
 

Instructions for use

Title Wound-induced rgs-CaM gets ready for counterresponse to an early stage of viral infection

Author(s) Tadamura, Kazuki; Nakahara, Kenji S; Masuta, Chikara; Uyeda, Ichiro

Citation Plant Signaling & Behavior, 7(12), 1548-1551
https://doi.org/10.4161/psb.22369

Issue Date 2012-12

Doc URL http://hdl.handle.net/2115/50867

Type article (author version)

File Information PSBtadamura2012.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


 1 

Wound-induced rgs-CaM gets ready for counterresponse to an early stage of viral 1 

infection 2 

 3 

Kazuki Tadamura, Kenji S. Nakahara*, Chikara Masuta and Ichiro Uyeda 4 

 5 

Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, 6 

Sapporo, 060-8589, Japan 7 

 8 

*Correspondence to: Kenji S. Nakahara; Email: knakahar@res.agr.hokudai.ac.jp  9 

 10 

Keywords: plant innate immunity, RNAi, autophagy, calmodulin-like protein, pattern 11 

recognition receptor, PAMPs 12 

 13 

Plants and animals can recognize the invasion of pathogens through their perception of 14 

pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors 15 

(PRRs). Plant PRRs identified have been exclusively receptor-like kinases/proteins 16 

(RLK/Ps), and no RLK/P that can detect viruses has been identified to date. RNA 17 

silencing (RNA interference, RNAi) is regarded as an antiviral basal immunity because 18 

the majority of plant viruses has RNA as their genomes and encode RNA silencing 19 

suppressor (RSS) proteins to counterattack antiviral RNAi. Many RSSs were reported to 20 

bind to double-stranded RNAs (dsRNAs), which are regarded as viral PAMPs. We have 21 

recently identified a tobacco calmodulin (CaM)-like protein, rgs-CaM, as a PRR that 22 

binds to diverse viral RSSs through its affinity for the dsRNA-binding domains. 23 

Because rgs-CaM seems to target RSSs for autophagic degradation with self-sacrifice, 24 

the expression level of rgs-CaM is important for antiviral activity. Here, we found that 25 



 2 

the rgs-CaM expression was induced immediately (within 1 h) after wounding at a 1 

wound site on tobacco leaves. Since the invasion of plant viruses is usually associated 2 

with wounding, and several hours are required for viruses to replicate to a detectable 3 

level in invaded cells, the wound-induced expression of rgs-CaM seems to be linked to 4 

its antiviral function, which should be ready before the virus establishes infection. 5 

CaMs and CaM-like proteins usually transduce calcium signals through their binding to 6 

endogenous targets. Therefore, rgs-CaM is a unique CaM-like protein in terms of 7 

binding to exogenous targets and functioning as an antiviral PRR. 8 

 9 

Viral PAMPs and Pattern Recognition Receptors of Plants 10 

 11 

Plants employ multiple layers of innate immunity, which result from a coevolutionary 12 

arms race with pathogenic microorganisms.1 A first layer of the innate immunity 13 

involves the perception of pathogen-associated molecular patterns (PAMPs), which are 14 

usually common among microorganisms including pathogens such as bacterial flagellin, 15 

comprising the flagellum and fungal chitin of its cell wall (PAMPs-triggered immunity, 16 

PTI).2 PAMPs are not found in host plants. Binding of PAMPs to pattern recognition 17 

receptors (PRRs) usually provokes stereotypical protective reactions, including ion 18 

fluxes, oxidative bursts, the activation of mitogen-activated protein kinases, protein 19 

phosphorylations, several gene activations, and callose deposition.2 All PRRs identified 20 

so far for bacterial and fungal PAMPs are receptor-like kinases/proteins (RLK/Ps)3 (Fig. 21 

1). RLK/Ps are anchored on a plasma membrane of plant cells and monitor 22 

microorganisms in the apoplast. No RLK/P that can detect plant viruses has been 23 

identified to date, perhaps because plant viruses are obligate intracellular parasites; i.e., 24 

they directly invade plant cells by means of mechanical wounding or through the 25 
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feeding behavior of viral vector organisms and spread systemically through the 1 

symplast pathway via plasmodesmata, but do not spread through the apoplast pathway.   2 

     If PTI exists in the interaction between plants and viruses, what are viral PAMPs and 3 

the PAMPs receptors in the cytoplasm of plant cells? RNA silencing (RNA interference, 4 

RNAi) could be regarded as a PAMP-triggered immunity against viruses in plants. 5 

RNAi is a conserved regulation system of endogenous and exogenous RNAs, and their 6 

encoding genes in eukaryotes. RNAi is induced by a double-stranded RNA (dsRNA) 7 

and quenches its cognate RNAs. In plants, RNAi is a general antiviral defense 8 

mechanism.4 Most plant viruses have been reported to encode RNAi suppressors (RSSs), 9 

which are expressed to facilitate viral infection and multiplication in the invaded plant 10 

cells.5 Plant RNA viruses form dsRNA in their secondary structures and replicative 11 

intermediates (RIs) in replication; these RNA genomes are thus PAMPs to induce and 12 

targets of RNAi. The RNase-III family ribonuclease Dicers and their interacting 13 

dsRNA-binding proteins have pivotal roles during initial steps of the RNAi, processing 14 

small RNAs from long dsRNAs.6-8 Arabidopsis thaliana has four Dicer-like proteins 15 

(DCL1-4) and five dsRNA-binding proteins (DRB1/HYL1, DRB2-5) that are orthologs 16 

of animal dsRNA-binding proteins that interact with Dicers. Among them, DCL2, 17 

DCL4, and DRB4 have been reported to be involved in antiviral defense.9,10 DCL4 18 

interacts with DRB4 to generate 21-nt small interfering RNAs (siRNAs) from 19 

exogenous and endogenous long dsRNAs.11-16 DCL2 generates 22-nt siRNAs from 20 

dsRNAs, but its interacting DRB partner remains to be determined. Since DCL2 and 21 

DCL4 are reported to be hardly capable of binding dsRNAs,17 recruiting dsRNAs into 22 

the RNAi pathway can be mainly attributed to DRBs. This suggests that DCL2 should 23 

also interact with some DRBs to effectively process dsRNAs. RIs of viral genomes and 24 

the DCL-DRB complexes are thus regarded as viral PAMPs and host PRRs, 25 
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respectively (Fig. 1).  1 

 2 

Rgs-CaM Binding to Viral RSSs as Viral Secondary PAMPs 3 

 4 

We recently identified a tobacco regulator of gene silencing calmodulin-like protein 5 

(rgs-CaM) as another viral PAMPs interactor.18 The rgs-CaM protein was previously 6 

reported to interact with a RSS protein, HC-Pro, encoded by tobacco etch virus.19 We 7 

found that rgs-CaM bound not only to the potyviral HC-Pro proteins but also to various 8 

viral RSSs through the affinity to their dsRNA-binding domains. The selection pressure 9 

by antiviral RNAi forced diverse viruses to evolutionarily develop RSSs independently, 10 

and thus these RSSs might be expected to disrupt various RNAi steps/components to 11 

suppress RNAi. However, many RSSs are reported to bind to dsRNAs.5 Binding to and 12 

sequestrating dsRNAs away from the RNAi machinery is thought to be a major strategy 13 

for viral RSSs to suppress RNAi. Therefore, we now consider that viral dsRNA-binding 14 

RSSs and rgs-CaM could serve as a viral secondary PAMP and its PRR, respectively 15 

(Fig. 1).  16 

 17 

Wound-Inducible Expression of rgs-CaM 18 

 19 

Our recent work showed that rgs-CaM not only bound to viral RSSs but also attenuated 20 

the anti-RNAi activity of RSSs, presumably by directing degradation of the RSS 21 

proteins via autophagy with self-sacrifice. The more rgs-CaM expressed, the more RSSs 22 

should be degraded. Therefore, this function of rgs-CaM against viral RSSs suggests 23 

that the expression level of rgs-CaM must be important to the degree of resistance 24 

against virus infection. Indeed, transgenic tobacco plants, in which rgs-CaM was 25 
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overexpressed, showed increased resistance against viruses. Those plants in which 1 

rgs-CaM was repressed by RNAi, showed reduced resistance.18 Therefore, when 2 

rgs-CaM effectively functions for defense against viruses, its expression should be 3 

induced immediately after, or in advance of, virus invasion. As noted above, because 4 

plant virus invasion is usually accompanied by wounding, wounding could be one of the 5 

inducers for the rgs-CaM expression. Here, we tested whether wounding can induce the 6 

rgs-CaM expression. Total RNA was extracted from tobacco leaf tissues 1 and 24 h 7 

after wounding the leaf with a bottle of 200 needles. The mRNA levels of rgs-CaM and 8 

a tobacco wound-induced mitogen-activated protein kinase (WIPK) were analyzed by a 9 

real-time PCR assay as previously described.20 The rgs-CaM mRNA level was 10 

drastically increased at 1 h after wounding, and also at 24 h, but to a lesser extent (Fig. 11 

2). Wounding immediately elicits the expression of a number of resistance-related genes 12 

including WIPK, which are associated with oxidative and jasmonic acid bursts.21 The 13 

expression of some genes become maximal within 2-3 h22 and rgs-CaM seems to be one 14 

such early-induced gene. Arabidopsis CaM-like proteins (CMLs) 37-39, which are the 15 

most similar to rgs-CaM among the CaMs and CMLs, have also been reported to be 16 

wound-inducible.23 Considering that tobacco mosaic virus (TMV) needs 2-4 h to 17 

establish infection and replicate its progeny to a detectable level in initially infected 18 

cells,24 and 18-20 h to initiate movement to adjacent cells,25 wound-induced rgs-CaM 19 

seems to be well prepared for defense against viruses in the initial stage of viral 20 

infection.  21 

 22 

Rgs-CaM as a PRR for Viruses 23 

     24 

CaM is well conserved among higher organisms and is extensively evolved in plants. 25 
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While humans have only three CaM genes in their genome, Arabidopsis has seven 1 

CaMs and 50 CMLs and rice has five CaMs and 32 CMLs.26,27 CaMs and CMLs were 2 

reported to play crucial roles in plant growth and development, plant-microbe 3 

interactions, plant immunity, and abiotic stress responses.26 Rgs-CaM is the only CaM 4 

(CML) that binds to an exogenous target that has been identified so far. CaMs and 5 

CMLs possess EF hand motifs, which bind to calcium ions (Ca2+) to perceive 6 

environmental cues of various biotic and abiotic stresses through Ca2+ fluxes in the 7 

cytoplasm, and to transduce signals leading to the induction of appropriate responses.27 8 

One question is raised: does rgs-CaM transduce signals after binding to Ca2+ and/or 9 

viral RSSs? Binding of Arabidopsis CMLs 37-39 to Ca2+ were reported to change the 10 

conformation of CMLs.23 We are now investigating how the Ca2+ flux is involved in the 11 

antiviral function of rgs-CaM if this is the case. 12 
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Figure 1. PAMPs-triggered immunity (PTI) against bacteria and fungi (A) and PTI 1 

against viruses (B) in plants.  PTI against bacteria and fungi is illustrated based on the 2 

zigzag model proposed previously.1 (A) In a first layer of defense, plants recognize 3 

invaded microbes by perceiving pathogen-associated molecular patterns (PAMPs) with 4 

receptor-like kinase/proteins (RLK/Ps) and mount defense reactions (PTI). To colonize 5 

the plants, pathogenic microbes secrete effectors into plant cells to suppress PTI 6 

(effector-triggered immunity, ETI). In a second layer of defense, plants develop 7 

nucleotide binding and leucine-rich repeat proteins (NB-LRRs) to perceive the pathogen 8 

effectors and mount a strong defense, or hypersensitive reaction (HR), which usually 9 

accompanies the generation of reactive oxidative species and programmed cell death. 10 

Pattern recognition receptors (PRRs) for bacterial and fungal PAMPs identified so far 11 

are listed in the table on the right. (B) Based on the PTI against bacteria and fungi, we 12 

here proposed a model of PTI against viruses based on our recent findings regarding the 13 

calmodulin-like protein rgs-CaM.18 The double-stranded RNA (dsRNA) forms of viral 14 

genomes, which are regarded as viral PAMPs, seem to induce RNA silencing (RNA 15 

interference, RNAi) against viruses. The viral dsRNAs are taken into the RNAi pathway 16 

and processed into small RNAs by Dicer-like proteins (DCL)-dsRNA-binding protein 17 

(DRB) complexes. Most pathogenic viruses counteractively express RNA silencing 18 

suppressor (RSS) proteins to facilitate their infection and multiplication in invaded plant 19 

cells. Many viral RSSs were reported to bind to dsRNA to suppress RNAi.5 Therefore, 20 

RSSs are considered to be both viral secondary PAMPs, which have dsRNA-binding 21 

domains, and effectors to suppress RNAi (PTI). Rgs-CaM binds to diverse RSSs 22 

through the affinity to their dsRNA-binding domains to sequestrate RSSs and thus 23 

reinforce RNAi (PTI & ETI). Afterward, plants might develop RSSs that do not bind to 24 

dsRNA and thus rgs-CaM. Some plants are reported to recognize viral RSSs to induce 25 
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HR.28,29 The host components considered to be PRRs for viral PAMPs are listed in the 1 

table on the right. 2 

 3 

Figure 2. Wound-inducible expression of rgs-CaM. Leaves of wild type tobacco cv. 4 

Bright Yellow were wounded with a bottle of 200 needles. RNAs were extracted from 5 

leaves 1 and 24 h after wounding and those without wounding (control). The mRNA 6 

levels of tobacco calmodulin-like protein (rgs-CaM) and wound-induced 7 

mitogen-activated protein kinase (WIPK) were investigated using real-time PCR with 8 

the RNA extracts as described previously.20 Relative expression levels of rgs-CaM and 9 

WIPK in those leaves with and without wounding were shown in the bar graph. Values 10 

are means ±ED of three independent experiments. 11 
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