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A Werner-type Cu(II) complex, ¡-[Cu(CF3SO3)2(4-mepy)4]
(¡-PAC-1-CF3SO3, PAC: porous assembly of coordination
complex and 4-mepy: 4-methylpyridine), was synthesized,
crystallographically characterized, and its adsorption properties
were compared with those of the derivative ¡-[Cu(PF6)2(4-
mepy)4] (¡-PAC-1-PF6).

Porous assemblies of coordination complexes (PACs),
which are formed by the assembly of discrete coordination
complexes without internal spaces via intermolecular interac-
tions (van der Waals, electrostatic, and hydrogen-bonding
interactions) that are weaker than coordination bonds,1­3 have
the potential to provide the following unique host­guest
features: (i) diversity in assembled structures with guest
molecules, resulting from weak and flexible intermolecular
interactions;1h,1i (ii) formation of host frameworks consisting of
two or more different discrete coordination complexes;1j (iii)
facile fabrication of films because of high solubility;1k,1l and (iv)
polymorphism without guest molecules, which is controlled by a
kind of preadsorbed guests.1c,1i These characteristics of PACs
could supply not only fundamental information about their pores
but also unprecedented, useful porous functions.

The Werner-type complex [Ni(NCS)2(4-mepy)4] (4-mepy:
4-methylpyridine) and its derivatives are well known as
examples of PACs; their preparation and guest-inclusion abilities
were first reported in 1957.1a Among them, [Ni(NCS)2(4-
mepy)4] has been thoroughly studied because of its interesting
guest-inclusion properties derived from pseudopolymorphism,
such as a dense ¡-form, and guest-including ¢- and £-forms.
The ¡-form has no space for including guest molecules because
of its dense packing structure, whereas the ¢- and £-forms are
channel-type and layer-type clathrates, respectively.1i In partic-
ular, this complex easily affords an empty ¢-form that adsorbs
several gases with type I isotherms.

We have recently found that a Cu(II)-based PAC,
[Cu(PF6)2(4-mepy)4] (PAC-1-PF6), which is a quasi-Werner-
type metal complex, has interesting guest-recognition abilities.4

The dense ¡-form, ¡-PAC-1-PF6, has inorganic PF6¹ anions
covered with only fluorine atoms in the framework, and it
adsorbs CO2 gas with structural transformations; this is the first
example of gas-adsorption properties in the dense ¡-form. On
the other hand, when ¡-PAC-1-PF6 is recrystallized from
acetone/n-hexane and 2-butanone/n-hexane, some of the weak-
ly coordinated PF6¹ anions are easily released from the
axial sites and Lewis-base guests (acetone and 2-butanone)
attach to these sites instead, forming the guest-including
£-form, £-{[Cu(PF6)2(4-mepy)4][Cu(PF6)(4-mepy)4(acetone)]¢
PF6¢4acetone} (£-PAC-1-PF6¸2.5acetone), £-{[Cu(PF6)2(4-

mepy)4][Cu(PF6)(4-mepy)4(2-butanone)]¢PF6¢3.5(2-butanone)}
(£-PAC-1-PF6¸2.25(2-butanone)). The prefix “quasi-” derives
from such labile axial bonds. These unprecedented phenomena
have never been observed in any other Werner-type metal
complexes. These results clearly indicate that Cu(II)-based
PACs are useful for the construction of porous materials with
multiguest-recognition properties.

In this letter, we report the synthesis, crystal structure, and
adsorption properties of a derivative of ¡-PAC-1-PF6, ¡-
[Cu(CF3SO3)2(4-mepy)4] (¡-PAC-1-CF3SO3), to investigate the
effect of inorganic anions on the adsorption properties. The
introduction of CF3SO3

¹ anions enhanced the intermolecular
interactions through the oxygen atoms of the anions and
inhibited gas adsorption with structural changes.

¡-PAC-1-CF3SO3 was synthesized as follows: Cu(CF3-
SO3)2 (362mg, 1.0mmol) and 4-mepy (466mg, 5.0mmol) were
dissolved in acetone (20mL) and excess n-hexane was added to
the acetone solution, forming blue microcrystals of ¡-PAC-1-
CF3SO3. Single crystals suitable for X-ray diffraction analysis
were obtained by recrystallization from CHCl3/n-hexane.

The crystal structure of ¡-PAC-1-CF3SO3 was determined
by single-crystal X-ray diffraction analysis at 173K.5 Figure 1
shows the ORTEP view around the Cu(II) ion. The Cu(II) ion
has an elongated octahedral environment with four 4-mepy
molecules in the equatorial plane and two CF3SO3

¹ anions at the
axial sites. The Cu­O bond distance of 2.468(2)¡ is consid-
erably longer than the equatorial Cu­N values (2.014(4)­
2.025(3)¡), indicating that the Jahn­Teller axis is formed along
the O­Cu­O direction. The axial bonds in ¡-PAC-1-CF3SO3

are shorter than those in ¡-PAC-1-PF6 (Cu­F bond dis-

Figure 1. ORTEP drawing around the Cu(II) center in ¡-PAC-
1-CF3SO3. The hydrogen atoms are omitted for clarity.
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tances = 2.478(2), 2.528(2), 2.586(2), and 2.629(2)¡),6 which
is a reasonable result because CF3SO3

¹ anions have stronger
Lewis basicity than PF6¹ anions.7 Each mononuclear Cu(II)
complex is densely packed, resulting in the assembled structure
having no pores (accessible void space calculated using the
PLATON program is 0%).8

The adsorption and desorption isotherms for CO2 at 195K
on ¡-PAC-1-PF6 and ¡-PAC-1-CF3SO3 were measured to
compare the effects of inorganic anions. As shown in Figure 2,
¡-PAC-1-PF6 shows CO2 adsorption. Because ¡-PAC-1-PF6

possesses no vacant space, the observed adsorption behavior
with large hysteresis should be associated with gate-opening
processes, in which adsorption occurs with structural trans-
formations.4 On the other hand, ¡-PAC-1-CF3SO3 scarcely
adsorbs CO2 gas over the entire pressure range. In general, the
gate-opening pressure depends on the strength of host­host and/
or host­guest interactions. Weak host­host and strong host­guest
interactions decrease the gate-opening pressure. First, host­host
interactions were checked from the viewpoint of (1) the type
of intermolecular interactions, and (2) their distances and angles.
In ¡-PAC-1-CF3SO3, there are weak intermolecular hydrogen
bonds between noncoordinated oxygen atoms of CF3SO3

¹

anions and hydrogen atoms of 4-mepy ligands (O£C = 3.33,
3.40, and 3.42¡, Figure 3). ¡-PAC-1-PF6 bears slightly shorter
intermolecular contacts between noncoordinated fluorine atoms
of PF6¹ anions and hydrogen atoms of 4-mepy ligands
(F£C = 3.19­3.32¡, see Supporting Information).14 However,
considering the van der Waals radii of oxygen and fluorine atoms
(1.52 and 1.47¡, respectively) and the C­H(pyridyl)£O(F)
angles (see Table S2),9,14 the slight difference observed in the
intermolecular distances may not reflect a difference in the
strength of the intermolecular interactions. On the other hand, as
confirmed by DFT calculations for ¡-[Cu(A)2(py)4] (¡-PAC-2-
A, A = PF6 and CF3SO3, py: pyridine), ¡-PAC-2-PF6 bears an
almost uniform negative potential over all the surface fluorine
atoms of PF6¹. In contrast, the CF3SO3

¹ anions in ¡-PAC-2-
CF3SO3 have negative potentials on their oxygen atoms; their
magnitude is higher than that on the fluorine atoms in ¡-PAC-2-
PF6.10 Moreover, a fluorine atom, with a small polarizability,
weakens intermolecular interactions. These results imply that
host­host interactions (including acid­base and van der Waals
interactions) in ¡-PAC-1-PF6 are weaker than those in ¡-PAC-1-

CF3SO3. Next, host­guest interactions were compared. It is
known that a CO2 molecule interacts with these fluorinated
anions via weak acid­base interactions in ionic liquids.11 As
mentioned above, the Lewis basicity of CF3SO3

¹ anions is
stronger than that of PF6¹ ones. Furthermore, the results of DFT
and MP2 calculations show that the binding energy in the
CF3SO3

¹­CO2 complex is slightly higher than that in PF6¹­
CO2.12 Hence, the host­guest interaction between the
[Cu(PF6)2(4-mepy)4] unit and CO2 is probably weaker than
that between the [Cu(CF3SO3)2(4-mepy)4] unit and CO2. This
comparison of host­host and host­guest interactions indicates
that host­host interactions predominantly influence gate-opening
adsorptions in these PACs.

A similar tendency has been observed in the two-
dimensional Cu(II) porous coordination polymers (PCPs)
[Cu(A)2(4,4¤-bpy)2]n (A = PF6 and CF3SO3, 4,4¤-bpy: 4,4¤-
bipyridine).10,13 Both PCPs have similar two-dimensional
frameworks with weakly coordinated inorganic anions, PF6¹

and CF3SO3
¹, at the axial sites and show two kinds of

adsorption events: micropore filling in open voids and gate-
opening adsorption with expansion of the layers. The gate-
opening pressures for [Cu(PF6)2(4,4¤-bpy)2]n are considerably
lower than those for [Cu(CF3SO3)2(4,4¤-bpy)2]n. These results
can also be explained by the difference in the strengths of host­
host interactions.

In conclusion, we achieved the synthesis and crystallo-
graphic characterization of the Werner-type Cu(II)-based PAC ¡-
[Cu(CF3SO3)2(4-mepy)4] (¡-PAC-1-CF3SO3). The weak hydro-
gen-bonding interactions between the oxygen atoms of the
CF3SO3

¹ anions and the hydrogen atoms of the 4-mepy ligands
make the assembled structure rigid, resulting in the suppression
of CO2 adsorption with structural transformations. This finding
could help in designing flexible PCPs that show gate-opening
adsorption. In addition, although ¡-PAC-1-CF3SO3 did not

Figure 2. Adsorption (filled symbols) and desorption (open
symbols) isotherms for CO2 at 195K on ¡-PAC-1-CF3SO3
(squares) and ¡-PAC-1-PF6 (circles).

Figure 3. View of the intermolecular interactions in ¡-PAC-1-
CF3SO3, in which the red dashed lines indicate hydrogen bonds.
The 4-mepy molecules of other mononuclear complexes are
represented in sky blue. The hydrogen atoms are omitted for
clarity.
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show porosity for CO2 gas, other organic vapors, such as
alcohols, ketones, and benzene, may adsorb on ¡-PAC-1-
CF3SO3 with structural transformations.4 Further work is
therefore in progress to isolate the guest-including ¢- and £-
PAC-1-CF3SO3 and check the vapor-adsorption properties of ¡-
PAC-1-CF3SO3.
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