Title	Loss of species diversity impacts on genetic variation in an ecological community member
Author(s)	Utsumi, Shunsuke
Citation	フィンランド-日本 共同シンポジウムシリーズ : 北方圏の環境研究に関するシンポジウム2012(Joint Finnish-Japanese Symposium Series Northern Environmental Research Symposium 2012). 2012年9月10日-14日. オウル大学、オウランカ研究所, フィンランド.
Issue Date	2012-09-10
Doc URL	http://hdl.handle.net/2115/51379
Туре	conference presentation
File Information	15_ShunsukeUtsumi.pdf

Instructions for use

Sep 11, 2012, 5th Joint Finnish-Japanese Symposium on Northern Environmental Research @Oulu

Loss of species diversity impacts on genetic variation in an ecological community member

Shunsuke Utsumi

Diverse arthropods on a tree

Number of species on Earth

Insects > 85% of Arthropods

Loss of species diversity accelerating

Loss of worldwide species diversity in invertebrates

42% of terrestrial invertebrates assessed by IUCN *RL* are threatened with extinction

Why biodiversity is important?

Relationship of Biodiversity-Ecosystem Function (BEF)
Consensus of 20-year BEF studies

function
(resource capture,
biomass production,
decomposition, nutrient
recycling)

Biological diversity

For human well-being

Hierarchy of Biodiversity

The main question of our study

How does insect species diversity affect genetic variation in one insect species through evolutionary interactions?

Genus Salix (willow) as a model system

Nature

- One of the most dominant and diverse plant group of northern hemisphere (e.g., > 450 species in the whole Holarctic region), growing all northern habitats from tundra to old-growth forests. Common in Finland and Japan.
- Utilized by many, many different insect species (Lepidoptera, Hemiptera, Coleoptera, Hymenoptera, Diptera,...). → We focused on species diversity and genetic diversity of insects on a willow

Genus Salix (willow) as a model system

Applied use

- Short Rotation Coppice (SRC) as an energy crop
- Phytoremediation to clean up soil
 - → for Sustainable Development
- In Hokkaido, SRC trial has been initiated by the government
- **Insect attack** is a critical topic for productivity and success of plantation

Focal insect species to consider genetic variation

Leaf beetle Plagiodera versicolora

- only feeding on salicaceous trees
- wide distribution in northern hemisphere

Continuative variation among individuals in "preference"

Research in Finland and Japan

-Field Census-1. Herbivorous insect species diversity

-Collecting leaf beetle populations-

- 2. Preference test under laboratory condition
- 3. Genetic structure

Biodiversity-Trait relationship

Genetic structure

Sequence analyses of mitochondrial gene (COI region)

• Significant among-population genetic differentiation (within each country)

[AMOVA: *P* < 0.05]

• Non-significant correlation between genetic differentiation (F_{ST}) and trait difference (within each country).

[Mantel test: NS]

Preference variation among sites is due to evolutionary change in each site rather than individual migration

How does different preference type evolve?

Herbivore diversity → host plant value

Host plant value

→ leaf beetle preference

Scenario

Community-manipulation experiment

Experimentally demonstrated trait evolution scenario of the leaf beetle

"ubiquitous" evolutionary process

Loss of species diversity leading to...

- Evolution toward no preference type
- Extinction of gourmet type populations

All populations are no preference type

All populations are homogenous

Low genetic diversity

Genes contributing to gourmet type may be lost

Take-home message

Loss of species diversity can result in

- Homegeneity of selective force for a community member among localities
- Reduction in trait and genetic diversity among populations
- Cascade of biodiversity degradation across hierarchies
 (i.e., species → trait → genes → ? feedback ?)
- Loss of potential genetic resource loss on Earth

We need a new "Evolutionary Community Ecology" study in various ecosystems

Kiitos paljon

Willow – Herbivore System

Strong regrowth drastically increase availability of new leaves