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The coupling between deformation and motion in a self-propelled system has attracted broader interest. In the
present study, we consider an elliptic camphor particle for investigating the effect of particle shape on spontaneous
motion. It is concluded that the symmetric spatial distribution of camphor molecules at the water surface becomes
unstable first in the direction of a short axis, which induces the camphor disk motion in this direction. Experimental
results also support the theoretical analysis. From the present results, we suggest that when an elliptic particle
supplies surface-active molecules to the water surface, the particle can exhibit translational motion only in the
short-axis direction.
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Spontaneous motion in nonequilibrium systems has long
attracted the interest of scientists because it is related to the
motion of living organisms. In particular, the coupling be-
tween deformation and spontaneous motion has been actively
investigated and several important and interesting studies,
both experimental and theoretical, have been reported. For
example, Ohta et al. proposed a generic model for the coupling
between deformation and spontaneous motion by analyzing
such coupling from the viewpoint of the bifurcation theory of
dynamical systems [1–3]. Teramoto et al. studied the coupling
between deformation and motion in pulse propagation in a
reaction-diffusion system [4]. In experiments, cell motion is
analyzed in relation to cell shape [5–7], and mathematical
models have also been proposed for such cell deformation
[8,9].

For investigating the coupling between motion and defor-
mation, one approach is to decouple them; i.e., we consider the
effect of particle shape on motion. For this purpose, we chose
a camphor-water system, in which a camphor particle exhibits
spontaneous motion but not deformation. The camphor-water
system was first reported in the 19th century [10,11]. As
a camphor particle is placed on pure water, it exhibits
spontaneous motion. The mechanism of the motion is briefly
described as follows [12,13]: Camphor molecules escape from
the camphor particle to the water surface. Since camphor has
a surface activity, the camphor molecules at the water surface
reduce the surface tension. It should be noted that the camphor
molecules sublimate to the air, so that the profile of the surface
concentration of camphor molecules at the water surface can
reach a steady state. If the camphor particle is circular and does
not move, the profile of the surface concentration of camphor
molecules should be symmetric with respect to the center of
the camphor particle. However, it is known that such a steady
state can become unstable by an infinitesimal fluctuation.
In such a case, motion in a certain direction at a constant
velocity is stabilized and realized. Consequently, the profile of
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the surface concentration becomes asymmetric [14–16]. This
camphor-water system has attracted attention since it exhibits
interesting and complicated phenomena such as collective
motion [17–19] and jamming [20] in spite of its simple setup.

Using this camphor-water system, we investigate the effect
of particle shape on the motion. To describe the particle shape,
we consider small deformation from a circle with a radius R

as a perturbation. In two-dimensional polar coordinates r and
θ , the shape can be written as

r(θ ) = R

[
1 +

∞∑
k=2

(ak cos kθ + bk sin kθ )

]
, (1)

where ak and bk are infinitesimal parameters. It is noted that
the one-mode terms drop out since they mean only translation
within the first order of the infinitesimal parameters. Thus, in
the present Rapid Communication, we consider the two-mode
deformation, which is the most fundamental but nontrivial
deformation, corresponding to the deformation to an elliptic
shape. To investigate the translational motion of an elliptic
camphor particle, we use perturbation theory. We also perform
experiments to support the results obtained by the analysis. We
note that the present analysis is done for the camphor-water
system, but it can be easily adapted to other systems in which
surface tension is the driving force of the droplet, such as a
water-alcohol system [21], or an aniline droplet [22].

The model equation is derived based on previous works
[14,15,23]. First, we describe the shape of the camphor par-
ticle. By taking the symmetric properties into consideration,
we only consider motion in the x direction, and the shape is
written as

r(θ ) = R(1 + ε cos 2θ ), (2)

by dropping the sine term, where ε is an infinitesimally small
parameter for the deformation. It is noted that the long axis
is in the x-axis direction as ε is positive and the short axis
is in the x-axis direction as ε is negative. In other words, we
can analyze the motion in the long- and short-axis directions
by considering the x-axis-directed motion with positive ε and
negative ε, respectively.
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We consider a two-dimensional plane corresponding to the
water surface, on which the surface concentration of camphor
molecules is defined as u(x,y,t). Here, x and y are the
coordinates in space and t denotes time. The time derivative
of u is written as

∂u

∂t
= D∇2u − αu + f (x,y). (3)

The first term on the right-hand side is the surface diffusion of
the camphor molecules with diffusion constant D, the second
term is the sublimation of the camphor molecules to the air
with a rate of α, and the third term is the supply of the
camphor molecules from the camphor particle, where f (x,y)
is described as

f (x,y) =
{

f0, if (x,y) ∈ �(rc),

0, otherwise.
(4)

Here, �(rc) is the region in two-dimensional space that
corresponds to the shape of the camphor particle depending
on the center of mass rc.

For the equation of motion of the camphor particle, we
adopt

m
d2rc

dt2
= −η

drc

dt
+ F, (5)

where m is the mass, η is the friction constant of the camphor
particle, and F is the force exerted on the camphor particle,
which is calculated as

F =
∫

∂�

γ en d	, (6)

where γ is the surface tension determined by the concentration
of camphor molecules at each position, en is the outer unit
normal vector of the camphor particle, and d	 is the line
element of ∂�. From experiments, it has been found that
the surface tension is a decreasing function of the surface
concentration of the camphor molecules [24], and we assume
a linear relation between γ and u for simplicity:

γ = γ0 − κu, (7)

where κ is a positive constant. It is noted that the hydrodynamic
effect such as Marangoni convection may exist, but we neglect
it for simplicity.

In the present study, we choose η in Eq. (5) as a control
parameter, and the bifurcation point η0 with respect to η is
obtained using a perturbation method. It is noted that a larger
η0 means that a camphor particle is easier to move.

To obtain the bifurcation point, we consider the solution
propagating at a constant velocity. By considering a co-moving
frame at velocity v, u(x,y,t) = u(x − vt,y), Eq. (3) becomes

−v
∂u

∂x
= D∇2u − αu + f (x,y), (8)

or

−v

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
u

= D

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
u − αu + f (r,θ ), (9)

in polar coordinates. We also adopt the boundary conditions
u → 0 as r → ∞, ∂u/∂r → 0 as r → +0 and |u| < ∞

as r → +0. From the solvability condition, u should be a
C1-class function, which leads to the following continuity
conditions:

u(i)(R(1 + ε cos 2θ ),θ ) = u(o)(R(1 + ε cos 2θ ),θ ), (10)

∇u(i)|r=R(1+ε cos 2θ) = ∇u(o)|r=R(1+ε cos 2θ), (11)

where (i) and (o) denote the regions inside and outside the
camphor particle �, respectively.

We assume that v and ε are infinitesimally small, and u

is expanded with respect to v and ε. Under these conditions,
the concentration profiles u(i) and u(o) for the inside and the
outside of the camphor particle, respectively, are written as

u(i) = u
(i)
00 + εu

(i)
01 + v

(
u

(i)
10 + εu

(i)
11

) + O(ε2,v2), (12)

u(o) = u
(o)
00 + εu

(o)
01 + v

(
u

(o)
10 + εu

(o)
11

) + O(ε2,v2). (13)

Then, Eq. (9) can be expanded with respect to v as

0 = D

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
u

(s)
0β − au

(s)
0β + f (r,θ ), (14)

−
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)
u

(s)
0β

= D

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2

)
u

(s)
1β − au

(s)
1β, (15)

where (s) denotes (i) or (o), and β denotes 0 or 1.
The continuity conditions (10) and (11) can also be

expanded with respect to ε, giving

u(i) + ε
∂u(i)

∂r
R cos 2θ = u(o) + ε

∂u(o)

∂r
R cos 2θ, (16)

and

∂u(i)

∂r
+ ε

∂2u(i)

∂r2
R cos 2θ + 2ε

sin 2θ

R

∂u(i)

∂θ

= ∂u(o)

∂r
+ ε

∂2u(o)

∂r2
R cos 2θ + 2ε

sin 2θ

R

∂u(o)

∂θ
, (17)

at r = R.
Using these conditions, we can straightforwardly calculate

u
(i)
00 = f0

α
[1 − ρK1(ρ)I0(r̃)], (18)

u
(o)
00 = f0

α
ρI1(ρ)K0 (r̃) , (19)

u
(i)
01 = f0

α
ρ2K2 (ρ) I2 (r̃) cos 2θ, (20)

u
(o)
01 = f0

α
ρ2I2(ρ)K2 (r̃) cos 2θ, (21)

u
(i)
10 = f0

2
√

Dα3
[ρK1(ρ)I0(r̃)r̃ − ρ2K2(ρ)I1(r̃)] cos θ, (22)

u
(o)
10 = − f0

2
√

Dα3
[ρI1(ρ)K0(r̃)r̃ − ρ2I2(ρ)K1(r̃)] cos θ, (23)

u
(i)
11 = f0

4
√

Dα3
[ρ3K1(ρ)I1(r̃) − ρ2K2(ρ)I2(r̃)r̃] cos θ

− f0

4
√

Dα3
[ρ2K2(ρ)I2(r̃)r̃ − ρ3K3(ρ)I3(r̃)] cos 3θ,

(24)
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u
(o)
11 = f0

4
√

Dα3
[ρ3I1(ρ)K1(r̃) − ρ2I2(ρ)K2(r̃)r̃] cos θ

− f0

4
√

Dα3
[ρ2I2(ρ)K2(r̃)r̃ − ρ3I3(ρ)K3(r̃)] cos 3θ,

(25)

where In and Kn are the modified Bessel functions of the nth
order of the first and second kind, respectively, ρ = R

√
α/D,

and r̃ = r
√

α/D.
The force exerted on the camphor particle is thus calculated

as

F = (F0 + εF1)vex + O(ε2,v3), (26)

where F0 and F1 are explicitly written as

F0 = πκf0R
4

4D2
[I0(ρ)K0(ρ) − I2(ρ)K2(ρ)] , (27)

F1 = −πκf0R
4

2D2
[I1(ρ)K1(ρ) − I2(ρ)K2(ρ)] . (28)

The signs of F0 and F1 are positive and negative, respectively,
considering In(x)Kn(x) > In+1(x)Kn+1(x) for any x > 0 and
for any non-negative integer n [25]. The equation of motion
along the x axis becomes

m
dv

dt
= −ηv + (F0 + εF1) v + O(ε2,v3). (29)

This equation means that the camphor particle can move in
the x-axis direction when η is less than F0 + εF1. In other
words, the friction constant at the bifurcation point, η0, is equal
to F0 + εF1. Considering that the x axis corresponds to the
long- and short-axis direction when ε is positive and negative,
respectively, and that F1 is negative, η0 for the long-axis-
directed translational motion is smaller than that for the short-
axis-directed one. This means that the elliptic camphor particle
tends to move in the short-axis direction at least with small
deformation and within the neighborhood of the bifurcation
point.

We can successively expand the steady-state concentration
profile to the order of v3, and we can obtain the steady-state
velocity v as

0 = −ηv + (F0 + εF1)v + (G0 + εG1)v3 + O(ε2,v5), (30)

where

G0 = πκf0R
6

32D4

[
I0(ρ)K0(ρ)− 2

ρ2
I1(ρ)K1(ρ)−I2(ρ)K2(ρ)

]
,

(31)

G1 = πκf0R
6

48D4
[−3I0(ρ)K0(ρ)+4I1(ρ)K1(ρ) − I2(ρ)K2(ρ)].

(32)

Since G0 is negative, we can show that the supercritical
bifurcation occurs. We can also calculate the steady-state
velocity near the bifurcation point as

v = ±
√

−F0 + εF1 − η

G0 + εG1
. (33)

To confirm the analysis mentioned above, we performed
experiments using a camphor-water system. We prepared an

elliptic camphor particle by putting camphor powder (Wako,
Japan) into a purchased ellipse template (No. E201N, Sanko,
Japan). The long- and short-axis lengths and thickness of the
elliptic camphor particle were ∼13.5, ∼6.5, and ∼1.0 mm,
respectively. The upper surface of the camphor particle was
colored with black ink for easier visualization. Then, the
prepared camphor particle was placed onto 1 L pure water
(Matsuba, Japan) in a rectangular container with a size of
∼320 mm by ∼230 mm, and thus the depth of the water was
around 15 mm. The image was taken from above using a digital
video camera (DR-XR520V, Sony, Japan). All the experiments
were performed at room temperature. The obtained image was
analyzed with image processing software (ImageJ, National
Institutes of Health, USA).

Figure 1 shows the experimental results for the motion of
an elliptic camphor particle. The superposed images shown
in Fig. 1(a) and the plots of the direction of velocity against
that of the short axis shown in Fig. 1(b) indicate that the
elliptic camphor particle moves in the short-axis direction.
These experimental results are consistent with the analysis
using the perturbation method.

30 mm

13.5 mm

6.5 mm

(a)

(b)

O
cr x

y
direction
of motion

χ

φ

-π/2

-π/4

0

π/4

π/2

-π/2 -π/4 0 π/4 π/2

χ(cos   ,sin   )χ
φ(cos   ,sin   )φ

every 0.2 s

FIG. 1. (Color online) Experimental results of the spontaneous
motion of an elliptic camphor particle. (a) Superposed images of
an elliptic camphor particle every 0.2 s. The shape and size of
the camphor particle are shown in the inset. See the movie in the
Supplemental Material [26]. (b) Correlation between χ and φ during
60 s, where χ is the angle of the short-axis direction from the x axis,
and φ is the angle of the direction of the velocity from the x axis. The
plot points are concentrated along χ = φ, which means χ and φ are
almost equal.
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In the present Rapid Communication, we consider the
steady-state solution in a co-moving frame and expand it
with regard to v. As another approach, we can also expand
the equation of motion using Green’s function. By such a
procedure, we can derive the normal form of the bifurcation
[27]. The expansion for the shape or deformation is rather
complicated for higher orders of ε. Instead, it seems to be
possible using elliptic coordinates and Mathieu functions.
These problems remain for future work.

From the present linear theory, important characteristics can
be revealed. Here, we restrict the discussion to the spontaneous
motion of a droplet or a particle driven by the surface tension
gradient, which is caused by the chemicals supplied from the
droplet or particle. In this case, the droplet or particle can
exhibit spontaneous motion only when the chemical reduces
the surface tension; in other words, κ > 0. Then, if the droplet
or particle deforms in the form of an ellipse, it should move in
the short-axis direction. This result suggests that the parameter
a in Ohta and Ohkuma’s paper [1] is positive for a self-
propelled particle or droplet whose motion is originated from
the surface tension gradient generated by the particle or droplet
itself, where the parameter s in Ohta’s model [1] corresponds
to ε in this Rapid Communication, as long as |s| is small.

We can make predictions about another case of spontaneous
particle or droplet motion: In the case in which a particle
or droplet consumes the chemicals supplied from the sur-
roundings [28], the droplet can move only when the chemical
increases the surface tension. Using a parallel discussion, we
can show that the spontaneous motion occurs in the short-axis
direction also in such a case.

In summary, we analyzed the spontaneous motion of
an elliptic camphor particle using the perturbation method,
and we showed that the friction constant at the bifurcation
point is larger for the motion in the short-axis direction,
which means that an elliptic camphor particle moves in the
short-axis direction. In the experiments, the elliptic camphor
particle was shown to move in the short-axis direction,
which supports the theoretical result. Analysis for large
deformation from the circular shape, that for rotational
motion, and that with hydrodynamic effect remain for future
studies.

The authors thank Professor T. Ohta (Kyoto Univer-
sity), Professor Y. Nishiura (Tohoku University), Professor
H. Nishimori (Hiroshima University), and Professor S. Nakata
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