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Abstract 

 

Purpose: Hypofractionated irradiation is often used in precise radiotherapy instead of 

conventional multi-fractionated irradiation. We propose a novel mathematical method for 

selecting a hypofractionated or multi-fractionated irradiation regime based on physical dose 

distribution adding to biological consideration.  

Methods and Materials: The linear quadratic (LQ) model was employed for the radiation 

effects on tumor and normal tissues, especially OARs. Based on the assumption that the OAR 

receives a fraction of the dose intended for the tumor, the minimization problem for the 

damage effect on the OAR was treated under the constraint that the radiation effect on the 

tumor is fixed.  

Results: For an N-time fractionated irradiation regime, the constraint of tumor lethality was 

described by an N-dimensional hypersphere. The total dose of the fractionated irradiations 

was considered for minimizing the damage effect on the OAR under the hypersphere 

condition. It was found that the advantage of hypofractionated or multi-fractionated 

irradiation therapies depends on the magnitude of the ratio of  parameters for the OAR and 

the tumor in the LQ model and the ratio of the dose for the OAR and the tumor.  

Conclusions: The present mathematical method shows that the multi-fractionated irradiation 
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with a constant dose is better if the ratio of  for the OAR and the tumor is less than the 

ratio of the dose for the OAR and the tumor, while hypofractionated irradiation is better 

otherwise.  

 

Key words: radiotherapy, radiobiology, dose fractionation, linear-quadratic model, 

hypersphere 
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INTRODUCTION 

  Radiotherapy plays an important role in the treatment of solid tumors. Fractionated 

irradiation is performed in most clinical cases to kill tumor cells effectively based on the 

“4Rs” concept (1) and to reduce radiation-induced normal tissue toxicity. A typical 

multi-fractionated irradiation schedule is 1.8 to 2.0 Gy per day to a total of 60 to 70 Gy. Many 

studies have discussed alternative treatment regimens, e.g. varying the number of fractions or 

dose per fraction for various tumor sites and types in actual clinical cases. The effectiveness 

of hyperfractionated, hypofractionated, or accelerated radiotherapy has been investigated in 

head and neck cancer (2, 3) and breast cancer (4). Continuous hyperfractionated accelerated 

radiotherapy (CHART) was introduced in the 1980s. The superiority of CHART compared to 

conventional radiotherapy has been reported (5-7). In terms of biological effects, 

hypofractionated radiotherapy has advantages in tumor cell killing due to an increase in dose 

per fraction and a decrease in treatment duration. Recently, it has become possible to irradiate 

higher dose to the tumor region while minimizing unwanted radiation exposure to 

surrounding normal tissue due to advances in high-precision radiotherapy. This trend makes 

hypofractionated radiotherapy feasible without increasing toxicity of normal tissue (8, 9). 

However, there is still some controversy with this issue clinically (10).  

   In other approaches, many investigations have been made to study appropriate treatment 

regimens based on radiobiological models. The linear quadratic (LQ) model, which was 
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introduced in the 1960s and widely spread in the 1980s, is one of the most frequently used 

models (11-15).  Fowler et al. examined biological effective dose, tumor control, and late 

effects for normal tissues in various treatment schedules using the LQ model (16). They also 

investigated the robustness of the LQ model against parameter variations (17). Yang and Xing 

analyzed optimal treatment strategies based on the LQ model considering tumor proliferation 

(18). However, there seems to be no report discussing the influence of tumor size, location, 

and distance to organs at risk (OARs) in determining treatment regimen. For example, 

hypofractionated irradiation may be preferred to multi-fractionated irradiation for the tumor 

located far from an OAR in terms of OAR sparing. Existing radiobiological models are 

unable to deal with such situations.  

   In this study, we propose a novel mathematical approach to calculate the optimal dose 

fractionation. The problem is defined as the minimization of the damage effect on normal 

tissues subject to radiation effect on the tumor based on the LQ model. We approached this 

problem mathematically as a constrained optimization problem and evaluated what treatment 

schedule, i.e. hypofractionated or multi-fractionated irradiation, is appropriate. 

 

METHODS AND MATERIALS 

   The basic assumption in this study relies on the LQ model for both tumors and normal 

tissues, including organs at risk (OARs); that is, the formula 2)( dddE    is employed 
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for the effect )(dE  as a function of absorbed dose d where  are parameters. We use the 

notation  for the tumor and  for the OAR as the parameters, respectively. 

   Let us consider the damage effect on the OAR exposed to irradiation to yield a radiation 

effect on the tumor to be (this is predefined based on the intent to treat radically or 

palliatively, e.g. –ln0.01 or –ln0.05). Assuming that the tumor and OAR are exposed to the 

same irradiation field, it should be reasonable to consider that the dose for the OAR is 

proportional to the dose for the tumor, i.e. the dose for the OAR is given by d, where the 

dose for the tumor is d and the proportionality factor  satisfies 0  (Fig.1). 

For multi-fraction radiation therapy with N-fraction doses ( Nddd ,...,, 21 ), the radiation 

effect on the tumor is represented by 



N

i

ii dd
1

2

11 )(   and is fixed as E1, that is  

 



N

i

ii ddE
1

2

111 )(  .     (1)   

Since the doses for the OAR are denoted as Nddd  ,...,, 21 , the damage effect on the OAR 

(E0) by N times exposure is given by 

 



N

i

ii ddE
1

2

000 ])()([  .    (2) 

Thus, the problem for the fractionation regimen can be handled mathematically as an 

optimization problem,  

 Min     ])()([
1

2

00 


N

i

ii dd     

under the constraint of Eq.(1). If the damage effect on the OAR in formula (2) is smaller with 

an increase in the number of fractions, multi-fractionated irradiation is better. If the damage 
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effect on the OAR in formula (2) is larger with an increase in the number of fractions, 

hypofractionated irradiation is better.  

 

RESULTS 

   From Eq.(1), we have the following equation, 

 







 



N

i

i

N

i

i dEd
1

11

11

2 1



.    (3) 

The formula (2) can be transformed as follows. 
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Then, this formula is interpreted as follows; 

(a) if 









1

1

0

0 , the lower 


N

i

id
1

is, the lower the damage effect on the OAR is.  

(b) if 









1

1

0

0 , the larger 


N

i

id
1

is, the lower the damage effect on the OAR is.  
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   Next, we move to the problem of the minimization or maximization of 


N

i

id
1

. From Eq. 

(1), we have  

 












N

i

ii

E
dd

1 1

1

1

12 



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
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
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
N
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N

E
d
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i

i
.   (5) 

The set of fractionated doses  ),,( 1 Ndd   satisfying the above equation represents an 

N-dimensional hypersphere )0,,0( 1  Ndd  , where the center is 









1

1

1

1

2
,,

2
 








  and 

the radius is 

2

1

1

1

1

2 














N

E
,  as depicted in a two-dimensional plane in Fig.2. 

In Fig.2, the circle represents the condition of Eq. (5) (for radiation effect on tumor, E1), 

and the lines (with minus one inclination) correspond to the values of 


N

i

id
1

. Under the 

reservation 0id , 


N

i

id
1

is maximized when the line is tangent to the circle, while 


N

i

id
1

is 

minimized when the line crosses the points that the circle intersects the axes. Therefore, we 

can summarize the conditions as: 


N

i

id
1

is maximized when Ndd 1 , and 


N

i

id
1

is 

minimized when one of Ndd ,, 1   is positive and the others are zero (i.e., single exposure). 

Ultimately, the adjudication can be described as follows: 

(i) if 









1

1

0

0 , hypofractionated irradiation is better than multi-fractionated irradiation.  
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(ii) if 









1

1

0

0 , multi-fractionated irradiation with a constant dose is better. 

The result does not depend on the value E1, nor the parameters, 1100 ,,,  , but the ratio 

1

1

0

0








and .  

 

DISCUSSION 

   Conventionally, multi-fractionated irradiation has been performed in order to minimize the 

damage effect on the normal tissue that is preserved intact by taking advantage of the 

difference of susceptibilities to radiation between the tumor and late-responding normal 

tissues. The value of 00  (for OARs or late-responding normal tissues) has been reported 

to be usually smaller than 
11   (for tumors) (11, 12). On the other hand, the dose fraction, 

, for OARs is governed by the configuration of the tumor and the irradiation geometry in the 

human body, which should be reduced as small as possible.  

   Now let us suppose 200   and 1011   which are taken from a typical clinical 

condition; then we have 2.0
1

1

0

0 







 (19). At the same time, the radiation effect on the 

tumor is set to be –ln0.05 as a trial. If the dose fraction  is smaller than 0.2, a single exposure 

is better than a multi-fractionated exposure, in which the damage effect on OAR is minimized 

under the constraint of the radiation effect on tumor, as illustrated in Fig.2. Contrary to this, if 

 is larger than 0.2, a multi-fractionation regimen with a constant dose per fraction leads to 

the minimizing damage effect on OAR. The maximization of 


N

i

id
1

 with Ndd 1  in 



    Mizuta 

 

10 

the latter case means that a multiple (N) exposure with a constant dose per fraction is 

favorable for obtaining a low effect on OAR.  For example, if 1011   is given by 

05.01   and 005.0 1  , the relation of 05.0ln)(
1

2

11 


N

i

ii dd   is satisfied by 25N  

with  0.21  ddd N Gy, where 0.2d  Gy is a typical dose in a multi-fractionation 

regimen. The total accumulated dose is 50 Gy in this case with daily dose of 2.0 Gy, while 

d=20 Gy is required for a single exposure (N=1) as an extreme example (as another example, 

the total dose is 30 Gy for N=3) to achieve the same biological effect. Although the total dose 




N

i

id
1

in the multi-fraction irradiation is much larger than that of the hypofractionated 

irradiation, the effect on the OAR can be smaller than the effect resulting from the 

hypofractionated irradiation, when 









1

1

0

0 . This condition is probable when 0.2 <  for 

an OAR near the tumor with 200   (e.g., from 04.00   and 02.0 0   (19)). It should 

be emphasized that the decision whether to choose a hypofractionated irradiation or a 

multi-fractionation in radiation therapy depends on the ratio 
1

1

0

0








 and the dose fraction 

for the OAR ( ), while the total dose is determined by the values (
1  and 

1 ) and the dose 

per fraction ( d ) to yield a certain degree of radiation effect on the tumor.   

In figure 3, the damage effect on OAR versus the number of fractions is exemplified for 

two cases, =0.1 and =0.8, respectively, keeping the radiation effect on the tumor to be 

–ln0.05. In practice, hypofractionation of 3-5 times rather than single fractionation is often 

used expecting to increase reoxygenation for hypoxic cells. Figure 3(a) suggests that 
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hypofractionated irradiation (e.g., 3-5 times) provides less damage effect on OAR than 

multi-fractionated irradiation (30 times) when =0.1 (i.e., OAR receives 10% of tumor dose) 

and 2.0
1

1

0

0 







. Figure 3(b) suggests that multi-fractionated irradiation provides less 

damage effect on OAR than hypofractionated irradiation when =0.8 (i.e., OAR receives 80% 

of tumor dose) and 2.0
1

1

0

0 







. 

   In actual situations, the value   for a tumor or a specific organ (or tissue) may vary 

depending on its volume due to the oxygen effect (20) and other factors such as the cell cycle. 

Modification for treatment time in the LQ model alters the result to some extent. However, as 

far as the simple assumption mentioned earlier holds, the present study can provide us with a 

criterion for the validity of the hypofraction or the multi-fractionation regimen as Eqs.(1) and 

(2). 

   The clinical feasibility of this model can be examined assuming two lung tumors with the 

same volume of 2.0 cm but situated at different locations; for example peripheral lung tissue 

and central lung. The organs at risk are normal lung tissue, spinal cord, brachial plexus, 

pulmonary artery, heart, esophagus, and the proximal bronchial tree (21, 22). We can assume 

that the complication probabilities of OARs other than the proximal bronchial tree are 

negligible for both tumors whether a single or fractionated schedule is employed. 00  of 

the proximal bronchial tree is very likely to be smaller than 
11   of squamous cell 

carcinoma so that we can assume 
1

1

0

0








is smaller than 1.0. In the treatment of peripheral 
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lung tumors, the proximal bronchial tree, which is far from the tumor, does not receive any 

dose (. In the treatment of central lung tumors, on the other hand, the proximal 

bronchial tree, which is quite close to the tumor, receives the same dose as the target volume 

(. Consequently, the model predicts that hypofractionated radiotherapy is preferable for 

the peripheral tumor and multi-fractionated irradiation is preferable for the central tumor. 

These preferences are consistent with clinical findings and recent recommendations in the 

treatment guideline for stereotactic body irradiation (SBRT) of stage I squamous cell 

carcinoma of lung (23, 24).  

   On the other hand, for the treatment of prostate cancer adjacent to the rectal wall, 

00  is reported to be larger than 
11  , or 

1

1

0

0








 is higher than 1.0 (25). In this 

scenario, even though the OAR receives dose equivalent to the tumor dose ( the 

model predicts that hypofractionation will be preferable over multi-fractionation. This is 

consistent with recently published randomized trials where hypofractionated radiotherapy was 

better than conventional radiotherapy for prostate cancer (26, 27). Previous radiobiological 

models predicted that hypofractionation is optimal for prostate cancer based on the fact that 

00  is larger than 
11  ; in other words,  was set at 1.0. The unique point of the 

present study is that  does not need to be 1.0. Dose distribution can thus be considered in 

order to determine the optimal fractionation.  

The justification for applying a constant dose per fraction in the multi-fractionation 
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regimen is also presented from a mathematical point of view. The model for a single tumor as 

the target and a single OAR is treated here based on the assumption that each organ is 

irradiated uniformly. However, the method can be extended to the condition for a non-uniform 

irradiation to OARs such as in intensity modulated radiation therapy.  

   The real interest of the present approach would be the determination of the optimum 

solution for N in clinical practice. However, this requires a better modeling of cellular 

dynamics following each fraction, incorporating the 4 Rs.  

 

CONCLUSION 

   In this paper, we have discussed the validity of the multi-fractionation regimen in 

radiotherapy, based on the LQ model for both tumors and normal tissues (OARs). The 

problem of minimizing the radiation effect on OAR was solved under the constraint of 

prescribed effect on the tumor, in which a multi-dimensional hypersphere representing the 

constraint was taken into account. The result shows that a multi-fractionated irradiation with a 

constant dose is better when the ratio of   values for OAR and tumor is less than (ratio 

of doses to the OAR and the tumor), while hypofractionation irradiation is appropriate when 

the ratio is greater than .  
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Figure Legends 

 

Figure 1. Doses for tumor and OAR. 

Figure 2. Maximum and minimum conditions of 


N

i

id
1

 under the constraint for the radiation 

effect on tumor.  

Figure 3. Damage effect on OAR versus the number of fractionation (N) keeping the radiation 

effect on tumor (E1) in Eq.(1) is set to be –ln0.05: (a) for =0.1 and (b) for =0.8. Here, the 

dose per fraction (d) was assumed to be constant, and obtained from the constraint of 

E1=–ln0.05. The damage effect on OAR (E0) was then determined by Eq.(2) with 

04.00  , 02.0 0   and the value d for every fractionation number (N).  
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