be discussed in a future publication.

3.2. Least Squares Inversion for 2-D Phase
Speed Maps

[27] The linearized equations (3) and (6) can be written in
the generalized form, d = Gm, where the data vector d
consists of the observed phase speed variations hdc/cii(i =
1, 2,. . .,M) andM is the total number of paths (about 2000);
m is a vector of model parameters mj ( j = 1, 2,. . ., N), and
G is the kernel matrix.
[28] We use a spherical B spline function F (q, f) [e.g.,

Lancaster and Salkauskas, 1986; Wang and Dahlen, 1995]
defined at the center of a geographic cell as a basis function
to expand the phase speed perturbation:

dc q;fð Þ
c0

¼
XN
j¼1

mjF j q;fð Þ; ð9Þ

where the model parameter mj is the coefficient of the jth
basis function F j. The model space is parameterized using
the B spline basis functions with an interval of 2�, which

provides Gaussian type smoothing around the center of cells
[Yoshizawa, 2002]. The total number of model parameters N
is about 1200.
[29] Using the spherical B splines, the components of the

kernel matrix G for the ith path and the jth model parameter
can be written as

Average along the path

Gij ¼
1

�i

Z �i

0

dsF j ð10aÞ

Average within the influence zone

Gij ¼
1

�i

Z �i

0

ds
1

2N w sð Þ

Z
width

dnW s; nð ÞF j; ð10bÞ

where the epicentral distance �i is measured along either
the great circle or the ray path.
[30] The linearized inversion equation is solved with a

damped least squares scheme, minimizing the objective
function

� mð Þ ¼ d�Gmð ÞTC�1
d d�Gmð Þ þ l2mTm; ð11Þ

where Cd
�1 is the inverse data covariance matrix controlling

the relative contribution of the individual data misfits and l
is an arbitrary damping parameter that controls the trade-off
between the model variance and resolution, which subse-

Figure 4. Representation of the weighted sensitivity kernel Ky for a path between an event in Fiji and
the CAN station in southeastern Australia. The influence zones of the fundamental mode Rayleigh waves
at (a) 50 and (b) 100 s are displayed. The PREM model is used as the reference model to calculate all the
kernels. The white line is the great circle.
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quently affects the maximum amplitude and smoothness of
the model.
[31] Assuming that measured phase speeds for different

paths are uncorrelated (although there may be some corre-
lation through the source location) and their variances are
different for each path, the covariance matrix can be
represented as Cd = sdi

2I, where sdi is the measurement
error for the ith datum and I is the identity matrix. It is
convenient to introduce a rescaled data vector d0i = di/sdi, and
kernel matrix G0

ij = Gij/sdi and thereby to enhance the
importance of data with relatively small measurement error.
Thus we can rewrite the objective function as �(m) = jd0 �
G0mj2 + l2jmj2. The inverse problem is then to solve the
linear equation system

G0

lI

2
4

3
5m ¼

d0

0

2
4

3
5: ð12Þ

for which we have used the iterative LSQR algorithm
[Paige and Saunders, 1982].

4. Multimode Phase Speed Models

4.1. Five Sets of Phase Speed Models

[32] We can obtain different types of multimode phase
speed models by using various types of inversion kernels
(equation (10)) working with the great circle approxima-
tion, with ray tracing or with allowance for the influence
zone around the assumed path. In order to distinguish the
sets of phase speed models derived from the different
assumptions, we use a naming scheme based on the
inversion method; this convention and the relation of
the model sets are summarized in Figure 5. The PREM
model [Dziewonski and Anderson, 1981] is used as a

reference for all the tomography models shown in this
paper.
[33] The first set of models GC0 uses the great circle

approximation without any consideration of the zone of
influence; so that the procedure is similar to conventional
inversion for phase speed maps. A second set of models
GCiz is derived incorporating the influence zone around the
great circle paths.
[34] The phase speed models GC0 can be updated by

allowing for the deviations of the surface wave rays from
the great circle in the construction of the phase speed maps
(models Ray-GC0). We also use GC0 to obtain an improved
model set Riz-GC0 considering both off-great circle prop-
agation and the influence zone for each path.
[35] Further updates to the model set GCiz incorporating

ray tracing and the influence zone produce the final model
set Riz-GCiz. This set would be expected to be the best
models in this study, in that we take full account of the
possible effects of off-great circle propagation and finite
frequency effects.
[36] We refer to the various updating processes for the

sets of models as global iteration to distinguish them from
the other class of iterative processes for each phase speed
inversion using the LSQR algorithm (local iteration).
Although the new sets of phase speed models (i.e., Ray-
GC0, Riz-GC0, and Riz-GCiz) could be further updated by
global iteration, there is no need to repeat this process more
than once because in most cases, the second global iteration
does not alter (or improve) the models significantly.
[37] The most time-consuming process in the second stage

is the computation of the inversion kernels (equation (10)).
In particular, when we incorporate ray tracing for all the
paths in phase speed maps, the computation time is almost
doubled compared to the great circle approximation. When
we include the influence zone, the total amount of compu-
tation for the spatial integrations depends on the mode and
frequency because the width of the influence zone to be
integrated varies significantly with these factors. In the
examples in this paper, the computation for the models GCiz
is more than 5 times than that for GC0. The construction of
Riz-GC0 and Riz-GCiz requires nearly 10 times the
computation time of GC0.

4.2. Assessment of Models

4.2.1. Trade-Off
[38] Figure 6a shows the behavior of the misfit and

model norms as a function of the local iterations of the
LSQR algorithm, with varying damping parameters (l =
0.4, 1.0, and 1.6) for the phase speed model GC0 for the
fundamental mode at 100 s. The number of local iterations
that give adequate convergence depends on the choice of
damping parameter. For a relatively large damping, l =
1.6, both the model and misfit norms converge by the
tenth iteration with a suppressed model norm and slightly
higher misfit. With a smaller damping of l = 0.4 the
model norm grows rapidly, and models do not converge
within 10 iterations.
[39] With damping l = 1.0, the model reaches a satisfac-

tory level of convergence within 10 iterations with a
compromise in the trade-off between the misfit and the
model norm. The trade-off curve is displayed in Figure 6b,
with the misfit represented by (jd � Gmj2/jdj2) � 100(%).

Figure 5. Chart representing the relations between the five
different sets of phase speed models. Model sets GC0 and
GCiz are derived from the great circle approximation, and
these models are used as initial heterogeneous models in the
subsequent inversions for the updated models (Ray-GC0,
Riz-GC0, and Riz-GCiz).
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In this example, we chose l = 1.0 as the appropriate
damping for this model.
[40] The other classes of phase speed models (Figure 5)

for different frequencies and different modes show a
similar behavior to Figure 6b with slight differences in
the values of the damping parameter. As suitable values of
the damping parameter l with a good compromise in the
trade-offs for ray theoretical models (i.e., GC0 and Ray-
GC0), we use from 0.8 to 1.2 for the fundamental modes
and from 0.6 to 0.8 for the higher modes, depending on
frequency. For finite frequency models (i.e., GCiz, Riz-
GC0, and Riz-GCiz), we can choose somewhat smaller
damping than for ray theoretical models to achieve the
comparable levels of misfit.
4.2.2. Variance Reduction
[41] We estimate the variance reductions for the five types

of phase speed maps using (1 � s1
2/s0

2) � 100(%), where s0
is a data variance for a spherical Earth model (i.e., PREM)
and s1

2 is a variance for an obtained phase speed map. We
estimate s1

2 by using synthetic data calculated from the
linearized forward modeling employing equation (6)
considering the effects of both the ray path bending and
the influence zone.

[42] The patterns of variance reduction in the phase speed
maps for the fundamental mode are displayed in Figure 6c.
All the models achieve quite good variance reductions of
around 70% for the fundamental mode and over 80% for
higher modes (not shown). There is a clear tendency in
Figure 6c that the phase speed models including the effects
of finite frequency (GCiz, Riz-GC0, and Riz-GCiz) consis-
tently provide better variance reductions than the ray
theoretical models (GC0 and Ray-GC0). This behavior
indicates that the theory with the influence zone is superior
to conventional geometrical ray theory. We can also see that
the inclusion of ray path bending does not bring significant
improvements in the phase speed models for most of the
current period range. An exception can be seen in the phase
speed models at 40 s for which the off-great circle propa-
gation becomes conspicuous compared to the longer peri-
ods, resulting in somewhat higher variance reduction for
updated models including ray path bending.
4.2.3. Resolution
[43] The most widely used procedure to assess the reso-

lution of tomographic models is the use of a checkerboard
resolution test. However, it is not trivial to visualize the
realistic resolution of tomography models taking account of

Figure 6. (a) Model and misfit norms as a function of local iterations of the LSQR algorithm for a phase
speed model GC0 at 100 s. (b) Trade-off curves for varying damping parameter l. We choose l = 1.0 as a
preferred damping for this example. (c) Variance reductions estimated by using synthetic data calculated
from the linearized forward modeling employing equation (6) for five sets of fundamental mode phase
speed models.
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the nonlinear effects in the observed data. If we just work
with linearized ray theory for both forward and inverse
problems, the test only provides us with an ‘‘idealized’’
apparent resolution which just reflects the ray path coverage
as modulated by the employed damping and smoothing in
the inversion.
[44] Such an example is shown in Figure 7b, where we

calculated synthetic data (fundamental mode Rayleigh
waves at 40 s) for an input checkerboard model with 5�
cells (Figure 7a) employing equation (3) based on the
geometrical ray theory and then performed inversion with
the same linear equation. For regions with sufficient path
coverage we can achieve a fairly good recovery of the
original checkerboard pattern and amplitude with the damp-
ing used for real data inversion. We refer to this type of
resolution as an idealized resolution because everything is
linear for both forward and inverse problems.
[45] To provide a more realistic estimate of the attainable

resolution, we perform a further class of checkerboard tests
using synthetic data calculated from equation (6). These
synthetics include the effects of ray path bending as well as
the finite frequency of the surface waves. The synthetic data
are still based on linear approximation but should be closer
to observed data that reflect the off-path sensitivity of
surface waves propagating in a 3-D structure.
[46] We perform inversions with these synthetic data for

the five types of models (Figure 5). Examples of ‘‘realistic’’
resolutions for phase speed models GC0 and Riz-GC0
are shown in Figures 7c and 7d, respectively. It is

apparent that the resolution for GC0 with the new data set
is somewhat suppressed compared to that for Riz-GC0. This
is because that the synthetic data employed here include the
effects of finite frequency which cannot be fully accounted
for in a framework of geometrical ray theory. Therefore
Figure 7c represents a realistic assessment of the attainable
resolution for ray theoretical models. From the comparison
of Figures 7b and 7c it is clear that the limited approxima-
tion of geometrical ray theory tends to overestimate the
apparent resolution of the derived models and such results
therefore need to be treated with caution.
[47] Figure 7d includes an allowance for the influence

zone and is updated from Figure 7c in a similar way to real
data inversions. The retrieved model (Figure 7d) provides a
better recovery of the original checkerboard pattern and
amplitude, even though the reference velocity model in
Figure 7c contains quite erroneous features. Also, we can
see a uniform spatial resolution of the finite frequency
model in Figure 7d, since we can achieve more uniform
path coverage with the inclusion of spatial integration about
a path.
[48] In Figure 8 we display some more examples of

realistic checkerboard models for the fundamental
mode with different cell sizes: 12� (Figures 8a–8c) and
8� (Figures 8d–8f) at 80 s period and 4� (Figures 8g–8i) at
40 s period. The resolution patterns for GC0 (Figures 8b, 8e,
and 8h) show some erroneous patch-like features and
somewhat reduced amplitudes. For Riz-GC0 (Figures 8c,
8f, and 8i), which is updated from GC0, such artificial

Figure 7. (a) Input checkerboard models with 5� cells. (b) A retrieved model based on the geometrical
ray theory employing synthetic data calculated from the ray theory for fundamental mode Rayleigh wave
at 40 s, representing ‘‘idealized’’ resolution for a ray theoretical model (GC0). Models retrieved by using
(c) the geometrical ray theory (corresponding to GC0) and (d) the influence zone (corresponding to Riz-
GC0) employing synthetic data which include the effects of finite frequency and off-great circle
propagation, representing ‘‘realistic’’ resolution of phase speed models.
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structures are smoothed out, and the original patterns and
amplitude of heterogeneity can be recovered quite well. The
natural smoothing introduced by the inclusion of off-path
sensitivity is also seen in the group dispersion maps of
Ritzwoller et al. [2002], who employed much wider sensi-
tivity kernels based on the Born/Rytov approximation
[Spetzler et al., 2002].
[49] With the current data set we can achieve fairly good

recovery of both patterns and amplitudes of input checker-
board down to 5� cells. The patterns of smaller-scale hetero-
geneities (<4�) can also be recovered quite well for regions
with good path coverage, but the amplitude is slightly sup-
pressed. This is mainly due to somewhat larger damping
applied to observed data for shorter-period Rayleigh waves.
In the present study, the minimum scale length of the lateral
heterogeneity that we can resolve is a few hundred kilometers
for fundamental mode phase speed maps at 40 s.

4.3. Multimode Phase Speed Maps for Rayleigh Waves

[50] The five types of phase speed maps for the funda-
mental mode Rayleigh wave at 100 s are displayed in
Figure 9. All the models show a fair degree of consistency
at large scale. The dominant features are fast velocity

anomalies in the Archaean and Proterozoic blocks in central
and western Australia and slow velocity anomalies in the
eastern Phanerozoic region of the eastern Australia and in
the Coral and Tasman Sea (Figure 1c).
[51] The models with the inclusion of finite frequency

effects represent a better approximation to the forward
modeling for the surface waves as shown in Figure 6c.
The spatial resolution is more uniform with the inclusion of
the spatial integration about the paths. A further factor is
enhanced sensitivity to the source and receiver points (in
common to all improved modeling procedures). Checker-
board tests including nonlinear effects in Figures 7 and
8 suggest that finite frequency models would provide better
realistic resolution than ray theoretical models.
[52] The influence of the different styles of inversions

change the character of the phase speed distributions in
Figure 9, so that some regions with strong local heteroge-
neity in the ray theoretical models (GC0 and Ray-GC0) are
smoothed out in the finite frequency models (GCiz, Riz-
GC0, and Riz-GCiz). This effect is most noticable in the
Tasman Sea and in the Proterozoic blocks of central Aus-
tralia. Also, we can see more enhanced image of subduction
in the New Hebrides and Tonga-Kermadec trenches. The

Figure 8. Realistic resolution tests for the fundamental mode with different cell sizes: (a–c) 12� and
(d–f ) 8� at 80 s period and (g–i) 4� at 40 s period. Input models are displayed in Figures 8a, 8d, and 8g,
the retrieved checkerboard is displayed for ray theoretical models (GC0) in Figures 8b, 8e, and 8h and for
the finite frequency models (Riz-GC0) in Figures 8c, 8f, and 8i.
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updated models including finite frequency effects, Riz-GC0
and Riz-GCiz, show excellent spatial correlation at the 0.99
level. The correlations between the other models are around
0.95.
[53] We extend the illustration of the phase speed models

to the higher modes in Figure 10 for GC0 and Riz-GC0 at
60 s. The smoothing effects from the inclusion of finite
frequency effects are more pronounced for the higher

modes because phase speeds are higher leading to a wider
influence zone.
[54] The phase speed perturbations for the higher modes

are usually smaller than the fundamental mode model, which
indicates that the velocity perturbations tend to decrease in
the deeper part of the mantle. Thus the effect of off-great
circle propagation is not critical for the higher modes.
However, for the fundamental mode at 60 s, there is a clear

Figure 9. Five types of phase speed maps for the fundamental mode Rayleigh waves at 100 s. All the
models are shown as a perturbation from PREM. (a) Model GC0 derived from the great circle
approximation. (b) Updated model Ray-GC0 with surface wave ray tracing in the model in Figure 9a.
(c) Updated model Riz-GC0 with ray tracing as well as the influence zone about the path. (d) Model GCiz
including the influence zone around the great circle paths. (e) Updated model Riz-GCiz from Figure 9d
using ray tracing and the influence zone.
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difference in the boundaries between the lower and faster
phase speed anomalies in the eastern Australia, when ray
tracing is employed.

5. Nonlinear Inversion for Local Shear Wave
Speed Models

5.1. Multimode Phase Speed Maps and 3-D Shear
Wave Speed Structures

[55] The third stage of the three-stage process is to invert
for a set of local shear wave speed models using local
multimode dispersion information assembled from a set of
phase speed maps derived in the second stage. The 3-D
wave speed model is then constructed from the full suite of
local models.
[56] The relation of multimode phase dispersion and local

one-dimensional structure can be represented by a linearized
relation as [e.g., Takeuchi and Saito, 1972; Dahlen and
Tromp, 1998]

dc wð Þ
c

¼
Z R

0

Kr w; zð Þ dr zð Þ
r

�
þ Ka w; zð Þ da zð Þ

a
þKb w; zð Þ db zð Þ

b



dz;

ð13Þ

where dc is the perturbation of the phase speed; dr, da, and
db are the perturbations of density, P wave speed, and shear
wave speed, respectively; and R is the radius of the Earth.
Kr, Ka, and Kb are the sensitivity kernels which represent
the partial derivatives of phase speed with respect to each of
the model parameters.
[57] In general, the effects of density and P wave speed

on a Rayleigh wave phase speed perturbation are not very
significant compared with the influence of shear wave
speed, particularly in the intermediate frequency range used
in this study. Thus we fix the density and P wave speed
structures, and only a perturbation of shear wave speed is
considered in the inversion for a 1-D model.
[58] We need to emphasize that the 1-D models in the first

stage are path-specific and are employed to estimate mul-
timode dispersion, whereas in this third stage we are
interested in an ensemble of local 1-D wave speed models
to assemble the 3-D model. The local 1-D models are
derived from a nonlinear inversion of local dispersion for
a number of modes. The results are sensitive to the local
shallow structure, and therefore we need good representa-
tions for the crustal structure across the region.
[59] Throughout this study, we use the crustal structure

from the 3SMAC model [Nataf and Ricard, 1996], which

Figure 10. Two sets of phase speed maps for the first three modes of Rayleigh waves at 60 s. All the
models are shown as a perturbation from PREM. GC0 models for (a) the fundamental mode, (b) the first
higher mode, and (c) the second higher mode. Riz-GC0 models for (d) the fundamental mode, (e) the first
higher mode, and (f) the second higher mode, updated from GC0.
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defines local wave speed structures at 2� � 2� cells. The use
of a global crustal model such as 3SMAC is convenient, but
even with corrections it may be an inadequate representa-
tion of the true structure in the Australian region. A
systematic development of a detailed model of crustal
structure is being made, but the 3SMAC model is retained
here for comparison with previous studies since the empha-
sis is on the influence of different approximations in
carrying out the inversion for 3-D structure.

5.2. Method of Inversion

[60] The iterative least squares inversion scheme of
Tarantola and Valette [1982] is used to invert multimode
dispersion data for a local 1-D shear wave speed model.
This nonlinear inversion procedure has been widely
adopted in a number of surface wave studies [e.g.,
Montagner and Jobert, 1981; Nataf et al., 1986; Cara
and Lévêque, 1987; Nishimura and Forsyth, 1989], and
the details of the method are explained in these works.
Here we explain only the practical application of the
method, especially focusing on the choice of a priori
smoothing parameters.
[61] In this iterative method, the smoothness of the model

is controlled by a priori information, which is used in the
linearized inversion as a model covariance. Previous studies
have shown that the shear wave speeds in the upper mantle
have a peak to peak variation of about 0.5 km/s over a 100-km
interval in depth [e.g., Nishimura and Forsyth, 1989]. We
prefer models which vary smoothly with depth but allow
some degree of rapid variation so that we can treat rapid
changes with large wave speed perturbation. We therefore
employ a correlation length L = 20 km and a standard
deviation s = 0.1 km/s over the depth range below the
Moho to construct the model covariance. For the shallower
structure above the Moho the correlation length is chosen to
be L = 5 km so that more rapid variation is allowed.
[62] We start the local inversion from the PREM model

[Dziewonski and Anderson, 1981] for the oceanic regions
and in continental regions modify the crust and uppermost

mantle to allow for the thicker crust (PREMC). Both the
PREM and PREMC models are adapted to have smooth
variation across the 220-, 400-, and 670-km boundaries.
Prior to the inversion, the local crustal structure of the
reference model is corrected by using the 3SMAC model
[Nataf and Ricard, 1996].

5.3. Local Shear Wave Speed Models

[63] The local phase dispersion curves are assembled
from the multimode dispersion maps at 2� grid points in
both longitude and latitude and then are inverted for local
shear wave speed structures. We display the 1-D shear wave
speed models for Riz-GCiz along a N-S line at 130�E
longitude in Figure 11a and note the high-velocity anoma-
lies near the center of the Australian continent in the upper
300 km. Along this longitude, the continent-ocean boundary
occurs around 34�S latitude, and there are slower velocities
to the south of this latitude and faster anomalies to the north
below 80 km depth, indicating a rather rapid change at the
boundary.
[64] The resolution kernels for a typical 1-D shear wave

speed profile are shown in Figure 11b. It is apparent that the
shallower parts of the 1-D structure from 100 to 300 km are
comparatively well constrained. However, the deeper parts
of the upper mantle are not well resolved even though we
include information up to the third higher mode. The lower
resolution at depth is mainly due to the smaller sensitivity of
the higher modes to the shear wave speed structure com-
pared with the fundamental mode. There is still some
sensitivity around 450 km depth which could not be
achieved with just the fundamental Rayleigh mode with
our maximum period of 150 s.

6. The 3-D Models in the Australian Region

[65] The final 3-D models are obtained by repeating the
inversions for the local shear wave speed profile across the
whole region using the dispersion information for each 2� �
2� cell. Five types of 3-D shear wave speed models are

Figure 11. (a) Local shear wave speed models along longitude 130�E with varying latitude.
(b) Resolution kernels for shear wave speed structure beneath the location (28�S, 130�E).
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derived from the corresponding sets of phase speed models
in Figure 5.

6.1. Comparison of 3-D Models

6.1.1. Two-Stage and Three-Stage Approaches
[66] The process of three-stage approach is somewhat

indirect compared to the conventional two-stage approach,
although it provides us with a number of benefits for
improving 3-D models. A comparison of 3-D models
derived from both two-stage and three-stage inversions is
therefore helpful for assessing how the differences in the
inversion processes affect the final 3-D models.
[67] We employ a two-stage inversion with the direct use

of the same path-specific 1-D profiles of Debayle and
Kennett [2003] as have been used to estimate the multimode
phase speed maps. The 1-D profiles are treated as averages
of the 3-D model along the great circle between source and
receiver [Debayle and Kennett, 2000a] and the inversion of
the full set of path information is performed using the LSQR
algorithm [Paige and Saunders, 1982] with a damped least
squares formulation.
[68] The 3-D model derived from the two-stage inversion

scheme shows a similar behavior in the trade-off between
the misfit and model norm to the phase speed situation. For
the region above 200 km, more than 70% variance reduc-
tions are achieved through the direct use of the path-average
1-D models, and below 250 km, about 40% variance
reductions can be achieved. Nevertheless, the model
explains the data quite well with respect to the estimated
errors.
[69] A comparison of the 3-D models derived from the

two-stage and three-stage approaches GC0 at 100 km depth
is shown in Figure 12 under the same assumptions of great
circle propagation with no allowance for finite frequency
effects. Despite the intrinsic differences in the inversion
processes, the final 3-D models are extremely well corre-
lated. The spatial correlation coefficients of these velocity
structures exceed 0.95 at all depths. The idealized resolu-
tion map for the two-stage model is similar to that shown in
Figure 7b. However, it is not at all simple to represent the
realistic resolution for a two stage model because unlike the
phase speed maps for different frequencies, it is not
straightforward to relate the path-average information

(i.e., 1-D models in this case) to the effects of finite
frequency.
[70] The similarity of the models in Figure 12 indicates

that the use of the intermediate step of phase speed maps in
the three-stage approach does not bring in any deleterious
effects in the final 3-D model for the intermediate frequency
range we have used. We can therefore expect to gain from
use of the three-stage inversion when we include improved
propagation models with frequency dependent off-great
circle propagation and allowance for the influence zone
around the paths.
6.1.2. Three-Stage Models
[71] Using the five sets of phase speed models in section 4,

we obtain five types of corresponding 3-D shear wave speed
models. In this section, we mainly focus on the comparison
of these 3-D models, especially how the models are
improved by considering the influence zone of surface
wave paths.
6.1.2.1. Differential Maps at 120 km Depth
[72] The shear wave speed models at 120 km depth for the

different types of 3-D models are shown in Figures 13a–13e.
The major features of these models are quite similar to those
of the corresponding phase speed maps in Figure 9, sharing
the similar patterns of the fast and slow wave speed
anomalies.
[73] We emphasize the differences between the models

by using maps of the differential velocity perturbations
�bab/b0 between two models a, b compared to the refer-
ence profile (PREM). Examples of these differential maps
for several combinations of five models are shown in
Figures 13f–13j. Figures 13f, 13g, and 13h show differen-
tial maps between updated models (including ray tracing)
and the corresponding starting models, whereas Figures 13i
and 13j show differential maps between two updated
models which include the effects of ray bending and/or
the influence zone.
[74] It is apparent that the differences between Riz-GC0

and GC0 (Figure 13g) are the most conspicuous among all
the differential maps; while there is almost no difference
(less than ±0.5%) between the models Riz-GCiz and Riz-
GC0 with ray tracing and influence zone effects included
(Figure 13j), even though they are derived from different
heterogeneous models.

Figure 12. The 3-D shear wave speed models in the Australian region at 100 km depth. (left) Model
derived from the two-stage approach and (right) GCO three-stage model derived from the great circle
approximation. The reference wave speed is 4.41 km/s.
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[75] The significant differences between Riz-GC0 and
GC0 (more than ±1% variation) in Figure 13g suggest that
the great circle model GC0, based only on geometrical ray
theory, contains a number of erroneous features that are
revealed as relatively large differences in the differential
velocity perturbation (±1 	 2%). Such erroneous structures
for ray theoretical models can be expected from the results
of realistic resolution tests in Figures 7 and 8. The inclusion
of off-great circle propagation alone (Ray-GC0) is not
sufficient to eliminate such errors (Figures 13f, 13g, and
13i). The similarity in patterns of model differences shown
in Figures 13g and 13i) indicates that the effect of ray path
bending is not sufficient to improve the tomography models
at period range in this study.
[76] On the other hand, models derived including the

influence zone around the surface wave paths (Figures 13c,
13d, and 13e) share rather similar features of somewhat
smoothed heterogeneities, regardless of the inclusion of off-
great circle propagation. Figure 13h is a differential map
between the best updated model Riz-GCiz and a finite
frequency great circle model GCiz. The differences are less
than ±1.0% in most areas and are barely noticable, suggest-
ing that the finite frequency model GCiz is rather similar to
the model Riz-GCiz even without corrections from ray

tracing. For the intermediate frequencies that we have used,
the inclusion of an allowance for finite frequency effects
using the influence zone makes a more significant contri-
bution to the improvement of tomographic models than ray
tracing.
[77] The main differences between the models in

Figures 13g and 13i indicate that updating processes
including the influence zone make the wave speed in the
oceanic region faster and the continental region slower,
resulting in smoother variations across the whole region.
Velocity differences within the continent are mainly found
in those regions with relatively large gradients in velocity,
such as near the western and eastern margins of the
continent and around the craton in the central Australia.
In the oceanic region we can see more pronounced features
of subduction in New Hebrides and Tonga-Kermadec with
faster wave speeds relative to the surroundings.
6.1.2.2. Effects of the Influence Zone and
Structural Implications
[78] The major features of Figure 13, particularly the

differences between Riz-GC0 and GC0, are common to
other slices through the 3-D models at different depths. We
note that in Figures 13a and 13c some small patch-like
features in GC0 are smoothed out in Riz-GC0; the effect is

Figure 13. (a–e) Five types of shear wave speed models at 120 km derived from the corresponding
phase speed maps in Figure 9 derived by the three-stage approach. Differential maps at 120 km between
shear wave speed models in Figures 13a–13e: (f ) Ray-GC0 and GC0, (g) Riz-GC0 and GC0, (h) Riz-
GCiz and GCiz, (i) Riz-GC0 and Ray-GC0, and (j) Riz-GCiz and Riz-GC0.
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noticable near the faster velocity anomalies beneath the
Proterozoic blocks in the center of the Australian Continent
and also in the offshore regions with slower velocity in the
Coral Sea and Tasman Sea to the east. The off-path
smoothing effects in the finite frequency model Riz-GC0
become even clearer in the deeper parts of the mantle below
150 km (not shown). The structures at these greater depths
are constrained mainly by the higher modes and longer-
period fundamental modes whose influence zones are wider
than those for the shorter-period fundamental mode. The
effect of the off-path smoothing is preserved in the cross
sections (Figure 14) for the same regions where there is
noticable smoothing in the heterogeneity in the map views
(Figures 13a and 13c).
[79] Differential cross sections between GC0 and Riz-

GC0 are shown in Figures 14c and 14f. The most striking
feature is that differences in the east of Australia (around
148�E and 20� 	 30�S) exist down to 400 km depth,
whereas in the cratonic region in the central and western
Australia the main velocity differences are confined to the
top 200 km. This may in part reflect greater sampling by
paths with strong higher-mode excitation.

[80] A striking feature of previous models for the struc-
ture of Australia derived from two-stage inversion is the
rapid transition from fast to slow wave speed at the edge of
the craton (around 140�E). This feature is preserved in the
three-stage models but with slightly reduced gradients in
Riz-GC0 compared with GC0. The zone of change is
comparable to the achievable spatial resolution and this
suggest that the actual transition must be quite sharp.
[81] In Figure 15 we show a full set of map slices for our

final 3-D model Riz-GCiz of the Australian region, which
shares an almost identical wave speed distribution with Riz-
GC0. We can track the faster wave speed anomaly in the
center of the continent in these images down to 300 km
depth.
[82] The depth of the root of such continental lithosphere

can be estimated from the largest velocity gradient in the
wave speed profiles. We can see higher-velocity anomalies
down to depths of 200–250 km beneath the middle and
western parts of Australia, corresponding to the continental
lithosphere of the Australian Continent. In a region just
beneath the Proterozoic blocks in the central Australia
(around 20�S and 132�) the continental lithosphere seems

Figure 14. Cross sections of 3-D shear wave speed models for GC0 and Riz-GC0. N-S cross sections
through varying longitudes for (a) GC0 and (b) Riz-GC0. E-W cross sections through various latitudes
for the model (d) GC0 and (e) Riz-GC0. Differential cross sections between shear wave speed models
Riz-GC0 and GC0 along (c) the N-S direction and (f ) the E-W direction.
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to reach 300 km, in agreement with the results of Simons et
al. [1999].
[83] The neighboring subduction zones are imaged as

zones of relatively fast wave speeds, under New Zealand
and to the north of Australia (around 130�E and 0� 	 10�S)
from the Indonesian subduction zone. However, the details
of the subducting plate cannot be resolved with the long-
wavelength surface waves.
[84] One of the major difference from the models of

Simons et al. [1999] is the absence of high wave speed
anomalies in eastern Australia below 250 km in the zone
140� 	 150�E and 20� 	 25�S. At this depth, the wave
speed perturbations from the PREM become very small
beneath the Australian continent, and the maximum pertur-
bations do not exceed ±2% in our models (Figure 15). The
model differences can be attributed to the nature of the data
analysis, with different waveform fitting procedures. Our
data set of path-specific 1-D models of Debayle and Kennett
[2003] has been derived from fitting cross correlograms as
secondary observables, whereas Simons et al. [1999] have
used a procedure of fitting the multimode waveforms
directly for path-specific 1-D models [e.g., Nolet, 1990],
which is more sensitive to the choice of initial models to
start the inversion [Hiyoshi, 2001].
[85] Higher wave speed anomalies in western Australia

just beneath the NWAO station, corresponding to the root of

the Archaean craton, seem to get fainter below a depth of
250 km in Figures 15 and 14e at 30�S. Earlier studies
[Simons et al., 1999; Debayle and Kennett, 2000a] have
shown high wave speed anomalies at this depth. The
weakened higher wave speed anomaly in this region in
Riz-GCiz comes from the improved allowance for structure,
but the sparse data coverage still gives limited resolution; so
we need to be careful about discussing the structure in the
western blocks of the Australian continent. Even so, the ray-
tracing experiments shown by Yoshizawa [2002] suggest
that conspicuous ray path deviations from the great circle
are likely to appear in the paths from the Tonga-Kermadec
region to the NWAO station. Therefore the use of ray
tracing in the estimation of the phase speed maps should
play a role in suppressing some undesirable effects caused
by large ray path deviations to NWAO.

7. Discussion

[86] In this paper, we have completed the development of
the three-stage inversion scheme of Kennett and Yoshizawa
[2002] by obtaining a suite of 3-D shear wave speed models
for the Australian region based on the sets of multimode
phase speed maps incorporating the effects of finite fre-
quency. In particular, emphasis has been placed on the
explicit formulation of the inversion scheme for phase speed
maps in the second step, which enables us to incorporate
off-great circle propagation and the influence zone for
surface wave paths in the frequency and modal domains.
[87] The advantage of the three-stage approach is that

various types of information can be combined in a common
framework to form a final 3-D model. Polarization anoma-
lies due to ray path bending [Laske and Masters, 1996;
Yoshizawa et al., 1999], and the influence zone [Yoshizawa
and Kennett, 2002b] that takes account of finite frequency
effects of surface waves can be brought together efficiently
by working with multimode phase speed maps at each
frequency.
[88] Regional studies cannot recover long-wavelength

structure which dominates most global models. However,
in the three-stage approach we can employ portions of the
phase speed maps from global studies as starting models for
the regional tomographic inversion of phase speeds, which
enables us to combine tomography models at different
scales.
[89] Moreover, we can use any convenient technique in

the first stage to make reliable measurements of multimode
phase speeds, and thus different data sets derived from
different techniques can be combined in producing the
tomographic models. All models are viewed as representa-
tions of multimode surface wave dispersion and can there-
fore be brought together in the phase speed maps as a
function of frequency for the different modes. With a two-
stage approach all the 1-D models for the paths need to have
been generated in a common representation to provide
comparable constraints on the final 3-D model.
[90] The three-stage inversion scheme requires the com-

putation of phase speed maps for a number of modes
followed by inversions for local shear wave speed models.
Therefore, in total, the three-stage approach requires more
computation than a two-stage process such as partitioned
waveform inversion but is still efficient enough to treat the

Figure 15. Shear wave speed model Riz-GCiz in the
upper mantle. Reference velocities are 4.41 km/s at 100 km,
4.43 km/s at 150 km, 4.51 km/s at 200 km, 4.61 km/s at
250 km, 4.70 km/s at 300 km, and 4.75 km/s at 350 km.
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complicated phenomena of off-great circle propagation and
finite frequency effects.
[91] The inclusion of finite frequency effects provides

superior results compared with conventional ray theory for
both the estimates of variance reduction and the synthetic
experiments for determining realistic resolution for phase
speed models. The 2-D phase speed models, which are
obtained using the influence zone about the propagation
path, are naturally smoothed through the incorporation of
finite frequency effects and share similar features in the
variations of phase speed irrespective of the inclusion of the
off-great circle propagation. The effects of this smoothing
are retained in the final 3-D shear models. The dominant
influence comes from the inclusion of the off-path sampling
associated with the finite frequency of the surface waves,
although the inclusion of ray tracing is beneficial.
[92] The three-stage approach enables us to include

slightly higher frequencies of surface waves than in a
two-stage scheme, since the effects of ray bending caused
by moderate lateral heterogeneity can be treated through the
updating process of phase speed maps. Such effects are
particularly important for the fundamental mode, which
samples the shallower layers of the Earth with stronger
heterogeneity.
[93] The frequency range that we have employed is such

that we can still be confident of the use of the approxima-
tion of independent mode propagation for the four modes.
In order to go to higher-frequency ranges a careful treatment
of the effects of the mode branch coupling as well as of
crustal structure will be required to avoid undesirable effects
on the tomography models [Kennett and Nolet, 1990;
Kennett, 1995]. For such complex structures with strong
lateral heterogeneity the assumption of independent mode
propagation will be violated, and coupling between mode
branches cannot be ignored. The treatment of mode branch
coupling in a full 3-D structure is still too complex for the
practical use because different directions of propagation for
all the scattered waves in a 3-D structure must be considered
[Kennett, 1998]. With the neglect of backscattering,
Friederich [1999, 2003] has developed a scheme including
mode coupling on a spherical Earth. However, the sharp
gradients in shear wave speed found in the Australian region
are such that the forward scattering hypothesis may be too
restrictive.
[94] The three-stage inversion scheme has considerable

potential for further development to include the recovery
of azimuthal anisotropy, the combined use of Love and
Rayleigh waves and the simultaneous use of group and
phase speed maps at the second stage.
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